
On the Power of Bitslie Implementation onIntel Core2 ProessorMitsuru Matsui and Junko NakajimaInformation Tehnology R&D CenterMitsubishi Eletri Corporation5-1-1 Ofuna Kamakura Kanagawa, JapanfMatsui.Mitsuru�ab, Junko.Nakajima�dg.MitsubishiEletri.o.jpAbstrat. This paper disusses the state-of-the-art fast software imple-mentation of blok iphers on Intel's new miroproessor Core2, parti-ularly onentrating on \bitslie implementation". The bitslie parallelenryption tehnique, initially proposed by Biham for speeding-up DES,has been suessful on RISC proessors with many long registers, buton the other side bitslied iphers are not widely used in real applia-tions on PC platforms, beause in many ases they were atually notvery fast on previous PC proessors. Moreover the bitslie mode requiresa non-standard data format and hene an additional format onversionis needed for ompatibility with an existing parallel mode of operation,whih was onsidered to be expensive.This paper demonstrates that some bitslied iphers have a remarkableperformane gain on Intel's Core2 proessor due to its enhaned SIMDarhiteture. We show that KASUMI, a UMTS/GSM mobile standardblok ipher, an be four times faster when implemented using a bitslietehnique on this proessor. Also our bitslied AES ode runs at the speedof 9.2 yles/byte, whih is the performane reord of AES ever madeon a PC proessor. Next we for the �rst time fous on how to optimizea onversion algorithm between a bitslie format and a standard formaton a spei� proessor. As a result, the bitslied AES ode an be fasterthan a highly optimized \standard AES" ode on Core2, even taking anoverhead of the onversion into onsideration. This means that in theCTR mode, bitslied AES is not only fast but also fully ompatible withan existing implementation and moreover seure against ahe timingattaks, sine a bitslied ipher does not use any lookup tables withkey/data-dependent address.Keywords: Fast Software Enryption, Bitslie, AES, KASUMI, Core21 IntrodutionThe purpose of this paper is to study software performane optimization teh-niques for symmetri primitives on PC proessors, partiularly fousing on \bit-slie implementation" on Intel's new Core2 miroproessor, and show that, byfully utilizing its enhaned SIMD instrutions, many important iphers suh as

2KASUMI, AES and Camellia an be muh faster than previously expeted withkeeping full ompatibility with an existing parallel mode of operation.The bitsliing tehnique was introdued by Biham [5℄ in 1997 for speeding-up DES, whih was atually implemented on several proessors and used forbrute fore key searh of DES in the distributed.net projet [7℄. In the bitslieimplementation one software logial instrution orresponds to simultaneous ex-eution of n hardware logial gates, where n is a register size, as shown in �gure 1Hene bitsliing an be eÆient when the entire hardware omplexity of a targetipher is small and an underlying proessor has many long registers.Therefore the bitslie implementation is usually suessful on RISC proes-sors suh as Alpha, PA-RISC, Spar, et, but unfortunately was not onsideredto be very attrative on Intel x86 proessors in many ases due to the smallnumber of registers. While several papers already disussed bitslie tehniquesof blok iphers [4℄[14℄[15℄[18℄[20℄, as far as we know, only one paper reportedatually measured performane of a real bitslie ode of AES on a PC proessor[14℄. Moreover a onversion of data format is required for ompatibility with anexisting parallel mode of operation suh as the CTR mode, but no papers haveinvestigated an overhead of this onversion in a real platform.In [14℄ we studied an optimization of AES on 64-bit Athlon64 and Pentium4proessors, where his bitslied AES ran still (or only) 50% slower than an opti-mized standard AES (i.e. a ode written in a usual blok-by-blok style). Thebitslied AES ode shown in the paper was implemented on 64-bit general regis-ters, not on 128-bit XMM registers. This was beause on these proessors XMMinstrutions were more than two times slower than the orresponding x64 in-strutions and hene using 128-bit instrutions did not have any performaneadvantage. Also note that we did not inlude an overhead of format onversionin the yle ounts.Our urrent paper gives performane �gures of several highly optimized bit-slied blok iphers on Intel's new Core2 proessor, whih was launhed into PCmarket last summer and has sine been very widely used in desktop and mo-bile PCs. Core2 has several signi�ant improvements over previous proessors,of whih the most advantageous one for us is that its all exeution ports supportfull 128-bit data. Three logial 128-bit XMM instrutions an now run in paral-lel (although some hidden stall fators still remain as previous Intel proessors),whih is expeted to boost performane of a bitslied ipher.First we implement KASUMI, a UMTS/GSM standard ipher, in both stan-dard and bitslie modes. We show an optimization tehnique for a single blok en-ryption, whih results in 36.3 yles/byte. On the other side, our bitslied oderuns at the speed of 9.3 yles/byte, four times faster, thanks to its hardware-oriented lookup tables and improved XMM instrutions of the Core2 proessor.Sine the mode of operation adopted in the UMTS standard is not a parallelmode, this bitslie tehnique annot be diret applied to a handset, but an beused in a radio network ontroller, whih has to treat many independent datastreams.

