
Lightweight and Secure PUF Key Storage Using
Limits of Machine Learning

Meng-Day (Mandel) Yu1, David M’Raihi1, Richard Sowell1, and Srinivas
Devadas2

1 Verayo Inc., San Jose, CA, USA
{myu, david, rsowell}@verayo.com

2 MIT Cambridge, MA, USA
devadas@mit.edu

Abstract. A lightweight and secure key storage scheme using silicon
Physical Unclonable Functions (PUFs) is described. To derive stable
PUF bits from chip manufacturing variations, a lightweight error correc-
tion code (ECC) encoder / decoder is used. With a register count of 69,
this codec core does not use any traditional error correction techniques
and is 75% smaller than a previous provably secure implementation,
and yet achieves robust environmental performance in 65nm FPGA and
0.13µ ASIC implementations. The security of the syndrome bits uses a
new security argument that relies on what cannot be learned from a ma-
chine learning perspective. The number of Leaked Bits is determined for
each Syndrome Word, reducible using Syndrome Distribution Shaping.
The design is secure from a min-entropy standpoint against a machine-
learning-equipped adversary that, given a ceiling of leaked bits, has a
classification error bounded by ϵ. Numerical examples are given using
latest machine learning results.

Keywords: Physical Unclonable Functions, Key Generation, Syndrome
Distribution Shaping, Machine Learning, FPGA, ASIC

1 Introduction

Gassend et al. introduced silicon-based Physical Unclonable Functions (PUFs)
in [5], [6]; PUFs generate responses based on device manufacturing variations.
Given a challenge as input, a PUF produces a response that is based on man-
ufacturing variations on a particular instance of a silicon device. As such, PUF
responses are noisy; although most of the response bits stay the same from run
to run, some of the bits may flip. PUF noise increases with a change in volt-
age, temperature, and age between the provisioning condition, where a reference
snapshot of the response is taken, and the regeneration condition. To derive sta-
ble PUF bits, some form of error correction code (ECC) or equivalent function
is required. A set of syndrome bits is generated during provisioning, to help cor-
rect the regenerated PUF response back to the provisioned snapshot. There have
been relatively few works that explicitly address the issue of information leaked
via syndrome bits in the context of key storage using PUFs.

Security arguments for the syndrome bits have taken several forms. The idea
is to construct an argument that quantifies the amount of secrecy remaining in
the provisioned PUF secret given that the syndrome is known to the adversary.
One frequently cited work is by Dodis et al. [4], which contains an often-used
result that Code-Offset Generic Syndrome with a code word length of n has an
entropy loss of n− logA(n, 2t+ 1), where A(n, 2t+ 1) represents the size of the
largest code for a Hamming space with minimal distance of 2t+1. Assuming an
optimal code, the value n− logA(n, 2t+1) is also the size of the parity encoded
as the syndrome. This result is useful to the extent that the number of parity
bits in the error correction code does not exceed the min-entropy of the PUF
bits that are used to derive the n-bit codeword. To safely account for the case
where a large number of syndrome bits are used (a seemingly necessary tradeoff
to reduce ECC complexity), additional security arguments may be useful. Yu
and Devadas in [21] developed an alternative to Code-Offset Syndrome, using
a technique called Index-Based Syndrome (IBS) coding, which was proven to
be information-theoretically secure under the assumption that the PUF output
bits are independent and identically distributed (i.i.d.); the security arguments
apply even for a heavily biased (and thus min-entropy reduced) PUF.

Although the work of [21] achieved a quadratic reduction in ECC complexity,
the work does not explicitly describe the PUF complexity required for producing
the i.i.d. PUF output bits beyond a brief mention of using disjoint oscillator
pairs. The PUF complexity (number of PUF elements, and in this case disjoint
oscillator pairs per key bit) is 2520/128 = 19.7, taking [21] at face value.3 The
current work, by contrast, describes a lightweight key storage mechanism that is
lightweight both in terms of its ECC complexity and PUF complexity, by using
the indexing scheme in [21] as a starting point and eliminating the BCH coding.
It achieves a 75% reduction in ECC complexity compared to [21] and achieves
a PUF complexity of 5 (using ten 64-sum PUFs, see Figure 1 for a description
of k-sum PUFs) to as little as 1 (using two 64-sum PUFs); this is a 4x to 20x
improvement. The PUF complexity reduction derives from a machine-learning-
based security argument that each additional syndrome bit does not require a
linear increase in the number of PUF elements (e.g., disjoint oscillator pair [18]
[21] or a memory cell [1] [12] [7] [17] [8]) but instead relies on assumptions on
what cannot be learned about a challengeable physical system.

