Automated Design of Cryptographic Devices
Resistant to Multiple Side-Channel Attacks

Konrad Kulikowski, Alexander Smirnov, and Alexander Taubin

Department of Electrical and Computer Engineering, Boston University,
8 Saint Mary’s Street, Boston, MA 02215, USA,
{konkul, alexbs, taubin}@bu.edu

Abstract. Balanced dynamic dual-rail gates and asynchronous circuits
have been shown, if implemented correctly, to have natural and efficient
resistance to side-channel attacks. Despite their benefits for security ap-
plications they have not been adapted to current mainstream designs
due to the lack of electronic design automation support and their non-
standard or proprietary design methodologies. We present a novel asyn-
chronous fine-grain pipeline synthesis methodology that addresses these
limitations. It allows synthesis of asynchronous quasi delay insensitive
circuits from standard high-level hardware description language (HDL)
specifications. We briefly present a proof of concept differential dynamic
power balanced micropipeline library cells that are approximately 6 times
more balanced than the best (differential dynamic) cells designed using
previous balancing methods. An implementation of the Advanced En-
cryption Standard based on these balanced cells and synthesized using
our tool flow shows a 6.6 times throughput improvement over the syn-
chronous automatically pipelined implementation using the same TSMC
0.18um technology synthesized from the same HDL specification.

1 Introduction

Strong cryptographic algorithms have been designed to withstand rigorous crypt-
analysis. However, if the overall cryptographic system is considered, including
the physical implementation, the strong notions of security are far from guar-
anteed. Numerous attacks have been developed that exploit physical properties
of implementations and information leaked through side channels, i.e. channels
other than the data channel. By exploiting the information leaked through side-
channels an attacker, with the help of statistical methods can quickly compromise
the system. Side-channel attacks (and especially a combination of several such
attacks) are often much more powerful than classical cryptanalysis.

In this paper we present a design methodology and a practical commercial
quality Electronic Design Automation (EDA) flow which addresses the current
practical and physical limitations. Our methodology provides tool support for
the complete design cycle of secure cryptographic hardware which is capable of
eliminating practically all sources of non-invasive side-channel information while
allowing for very high performance of the implementation as well as low design

time. It is based on asynchronous fine-grain pipelining with power-balanced cells
to combine high performance with the best available power analysis resistance
and excellent fault attack countermeasures. Our tool flow is based on off-the-shelf
commercial EDA tools and does not require any specialized asynchronous design
training or modifications of the original specification. Our flow is customizable
through library approach to use various micropipeline implementations. Area
and performance can be tuned as in other commercial quality synchronous syn-
thesis flows.

The benefits of our methodology stem from two critical differences from pre-
vious implementations and are a direct consequence of the fine-grain structure
of the final implementations. Fine-grain micropipeline cells are suitable for au-
tomatic ASIC synthesis from HDL specifications. Efficiently implemented using
dynamic differential dual-rail circuitry micropipelines make it possible to auto-
mate normally custom power ballanced circuits design.

Using our methodology we have designed a complete hardware implemen-
tation of Advanced Encryption Standard (AES) [1]. Our AES implementation
was synthesized for balanced library using our EDA tools. It combines differen-
tial power analysis (DPA) attack resistance with high performance. To satisfy
the tight time-to-market and ease of design constraints our EDA flow accepts
standard HDL input behavior specifications. Our design flow is complete. It in-
corporates off-the-shelf industrial tools with our scripts and reimplementation
engine.

In this paper we first (Section 2) review previous work and some weaknesses
and limitations of existing approaches. In Section 2 we also shortly introduce
the key concepts of asynchronous design. The next two sections describe the
keys for the success or our approach. Section 3 describes the main idea behind
asynchronous fine-grain pipelining, implementation basis and automated design
flow which allows asynchronous design using standard methodologies currently
used in practically all automated synchronous design flows. Section 4 describes
some details of the design and considerations of a dedicated balanced library
cells for asynchronous fine-grain pipelining which are easily customizable and
can be adapted to many existing balanced gate styles. Section 5 shortly describes
performance characteristics of AES implementation and Section 6 presents short
conclusions and future tasks.

2 Motivation

2.1 Dynamic logic and security

Some of the most promising methods for DPA resistance are based on specially
designed balanced dynamic gates like those from [2]. Recent results on DPA
resistance based on special power-balanced cells [2, 3] show a significant reduction
in the power consumption fluctuations. Specially designed custom cells have
great potential since instead of masking or hiding they remove power related
sources of side-channel information that can be used for an attack.

