
A Generalized Method of Differential Fault

Attack Against AES Cryptosystem

Amir Moradi1, Mohammad T. Manzuri Shalmani1, and
Mahmoud Salmasizadeh2

1 Department of Computer Engineering, Sharif University of Technology,
Azadi St., Tehran, Iran

2 Electronic Research Center, Sharif University of Technology,
Azadi St., Tehran, Iran

a moradi@ce.sharif.edu, {manzuri, salmasi}@sharif.edu

Abstract. In this paper we describe two differential fault attack tech-
niques against Advanced Encryption Standard (AES). We propose two
models for fault occurrence; we could find all 128 bits of key using one of
them and only 6 faulty ciphertexts. We need approximately 1500 faulty
ciphertexts to discover the key with the other fault model. Union of
these models covers all faults that can occur in the 9th round of en-
cryption algorithm of AES-128 cryptosystem. One of main advantage of
proposed fault models is that any fault in the AES encryption from start
(AddRoundKey with the main key before the first round) to MixColumns
function of 9th round can be modeled with one of our fault models. These
models cover all states, so generated differences caused by diverse plain-
texts or ciphertexts can be supposed as faults and modeled with our
models. It establishes a novel technique to cryptanalysis AES without
side channel information. The major difference between these methods
and previous ones is on the assumption of fault models. Our proposed
fault models use very common and general assumption for locations and
values of occurred faults.

Key words: AES, Fault Attacks, Smart Card, Side Channel Attacks,
Cryptanalysis.

1 Introduction

At first, Boneh, Demillo and Lipton in 1997 indicated using computational er-
rors occurred during execution of cryptographic algorithm can help to break it
and find the secret key [1]. This idea was applicable only on public key cryp-
tosystems and they presented successful results to discover the secret key of a
RSA implementation. Subsequently, Biham and Shamir extended this idea for
applying it on implementations of symmetric block ciphers such as DES [2] and
introduced Differential Fault Attack (DFA) concept. DFAs are powerful and
applicable against cryptographic hardwares specially on smart cards.

Many activities have been done on employing DFA to AES implementations
by several researches and some methods were introduced [3, 5, 4, 6]. All previous



techniques assumed very specific models for fault location and value. Using these
methods, such attacks in real world is applicable only with sophisticated equip-
ments such as narrow Laser beam. The most of the results appeared in these
papers are simulation based [3, 4], however the second attack of [5] was put into
practice. In this paper we present two general models for fault occurrence in
AES cryptosystem which neither of them needs any sophisticated equipment.
The first model covers 1.55% of all possible faults between the beginning of
AES-128 and the input of MixColumns in round 9, and the reminder (98.45% of
them) are covered with the second one. We should emphasize that these mod-
els do not cover faults induced during the Key Scheduling as well as safe-errors
attacks described in [3]. But in previous methods coverage rate of fault models
were tiny. For example, fault models in [4, 5] cover approximately 2.4 × 10−5%
of all possible faults induced at input of MixColumns in round 9. Therefore,
these attacks are applicable with special equipments for injecting certain faults
in desired locations. However, our proposed methods could be implemented by
power supply disturbance or glitch in clock pulse.

The rest of this paper organized as follows: we explain both of fault models
and illustrate their coverage in section 2. The next section describes algorithm of
the proposed attack using presented fault models. Section 4 presents simulation
results of the proposed attack. In section 5 we show how we can use proposed
methods for breaking AES cryptosystem without fault injection. We will show
how the AES encryption will be broken only by changing assumptions. Finally
section 6 concludes the paper.

2 Proposed Fault Models

In AES with 128-bit key, faults may occur in any function, i.e. SubBytes, ShiftRows,
MixColumns and AddRoundKey, of each 10 rounds. Some previous works [4, 5]
assumed faults occur in the input of MixColumns of the 9th round. Figure 1
shows the last two rounds of AES encryption algorithm, for more information
see [7]. We assumed any type of fault appears as a random data to be added to
the original data.