Machine learning theory as pioneered in [20] is interested primarily in what
can be learned. For example, the number of training samples needed to learn
reasonably well a hypothesis class grows linearly with the Vapnik-Chervonenkis
dimension of that class. In the context of learning a k-sum PUF, the theory
suggests that the number of training samples required for learning grows linearly
in the number of parameters in the learning model, which corresponds to the
number of summation stages in the PUF. Empirical results in [13] [14] [15] show

3 Using the example parameters described in [21], a 128-bit key would require 5
BCH(63,30,t=6) blocks, or 315 bits. Since each bit is coded using a 3-bit index,
picking the best value out of 8 PUF output bits, a total of 2520 disjoint oscillator
pairs are needed.

that the required number of training samples does in fact grow linearly with the
number of delay sums. The current work turns this (apparent) weakness of a
PUF into a strength by taking advantage of what cannot be learned; this results
in reduction in the PUF complexity required. PUF complexity is the number
of PUF elements per key bit; for a k-sum PUF (Figure 1), a PUF element is a
pair of ring oscillators whose frequency difference effectively forms a stage in the
PUF.

1.1 Contributions

The main contributions of the current work include the following:

– 75% reduction in ECC complexity because no traditional error correction
codes are used. We note that [21] mentions this possibility; in this paper we
provide extensive supporting experiments;

– 4x to 20x reduction in PUF complexity;
– ASIC implementation results. We believe this paper to be the first to give

results on reliable key generation in an ASIC with integrated ECC;
– Accelerated aging result on stable PUF keys, well beyond published PUF

aging results;
– A new metric, Leaked Bits, which entropically computes leakage per Syn-

drome Word;
– A new technique called Syndrome Distribution Shaping, to minimize Leaked

Bits;
– A new security argument relating machine learning classification error ϵ to

the average min-entropy remaining in the PUF-derived secret.

1.2 Related Works

To the best knowledge of the authors, the current work is the first to marry
results from two fields: machine learning [13] [14] [15] and PUF-based key gen-
eration [1] [5] [11] [12] [18] [21]. [5] pioneered the use of error correction on
PUF outputs using 2D Hamming codes. [4] provides a security framework for
using Code-Offset Syndrome. [18] took a more robust approach to account for
environmental noise using a single stage BCH(255) code. [1] used a two-stage
coding approach, with the use of heavy first-stage repetition coding to reduce
second-stage ECC complexity. [12] introduced the use of soft-decision decod-
ing. The Code-Offset Syndrome in [4], however, yields at best very little (or in
some cases negative) remaining min-entropy for some of the more efficient re-
cent approaches where a large number of syndrome bits are produced (e.g., by
a repetition coding stage) to reduce ECC complexity.4 [21] introduced an alter-
native to Code-Offset Syndrome; under the assumption that PUF output bits

4 Consider a PUF with a min-entropy = 0.8. If a (5,1,5) repetition code is used, 4 bits
are leaked via syndrome (assume code is optimal). This is also the min-entropy of
the 5 PUF output bits (5 × 0.8 = 4) used to form the code word. No secrecy remains
from a min-entropy standpoint.

are i.i.d., Index-Based Syndrome Coding (IBS) results in syndrome bits that are
information-theoretically secure. The current work uses IBS as a starting point
and eliminates the BCH coding of [21], and uses a security framework that elimi-
nates the need for the i.i.d. PUF output assumption in [21] by deriving syndrome
security based on what cannot be learned by a machine-learning-equipped ad-
versary. This new security framework based on limits of machine learning has
the effect of reducing PUF complexity.5 The machine-learning-based syndrome
security framework differs from and complements the syndrome security argu-
ments derived in [4] and [21]; for example, operating in the regime where machine
learning classification error ϵ = 0.5 is essentially equivalent in security to using
an i.i.d. PUF output assumption. The current work is also one of few published
works which contains results of an integrated ASIC PUF + ECC implementation
under environmental stresses, and complements FPGA results obtained in [21].

1.3 Organization

We describe the implementations of k-sum PUFs with associated error correction
in Section 2. Section 3 establishes the empirical viability of the lightweight error
correction scheme with respect to stability results (against voltage, temperature,
and aging) and implementation complexity. Section 4 uses the empirically viable
building blocks, consisting of the lightweight error correction coder plus one or
more 64-sum PUFs, to derive Secure Constructions.

