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Abstract. We propose a superscalar coprocessor for high-speed curve-
based cryptography. It accelerates scalar multiplication by exploiting
instruction-level parallelism (ILP) dynamically and processing multiple
instructions in parallel. The system-level architecture is designed so that
the coprocessor can fully utilize the superscalar feature. The implemen-
tation results show that scalar multiplication of Elliptic Curve Cryptog-
raphy (ECC) over GF(2163), Hyperelliptic Curve Cryptography (HECC)
of genus 2 over GF(283) and ECC over a composite field, GF((283)2) can
be improved by a factor of 1.8, 2.7 and 2.5 respectively compared to the
case of a basic single-scalar architecture. This speed-up is achieved by ex-
ploiting parallelism in curve-based cryptography. The coprocessor deals
with a single instruction that can be used for all field operations such as
multiplications and additions. In addition, this instruction only allows
one to compute point/divisor operations. Furthermore, we provide also
a fair comparison between the three curve-based cryptosystems.

Keywords: Superscalar, instruction-level parallelism, coprocessor, curve-
based cryptography, scalar multiplication, HECC, ECC

1 Introduction

Public-key cryptosystems form an essential building block for digital communi-
cation. Unlike secret-key algorithms that allow for a fast encryption of a large
bulk of data, the importance of Public-Key Cryptography (PKC) is to have se-
cure communications over insecure channels without prior exchange of a secret
key. In addition, PKC enables digital signatures as an important cryptographic
service. Diffie and Hellman introduced the idea of PKC [1] in the mid 70’s.
Implementing PKC is a challenge for most application platforms varying from

software to hardware. The reason is that one has to deal with very long num-
bers in conditions that are often constrained in area and power. For the choice
of the implementation platform, several factors have to be taken into account.
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Hardware solutions provide the speed and more physical security, but the flex-
ibility is limited. For that property software solutions are needed, but a pure
software solution is not a feasible option in most resource-limited environments.
Hardware/software co-design potentially allows an efficient design platform that
explores trade-off between cost, performance and security.

The most popular and most widely used public-key cryptosystems are RSA [2]
and ECC [3, 4]. In embedded systems, ECC is considered a more suitable choice
than RSA because ECC obtains higher performance, lower power consumption,
and smaller area on most platforms. Another appealing candidate for PKC is
HECC. Recently many good results appear for software and hardware imple-
mentations of HECC at the same time more theoretical work has shown HECC
to be also secure in the case of curves with a small genus [5].

A considerable amount of work has been reported on improving the per-
formance of Elliptic Curve (EC) scalar multiplication. The work can be classi-
fied into following categories: First of all, mathematical investigation has been
done for various types of elliptic curves such as Koblitz curves. Secondly, var-
ious algorithms for scalar multiplication have been proposed and criteria for
improvements include performance as well as side-channel security. One of the
best-known examples that meet requirements for both is the Montgomery’s pow-
ering ladder [6]. Lastly, architecture-level improvements can be considered from
a hardware implementations’ point of view. Our interest in this paper mainly
lies at this level.

The contribution of this paper is in accelerating curve-based cryptosystems
by deploying a superscalar architecture. The solution is algorithm-independent
and can be applied for any scalar multiplication algorithm. Some previous work
reported parallel use of modular arithmetic units for accelerating scalar multi-
plication [7–12]. In those papers, point/divisor doubling and addition are refor-
mulated so that they can take advantage of the parallel processing. One original
contribution is that our proposed architecture embeds an instruction scheduler
that explores the best level of parallelism and assigns tasks for the processing
units in an optimal way. In this way the parallelism within the operations can be
found on-the-fly by dynamically checking the data dependency in the instruc-
tions. We provide also a fair comparison between three cryptosystems, ECC,
HECC and ECC over a composite field. Namely, it is known that for HECC of
genus 2 one has the ability to work in the field of a size two times smaller than
the one for ECC obtaining the same level of security. On the other hand using
ECC over GF((2p)2), we end up with the same field arithmetic as HECC. In this
way, another contribution of this paper lies in the system architecture of three
curve-based cryptosystems enabling one to use the same amount of area.