Suppose that only one byte of column 1 of input of MixColumns is influenced
by fault then, 4 bytes of its output will change. LetM stands forMixColumns and
considering the fact that MixColumns operates on each column independently,
then equations (1) to (4) could be summarized as equation (5).
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Fig. 1. Last two rounds of AES encryption function
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In the first model we suppose that at least one of the bytes e1 to e4 is zero.

FM1 = {ε : (e1, e2, e3, e4) | ∃ ei = 0; (1 ≤ i ≤ 4)} (6)

In other words, at least one byte of MixColumn (in one column only) is fault
free, but we don’t know any other thing about occurred faults such as locations
and values. In consequence, this model covers one byte, two bytes and three
bytes fault(s) among four bytes of each column. The coverage rate of this model,
CR, is defined as the proportion of the number of covered faults to the number
of all possible faults. Equation (7) gives the CR of this model.

CR1 =

(

4
1

)

× 255 +
(

4
2

)

× 2552 +
(

4
3

)

× 2553

2564 − 1
= 0.0155 (7)

The second model is the complement of the first one i.e., in the second model
all four bytes of one column should be faulty.



FM2 = {ε : (e1, e2, e3, e4) | ∀ ei 6= 0; (1 ≤ i ≤ 4)} (8)

So, all four bytes of one column are influenced by the occurred fault. In this
case the fault coverage is given by (9).

CR2 =
2554

2564 − 1
= 0.9845 (9)

The second model is more general than the first one, but the first model is
more similar with assumed fault models in previous attacks. Additionally, all
possible faults can be covered by one of the two presented models and there is
no fault that is not included in one of these two models.

It should be emphasized that the intersection of the two presented models is
empty and the union of them is all possible faults which can occur in four bytes
(2564 − 1). Consequently, any occurred fault in other units of the encryption
algorithm from the beginning of the algorithm up to MixColumns of round 9
can be considered as another fault occurred in MixColumns input of the 9th
round, then it’s coverable with one of the illustrated models. None of previous
fault models against AES had this capability.

According to the structure of AES, ShiftRows exchanges contents of the rows
and MixColumns composes each column of exchanged rows. Thus, changes in one
byte before ShiftRows will affect at most on four bytes after MixColumns. Figure
2 shows an example that two bytes of ShiftRows were induced by fault injection
and finally two columns of MixColumns output were affected. Consequently,
every fault which occurs in a round with high probability leads to big changes
in the next round.

Fig. 2. Effects of faults that occur before ShiftRows on MixColumns

3 Attack Methods

In this section we show how the new proposed models can be used and then
illustrate attack techniques. Consideration equation (5) we generated two set S1

and S2.
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(10)
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These two sets can be generated using function MixColumns independent of
plaintext and key. The (12) and (13) show the number of elements of S1 and S2

respectively.

|S1| =

(

4
1

)

× 255 +

(

4
2

)

× 2552

(

4
3

)

× 2553 = 66, 716, 670 (12)

|S2| = 2554 = 4, 228, 250, 625 (13)

According to the figure 3, after MixColumns of round 9 each byte of its
output affects on one byte of ciphertext independent of other bytes, because the
MixColumns of round 10 is omitted. In fact this algorithmic weakness of AES
causes the success of these attacks. As a result, we could consider each column
of MixColumns output in round 9 independently. Gray cells in figure 3 show the
effects of the first column of the input of MixColumns in round 9 on the other
internal values. Therefore, errors on each byte of output of MixColumns can be
traced independently. Equations (15) to (18) show it for the first column.