2 PUFs with Lightweight Error Correction

In this section, we describe the FPGA and ASIC implementations of PUFs and
the error correction schemes that we are evaluating in Section 3.

A simplified high-level block diagram is shown in Figure 1. The basic 64-sum
PUF looks at the difference between two delay terms, each produced by the sum
of 64 ring oscillator delay values. The challenge bit Ci for each of the 64 stages
determines which ring oscillator is used to compute the top delay term, and
which is used to compute the bottom delay term. The sign bit of the difference
between the two delay terms determines whether the PUF produces a ′1′ output
bit or a ′0′ output bit for the 64-bit challenge C0 · · ·C63. The remaining bits
of the difference determine the confidence level of the ′1′ or the ′0′ output bit.
The k-sum PUF can be thought of as a k-stage Arbiter PUF [11] with a real-
valued output (as opposed to a single bit output) that contains both the output
bit as well as its confidence level. This information is used by the downstream
lightweight error correction block, using the indexing scheme described in [21],
coupled with a Syndrome Distribution Shaper (to be described in Section 4) to
minimize syndrome leakage. The indexing scheme uses index sizes between 4 bits
(choosing best out of 16 output bits) and 5 bits (best out of 32). If a ′1′ bit is

5 Reducing PUF complexity is more difficult to achieve with an i.i.d. PUF output
assumption, where an increase in syndrome length requires no less than a linear
increase in the number of PUF elements.

to be encoded, the location of the maximum (out of 16 for a 4-bit index, and
out of 32 for a 5-bit index) is chosen and written out as the Syndrome Word;
alternatively, if a ′0′ bit is to be encoded, the location of the minimum is chosen
and written out as the Syndrome Word.

The 0.13µ ASIC implementation contains multiple banks of 64-sum PUFs, a
lightweight error correction engine (including Indexing algorithm and Syndrome
Distribution Shaping algorithm), universal hashing [10], cryptographic functions,
and various other logic. Various Xilinx FPGA versions were created as the design
evolved; the final FPGA version included all the functionality mentioned above
for the ASIC.

Fig. 1. Lightweight PUF Key Storage Block Diagram

3 Empirical Viability of Lightweight Error Correction

This section establishes the empirical viability of the lightweight error correction
scheme, which is derived from the Index-only coding approach in [21], without
the use of traditional ECC. The results in this section show a 75% reduction in
error correction implementation complexity. Yet, when the indexing parameters
are properly selected and applied in the context of the 64-sum PUF shown
in Figure 1, stable PUF bits are derived under very extreme environmental
conditions in FPGAs and ASICs.

3.1 Implementation Complexity

This section compares ECC complexity for three main classes of PUF error
correction schemes using representatives from each:

1. Lightweight (Indexing only)
2. 2-stage ECC (Indexing + BCH63)
3. Large Block ECC (BCH255)

The analysis includes both encoder and decoder complexity and does not in-
clude I/O buffering, host interface logic, and other peripheral logic. Lightweight
ECC has an implementation complexity that is estimated to be 75% smaller
than the two-stage scheme published in [21] (secure based on i.i.d. PUF output
assumption) and an estimated 98% smaller than the single-stage scheme pub-
lished in [18] (secure based on Dodis’ framework). The results are summarized
in Table 1 below. The SLICE utilization is minimal (1.2% of a modestly-sized
Xilinx Virtex-5 LX50 SLICE count), containing only 69 registers.

Table 1. Three Classes of PUF Error Correction and Relative Complexities

Lightweight (This work) 2-stage ECC (From [21]) Large Block (From [18])

69 registers 471 registers 6400 registers (est. 16x)

1.2% SLICE count*(99/7200) 5% SLICE count*(393/7200) 65% SLICE count*

*Utilization of a modestly-sized Xilinx Virtex-5 LX50 device as a benchmark.