The remainder of this paper is as follows. Section 2 gives a survey of rele-
vant previous work for curve-based cryptography implementations. In Section 3,
some background information on ECC and HECC is given. In Section 4 the
architecture for our proposed coprocessor is explained. The details of our im-
plementation are introduced in Section 5 and the results are shown for various
implementation options in Section 6. Section 7 concludes the paper.



2 Previous Work

This section lists some relevant previous work. As already mentioned, there is
a considerable amount of work done on hardware implementations, especially
for ECC [13, 14], but more recently also some on HECC. Recent improvements
on HECC divisor operations’ formulae [15–17] resulted in several hardware im-
plementations featuring efficient HECC performances [18, 11]. The first result
showing that HECC performance is comparable to the one of ECC is the work
of Pelzl et al. [19].
In 1989 Agnew et al. reported the first result for performing the elliptic curve

operations on hardware [20]. Since then a substantial amount of work dealt with
hardware implementations of ECC, the majority of that over binary fields. In
2000 Orlando and Paar proposed a scalable elliptic curve processor architecture
which operates over finite fields GF(2n) in [13]. Gura et al. [14] have introduced
a programmable hardware accelerator for ECC over GF(2n), which can handle
arbitrary field sizes up to 255.
There is not much previous work on hardware implementations of HECC.

The first complete hardware implementation of HECC was given by Boston et
al. [21]. They designed a coprocessor for genus two curves over GF(2113) and
implemented it on a Xilinx Virtex-II FPGA. The algorithm of Cantor was used
for all computations on Jacobians. On the other hand, the work of Elias et
al. [18] used Lange’s explicit formulae. The results reported were the fastest in
hardware at the time. Wollinger et al. investigated an HECC implementation
on a VLSI coprocessor. They compared coprocessors using affine and projec-
tive coordinates and concluded that the latter should be preferred for hardware
implementations [11].
While ECC applications are highly developed and widely used in practice, the

use of HECC is still mainly for research purposes. Previous work on exploring the
parallelism between the point/divisor operations has been done for both ECC
and HECC. Smart [7] showed that up to three field operations could be executed
in parallel for the Hessian form of an elliptic curve. On the other hand, the work
of Mischra investigated parallelism between divisor operations [10], both purely
on algorithmic level.

3 Curve-based Cryptography

Here, we consider some background information for curve-based cryptography
over binary fields; for hyperelliptic curves we are interested only in genus 2
curves. We mention the basic algorithms and the structure of the operations.
Good references for the mathematical background are [22–24].
The main operation in any curve-based primitive is scalar multiplication.

The general hierarchical structure for operations required for implementations
of curve-based cryptography is given in Fig. 1(a). Point/divisor multiplication is
at the top level. At the next (lower) level are the point/divisor group operations.
The lowest level consists of finite field operations such as addition, multiplication
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Fig. 1. Scheme of the hierarchy for ECC/HECC operations.

and inversion required to perform the group operations. The only difference be-
tween ECC and HECC is in the middle level that in this case consists of different
sequences of operations. Those for HECC are more complex when compared with
the ECC point operation, but they use shorter operands. One can perform inver-
sion also with a chain of multiplications [25] and only provide hardware for finite
field multiplication and addition. The corresponding hierarchy is illustrated in
Fig. 1(b). We use this structure for our proposed coprocessor.

3.1 ECC over a binary field

ECC relies on a group structure induced on an elliptic curve. A set of points
on an elliptic curve (with one special point added, the so-called point at infinity
O) together with a point addition as a binary operation has the structure of
an abelian group. As we consider a finite field of characteristic 2, i.e. GF(2n),
a non-supersingular elliptic curve E over GF(2n) is defined as the set of solu-
tions (x, y) ∈GF(2n)×GF(2n) of the equation: y2 + xy = x3 + ax2 + b, where
a, b ∈GF(2n), b 6= 0, together with O.