3Our next target is AES in the bitslie mode, fully utilizing 128-bit XMM reg-isters and instrutions. Our optimized ode has ahieved the enryption speedof 9.2 yles/byte on Core2, whih is the highest speed of AES ever ahievedon a PC proessor. Also we present a spei� ode sequene for onverting databetween a bitslie mode and a standard mode. This format onversion is essen-tially an entire bitwise data realloation, whih was believed to be expensive.Our onversion algorithm fully utilizes SIMD instrutions and suessfully runsin less than 1 yle/byte.As a result, we onlude that bitslied AES that is fully ompatible with theCTR mode an run still faster than highly optimized standard AES on Core2.Moreover note that a bitslie ipher is safe against implementation attaks suhas ahe timing attaks [17℄. We believe that the bitslie implementation is infat very promising in real appliations in urrent and future PC proessors.Table 1 shows our referene mahines and environments.
n -bit register 1

n -bit register 2

n -bit register 3

n -bit register b

n : Register size
= the number of encrypted blocks

b : Block size
= the number of registers

Cipher

Block

1

Cipher

Block

2

Cipher

Block

n

Fig. 1. The basi onept of bitsliing.Proessor Name Intel Pentium 4 AMD Athlon 64 Intel Core2 Duo561 3500+ E6400Core Name Presott Winhester ConroeClok Frequeny 3.6GHz 2.2GHz 2.13GHzCahe (Code/Data) 12K�ops / 16KB 64KB / 64KB 32KB / 32KBMemory 1GB 1GB 1GBOperation System Windows XP 64-bit EditionCompiler Mirosoft Visual Studio 2005Table 1. Our referene mahines and environments.2 Core2 ArhitetureThis setion briey desribes internal arhiteture of Core2 and points out whata programmer of symmetri algorithms should notie in optimizing performane

4on this proessor. Intel has not published details of its pipeline hardware meh-anism, and moreover undoumented pipeline stalls are often observed. This se-tion hene largely omes from external resoures [9℄[11℄ and our own experimen-tal results.Intel Core2 proessor ame after Pentium 4, whih one-side foused on highlok frequeny and reahed its dead end due to an overheating problem. Thepipeline of Core2 has 14 stages, signi�antly shorter than that of Pentium 4,aiming at higher supersalarity rather than higher frequeny as shown below.The pipeline of Core2 inludes the following stages:{ Instrution Feth and PredeodingInstrutions are fethed from memory and sent to the predeoder, whihdetets where eah instrution begins. Unfortunately the predeoder anproess only 16 bytes/yle, whih is very likely a performane bottlenek.So using a short instrution and a short o�set is essential for optimization.For instane, three XMM \xor" instrutions xorps, xorpd and pxor arelogially equivalent, but the seond and third ones are one byte longer thanthe �rst one. The same applies to movaps, movapd and movdqa. Anotherexample is that using registers xmm8 to xmm15 leads to an additional pre�xbyte.{ Instrution DeodingIn this stage, an instrution is broken down into miro-operations (�ops).Core2 an treat a read-modify instrution as one �op, alled a fused �op,while previous proessors ounted it as two �ops. The same applies to amemory write instrution. Sine an instrution onsisting of two or more�ops an be deoded in only one of the four deoders of Core2, this fusionmehanism greatly improves deoding eÆieny. We expet that the deod-ing stage is not a performane bottlenek in programming a blok ipher.{ Register RenamingIn this stage a register to be written or modi�ed is renamed into a virtualregister, and then �ops are sent to the reordering bu�er. This stage anhandle up to 4�ops/yle, whih is the overall performane limitation ofCore2. In other words, assembly programmer's objetive is to write a odethat runs at the speed of (as lose as possible to) 4�ops/yle. Also this stageontains another bottlenek fator alled \register read stall"; i.e. only tworegisters an be renamed per yle, exluding those that have been modi�edwithin the last few yles [9℄. We hene have to avoid registers that arefrequently read without being written. It is however diÆult to avoid thisstall without ausing another penalty in pratie.{ Exeution UnitsA fused �op is �nally broken down into unfused �ops, whih are issuedtoward exeution units. Core2 has a total of six ports; three for ALUs, onefor read, one for write address, and one for write data. A very good news for