Fig. 3. The AES encryption scheme from MixColumns of round 9 to the end

Ciphertext = ShiftRows (SubBytes (A⊕RoundKey9))⊕RoundKey10 (14)



A : output of MixColumns in round 9, AddRK : AddRoundKey
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AddRoundKey is a linear transformation so (e′1, e
′
2, e

′
3, e

′
4) (errors on output

of MixColumn and input of AddRoundKey) are transferred to its output. But
SubBytes uses S-box transformation and it’s a non linear function. As a conse-
quence, (e′′1 , e′′2 , e′′3 , e′′4) presented on output of SubBytes does not have any linear
relation with (e′1, e

′
2, e

′
3, e

′
4) (errors on its input). But each e′′

i
relates to only e′

i

and the non linearity of this relation is very high. ShiftRows and AddRoundKey

are linear functions, thus (e′′1 , e′′2 , e′′3 , e′′4) appears exactly on ciphertext but in
(1, 14, 11, 8) locations respectively. At the first for presenting the attack, we
suppose that all occurred fault are coverable by the first model and consider
the first column of input of MixColumns in round 9 only. We have one fault
free ciphertext (FFC) and another faulty ciphertext (FC) that occurred fault is
covered by the first fault model. Consequently, ε′′ : (e′′1 , e′′2 , e′′3 , e′′4) is given by
equation (19).
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We know that ε′′ is the difference at the output of SubBytes. So, we generate
set EI.
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But all values of ε′ are not useful then we generate set I.

I = EI ∩ S1 = {ι : (I1, I2, I3, I4) | ∃ ε′; ε′ ∈ S1 ∧ (ε′, ι) ∈ EI} (21)

In other words, set I contains all possible values for the first column of Sub-

Bytes input at the last round. Thus, we gather some faulty ciphertexts caused by
same plaintext and different faults that are covered by the first model. Then we
will decrease the size of set I by repeating the proposed method using collected
faulty ciphertexts until set I has only one element. Now we know four bytes of
SubBytes input at the last round. As a consequence, we know its output. On the
other hand, we know ciphertext (FFC) and according to (23) we can calculate
four bytes of the 10th RoundKey (K10).
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Running this method for all other columns of MixColumns input of round
9, we will find all 16 bytes of 10th RoundKey (K10). As a result, we can find
the secret key of attacked system by knowing one RoundKey completely [4].
The essential functions for discovering the main key from RoundKey are Inverse

S-box and Exclusive-OR only.

One of the advantages of this attack is that finding every four bytes of 10th
Roundkey can be processed separately and parallel. Also, we can employ four
dedicated systems that each one tries to find four bytes of K10. (1, 14, 11,
8) locations of ciphertexts are examined by the first attacker, the second one
employs (5, 2, 15, 12) locations, the third one used (9, 6, 3, 16) locations and
the final attacker tries with (13, 10, 7, 4). Then, we will find all 128 bits of K10.

The other method to attack is completely similar to the presented one but
we assume occurred faults can be covered by the second fault model and we use
S2 for limiting (e′1, e

′
2, e

′
3, e

′
4) in EI. All other specifications and advantages of

the first method are true for the second method.



The main difference between the two attack methods is their fault model. The
first model based attack uses any faulty ciphertext with probability of 0.0155
but this value is 0.9845 for the second model based attack.

In these two methods we supposed all faulty ciphertexts are coverable with
the first model or by the second model. We can use combination of two models,
in each round of attack if we know faulty ciphertext caused by a fault that is
covered by the first model (the second model) we limit EI by S1 (S2). In this
method we should know each occurred fault is coverable with which fault model.
But knowing this characteristic of happened fault seems not applicable.

4 Experimental Results

According to the coverage rate of the used fault models, we predicated that we
need more faulty ciphertexts in the second attack method than the first one.
Because the second fault model has greater coverage rate and many faults are
covered with this model. Additional experiments verified this idea.

At the first, we implemented the first method of attack. We started with the
first column of MixColumn input in round 9 and we selected faulty ciphertexts
that all four bytes in 1, 14, 11 and 8 locations are different with fault free
ciphertext. In this situation, we ran the attack algorithm to 1000 encryption
unit with different random generated keys. In average 6 faulty ciphertexts were
needed to find all four bytes of 10th RoundKey and the needed time is not
considerable (10 seconds). In the first round of attack we had 6.6×107 candidates
for SubBytes input in average and this number of candidates decreased to 106

at the second round of attack. Figure 4 shows average number of candidates in
each round of attack.