3.2 HECC

Let GF(2n) be an algebraic closure of the field GF(2n). Here we consider a
hyperelliptic curve C of genus g = 2 over GF(2n), which is given with an equation
of the form:

C : y2 + h(x)y = f(x) in GF(2n)[x, y], (1)

where h(x) ∈GF(2n)[x] is polynomial of degree at most g (deg(h) ≤ g) and f(x)
is a monic polynomial of degree 2g + 1 (deg(f) = 2g + 1). Also, there are no
solutions (x, y) ∈ GF(2n)×GF(2n) which simultaneously satisfy the equation (1)
and the equations: 2v + h(u) = 0, h′(u)v − f ′(u) = 0. These points are called
singular points. For the genus 2, in the general case the following equation is
used y2 + (h2x

2 + h1x+ h0)y = x5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0.

A divisor D is a formal sum of points on the hyperelliptic curve C i.e.

D =
∑

mPP and its degree is deg(D) =
∑

mP . Let Div denotes the group of all
divisors on C and Div0 the subgroup of Div of all divisors with degree zero. The



Jacobian J of the curve C is defined as quotient group J = Div0/P . Here P is the
set of all principal divisors, where a divisor D is called principal if D = div(f),
for some element f of the function field of C (div(f) =

∑

P∈C ordP (f)P ). The
discrete logarithm problem in the Jacobian is the basis of security for HECC. In
practice, the Mumford representation according to which each divisor is repre-
sented as a pair of polynomials [u, v] is usually used. Here, u is monic of degree
2, deg(v) < deg(u) and u|f−hv−v2 (so-called reduced divisors). For implemen-
tations of HECC, we need to implement the multiplication of elements of the
Jacobian i.e. divisors with some scalar.

3.3 ECC over a composite field

With respect to cryptographic security it is typically recommended to use fields
GF(2p) where p is a prime. As an example we consider the case where p = 163.
As already mentioned, HECC on a curve of a genus 2 allows one to work in a
finite field where bit-lengths are shorter with a factor 2, when compared with
ECC. That means, for the equivalent level of security we should choose GF(283).
A similar situation we get when considering ECC over a field of a quadratic

extension of GF(283), so GF((283)
2
) =GF(283)[y]/g(y) and deg(g) = 2. In this

way one can obtain a speed-up and benefit even more from the parallelism. The
reason is that in composite field each element is represented as c = c1t+c0 where
c0, c1 ∈GF(2

83) and the multiplication in this field takes 3 multiplications and
4 additions in GF(283) [26].

3.4 Algorithms for our implementations

In our implementations scalar multiplication is achieved by use the NAF algo-
rithm [23]. In this way the scalar is decomposed as a NAF and scalar multipli-
cation is done with a series of addition/subtractions of elliptic curve points. We
also use projective coordinates for all implementations.
Furthermore, we have rewritten the formulae from [23, 16] for EC point op-

erations and HECC divisor doubling, respectively to obtain an optimal usage
of our new datapath. We use the same approach to get the formulae for HECC
divisor addition in the case of mixed coordinates. Our datapath performs one
basic operation, AB + C or A(B + D) + C over a binary field. This operation
can be used for the sequence of point/divisor operations. For example, by using
A(B + D) + C operation the formulae for HECC divisor addition include 48
instructions instead of 44 multiplications and a lot of additions.

4 Architecture of the curve-based coprocessor

4.1 System Architecture

The proposed architecture of the curve-based cryptosystems is composed of the
main controller, several Modular Arithmetic Logic Units (MALUs) and the co-
processor memory that shares intermediate variables between the MALUs (i.e.
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Fig. 2. Block Diagram for the system architecture with the curve-based coprocessor.

the so-called shared memory). The block diagram of the cryptosystem is illus-
trated in Fig. 2. The configuration of the coprocessor is flexible to provide from
the smallest to the fastest implementation depending on a target application.
Some components can be added or removed as will be explained next.
The main CPU communicates with the coprocessor through memory-mapped