3.2 Stability

This section describes the performance of the Lightweight ECC with a 64-sum
PUF. The results show that a 4-bit index is capable of achieving parts-per-
million (ppm) level performance when provisioning is performed under nominal
temperature and voltage (25◦C, Vnom), and regeneration is performed under
a fast-fast temperature-voltage corner (-55◦C, Vnom + 10%) and a slow-slow
temperature-voltage corner (125◦C, Vnom - 10%). Figure 2 shows representative
results for each corner, where a total of 1M+ error correction blocks using 4-bit
indexing ran without errors for each corner using empirical data collected from
Xilinx Virtex-5 FPGAs, with the 4-bit indexing post-processed in software using
empirical PUF data. The data illustrates that ppm level stability is feasible, and
better performance is achievable with either a larger index size (choosing best
out of > 16) or using retry mechanisms if a failure is observed [21]. The average
number of noisy bits is about 6 bits out of 63 in both cases, with the maximum
number of noisy bits (for 1M+ blocks) at 9 out of 63 bits, and every single noisy
bit was error corrected for all the cases that were run.

The empirical results also showed that under higher stress, a larger index size
was required. For example, in the context of accelerated aging (Figure 3) where
provisioning was performed at 25◦C, 1.0V and regeneration at 125◦C, 1.1V, an
increase in index size by 0.25 bit is necessary (choosing best out of 20 instead
of best out of 16) to achieve error-free performance. The analysis was performed
using empirical PUF data from a Xilinx Virtex-5 FPGA device aged under high
temperature and high voltage stress, with empirical PUF data extracted in-situ
and 4.25-bit indexing (best out of 20) emulated as a post-processing step (in
practice, this can be implemented using a 5-bit index, and choosing best out of

Fig. 2. Lightweight ECC performance, WC Temperature / Voltage corners (4-bit
index). The right distribution in each plot is the PUF noise histogram before ECC,
and the left distribution (at 0 errors) is the histogram after lightweight ECC.

20 instead of best out of 32). Test parameters for accelerated aging were derived
from MIL-STD-883G Method 1005.8 Steady State Life as well as accelerated
aging parameters obtained from Xilinx. Specifically, 0.70eV activation energy
was assumed, at a confidence level of 60% (same assumptions as those used
by Xilinx). Over 80M+ blocks of PUF data were corrected, representing an
accelerated life of 260+ years at 25◦C and 20+ years at 55◦C, with every single
block error corrected using a 4.25-bit index for that entire dataset; this has an
implied error rate of less than 12 parts per billion. As shown below, the average
number of bits in error prior to indexing ranges from about 8 bits to 16 bits for
a block size of 63 over 20 years at 55◦C (or equivalently 260+ years at 25◦C).
The least mean square fit shows a slight upward slope of the PUF noise over this
time. Yet with 4.25-bit indexing all the errors were corrected.

Fig. 3. Lightweight ECC performance, Accelerated Aging (4.25 bit index).

The FPGA results are consistent with results from a 0.13µ ASIC implemen-
tation (Figure 4), which has multiple 64-sum PUFs as well as the lightweight
encoding / decoding algorithm integrated into a single device. The results in
Figure 4 show that under extreme voltage conditions, 4-bit indexing (best out
of 16) results in a 2.5ppm block failure rate, whereas 5-bit indexing (best out
of 32) results in error-free performance. The integrated ASIC device (unlike the
FPGA results above which emulated the indexing with empirical PUF data as a
post-processing step to help algorithmic derivation) does not allow for fractional
index sizes.

Fig. 4. 0.13µ ASIC with PUF + Lightweight ECC, Extreme Voltage performance.
The right distribution in each plot is the PUF noise histogram before ECC, and the
left distribution (near 0 errors) is the histogram after lightweight ECC.

4 Secure Constructions

The previous section demonstrated the empirical viability of a PUF + lightweight
ECC combination. This section derives several Secure Constructions consisting
of lightweight ECC and one or more 64-sum PUF blocks in the context of de-
riving a 128-bit key.6 By adopting a machine-learning-based security argument
instead of an i.i.d. PUF output argument, the number of ring oscillator pairs is
reduced from 2520 to 640 (Secure Construction #1) or as little as 128 (Secure
Construction #4). The PUF complexity reduction resulting from the machine-
learning-based security argument is a result of the fact that each additional
syndrome bit does not require a linear increase in the number of ring oscilla-
tors but instead relies on what cannot be learned about a challengeable physical
system.

6 If additional key bits are required, then the entropy has to be increased, e.g., by
doubling the number of 64-sum PUFs used for a 256-bit key.