5us is that all ports support the full 128-bit data and eah of the three ALUsindependently aept a 128-bit XMM logial instrution with throughputand lateny 1. This is a remarkable improvement of Core2 over previousproessors suh as Pentium 4 and Athlon 64, and is the most ontributingfator in high speed enryption in the bitslie mode.Table 2 shows a list of lateny (left) and throughput (right) of instrutionsfrequently used in a blok ipher ode on Pentium 4, Athlon 64 and Core2. Itis learly seen that while Athlon 64 still outperforms Core2 for x64 instrutions,Core2 has muh stronger 128-bit ALU units; in partiular three XMM logialinstrutions an run in parallel, whih is extremely bene�ial for the bitslieimplementation. This list was reated on the basis of our experiments, sinesometimes what Intel's douments say does not agree with our experimental re-sults. For instane, our measurements show that the throughput of add reg,regnever reahes 3 on Pentium 4, ontrary to Intel's laim. An unknown stall fa-tor must exist in its pipeline. Note that it is ommon that unexpeted thingshappen on Intel proessors. For another simple example, on Core2, a repetitionof Code1A below runs in 2.0 yles/iteration as expeted, but Code1B andCode1C run in 2.5 and 3.0 yles/iteration, respetively. On Athlon64 all thethree odes atually work in 2.0 yles/iteration.Proessor Pentium4 Athlon64 Core2Operand Type 64-bit general registersmov reg,[mem℄ 4, 1 3, 2 3, 1mov reg,reg 1, 3 1, 3 1, 3add reg,reg 1, 2:88 1, 3 1, 3xor/and/or reg,reg 1, 7=4 1, 3 1, 3shr reg,imm 7, 1 1, 3 1, 2shl reg,imm 1, 7=4 1, 3 1, 2ror/rol reg,imm 7, 1=7 1, 3 1, 1Operand Type 128-bit XMM registersmovaps xmm,[mem℄ �, 1 �, 1 �, 1movaps xmm,xmm 7, 1 2, 1 1, 3paddb/w/d xmm,xmm 2, 1=2 2, 1 1, 2paddq xmm,xmm 5, 2=5 2, 1 1, 1xorps/andps/orps xmm,xmm 2, 1=2 2, 1 1, 3psllw/d/q xmm,imm 2, 2=5 2, 1 2, 1pslldq xmm,imm 4, 2=5 2, 1 2, 1punpklbw/wd/dq xmm,xmm 2, 1=2 2, 1 4, 1=2punpklqdq xmm,xmm 3, 1=2 1, 1 1, 1pmovmskb reg,xmm �, 1=2 �, 1 �, 1Table 2. A list of an instrution lateny and throughput.

6 and rax,rax and rax,rdx and rax,raxand rbx,rbx and rbx,rsi and rbx,raxand rx,rx and rx,rdi and rx,raxand rdx,rdx and rdx,rax and rdx,raxand rsi,rsi and rsi,rbx and rsi,raxand rdi,rdi and rdi,rx and rdi,raxCode1A: 2.0 yles Code1B: 2.5 yles Code1C: 3.0 ylesOne of the blok ipher algorithms that an have the biggest bene�t of Core2is 128-bit blok ipher Serpent[2℄. Serpent was designed in a 32-bit bitslie style;spei�ally, it internally applies 32 lookup tables with 4-bit input/output inparallel in a single round, whih an be oded with 32-bit logial and shiftinstrutions only. Table 3 demonstrates that our four-blok parallel enryptionode using XMM instrutions dramatially improves its performane on Core2as ompared with a highly optimized single blok enryption program written byGladman[10℄. Serpent was known as a blok ipher with a high seurity marginand a low enryption speed but our result shows that Serpent will be ategorizedinto fast iphers on future proessors.Proessor Pentium 4 Athlon 64 Core2Style 4-Parallel Single [10℄ 4-Parallel Single [10℄ 4-Parallel Single [10℄Cyles/blok 681 689 466 569 243 749Cyles/byte 42:6 43:1 29:1 35:6 15:2 46:8Instrs/yle 0:71 1:98 1:03 2:40 1:98 1:83Table 3. Performane of Serpent in single-blok and four-blok parallel modes.3 KASUMIKASUMI [1℄ is a 64-bit blok ipher with 128-bit key that forms the heart ofUMTS on�dentiality algorithm f8 and integrity algorithm f9. KASUMI has beenalso adopted as one of GSM standard iphers for on�dentiality. KASUMI wasdesigned on the basis of MISTY1 blok ipher with 64-bit blok and 128-bit key[13℄, whih has been inluded in the ISO-18033 standard [12℄. Sine these iphershighly fous on hardware platforms, we an naturally expet that they ahievehigh performane when implemented in a bitslie style. In this setion, we startwith disussing an optimization of a single blok enryption for omparison, andthen move to the bitslie implementation3.1 KASUMI and MISTY1Both of KASUMI and MISTY1 have an eight-round Feistel struture, whoseround funtion is alled FO funtion, and additionally a small omponent alledFL funtion is inserted several times outside the FO funtions. The FO funtionitself has a ladder struture with three inner rounds, eah of whih is alled FI