I/O (e.g. SRAM interface) and has three types of 32-bit in- and outputs; one of
them is a signal that tells the controller to stop sending instructions when the
instruction buffer is full. A 32-bit input/output passes data back and forward
between the main CPU and the coprocessor and a 32-bit output is used to send
instructions. The data transfer between the main CPU and the coprocessor is
controlled by a Data Bus Controller (DBC). When using SRAM attached to the
main CPU for storing intermediate variables for HECC/ECC operations, the
coprocessor can be constructed without use of the coprocessor memory. Alterna-
tively, for the purpose of reducing the I/O transfer overhead, the data memory
can be embedded in the coprocessor. In this case, the path through the DBC is
only activated when an initial point and the parameters of an elliptic curve are
sent to the RAM, or when the result is retrieved.
Instructions are sent to the MALU either from the main CPU or from pre-set

micro codes in the µ-code RAM. When the main CPU is in charge of dispatching
instructions, the IBC block can be detached from the coprocessor. In this case,
it occurs that the throughput of issuing instructions is not high enough for the
MALU(s) to be utilized effectively. On the contrary, when the µ-code RAM
is used for assisting the main CPU, the Instruction Bus Controller (IBC) can
handle one instruction per cycle. For instance, the sequence of point doubling is
stored in the µ-code RAM and the main CPU calls it as an instruction. Thus
multiple MALUs can be activated in parallel without any instruction stalls.
During point multiplication, the IBC keeps on reading instructions from the µ-
code RAM and stores them to an Instruction Queue Buffer (IQB) unless the
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Fig. 3. Reconfigurable datapath for GF(2n) operation. (a) MSB-first bit-serial
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IQB is full. The IBC checks if there is instruction-level parallelism (ILP) by
checking the data-dependency of instructions in the IQB and forwards them to
the MALU(s) (see Section 4.2 and 4.4).

4.2 Modular Arithmetic Logic Unit

In this section the architecture for the MALU is briefly explained. The datap-
ath of the MALU is an MSB-first bit-serial polynomial-basis GF(2n) multiplier
as illustrated in Fig. 3(a). This is a hardware implementation that computes
A(x)B(x) + C(x) mod P (x) where A(x) =

∑

aix
i, B(x) =

∑

bix
i, C(x) =

∑

cix
i and P (x) =

∑

pix
i. The proposed MALU computes A(x)B(x) + C(x)

mod P (x) by following the steps: The MALU sums up three types of inputs
which are aiB(x),miP (x) and T (x), and then outputs the intermediate result,
Tnext(x) by computing Tnext(x) = (T (x) + aiB(x) + miP (x))x + ci−1 where
mi = tn ⊕ aibn. By providing Tnext as the next input T and repeating the same
computation for n times, one can obtain the result. The detailed explanation
is also discussed in [27]. Moreover, by providing B(x) +D(x) in place of B(x),
an operation, A(x)(B(x)+D(x))+C(x) mod P (x) can be also supported. This
operation requires additional XORs and selector logics for registers storing the
coefficients of B(x) or (B(x) +D(x)).
The proposed datapath is scalable in the digit size d (in vertical direction

in Fig. 3(b)) which can be decided by exploring the best combination of per-
formance and cost. The field size n is determined by the key-length. It can be
achieved also by interconnecting several MALUs in horizontal direction. Hence,
various implementation options can be chosen with the MALU. For instance,
the coprocessor can support arbitrary field sizes up to 335 when using four sets
of the MALU whose field size is 83.

4.3 The MALU Instruction

Here, a new instruction called MALUn is defined. It is worth mentioning that
this is the only instruction that operates on the datapath.
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MALUn(A,B,C,D) = A(x)(B(x) +D(x)) + C(x) mod P (x). (2)

When using A(x)B(x) + C(x) mod P (x) operation, one can ignore D(x) as
D(x) = 0. The whole procedure to execute MALUn starts from an instruction
fetch and decode (IF/D). Then, variables for A(x), B(x), C(x) and D(x) are
loaded via RAM (R) for the succeeding execution stage. The result is stored
to RAM (W) in the last step. Note that the data at different addresses can be
read in parallel for the different MALU by replicating RAM (i.e. four clones of
single-port RAMs in case of using four MALUs). The write cycle is determined
by the number of instructions that can be issued in parallel. When using multiple
MALUs, the write operations from every MALU are done at the different cycle
to escape memory-write conflicts. This is illustrated in Fig. 4.