4.1 Unlearnable Bits

To determine what cannot be learned from a k-sum PUF, consider what is
required to learn the delay differences of each pair of oscillators. A machine-
learning-equipped adversary using a physical model of the PUF for learning
starts with a model consisting of k parameters. The adversary also needs access
to challenge/response pairs, for example, pairs consisting of k-bit challenges and
1-bit responses. Ruhrmair et al. in [14] derived an empirical equation relating
the number of challenge/response (C/R) pairs NCRP , number of parameters k,
and the classification error rate ϵ as follows:

NCRP ≈ 0.5
k + 1

ϵ

The equation was derived using the best of results obtained from using Support
Vector Machine (SVM), Logistical Regression (LR), and Evolution Strategy (ES)
algorithms corresponding to an Arbiter delay PUF [11], including the case where
k = 64. (While our PUF is not an Arbiter PUF per se, it has a very similar
structure.) According to the equation, if k C/R pairs are known to the adversary
for a k-parameter PUF, the adversary cannot do much better than guessing since
the error rate ϵ = 0.5. Intuitively, the results make sense; a k-parameter PUF
would have at least k or more bits worth of parameter information (if each
parameter is 1-bit, there would be k bits of information, and the parameter size
likely needs to be a few bits for the machine learning to converge). As a result,
if no more than k C/R pairs (each response is a single bit) are given out, no
more than k bits of information are derived, and therefore the machine learning
algorithm cannot infer much information.

4.2 Leaked Bits (LB)

We analyze several PUF Syndrome Coding algorithms, and describe their behav-
ior with respect to Leaked Bits, the number of bits leaked per Syndrome Word
for a particular Syndrome Coding algorithm, as defined below.

LB(Salg) ≡ I(Salg;M∞) = H(Salg)−H(Salg|M∞)7

where,

– Salg is a random variable representing the Syndrome Word. Its variability
comes from a particular syndrome coding algorithm used, denoted by the
superscript alg.

– M∞ is a random variable representing a PUF model that is perfect in pre-
dicting the PUF output bits (superscript ∞ denotes its perfect predicting
ability). Its variability comes from PUF manufacturing variations.

– H is the Shannon entropy measure [2]

H(X) = −
∑
x

p(x) log2 p(x)

X is a random variable with a probability mass function p(x), and the sum-
mation is taken over x over its entire alphabet

– I is the mutual information measure [2]

I(Y ;X) = H(Y)−H(Y |X)

where H(Y |X) = −
∑
x
p(x)

∑
y
p(y|x) log2 p(y|x). Note: I(Y ;X) = I(X;Y).

Mutual information I computes the amount of information shared between
two random variables. For example, in a cryptographic encryption system, the
amount of information shared between the Ciphertext (denoted CT) and Key
(i.e., information leaked by the Ciphertext about the Key from an information-
theoretic standpoint) is

I(CT alg;Key) = I(Key;CT alg) = H(Key)−H(Key|CT alg).

To determine the amount of information leaked by a Syndrome Word about
the PUF, we use the same concept, and call the result Leaked Bits, as defined
above.

We now describe several syndrome coding algorithms that have been pub-
lished in open literature, and analyze their information leakage with respect
to Leaked Bits. We also analyze the use of a new technique called Syndrome
Distribution Shaping to reduce Leaked Bits while preserving the average error
correction power.

Code-Offset. In the Code-offset Method [4], the syndrome bits generated cor-
respond to the XOR mask for a sequence of PUF output bits required to form a
valid error correction code codeword. Consider a simple example of a binary 3x
repetition code. Let the random variable B be a bit we want to store in a PUF.8

Let the random variable O represent a sequence of PUF output bits correspond-
ing to the error correction word size (3-bits in the 3x repetition coding example).
Let the random variable S represent the corresponding Syndrome Word (3-bits
in the 3x repetition coding example). The valid code words are (000) and (111).
If we want to store a bit B = 0, the valid code word (000) is used. Alternatively,
if we want to store a bit B = 1, the valid code word (111) is used. To generate
the syndrome, three PUF output bits O = o0o1o2 are required. The syndrome
S using Code-Offset is the XOR mask required to make the PUF output bits
O = o0o1o2 a valid code word, i.e., S = C ∧ O, where ∧ is the bitwise XOR
operator.