7funtion. Therefore these iphers have a total of 24 FI funtions, whih dominatetheir enryption performane.The left side of �gure 2 shows the detailed struture of the FI funtion ofKASUMI. The FI has again a ladder struture with two lookup tables S7 and S9,whih are internally applied two times eah. Unlike KASUMI, the FI of MISTY1has only three rounds (S9 - S7 - S9) with slightly di�erent S7 and S9. S7 and S9(for both of KASUMI and MISTY1) are linearly equivalent to a power funtionover Galois �eld GF (27) and GF (29), and their algebrai degree is 3 and 2,respetively. These low degree tables signi�antly ontribute to small hardwarein real appliations.The key sheduling part of KASUMI is extremely simple, onsisting of 16-bitrotate shifts by a onstant size and xor operations with a onstant value only,whih is ompatly implemented in hardware. Also the key sheduling part ofMISTY1 is not ostly, onsisting of eight parallel FI funtions. For more details,see [1℄ and [13℄.
S9

S7

S9

S7

16

9 7

16

9 7

S9E S7E

7 9

S7E S9E

KIij,2KIij,1

KIij

zero-extend

truncate

zero-extend

truncate

16 16

16 16

Fig. 2. Equivalent forms of the FI funtion of KASUMI.3.2 Single Blok ImplementationFirst we show our implementation of KASUMI in a usual single blok enryptionstyle. As stated above, the omplexity of the FI funtion dominates the entireperformane of the KASUMI algorithm. A straightforward implementation of theFI on Core2 (or any other PC proessors) requires approximately 16 instrutions.However by preparing the following two new tables S7E and S9E, we an reatea simpler form that is equivalent to the FI funtion as shown in the right side of�gure 2.S9E[x℄ = ((S9[x℄<<9)^S9[x℄) & 0xffff ; 9-bit -> 16-bitS7E[x℄ = ((S7[(x&0x7f)℄^(x&0x7f))<<9) ^ (x&0x7f) ; 8-bit -> 16-bit

8 Use of S7E and S9E redues the number of instrutions of the FI funtiondown to 10. Code2 shows the spei� 10-line implementation. Note that S7Emust aept an eight-bit input (and ignore its highest bit), whih results in asaving of one instrution at the beginning of the ode. Sine an output of S7Eand S9E is stored in a 32-bit entry in pratie, a total size of the new tables is28 � 4 bytes (S7E) + 29 � 4 bytes (S9E) = 3072 bytes.01 movzx esi,al ; extrat right 8 bits02 shr eax,7 ; extrat left 9 bits03 mov eax,S9E[rax*4℄04 xor eax,S7E[rsi*4℄05 xor eax,[key℄ ; xor subkey06 mov esi,eax07 shr esi,9 ; extrat left 7 bits08 and eax,01ffh ; extrat right 9 bits09 mov eax,S9E[rax*4℄10 xor eax,S7E[rsi*4℄Code2: An optimized ode of the FI funtion of KASUMI.Note that in an x64 environment we an equivalently use 64-bit registersinstead of 32-bit registers, say, shr rsi,9 instead of shr esi,9, but this shouldbe avoided in general beause use of a 64-bit general register as a data registermakes an instrution length longer. Also sine two adjaent FI funtions aremutually independent even if they are not ontained in the same FO funtion,interleaving two FI funtions ontributes to further speeding-up.As a result, our optimized odes for the full KASUMI and MISTY1 an run atthe speed of 290 yles/blok and 214 yles/blok, respetively. The di�erenein performane omes from the fat that the former applies 4� 3� 8 = 96 tablelookups and the latter does 3�3�8 = 72. The key sheduling part of KASUMI,instead, works of ourse muh faster than that of MISTY1.3.3 Bitslie implementationIn this subsetion we deal with an implementation of KASUMI and MISTY1 inthe bitslie mode, that is, 128-blok parallel enryption, fully utilizing 16 128-bitXMM registers of the Core2 proessor. The performane of bitslied KASUMIand MISTY1 is largely determined by the number of instrutions of lookup tablesS7 and S9. Below is our (hand-optimized) bit-level logi of S7 and S9 at the timeof writing, where output bits yi are omputed sequentially in our ode. Boldfaeterms, whih always appear pairwisely (or more), are stored into registers inadvane in order to redue the number of instrutions.MISTY S9:y0 = x0(x4+x5) + x1(x5+x6) + x2(x6+x7) + x3(x7+x8) + x4x8 + 1y1 = x3(1+x2+x1+x4+x8) + x0(x2+x6+x8) + x5(x4+x8) + x2x6 + x7 + 1y2 = x4(1+x3+x0+x2+x5) + x1(x0+x3+x7) + x6(x0+x5) + x3x7 + x8y3 = x5(1+x4+x1+x3+x6) + x2(x1+x4+x8) + x7(x1+x6) + x0 + x4x8