However, most of gate-level approaches, such as those from [2,3] have no
countermeasures against glitch and fault-injection attacks and require additional
protection. More importantly, since differential and dynamic (DD) approaches
from [2, 3] require dynamic (domino) logic cell design. The usage of DD gates is
limited to custom or semi-custom design that greatly limits the perceived uni-
versality of DD based circuitry. The following are two major reasons why EDA
support of dynamic logic based design is very difficult for synchronous method-
ology [4,5]. First, each synchronous dynamic gate requires a clock input and
uses both levels of clock signal — it means that from the point of view of EDA
tools each gate behaves like a flip-flop. Second, due to early/late arrival, charge
sharing, clock distribution problems with small clocking granularity and uncer-
tainty about worst case delay makes static timing analysis (STA) of dynamic
circuits very problematic. STA is core part of any synchronous EDA approach.
As a result no EDA tool support is available for synchronous design based of
dynamic logic. As these problems make power balanced dynamic circuitry prac-
tically unavailable for rapid ASIC development the researchers resort to less
secure (e.g. less balanced) but easier to implement solutions based on standard
static non-balanced gate libraries (see e.g. motivation to use WDDL from [6]).

Our approach incorporates dynamic gate balancing techniques and methods
with asynchronous design principles to address the timing and clock related
problems associated with current and future balanced dynamic gate designs and
to enable their use in automatic standard-cell based design flow.

2.2 Asynchronous Circuit Design

Many of the properties which many designs try to artificially add to synchronous
designs are natural in some styles of asynchronous circuits. Some of the benefits
previously noted include:

— Electromagnetic (or power) signature is strongly reduced by replacing a syn-
chronous processor with an asynchronous one (no clock harmonics). Remov-
ing clock results in significantly flatter noise and electro magnetic interference
(EMI) spectrum across the frequency domain (10dB drop according [7]).

— Absence of clock hardens triggering data detection at specific points of the
data processing flow.

— With no clock glitch attacks are infeasible.

— In synchronous implementations, power supply fluctuations are used to force
the circuit into an erroneous state allowing the use of differential fault anal-
ysis (DFA) attacks. Asynchronous circuits are much less sensitive to DFA
attacks since the supply voltage drop gracefully slows down the circuit rather
than leading to errors.

— Recent research suggests that asynchronous implementations have better re-
sistance to power analysis and fault injection than synchronous counterparts.
However, known implementations are still susceptible to information leakage
both in power signature [8] and under fault injection. Contrariwise, balanced
dual-rail domino with completion detection library - cell design that we chose

for implementation of asynchronous fine-grain pipelining eliminates a side-
channel for DPA [8,9].

— Comparison of electromagnetic analysis (EMA) results for synchronous and
asynchronous implementations indicates that synchronous devices have data
dependent EM emission, while non-pipelined asynchronous devices have data
dependent timing visible with differential EMA (DEMA) [10].

— Asynchronous multi-dimensional (e.g. 3D) pipelined array architectures [11]
can eliminate data dependent timing and thereby secure implementations
against DEMA and differential timing analysis (DTA).

Various asynchronous design styles differ in the tradeoff between locality of
timing assumptions and design cost (see e.g. [12]). Quasi-delay-insensitive (QDI)
circuits [13] partition wires into critical and non-critical. Forks on critical wires
are considered safe if they are isochronic — the skew is less than the minimum
gate delay.

Universality and flexibility along with ease of design is a critical requirement
necessary for the integration of any approach. QDI implementations appear to
be the most appropriate — class of asynchronous circuits that can be synthesized
automatically from large high-level behavior specifications. Return to zero hand-
shaking protocol with dual-rail one-hot data encoding that switche the output
from data to spacer and back regardless for every data portion is the most com-
mon QDI implementation. The most efficient QDI implementations are based on
differential dynamic logic. That makes it easy to incorporate existing dynamic
domino style power balanced structures in the QDI templates.

2.3 EDA support for Asynchronous Design

QDI based approach developed by TIMA group [14] is based on complex static
library cells (built from basic gates like C-elements [15] etc.). These cells are
not compatible with e.g. SABL [2]. In addition, TIMA tool flow [16] uses a non-
standard language extension (channels) of HDL that require rewriting of design
specifications.

Most importantly, none of known asynchronous EDA tools address fine-grain
asynchronous dynamic logic pipelining which is of major importance for security
and high performance. Fine-grain asynchronous pipelining seems to be the only
way to move most promising DPA resistant (differential dynamic well balanced
gates like SABL) into engineering practice since it seems to be the only way to
provide EDA tool support for dynamic logic based styles.