The explained results were for the the first column of MixColumns input
and for finding four bytes of RoundKey, but those results are correct for other
columns and other bytes of RoundKey. As we explained previously, the attack
algorithm can be applied to each column synchronously.

But conditions for the second attack method were different because S2 has
more elements and calculating of intersection between S2 and EI needs more
time comparing to the first method. On the other hand, S2 needs 15.5 GB
memory. After improving, optimizing and using memory management techniques
on the implementation of the attack, we succeeded to do it with 762.5 MB
memory and in almost 2 hours. We should specify that the simulations have
been done using Visual C++ on a 2GHz centrino with 1GB memory.

We applied this attack to AES with 100 random keys. Each attack needed
1495 faulty ciphertexts and 2 hours in average to find four bytes of K10. It’s no-
ticeable, these results are expected according to the previous results of coverage
rates. Figure 5 presents the average number of candidates for SubBytes inputs
on this method.
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5 Using Fault Attack Assumption for Breaking AES

We used faulty ciphertexts to find secret key of attacked systems. In proposed
methods we supposed faults occur only on internal values, but we assumed
RoundKeys and KeyExpansion unit is completely fault free. As previously de-
scribed, any fault that happen before the MixColumns of round 9 is coverable
with one of our proposed fault models. We can suppose fault occurred on the
beginning of the encryption algorithm means plaintext. Thus, changing in plain-
text that leads to different ciphertexts can be assumed as a fault that occurred
in the plaintext and is covered by one of our two models. Then that’s enough
to know that the caused difference in MixColumns input of round 9 is coverable
with which of our fault models. We implemented this idea and we supposed that
we can access to the input of MixColumns in round 9 and we can understand
only which model can cover the caused changes in this location. The results
of this attack were as successful as previous experimental results. Furthermore,
finding a way to know the caused changes in MixColumns input of 9th round
is coverable with which fault model, is enough to break the AES cryptosystem
and finish its era.

Additionally, we don’t need to know plaintexts and if we can find a method to
distinguish and classify the different ciphertexts based on MixColumns input of
round 9, we will have a successful Ciphertext Only Attack and it’s not necessary
to run Known Plaintext Attack.

6 Conclusion and Future Works

We presented two models for covering all possible faults on input of MixColumns

in round 9 of the AES-128 encryption algorithm. Then we designed two methods
to attack using new proposed fault models. The biggest advantage of these attack
methods is high coverage rate of used fault models. One of them covers 1.55%
and the other one covers 98.45% of all possible faults on each four bytes of
MixColumns input. None of previous DFAs to the AES had this coverage rate
and none of them used general fault models. Additionally, we presented very
successful results of proposed attacks implementation. With the first fault model
we needed only 6 faulty ciphertexts in average for discovering the main key and
1495 faulty ciphertexts for the second one. Hence, we will succeed in attacking to
the implementations of AES-128 with simple fault injection equipments such as
power supply disturbance or glitch in clock signal. It’s applicable for attacking
to new smart cards that implemented AES cryptosystem.

At last we introduced a method for breaking AES without fault injection
and with changing assumptions that different ciphertexts caused by different
plaintexts not by fault occurrence or injection. In consequence, finding a method
to know difference between two ciphertexts is coverable with the first fault model
or the other one, is one of our future works. We are working on designing a
method to generate some ciphertexts that we know which model covers the
difference between each of them. Also, we are trying to construct a test method



to know the difference between two ciphertexts at MixColumns input in round 9
is coverable with which fault models. Then, by finding any method or designing
a rule, we will break AES with 128-bit key and its period will be finished.

Another work for future is trying to run these methods for attacking to the
AES cryptosystem with 192 and 256 bits keys. It’s noticeable that by illustrated
methods we can find completely a RoundKey of AES-192 and AES-256. But we
can not discover the main key of these systems. We should design other methods
for finding the half of another RoundKey for AES-192 and whole of another
RoundKey for AES-256 to reach the secret key.
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