Now, let’s compute Leaked Bits using this example. In the 3x repetition ex-
ample above, H(S3x) = log2(#(S3x)) = 3 bits, where # operator is the cardinal-
ity of the random variable, or the number of possibilities that the random variable
can take. This is the amount of uncertainty of the 3-bit syndrome not conditioned

8 Here, we consider the case where the PUF is used as a generalized key-store: the
keying bit B can come from a source external to the PUF chip (e.g., user chosen
key), or it can be derived from a PUF on the same chip.

on any other knowledge. Recall that M∞ represents a perfect PUF model in that
it has perfect knowledge in predicting PUF output bit O. Given a perfect PUF
model, the uncertainty remaining in S reduces to the uncertainty as to whether
the valid code word is (000) or (111). That is, H(S3x|M∞) = log2(#(B)) = 1
bit. Putting it together:

LB(S3x) ≡ I(S3x;M∞) = H(S3x)−H(S3x|M∞)

= log2(#(S3x))− log2(#(B)) = 3− 1 = 2 bits.

Two bits of information are leaked for each Syndrome Word derived from a
3x repetition codeword.

Index-Based Syndrome (IBS) Coding. In Index-Based Syndrome coding
[21], the Syndrome Word is an index lookup into a sequence of PUF output bits.
Consider a simple example of a syndrome index with a width of 3 (i.e., W = 3,
or a 3-bit index). H(S3i) = log2(#(S3i)) = 3 bits. The 3-bit index takes on
the value of the best out of #(S3i) = 8 choices, requiring 8 PUF output bits
O = o0o1o2o3o4o5o6o7. If we want to store B = 0, S3i = arg(minj∈0,1,···,J−1(o

r
j)),

where J = 2W=3. (Superscript r of or denotes the real-valued output of the
PUF, not just the binary ′1′ or ′0′ portion of the PUF output.) If we want
to store B = 1, S3i = arg(maxj∈0,1,···,J−1(o

r
j)). Now consider M∞, which a

perfect PUF model that predicts O = o0o1o2o3o4o5o6o7 with perfect accuracy.
Given a perfect PUF model, the uncertainty remaining in S reduces to the
uncertainty as to whether the maximum or the minimum value is picked. That
is, H(S3i|M∞) = log2(#(B)) = 1 bit. The amount of information leaked by S3i

about M∞ is the Leaked Bits for S3i:

LB(S3i) ≡ I(S3i;M∞) = H(S3i)−H(S3i|M∞)

= log2(#(S3i))− log2(#(B)) = 3− 1 = 2 bits.

Two bits of information are leaked for each 3-bit index.9

Syndrome Distribution Shaping (SDS). Now, we present a new technique
where we shape the syndrome distribution to minimize Leaked Bits while pre-
serving, on average, error correction power. In its simplest form, the main idea
is to enlarge the number of bits generated by O and to randomly select which
of those bits would be used in forming a Syndrome Word and which would not
be. As an example, visualize a case with a 3-bit Index-Based Syndrome. Let
us order or0o

r
1o

r
2o

r
3o

r
4o

r
5o

r
6o

r
7 from minimum to maximum, as tr0t

r
1t

r
2t

r
3t

r
4t

r
5t

r
6t

r
7 =

π(or0o
r
1o

r
2o

r
3o

r
4o

r
5o

r
6o

r
7), where π is a minimum-to-maximum sorting permutation.

Here, tr0 is the smallest orj,jϵ0...J−1 value, tr1 is the next smallest orj,jϵ0...J−1 value,

9 We are not making the assumption that PUF output bits are i.i.d., as in [21], under
which the indices are provably secure.

tr7 is the largest orj,j∈0...J−1 value. If there is equality in any of the comparisons,
a random ordering among those is chosen.

Now, look at the unconditional probability of a particular 3-bit index value
being selected. If we have no knowledge of the model or anything else, the prob-
ability of any index being selected is 1/8, i.e., H(S3i) = 3 bits.

pr(or0 selected) = 1/#(S3i) = 1/8

· · ·
pr(or7 selected) = 1/#(S3i) = 1/8

Now, look at the probabilities conditioned upon M∞, a perfect model, which
allows us to sort the PUF output bits tr0t

r
1t

r
2t

r
3t

r
4t

r
5t

r
6t

r
7 = π(or0o

r
1o

r
2o

r
3o

r
4o

r
5o

r
6o

r
7)

and obtain:

pr(tr0 selected) = 1/#(B) = 1/2

pr(tr1 selected) = 0

· · ·
pr(tr6 selected) = 0

pr(tr7 selected) = 1/#(B) = 1/2

Here, H(S3i|M∞) = 1 bit; either orj,jϵ0...J−1 = tr0 or orj,j∈0...J−1 = tr7 will be
selected, depending on whether B = 0 or B = 1. Now, we want a randomization
mapping that flattens the probability distribution while on the average preserv-
ing the error correction power. In the example above, a 3-bit index is used to
choose the best PUF output value out of 8 choices. The distribution peaks on
the ends: either the maximum or the minimum value will be selected. To flatten
the distribution, one possibility is to use a 4-bit index, and randomly clobber or
skip over half of the 16 choices such that the 4-bit index still chooses the best
out of 8 values (same as the 3-bit index case).