In a summary, differential dynamic well balanced gates seem to be the best
choice to design secure hardware resistant to side-channel attacks. Because of
the time-to-market pressure without a solid EDA support any methodology for
secure hardware design is likely to remain unused. QDI implementation method-
ology is able to play a key role by making dynamic cell libraries acceptable for
EDA. Fine-grain asynchronous pipelining is a way to develop commercial quality
tool support for QDI cell libraries. It becomes possible based on synchronous-to-
asynchronous directed translation (SADT) approach. The main idea of SADT

is to start from conventionally synthesized synchronous circuit, and directly re-
place the global clock network with a set of local handshake circuits. This way
synthesis is performed by commercial synthesis tools originally developed for
synchronous circuits. Since in dynamic logic each gate is a subject of clocking,
fine-grain asynchronous pipelining by inserting local handshake control on the
level of inter-gate communication (gate level pipelining) leads not only to conve-
nient assimilation of differential dynamic balanced cell designs but also to high
throughput solutions. In the next sections we explain how these necessary com-
ponents lead to fine-grained structures and how they allow synthesis and other
tool support.

3 Asynchronous micropipelines synthesis

Register Transfer Level (RTL) synthesis model simplified the clocked circuits’
design and allowed design automation driving VLSI progress for more than a
decade. Synchronous-to-asynchronous directed translation (SADT), we believe,
is as important for asynchronous design automation as RTL for synchronous
EDA. With RTL design dominating the industry SADT model is especially ben-
eficial since (1) it offers support for existing specifications and (2) it is easily
incorporated into contemporary design flow using the best available RTL syn-
thesis engines. The handshake implementation and data channel organization is
thereby hidden from the designer. Like in RTL it is customizable through a cell
library approach.

Contrary to known approaches [16, 17] which use HDL for micropipeline [18]
synthesis, our method is not an attempt to express asynchronous formal models
in terms of HDL. Our synthesis flow uses an off-the-shelf RTL synthesis engine as
a front-end to support regular HDL behavior specifications and the same engine
as a back-end to provide support for the variety of netlist specification formats
used by post-synthesis tools in ASIC design flow.

The main contribution of RTL model to EDA is based on a separation of
optimization and timing (all sequential behavior is in an interaction between
registers, all synthesis and optimization are only about combinational clouds).
RTL model (Fig. 1a) is based on global synchronization and timing assumption
(computations are complete in every stage before the next clock edge). During
every clock cycle every latch undergoes two phases: pass and store. Master-slave
flip-flop organization where master latch is clocked by one edge of clock signal
and slave latch by the opposite edge prevents the register from being trans-
parent at any given time. Similarly to pass and store of latches dynamic gates
go through: evaluate and precharge (reset). These stages map to asynchronous
four-phase handshake protocols [12] where the four phases are data request-
acknowledge (evaluate) and request-acknowledge reset. (Fig. 1b).

In addition to separation of optimization and timing SADT model contributes
separation of set and reset phases: for example each gate in Null Convention
Logic (NCL) [19] is sequential but can be presented as combinational — sep-
arately in set and reset phases. As a result in SADT flow logic optimization

Aok oo
{ D000

OO0

OO00T

[CcLK
a) Synchronous pipeline b) Asynchronous coarse grain (c) Fine-grain

Fig. 1. Synchronous-Asynchronous Direct Translation: from synchronous (a) to de-
synchronized (b) and fine-grain pipelined (c¢) circuits

remains separate from sequential behavior — the reason why SADT flows can
be based on standard synchronous RTL compilers. Likewise sequential behavior
synthesized in RTL remains the same in a micropipeline. Only its implemen-
tation is changed from globally synchronized using global timing assumptions
to local handshake with none or local timing assumptions. This low-level se-
quential behavior implementation is done automatically and does not affect the
design specification. Final implementation (and this is the main difference from
RTL) will provide the result as soon as it can — not at the predetermined time
as with synchronous RTL. It will signal the data availability and wait for the
environment to acknowledge the data receipt to output the new result.

SADT flows differ in pipeline stage granularity. Inter-register handshake in-
sertion approach where clock connected to registers is substituted by handshak-
ing between the registers placed at the same points in the circuit (Fig. 1b) is
used by NCL [19] and De-synchronization [20] flows.

The main distinctive feature of our approach [21] is that in addition to replac-
ing global synchronization with local self-timed control we also remove function-
ally unnecessary synchronization and alter the granularity of pipelining (usually
significantly decrease it down to the gate level Fig. 1c).