4.4 Dynamic Scheduling

ILP is exploited for all instructions as long as two or more instructions are
buffered in the IQB. Here, we introduce our strategy to find ILP. A MALUn
instruction has four source operands and outputs the result to RAM, i.e.MALUn
deals with five types of addresses in the case of operating A(x)(B(x) +D(x)) +
C(x) mod P (x). Here, let A,B,C,D be the addresses for four inputs and R be
the address where the result is stored. They are expressed as follows:

MALUn : R = A,B,C,D. (3)

The MALUn also refers to P (x) that is stored in RAM. Including out-of-
order execution, the following two types of dependencies are possible between
two instructions, MALUin and MALU

j
n (i and j are labels indicating order of

instruction in the IQB). By checking the following two dependencies for all i and
j that satisfy i < j < ILPD, where ILPD is the size of the instruction window,
one can determine the number of instructions to be issued in parallel.



Table 1. Primary instructions for the coprocessor.

INSTRUCTION DESCRIPTION OPERATION

STORE(@dst) Data storing to the coprocessor R@dst <= din;

LOAD(@src) Data loading from the coprocessor dout <= R@src;

MALU(@dst,@src1-4) Operate MALUn R@dst <= MALU(R@src1-4)

HECCPD() HECC divisor doubling P <= 2P

Read-After-Write (RAW) Dependency check for in-order execu-
tion (Ri = Aj, Ri = Bj, Ri = Cj, Ri = Dj): If the result of the instruction
MALUin, R

i is input for the following instructions, the instruction MALUin can-
not be issued until the preceding instruction completes the operation.

RAW Dependency check for out-of-order execution (Rj = Ai, Rj =
Bi, Rj = Ci, Rj = Di): In case that all conditions are not true, the instruction
MALUjn cannot be issued until the instruction MALU

i
n finishes. The example

using the actual sequence of EC point doubling is shown in the Appendix.

The proposed architecture needs no check for Write-After-Read and Write-
After-Write dependencies contrary a general superscalar machine. This is be-
cause MALUn is a fixed-length multi-cycle instruction and hence we can skip
those dependencies in the sequence of point/divisor operations. Suppose the size
of the instruction window is ILPD, the number of conditions to check becomes
4(ILPD − 1)

2. The hardware complexity for ILP expands with a large ILPD,
but instead further parallelism can be expected.

5 Implementation

5.1 Instruction Sets for the Coprocessor

Table 1 shows some of the primary instructions for the co-processor. The in-
put registers of the MALU are set via data-bus ports. In case of using a 32-bit
CPU such as the ARM, setting a register whose address is src1 requires three
STORE(@dst) instructions for HECC over GF(283). After all operands are set
in corresponding registers, a MALU(@dst,@src1-4) operation is executed. When
using the µ-code configuration, it is possible to define an instruction that con-
sists of a series of MALU(@dst,@src1-4) operations. In this paper, point/divisor
operations are all composed of the MALU instruction (see the Appendix).

5.2 System Configurations

The system configurations are explored in two steps. First, in order to make the
best use of the superscalar coprocessor, four different coprocessor configurations
are explored as listed in Fig. 5(a). This is the so-called vertical exploration of
the hardware/software co-design. Secondly, the performance comparison is made
with HECC, ECC and ECC over a composite field by changing the number of
MALUs. Thus the coprocessor is also investigated from a parallel processing
point of view (horizontal exploration).
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5.3 Design Environment

The proposed design is constructed on GEZEL hardware/software co-design en-
vironment with the ARM Instruction Set Simulator (ISS) [28].
The platform provides cycle-accurate simulations for various hardware/software

system configurations. As mentioned in Section 4, the coprocessor is attached
to the memory-mapped interface of the ARM. Thus, various types of system
configurations are examined to verify the functionality and estimate the perfor-
mance in a system-level. The GEZEL codes are automatically translated into
VHDL codes that can be used for an FPGA prototype.