9y4 = x6(1+x5+x2+x4+x7) + x3(x0+x2+x5) + x8(x2+x7) + x1 + x0x5y5 = x7(1+x6+x3+x5+x8) + x4(x1+x3+x6) + x0(x3+x8) + x2 + x1x6y6 = x8(1+x7+x0+x4+x6) + x5(x2+x4+x7) + x1(x0+x4) + x3 + x2x7 + 1y7 = x1(1+x0+x2+x6+x8) + x7(x0+x4+x6) + x3(x2+x6) + x0x4 + x5 + 1y8 = x0(1+x1+x5+x7+x8) + x6(x3+x5+x8) + x2(x1+x5) + x4 + x3x8 + 1MISTY S7:y0 = x0 + x0x3x4 + x1(x3+x0x6) + x2(x0x5+x6) + x5(x4+x3x6) + x5(x1+x0x6) + 1y1 = x2(x0+x4x5) + x0x6 + x2x3x6 + x4(x0+x3+x1x6) + x5(x1+x0x6) + 1y2 = x2(x1+x0x3) + x4 + x0((x1+x5)x4+x5) + x4(x2x6+x1) + x3(x4x5+x6) + x6(x0x3+x4+x1)y3 = (x0+x1+x0(x1x2+x3)) + x6(x2+x5+x1x3) + x4(x2+x0x6) + x1x4x5 + 1y4 = x4(x0+x1x3) + x5 + x1x2x5 + x3(x2+x0x5) + x6((x1+x4)x5+x1) + 1y5 = (x0+x1+x0(x1x2+x3)) + x2 + x1x2x3 + x4(x1+x0x2) + x0(x1x5+x6) + x5(x0+x3+x2x6)y6 = x0x3 + x2(x3x4+x5) + x1(x0+x3x5) + x1x2x6 + x6(x0x3+x4+x1) + x5(x0+x3+x2x6)KASUMI S9y0 = x7(x0+x1+x2+x8) + x5(x2+x6+x8) + x4x8 + x0x2 + x3 + 1y1 = x1(1+x0+x4+x7) + x5(x0+x3+x8) + x2(x3+x7) + x0x4 + x6 + 1y2 = x6(x2+x3+x5+x7) + x0(x5+x3+x8) + x7(x4+x5) + x3x4 + x1 + 1y3 = x0(1+x6+x3+x8) + x1(x2+x6+x8) + x4(x2+x7) + x7x8 + x5y4 = x0(x1+x5+x7) + x3(x1+x6+x8) + x8(x1+x2) + x6x7 + x4y5 = x6(x0+x8+x1+x7) + x4(x1+x5+x7) + x7(x3+x8) + x5x8 + x2 + 1y6 = x5(x1+x4+x2+x6+x8) + x3(x2+x6+x8) + x8(x1+x7) + x4x6 + x0 + x7y7 = x2(x0+x3+x6+x1+x7) + x3(1+x0+x6) + x5(x4+x7) + x0x1 + x8 + 1y8 = x1(x0+x2+x5+x6) + x2(1+x5+x8) + x4(x3+x6) + x3x8 + x7KASUMI S7y0 = x4(x0x1+x3x5+x2x6) + x2x5 + x6(1+x0+x1+x3+x5(x1+x4)) + x1x3 + x4y1 = x0(x1+x4+x3x5+x2x6) + x3x6 + x5(1+x1x2) + x4(x2+x5x6) + 1y2 = x0(x4x3+x1x6) + x6(x2+x4) + x5(x1+x0x2) + x2(x3+x1x4) + x0 + 1y3 = x5x1x4 + x1x0x5 + x6(x2+x1x3) + x3(x2x5+x4) + x1x0x2 + x1y4 = x0x3x6 + x0x1x4 + x4x0x5 + x3(1+x1+x2x4) + x5(x6+x1x3) + x0x2 + x1x6 + 1y5 = x0(x4x2+ x6x3+x5) + x5(x6x2+x4) + x1x2(x3+x6) + x6(x1+x3x4) + x2 + 1y6 = x6(1+x1(x0+x4)+x2x3+x0x5) + x0(x4+x1x3) + x5(x1+x3) + x1x2KASUMI MISTY1Lookup tables S9 S7 S9 S7Number of instrutions 149 153 148 144Table 4. The number of instrutions of S7 and S9.Proessor Pentium 4 Athlon 64 Core2Style Bitslie Single Bitslie Single Bitslie SingleKASUMICyles/blok 241 300 241 272 74 290Cyles/byte 30:1 75:0 30:1 34:0 9:25 36:3Instrs/yle 0:71 1:69 0:71 1:86 2:31 1:75Cyles/Keysh 8 104 7 64 2 78MISTY1Cyles/blok 185 234 195 203 59 214Cyles/byte 23:1 29:3 24:4 25:4 7:38 26:8Instrs/yle 0:72 1:82 0:68 2:10 2:26 1:99Cyles/Keysh 57 244 57 240 16 178Table 5. Performane of our implementation of KASUMI and MISTY1.