There are several reasons for gate-level pipelining: overcoming parameter
variations, lower completion detection overhead (see section 3.2 for details on
completion detection) etc. Particularly, we would like to mention that lower
pipeline granularity is a way to improve performance. For security related appli-
cations gate level pipelining allows development of small power balanced gates
(as explained in section 4) that can be used to automatically synthesize DPA
resistant implementations.

The asynchronous mechanisms (including handshake communication) are
hidden from the end circuit designer in the micropipeline cell library leaving
the handshaking implementation to the library designer.

3.1 RTL to micropipeline re-implementation in our synthesis flow

Micropipeline synthesis (as a particular case of SADT methodology) consists
of three main stages: RTL synthesis, re-implementation and final mapping ex-
plained as follows.

RTL implementation consists in synthesizing a synchronous implemen-
tation from HDL specification provided by the designer by a standard RTL
synthesis tool. The only difference from standard RTL synthesis is that virtual
library (imaginary) cells are used for synthesis. This step determines the im-
plementation architecture. It can be tuned the same way it would be for RTL
synthesis to trade-off area, performance and dynamic power consumption.

reset

micropipeline stage spaced

A X spaced

FO=A0, F1=A1 data
—PpiD ' Q> data
acl
L an T
clock

| S L |
Dton [_F_J[v]

reset
spaced spaced
data join micropipeline stage fork Jdata

A X re [FO=A0+B0,F1=A13&B1] C|

-— A1l o9 Jx
o Ij AcK__|[co I o

B] Y (Fack: BC m

AND2 B\7 " spaced F [V] | e 2
data data
rm—*
(a) Virtual library cell (b) Micropipeline cell in general

Fig. 2. Micropipeline synthesis examples: clocked latch (top) and AND2 gate with a
fork (bottom).

Re-implementation takes the RTL netlist obtained in the previous step.
First, RTL functionality is identified. Every combinational gate or a clocked latch
(g;) is represented with a library cell (see examples in Fig. 2). Clocked flip-flops
are considered as pairs of sequentially connected latches (master g,,; and slave
gs;) with alternative clock and are represented as two cells each. Every data wire
(any wire except for clock and reset) is mapped to a cell connection. This way
no additional data dependencies are added and no existing data dependencies
are removed. Initial state of state holding gates (D-latches and D-flip-flops) is
guaranteed by appropriate reset.

The algorithm is substitution based linear complexity assuming that for ev-
ery virtual library cell there exists a micropipeline library cell or a previously
synthesized module implementing functionality represented by the cell. This as-
sumption is satisfied by targeting RTL synthesis to the virtual library that is
functionally equivalent to the micropipeline library and by bottom-up synthesis
of hierarchical designs

Next deadlock freedom is ensured and the micropipeline netlist is opti-
mized using slack matching [22,23] and other optimizations.

Fig. 2 presents identification and micropipeline synthesis examples for a
clocked latch with fan-out of 1 and an AND2 gate with fan-out 2. The latch
(Fig. 2a top) is connected to reset with its preset pin meaning that it is initial-
ized to ‘1’ in RTL implementation. During micropipeline synthesis an identity
stage is chosen from the library that is initialized to dual-rail value of logi-
cal ‘1’. The combinational gate labeled with function A&B is implemented by

a micropipeline stage with equivalent dual-rail functionality. The gate output
depends on both inputs therefore the inputs must be synchronized by a join
module. Likewise the output is split to X and Y what makes it necessary to
synchronize the feedback acknowledgements with a fork module.

The nets not identified as special nets are treated as channels. Fig. 2 shows the
general case of channel expansion using request (req), acknowledgement (ack)
and dual-rail binary data wires. The join and fork module implementations are
protocol dependent.

We have proved that asynchronous fine-grain pipelined circuit generated by
our flow is live, safe and flow-equivalent to original specification (we borrow the
notion of flow-equivalence and a method of proof from [20]). Flow-equivalence
means that for each stage that corresponds to a latch in RTL implementation,
the value stored at the i-th pulse of the control signal is the same as the value
stored at the i-th cycle of the synchronous circuit.

3.2 Micropipeline stages

Numerous protocols and implementation styles have been developed for asyn-
chronous micropipelines. The protocols fall into two groups [12]: bundled data
using delay element to match the delay of data propagation through combina-
tional logic and completion detection based. The latter encode data to include
a spacer (no data value) in addition to logical ‘1’ and logical ‘0’ (e.g. like in
dual-rail domino with data values “01” and “10” and the reset state “00”). Such
an encoding along with monotonic transitions makes it possible to distinguish
data from reset state by looking only at the data itself.