6 Results

6.1 Vertical Exploration of System Architecture with Coprocessor

Fig. 5(b) compares the performance of HECC scalar multiplication for different
system configurations. For the case of the TYPE I and II, the I/O transfer
overhead between the main CPU and the coprocessor is the majority of the
cycles (about 97%). The reason for this is that the temporary data variables
are stored in the memory of the main CPU and travel through the CPU to
the coprocessor for processing. As for the TYPE III, the I/O transfer overhead
is reduced significantly due to the effect of the data memory allocated in the
coprocessor. However, the I/O overhead is still dominant because the main CPU
issues instructions via the slow communication channel. The parallel processing
feature is hence useless to improve the performance in such system settings. Note
that the ratio of the I/O transfer overheads is reduced ostensibly by introducing
smaller d since the datapath performs in more clock cycles. In this way, it is
important to find the best digit size, d that can hide the I/O transfer overhead
with the TYPE III. This paper, however, focuses on the TYPE IV for a deeper
investigation of the parallelism in order to obtain high performance. Because the
TYPE IV assures the highest parallelism regardless of the value of d.
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6.2 Performance Comparison between Three Cryptosystems

Fig. 6 shows the required cycles for various implementations based on the TYPE
IV configuration. The building block of the datapath is the MALU whose field
size is 83 or MALU83. Up to four clones of the MALU83 are embedded in the
coprocessor to observe the performance improvement with the superscalar ar-
chitecture. For ECC, a pair of MALU83 is equivalent to one MALU163 in terms
of hardware cost. The overall performance improves as increasing the number
of MALU83 for both of the operation type. Also a large ILPD helps exploiting
more parallelism and leads to a higher performance. The results show the effec-
tiveness of an operation whose form is A(B+D)+C especially for the ECC over
a composite field. In our case, the performance of ECC is better than others on
equivalent hardware resources. The results are also summarized in Table 2.

Table 2. Required clock cycles of scalar multiplication for d = 12 and ILPD = 6.
Figures in parenthesis are the speed-up ratio based on the smallest configuration.

Operation: AB + C A(B +D) + C
Coprocessor HECC ECC ECC HECC ECC ECC
Configuration GF(283) GF(2163) GF((283)2) GF(283) GF(2163) GF((283)2)

1×MALU83 105,237 - 108,603 98,856 - 98,688
(1.00) (1.00) (1.06) (1.10)

2×MALU83 58,917 50,112 66,193 54,909 48,849 61,941
=1×MALU163 (1.79) (1.00) (1.64) (1.92) (1.03) (1.75)
3×MALU83 45,606 - 56,267 42,029 - 49,849

(2.31) (1.93) (2.50) (2.18)
4×MALU83 39,247 30,396 56,437 39,115 27,981 43,594

=2×MALU163 (2.68) (1.65) (1.92) (2.69) (1.79) (2.49)
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Fig. 7. The profile graphs of the required clock cycles in ECC/HECC scalar multipli-
cation for different hardware settings of the coprocessor (d = 12).

In order to investigate the performance bottle-neck of HECC and ECC, the
required clock cycles in scalar multiplication is split into two factors; one is for
the memory access and another is for the data processing of the datapath. As
can be seen from the Fig. 7, operation form, A(B + D) + C introduces more
memory accesses while the data can be processed in less clock cycles. Overall
the proposed superscalar feature can reduce the clock cycles in both of the
coprocessor memory access and the datapath operation. The memory accesses
of HECC become dominant as introducing more parallelism. On the other hand
the memory accesses in ECC is less than 30 % of the total clock cycles. This
fact explains the reason that scalar multiplication of HECC is eventually slower
than that of ECC on equivalent hardware resources.