10 Tables 4 and 5 show our implementation results of KASUMI and MISTY1on Pentium 4, Athlon 64 and Core2. Instrutions for S7 and S9 oupy 69% and61% of the entire ode of KASUMI and MISTY1, respetively. It is seen thatboth iphers ahieve an overwhelming performane; three to four times faster inthe bitslie mode on Core2. Also the key sheduling of KASUMI an be arriedout almost with no ost due to the nature of its struture.4 AES and Camellia4.1 Bitslie ImplementationHow to implement bitslied AES [8℄ and Camellia [3℄ on x64 platforms was �rstreported in [14℄. The odes shown in the paper were written not using 128-bitXMM registers but using 64-bit general registers, beause XMM instrutions hadpoor performane for bitsliing on its target proessors (Pentium 4 and Athlon64). In fat these proessors internally treated a 128-bit instrution as two 64-bit operations. In this subsetion, we disuss performane of bitslied AES andCamellia fully utilizing 128-bit XMM instrutions on the Core2 proessor.The dominant part of these bitslied iphers is the lookup table S, whih islinearly equivalent to an inversion funtion over GF (28). The known smallesthardware design (i.e. most suitable for the bitslie implementation) of S is touse a sub�eld of index two; that is, we represent an inverse of GF (22n) as aombination of operations on GF (2n) reursively [6℄[16℄[19℄. The essene of thistehnique is to selet (1; a) as a basis ofGF (22n) overGF (2n) for an a 2 GF (22n)suh that TrGF (22n)=GF (2n)(a) = 1. Then for any x; y; z; u 2 GF (2n), we have(x+ ya)(z + ua) = (xz + yuNrGF (22n)=GF (2n)(a)) + ((x+ y)(z + u) + xz)a;whih means that a multipliation of GF (22n) an be designed with three mul-tipliations of GF (2n) like the Karatsuba algorithm.Using 16 XMM registers, instead of general registers, also redues \registerpressure", whih results in a smaller number of instrutions of S in software. Ouroptimized odes for S onsist of 201 and 199 instrutions for AES and Camellia,respetively, whih are 2% smaller than those shown in [14℄.Table 6 shows our implementation results of AES and Camellia with 128-bitkey in bitslie and non-bitslie modes. \Bs128" and \Bs64" denote the bitsliemode using 128-bit XMM instrutions and 64-bit general instrutions, respe-tively. \Single" and \Double" indiate a usual single blok enryption and adouble-blok parallel enryption by interleaving two bloks, respetively. Forboth algorithms, the obtained enryption speed, 9.2 yles/blok and 8.4 y-les/blok on Core2, respetively, is the highest speed ever ahieved in a PCplatform, where the previous reord was 10.6 yles/blok and 10.9 yles/blokon Athlon 64 as shown in [14℄. In addition, to our best knowledge, this is the�rst result where performane of AES in the bitslie mode has exeeded that inan ordinary blok-by-blok enryption mode.