Data/spacer detection is called completion detection. For the above data en-
coding it can be implemented with a NOR gate per data channel. For multiple
channels synchronization of single channel completions is implemented by a latch
with the function ¢ = 21 - 22 + g - (z1 + 22), known as a Muller’s C-element [15]
shown on Fig. 3 as a circle with “C” inside. With no global synchronization a
stage determines the time to precharge/evaluate by observing the feedback from
data consumers. It can precharge when all consumers evaluated and evaluate
when all of them precharged.

An example of dynamic implementation of a micropipeline stage cell im-
plementing the AND2 function is shown on the Fig. 3. (This particular exam-
ple illustrates the Reduced Stack Precharge Half-Buffer (RSPCHB) template
from [24]. Note that RSPCHB is not balanced. It was not targeted to secure
applications.) Block implementing the stage logical function is F'. The rest of
blocks are typical for most of the stages. LReq and LAck are left and RReq and
RAck are right request and acknowledgement, ACK — handshake implementa-
tion, PC' — phase (precharge/evaluate) control, CD —completion detection and
M stands for memory. ‘Staticizers’ (or keepers) formed by adding weak inverters
as shown in Fig. 3, store the stage output value for an unlimited time eliminating
timing assumptions. At the same time keepers solve the charge sharing problem
and improve the noise margin of precharge style implementations. The req line
is used in some protocols to signal data availability to the following stages while

-TD Ny

(a) Input completion detection (b) AND2 stage implementation example

Fig. 3. AND2 micropipeline stage dynamic implementation example.

the ack — to indicate that the data portion has been consumed. Depending on the
communication protocol, some or all of the handshake events can be transmitted
over the data lines so req and/or ack lines may not be needed.

A dedicated micropipeline library with each cell representing an entire mi-
cropipeline stage localizes in-stage timing assumptions and power balancing in-
side the cell thereby leaving it to the library designer. With delay-insensitive
inter-stage communication the implementation functionality no longer depends
on place & route. Note (Fig. 3) that memory and logic function implementation
are of the same cost and speed as synchronous dual-rail domino counterparts.
The main sources of area overhead are the Muller C-element for handshake con-
trol implementation (ACK), completion detection circuitry (CD) and ack/req
synchronization (can be seen in Fig. 2).

3.3 Design flow and EDA support

Our synthesis flow consists of a reimplementation engine and a set of scripts re-
sponsible for implementing the user interface (commands) and interaction with
the RTL synthesis tool. The engine incorporates VHDL and Synopsys Liberty
parsers/generators to interface the design and library specifications with indus-
trial tools. The RTL synthesis tool currently used in the flow is Synopsys Design
Compiler®. This set of tools is targeted at micropipeline synthesis but it also
automates some library installation tasks.

Library installation is executed once per library or every time the library
is modified. This step is essential for the flow flexibility to use variety of mi-
cropipeline libraries. The flexibility is achieved through abstracting from par-
ticular micropipeline style(s) by defining a stage-cell as a pre-designed module
implementing one or more functions of its inputs. Every data input or output is
considered as a channel consisting of encoded data and zero or more handshake
lines. On the example on the Fig. 2b a channel consists of dual-rail data, request
and acknowledgement lines.

Virtual library is an imaginary single-rail synchronous RTL library function-
ally equivalent to the micropipeline library. The virtual library is generated from
the micropipeline library during its installation. Cell AND2 on the Fig. 2a is a
virtual library cell generated for stage AND2 implementation (Fig. 2b) found
in micropipeline library. Area and delay characteristics of the virtual library
cells are mapped from the corresponding micropipeline library cells to make
optimization during the RTL synthesis meaningful.

4 Cell customization and security benefits

The previously described synthesis approach based on fine-grained templates
is in large part independent of the detailed implementation of the template
cell. Unlike other balanced asynchronous implementations and flows [14] which
are much more restrictive in the structures which can be used, this general
template is much more flexible and adaptable. Libraries optimized for balance,
performance, power, or overhead can all be incorporated to meet the security and
other design goals. Since the basic templates are based on differential dynamic
cells almost all of the existing or novel dynamic circuit structures can be easily
incorporated into an asynchronous standard-cell library. New circuit structures
do not have to be redesigned or invented for a particular application in order to
be incorporated into the flow, thus allowing reuse of intellectual property and
further decreasing development time and time-to-market of complex designs.