6.3 Prototype Results on FPGA

Based on the performance observation, the coprocessor is prototyped with the
system configuration of d = 12 and ILPD = 6 on Virtex-II PRO (XC2VP30).
The operation that the MALU supports is A(B +D) + C. The the coprocessor
memory consist of several 32×84-bit single-port RAMs and each RAM is assigned
to each MALU83. The µ-code program is implemented as an LUT ROM. As
shown in Table 3, our HECC results show a better trade-off between cost and
performance than the previous work. With regard to ECC implementation, our
result is based on the IEEE-P1363 compliant sequence [23] and is not as fast as
some previous work [13, 29]. However considering the flexibility in our proposed
coprocessor, the difference can be regarded as small.

7 Conclusions

This paper introduced a superscalar coprocessor that could deal with three differ-
ent curve-based cryptosystems. The implementation results showed that scalar
multiplication of ECC over GF(2163), HECC of genus 2 over GF(283) and ECC



Table 3. Performance Comparison of HECC/ECC implementations on FPGAs

Ref. Field Target Area fmax Perform. Polynomial Comments
Design Platform [slices/gates] [MHz] [µsec] P (x)

HECC

This 2,446 989 1×MALU83

work GF(283) Virtex-II Pro 4,749 100.0 549 Arbitrary 2×MALU83

6,586 420 3×MALU83

[11] GF(281) Virtex-II Pro 4,039 57.0 787 Fixed 2×MULT,1×INV
7,737 60.7 387 3×MULT,2×INV

ECC

This GF(2163) Virtex-II Pro 4,749 100.0 488 Arbitrary 1×MALU163

work 8,450 280 2×MALU163

1,554 Arbitrary López-Dahab
[14] GF(2163) Virtex E 19,508 66.5 143 Fixed: x163 + x7 scalar mult.

+x6 + x3 + 1

[13] GF(2167) Virtex E 3,002 (+ 76.7 210 Fixed: López-Dahab
10 BRAMs) x167 + x6 + 1 scalar mult.

[29] GF(2191) Virtex E 19,626 (+ 9.99 59.26 Fixed: López-Dahab
26 BRAMs) x191 + x9 + 1 scalar mult.

over a composite field, GF((283)2) was improved by a factor of 1.8, 2.7 and
2.5 respectively compared to the case of a basic single-scalar architecture. This
speed-up was achieved by vertical and horizontal exploration of the system archi-
tecture to exploit parallelism in curve-based cryptography. In our design, ECC
showed better performance than others on the same amount of hardware re-
source. All operations in three curve-based cryptosystems were performed with
only one instruction that could be flexibly defined as AB+C or A(B+D)+C.
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A Dynamic Scheduling for EC point doubling

The first two instructions have a RAW dependency with t1. ECDB04 has no
RAW dependency upon the first three instructions in in-order and out-of-order
execution, and therefore it can be issued prior to the first three instructions.

Table 4. Example of parallelized out-of-order instruction sequence for EC point dou-
bling in case of three consecutive point doublings (i.e. P ⇐ 23P , where P (X1, Y1, Z1)).
The ECDBs in italic are instructions from preceding and succeeding point doublings.

Original Sequence Parallelized Out-of-order Sequence

Address: R A B C D

ECDB01: MALUn( t1, X1, X1, 0, 0 ) ECDB08 & ECDB04
ECDB02: MALUn( t2, t1, t1, 0, 0 ) ECDB09 & ECDB06
ECDB03: MALUn( t4, Y1, Z1, t1, 0 ) ECDB10 & ECDB01
ECDB04: MALUn( t3, Z1, Z1, 0, 0 ) ECDB02 & ECDB03
ECDB05: MALUn( Z1, X1, t3, 0, 0 ) ECDB05 & ECDB07
ECDB06: MALUn( t5, d6, t3, X1, 0 ) ECDB08 & ECDB04
ECDB07: MALUn( t3, t5, t5, 0, 0 ) ECDB09 & ECDB06
ECDB08: MALUn( X1, t3, t3, 0, 0 ) ECDB10 & ECDB01
ECDB09: MALUn( t1, X1, Z1, 0, t4 ) ECDB02 & ECDB03
ECDB10: MALUn( Y1, t2, Z1, t1, 0 ) ECDB05 & ECDB07