11Proessor Pentium 4 Athlon 64 Core2AESStyle Bs128 Bs64[14℄ Single[14℄ Bs128 Bs64[14℄ Single[14℄ Bs128 Bs64 SingleCyles/blok 491 418 256 560 250 170 147 307 232Cyles/byte 30:7 26:1 16:0 35:0 15:6 10:6 9:19 19:2 14:5Instrs/yle 0:80 1:66 1:81 0:70 2:75 2:74 2:66 2:27 2:00CamelliaStyle Bs128 Bs64[14℄ Double[14℄ Bs128 Bs64[14℄ Double[14℄ Bs128 Bs64 DoubleCyles/blok 467 415 457 510 243 175 135 272 208Cyles/byte 29:2 25:9 28:6 31:9 15:2 10:9 8:44 17:0 13:0Instrs/yle 0:72 1:61 0:94 0:65 2:74 2:46 2:47 2:44 2:07Table 6. Performane of our implementation of AES and Camellia with 128-bit key.4.2 Format ConversionThe bitslied ipher uses a non-standard input/output data format. This is not aproblem in a standalone appliation suh as a �le enryption utility or a passwordreovery program. However a format onversion is required if a �le enrypted inthe bitslie mode must be derypted in an existing parallel mode of operationsuh as the CTR mode. This onversion is essentially an entire rearrangement ofbit positions, whih is generally ostly in software, and its performane overheadannot be ignorable.This paper for the �rst time disusses a spei� implementation algorithm ofdata onversion between a bitslie format and an ordinary format. The followingpiee of ode (Code3) shows our basi step reating a byte sequene formattedin a bitslied style pointed by rdx from an ordinary byte sequene pointed byrx for a 128-bit blok ipher.1 movaps xmm0, 0[rx℄2 punpk[l|h℄bw xmm0, 16[rx℄ ; xxxxxxxx xxxxxx103 movaps xmm1, 32[rx℄4 punpk[l|h℄bw xmm1, 48[rx℄ ; xxxxxxxx xxxxxx325 movaps xmm2, 64[rx℄6 punpk[l|h℄bw xmm2, 80[rx℄ ; xxxxxxxx xxxxxx54.15 movaps xmm7,224[rx℄16 punpk[l|h℄bw xmm7,240[rx℄ ; xxxxxxxx xxxxxxFE1718 punpk[l|h℄wd xmm0,xmm1 ; xxxxxxxx xxxx321019 punpk[l|h℄wd xmm2,xmm3 ; xxxxxxxx xxxx765420 punpk[l|h℄wd xmm4,xmm5 ; xxxxxxxx xxxxBA9821 punpk[l|h℄wd xmm6,xmm7 ; xxxxxxxx xxxxFEDC2223 punpk[l|h℄dq xmm0,xmm2 ; xxxxxxxx 76543210

12 24 punpk[l|h℄dq xmm4,xmm6 ; xxxxxxxx FEDCBA982526 punpk[l|h℄qdq xmm0,xmm4 ; FEDCBA98 765432102728 pmovmskb eax,xmm0 ; 16 7-th bits of xmm029 mov 112[rdx℄,ax30 paddb xmm0,xmm031 pmovmskb eax,xmm0 ; 16 6-th bits of xmm032 mov 96[rdx℄,ax33 paddb xmm0,xmm034 pmovmskb eax,xmm0 ; 16 5-th bits of xmm035 mov 80[rdx℄,ax36 paddb xmm0,xmm0..48 paddb xmm0,xmm049 pmovmskb eax,xmm0 ; 16 0-th bits of xmm050 mov 0[rdx℄,axCode3: A format onversion ode reating 128 onverted bitsThe �rst part (lines 1 to 26) reates a 16-byte data on xmm0, whose n-th byteorresponds to a byte in memory at the addresses 16n + m (n = 0; 1; ::; 15).Also m (m = 0; 1; ::; 15) an be ontrolled by a hoie of \unpak" instrutionspunpk[l|h℄bw, punpk[l|h℄wd, punpk[l|h℄bdq, punpk[l|h℄dqd (low l orhigh h); spei�ally, llll for m = 0, lllh for m = 1 and llhl for m = 2, et.The latter part (lines 28 to 50) reates 16-bit data on ax onsisting of 16 bits atbit positions 8i+j of xmm0 (i = 0; 1; :::; 15) using a speial pmovmskb instrution,and then it is written into memory, whih is repeated 8 times (j = 0; 1; ::; 7).Basially the full format onversion of 128 bits � 128 bloks = 2KB data anbe done by repeating Code3 128 times (with hanging unpak instrutions, rxand rdx). However by keeping intermediate values in temporary registers for lateruse, the number of memory reads is signi�antly redued. Table 7 demonstratesperformane �gures of our format onversion ode. It is seen that the onversionworks very fast, in less than one byte per yle, whih shows that bitsliedAES/Camellia runs still faster than non-bitslied AES/Camellia on Core2 evenif an overhead of data format onversion is inluded in the bitslied ode.Proessor Pentium 4 Athlon 64 Core2Cyles/blok 41.5 28.1 15.4Cyles/byte 2.59 1.76 0.96Instrs/yle 0.72 1.06 1.96Table 7. Measured performane of our format onversion ode.