For example, SABL gates [2, 3] can be easily adapted to the cells preserving
all of their balance properties and enhancing their fault resistance and robust-
ness. Addition of asynchronous control removes the clocking and timing difficul-
ties normally associated with the gates and enhances their security applications
due to the benefits of asynchronous behavior as mentioned in sec. 2. The func-
tion and operation of the additional asynchronous wrapper is almost completely
data independent and only the completion detection of wrapper requires a triv-
ial power balancing consideration which can be easily met with two additional
minimal size transistors [9]. By simply using an unmodified SABL gate as the
functional block of the asynchronous template and using the handshake circuitry
of the template (like that presented in section 3.2 and shown on the Fig. 3) for
the generation of the clock signal for the SABL gate as shown on the Fig. 4 a
fully QDI balanced gate results. The resulting gate has identical balance to that
of the original SABL gate.

Additionally, the explicit synchronization and completion detection of the
asynchronous template allows for fewer restrictions on the design of the bal-
anced functional block. Restrictions such as elimination of early propagation
effect [25] which need to be explicitly considered in synchronous implementa-
tions are automatically satisfied. Explicit input completion can be incorporated
to the design which coupled with the C-element will prevent evaluation until all
of the input data has arrived and is ready.

Furthermore, the timing and voltage tolerance of the QDI implementation
allows for more aggressive dynamic designs which can achieve better balance than

\
p-z1 :
p-20 I

I
|
|
|

21

| SABL gate - A

Fig. 4. Incorporation of a SABL gate into the QDI template.

previous designs. A balanced library designed specifically for the fine-grained
asynchronous template called Balanced Symmetric with Discharge Tree (BSDT)
gates was fully incorporated into the flow. The gates showed approximately 6
times better balance than the synchronous SABL implementations (Fig. 5) [9].

5

x 10
Repositioned 6
Precharge N SABL-style
Ve g —— BSDT-style
&5
" Py
8
S
=
o A
5
Q 3|4 6 8
13}
c
S
chreased g,
- ” Discharge 3
Tree °
g Ry T,
wapn WL LY o Extra reset s
for | @
- %EL [e 0 W ,
= = 2 4 6 8 10 12
Evaluation Time (seconds) x 10"

Fig. 5. BSDT-style XOR and the Standard Deviation of the evaluation phase of SABL
and BSDT implementations.

Current versions of the balanced library cells based on existing balanced dy-
namic functional blocks still require balanced routing considerations. However,
due to gate level asynchronous QDI nature of the method the resulting imple-
mentations are very tolerant of process/voltage variations. The natural tolerance
of the template can allow more aggressive dynamic balancing techniques which
can allow for routing independent gate design. We are currently developing a
balanced library design which does not require balanced routing considerations.

In addition to allowing a more robust design for dynamic balanced function
blocks the asynchronous handshake protocol and template adds natural fault re-
sistance to the design. For the balanced asynchronous gates presented in [9] out

of all the possible transistor level single stuck-at faults inside and outside of the
complete asynchronous gate not a single fault changes the Boolean function of
the gate. Almost 80% of the faults result in a pipeline stall which naturally pre-
vents further data processing and creates deadlock within the pipeline (Tab. 1).
That is the faults prevent or stop the necessary four phase handshake proto-
col between each gate thereby stalling the communication between dependent
downstream gates and preventing any further data processing. To resolve the
deadlock the pipeline requires an explicit reset which will clear all intermedi-
ate faulty data values inside the pipeline removing the possible source of fault
attack information. Synchronous based balanced dynamic logic gates have no
comparable property. This additional property should make it much harder to
use invasive or semi invasive attacks on a circuit since almost all of the tampering
would be detected by a pipeline stall. Additional error detection based on other
high level fault-tolerant methods (i.e. error-detecting codes) [26] can be added
easily due to the HDL synthesis support. Only a modified HDL specification
incorporating fault-tolerance needs to be generated.

Table 1. Effects of stuck-at faults in asynchronous dual-rail gates

Pipeline stall{No Logical effect on function|Created an alarm state
Buffer|75% 21% 4%
AND (73% 16% 10%
XOR |73% 16% 11%

We are currently performing a full analysis of the side-channel information
leakage from sample implementations. Initial simulated power analysis attacks
on the Sbox of the Data Encryption Standard (DES) indicate that the beneficial
properties of the balanced dynamic gates and asynchronous circuits translate
to the proposed implementations. The DPA was applied similarly to the attack
performed on our previous balanced library implementation [8] and shows similar
simulation results.

Since the design is based on components of previously evaluated methods and
designs (i.e., QDI asynchronous design, dynamic balanced gates) it is expected
that the good properties of the individual components should be preserved as
indicated by the results of initial DPA simulations. Therefore with respect to
power, fault and EMI channels the methodology is expected to be as secure, by
construction, as the individual components prior to integration. We are currently
evaluating the details and possible weaknesses resulting from the combination
of the countermeasures but up to this point none have been found.

5 AES implementations comparison

To estimate efficiency of our flow [27] we compare performance of automatically
synthesized synchronous and asynchronous balanced and unbalanced fine-grain

pipelined implementations using our simple dynamic logic based micropipeline
libraries using TSMC 0.18um technology (obtained through MOSIS). One of
the libraries — BSDT is a power balanced library implemented with minimum
transistor sizes. Another — MPCHB (modified PCHB from [24]) optimized for
performance.

The same RTL Electronic Code Book mode (unfolded 10-round) HDL spec-
ification of the AES has been used for all implementations. Synchronous RTL
implementation was synthesized with the Artisan Sage-X7* [28] standard cell li-
brary using the same (TSMC 0.18um) technology. The non-pipelined implemen-
tation shows performance of 16MHz. Automatically pipelined (with Synopsys
Design Compiler@® ”pipeline_design —period 0” command — maximum perfor-
mance setting) synchronous implementation — performed at 45MHz.

Our asynchronous fine-graine pipelined implementations exceeds 35Gbps
(298MHz*128bit where 128 bits is the input and cipher text word length) for
balanced and over 62Gbps (482MHz*128bit) for unbalanced implementations.

Compare these performance numbers with commercial ASIC implementa-
tions like one from [29] available on the market today (25Gbps the word length
of 256 bits — that scaled down to 12.5Gbps for the word length of 128 bits) or
the best known academic custom (manual) design (546MHz) [30]. Note that in
both cases there is no side-channel attacks protection. High performance and
protection level results cost significant area overhead — the area of protected
gate-level pipelined implementation approaches 30mm?. Thanks to resistance
to variation inherent to asynchronous micropipelines the implementation can
operate at lower voltage with lower speed and lower power consumption.

Finally, we would like to note that both the MPCHB and BSDT libraries
are under development and in the current stage feature logic gates (stages) up
to 2 data inputs as well as the identity function (to be used for initialization
and slack matching) micropipeline stages along with synchronization cells and a
minimal set of standard logic cells. Design characteristics can be improved with
better optimized and richer micropipeline library.

6 Conclusions and future tasks

The lack of industrial quality electronic design automation flow has limited the
use of the most promising side-channel resistant circuit techniques: dynamic
style balanced gates and asynchronous circuits. We have implemented a design
methodology based on dynamic asynchronous micropipelines which allows full
industrial quality EDA support without requiring additional training in asyn-
chronous design. Moreover the methodology allows easy incorporation of exist-
ing synchronous dynamic gate designs and circuit structures. The combination of
asynchronous operation and balanced dynamic gates allows automated standard-
cell library based design highly resistant to side-channel attacks.

We recently discovered a new Combined Differential Power Analysis/Fault
Injection (DPA/FI) attacks (or power attacks on faulty hardware) [31]. Our
experiments indicate that this attack is potentially extremely dangerous since

even Differential Power Analysis resistant (power balanced) implementations are
vulnerable to DPA /FI attacks. No previous countermeasures have been specif-
ically considered against this type of attacks. However, methodology based on
asynchronous fine-grain pipelined power-balanced library is the approach which
could provide for a high level of resistance against these new attacks.

Acknowledgements

This work was partially funded by Omnibase Logic Inc.

References

10.

11.

12.

13.

Fips pub 197: Advanced encryption standard, http://csrc.nist.gov.

Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede. A dynamic and differential
cmos logic with signal independent power consumption to withstand differential
power analysis on smart cards. In 28th European Solid-State Clircuits Conference
(ESSCIRC 2002), 2002.

Kris Tiri and Ingrid Verbauwhede. A logic level design methodology for a secure
DPA resistant ASIC or FPGA implementation. Design Automation and Test in
Europe Conference (DATE 2004), 2004.

David Chinnery and Kurt Keutzer. Closing the Gap between ASIC & Custom.
Tools and Techniques for Gigh-Performance ASIC Design. Kluwer Academic Pub-
lishers, 2002.

David Harris. Skew-Tolerant Circuit Design. Morgan Kaufmann Publishers, 2001.
Kris Tiri, Wei Hwang, Alireza Hodjat, Lai Bo-Cheng, Yang Shenglin, P. Schau-
mont, and I. Verbauwhede. Prototype IC with WDDL and differential routing -
DPA sesistance assessment. In Chyptographic Hardware and Embedded Systems -
CHES, pages 354-365, Edinburgh, 2005. LNCS3659, Springer.