135 ConlusionsThis paper explored the state-of-the-art implementation tehniques for speedingup blok iphers on Intel's new Core2 miroproessor. We have shown that thebitsliing tehnique is atually promising on a PC platform from pratial pointsof view. A bitslied AES ode that is fully ompatible with the CTR mode anbe now faster than a non-bitslied AES ode on Core2. Another importane ofthe bitslie mode is that a bitslied ode is seure against ahe timing attakssine it does not use any lookup tables whose address is dependent on seretinformation. We believe that bitslied iphers will be muh more widely used inreal appliations in very near future.Referenes[1℄ 3GPP TS 35.202 v6.1.0, \3G Seurity; Spei�ation of the 3GPP Con�dentialityand Integrity Algorithms; Doument 2:KASUMI Spei�ation (Release 6)", 3rdGeneration Partnership Projet, 2005.[2℄ R. Anderson, E. Biham, L. Knudsen: \Serpent: A proposal for the Advaned En-ryption Standard", Available athttp://www.ftp.l.am.a.uk/ftp/users/rja14/serpent.pdf[3℄ K. Aoki, T. Ihikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, T. Tokita:\The 128-Bit Blok Cipher Camellia", IEICE Trans. Fundamentals, Vol.E85-A,No.1, pp.11-24, 2002.[4℄ R. Bhaskar, P. Dubey, V. Kumar, A. Rudra: \EÆient galois �eld arithmeti onSIMD arhitetures", Proeedings of the �fteenth annual ACM symposium onParallel algorithms and arhitetures, pp.256-257, ACM Press, 2003.[5℄ E. Biham: \A Fast New DES Implementation in Software", Proeedings of FastSoftware Workshop FSE'97, Leture Notes in Computer Siene, Vol.1267, pp.260-272, Springer-Verlag, 1997.[6℄ D. Canright: \A Very Compat S-Box for AES", Proeedings of CHES 2005, Le-ture Notes in Computer Siene, Vol.3659, pp.441-455, Springer-Verlag, 2005.[7℄ The distributed.net projet: Available athttp://www.distributed.net/index.php.en[8℄ Federal Information Proessing Standards Publiation 197, \Advaned EnryptionStandard (AES)", NIST, 2001.[9℄ A. Fog: \Software optimization resoures", Available athttp://www.agner.org/optimize/[10℄ B. Gladman: \Serpent Performane", Available athttp://fp.gladman.plus.om/ryptography_tehnology/serpent/[11℄ T. Granlund: \Instrution latenies and throughput for AMD and Intel x86 Pro-essors", Available at http://swox.om/do/x86-timing.pdf[12℄ ISO/IEC 18033-3, \Information tehnology - Seurity tehniques - Enryptionalgorithms - Part3: Blok iphers", 2005.[13℄ M.Matsui, \New enryption algorithm MISTY," Proeedings of Fast SoftwareWorkshop FSE'97!$Leture Notes in Computer Siene, Vol.1267, pp.54-68,Springer-Verlag, 1997.[14℄ M. Matsui: \How Far Can We Go on the x64 Proessors?", Proeedings ofFast Software Workshop FSE2006, Leture Notes in Computer Siene, Vol.4047,pp.341-358, Springer-Verlag, 2006.

14[15℄ J. Nakajima, M. Matsui: \Fast Software Implementations of MISTY1 on AlphaProessors", IEICE Trans. Fundamentals, Vol.E82-A, No.1, pp.107-116, 1999.[16℄ N. Mentens, L. Batina, B. Preneel, I. Verbauwhede: \A Systemati Evaluation ofCompat Hardware Implementations for the Rijndael S-Box", Proeedings of CT-RSA 2005, Leture Notes in Computer Siene, Vol.3376, pp.323-333, Springer-Verlag, 2005.[17℄ D. A. Osvik, A. Shamir, E. Tromer: \Full AES key extration in 65 milliseondsusing ahe attaks" Crypto 2005 rump session.[18℄ A. Rudra, P. Dubey, C. Jutla, V. Kummar, J. Rao, P. Rohatgi: \EÆient Rijn-dael Enryption Implementation with Composite Field Arithmeti", Proeedingsof CHES 2001, Leture Notes in Computer Siene, Vol.2162, pp.171-184, Springer-Verlag, 2001.[19℄ A. Satoh, S. Morioka, K. Takano, S. Munetoh: \A Compat Rijndael HardwareArhiteture with S-Box Optimization", Proeedings of Asiarypt 2001, LetureNotes in Computer Siene, Vol.2248, pp.239-254, Springer-Verlag, 2001.[20℄ T. Shimoyama, S. Amada, S. Moriai: \Improved fast software implementation ofblok iphers," Proeedings of the First International Conferene on Informationand Communiation Seurity, pp.269-273, Springer-Verlag, 1997.