J. McCardle and D. Chester. Measuring an asynchronous processor’s power and
noise. In SNUG, 2001.

Konrad J. Kulikowski, Ming Su, Alexander Smirnov, Alexander Taubin, Mark G.
Karpovsky, and Daniel MacDonald. Delay insensitive encoding and power analy-
sis: A balancing act. In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 116—125, 2005.

Daniel Jay MacDonald. A Balanced-Power Domino-Style Standard Cell Library for
Fine-Grain Asynchronous Pipelined Design to Resist Differential Power Analysis
Attacks. Master of Science Thesis, Boston University, 2005.

H. Li, A. Markettos, and S. W. Moore. Security evaluation against electromagnetic
analysis at design time. In Workshop on Cryptographic Hardware and Embedded
Systems (CHES), 2005.

A.Taubin, K. Fant, and J. McCardle. Design of delay-insensitive three dimension
pipeline array multiplier for image processing. ICCD, 2002.

Jens Sparsg and Steve Furber, editors. Principles of Asynchronous Circuit Design:
A Systems Perspective. Kluwer Academic Publishers, 2001.

Alain J. Martin. Programming in VLSI: From communicating processes to delay-
insensitive circuits. In C. A. R. Hoare, editor, Developments in Concurrency and
Communication, UT Year of Programming Series, pages 1-64. Addison-Wesley,
1990.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

G. F. Bouesse, M. Renaudin, S. Dumont, and F.Germain. DPA on quasi delay
insensitive asynchronous circuits: Formalization and improvement. In DATE, 2005.
David E. Muller and W. S. Bartky. A theory of asynchronous circuits. In Proceed-
ings of an International Symposium on the Theory of Switching, pages 204-243.
Harvard University Press, April 1959.

M. Renaudin, P. Vivet, and F. Robin. A design framework for asynchronous/
synchronous circuits based on CHP to HDL translation. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pages
135-144, April 1999.

Catherine G. Wong and Alain J. Martin. High-level synthesis of asynchronous
systems by data-driven decomposition. In Proc. ACM/IEEE Design Automation
Conference, pages 508-513, June 2003.

Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720-738,
June 1989.

Michiel Ligthart, Karl Fant, Ross Smith, Alexander Taubin, and Alex Kondratyev.
Asynchronous design using commercial HDL synthesis tools. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pages
114-125. IEEE Computer Society Press, April 2000.

J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou. De-synchronization:
synthesis of asynchronous circuits from synchronous specifications. IEEE Trans-
actions on Computer-Aided Design. (To appear).

A. Smirnov, A. Taubin, and M. Karpovsky. An automated fine-grain pipelining
using domino style asynchronous library. In ACSD 2005: Fifth International Con-
ference on Application of Concurrency to System Design, St.Malo, France, 2005.
IEEE CS Press.

Peter A. Beerel, Mike Davies, Andrew Lines, and Nam-Hoon Kim. Slack matching
asynchronous designs. In Proc. International Symposium on Advanced Research in
Asynchronous Clircuits and Systems, pages 184-194, March 2006.

Piyush Prakash and Alain J. Martin. Slack matching quasi delay-insensitive cir-
cuits. In Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 195-204, March 2006.

Recep O. Ozdag and Peter A. Beerel. High-speed QDI asynchronous pipelines. In
Proc. International Symposium on Advanced Research in Asynchronous Clircuits
and Systems, pages 13—22, April 2002.

K. Kulikowski, M. Karpovsky, and A. Taubin. Power attacks on secure hardware
based on early propagation of data. In 12th IEEE International On-Line Testing
Symposium, 2006.

K. Kulikowski, M. Karpovsky, and A. Taubin. Robust codes for fault attack resis-
tant cryptographic hardware. In Fault Diagnosis and Tolerance in Cryptography,
2nd International Workshop, pages 1-12, Edinburgh, 2005.

Weaver: GTL synthesis flow. http://async.bu.edu/weaver/.

TSMC 0.18um process 1.8-volt Sage-X standard cell library databook, September
2003.

High performance AES cores for ASIC - http://www.heliontech.com, 2005.

A. Hodjat and I. Verbauwhede. Area-throughput trade-offs for fully pipelined 30
to 70 Gbits/s AES processors. IEEE Transactions on Computers, 55(4), 2006.

K. Kulikowski, M. Karpovsky, and A. Taubin. DPA on faulty cryptographic hard-
ware and countermeasures. In Fault Diagnosis and Tolerance in Cryptography, 3nd
International Workshop, 2006.