This distribution will not peak at the ends (and be zero elsewhere), as is
the case for a 3-bit index, but will be flatter (i.e., more uniformly distributed).
More generally, consider an independent bit generator with output R where
pr(R = 1) = p and pr(R = 0) = 1−p = q. Now, consider a 4-bit index (W = 4),
where each of the 16 values (J = 2W = 16) have a probability of p of being
clobbered (i.e., skipped or not used). On the average, if p = 0.5, 8 values out of
16 will not be clobbered, and the maximum or the minimum out of 8 will still
be selected, thus giving on the average a similar error correction power as the
3-bit index case (which also selects the maximum or minimum out of 8). More
generally,

pr(tjϵ0...J−1 selected) = 1/2(pjq + pJ−1−jq)

pr(none selected) = pJ

Assume in this example that if all values are clobbered we randomly choose
a value. Practically, this distinction does not make a difference in this example,
since the probability is very small:

pr(tjϵ0...J−1 selected) = 1/2(pjq + pJ−1−jq) + pJ/J

Here, the amount of uncertainty remaining when applying Syndrome Distribu-
tion Shaping (SDS) given a perfect PUF model is:

H(S|M∞) = H(pr(tj∈0...J−1 selected))

Now, compute the Leaked Bits of 4-bit SDS index:

LB(SW=4,p=.5) = I(SW=4,p=.5;M∞)

= H(SW=4,p=.5)−H(SW=4,p=.5|M∞)

= log2(#(SW=4,p=.5))−H(pr(tj∈0..J−1 selected))

= 4− 2.98 = 1.02 bits

Note that a W = 4-bit SDS index with a clobbering rate of 0.5 has a similar
average error correction capability as a W = 3-bit index-based syndrome (i.e.,
both, on the average, select the strongest out of 8), and yet the Leaked Bits
has been reduced by 50%, from 2 bits to 1.02 bits. By expanding the number
of PUF output bits O and randomly eliminating them so that on the average
we select the index from the same number of choices (i.e., preserving on average
the same error correction power), we have lowered the number of bits leaked
via each Syndrome Word from 2 bits to about 1 bit. Moving on to W = 5-bit
syndrome, and p = 0.75, to preserve on the average the same error correction
power, and beyond we have the following results:

I(S3i,M∞) = 2 bits

I(SW=4,p=1/2,M∞) = 1.02 bits

I(SW=5,p=3/4,M∞) = 0.80 bits

I(SW=6,p=7/8,M∞) = 0.71 bits

I(SW=7,p=15/16,M∞) = 0.67 bits

Note that between W = 3 and W = 6 there is almost a 3x improvement.
Beyond W = 6 there are diminishing returns. Alternative SDS algorithms in-
clude ones that yield an even lower Leaked Bits, while others guarantee a certain
minimum number of un-clobbered choices available by using only one side of the
un-clobbered binomial distribution.

4.3 Secure Construction Examples

Now, armed with a metric (LB) to determine the number of bits leaked from
each Syndrome Word, we describe different methodologies to derive secure con-
structions using the 64-sum PUF as a building block. The methodology requires

an assumption describing the relationship between the classification error ϵ and
Leaked Bits (and more precisely, a Leaked Bits sum ΣLB). In other words, we
are establishing secure constructions assuming an (ϵ,ΣLB) machine-learning-
equipped adversary. This adversary cannot produce a classification error better
than ϵ given that a total leaked bits of ΣLB. For the numerical examples be-
low, we use the machine learning results in [14] as a proxy for the relationship
between classification error and a sum of Leaked Bits;10 this use has been prelim-
inarily affirmed by the authors of this work using SVM and Simulated Annealing
methods, and shall be further developed as future work.

Secure Construction #1: ΣLB well within ϵ = 0.5. In this construction, we
conservatively operate well within the regime of ϵ = 0.5. Using the machine
learning results in [14], we can choose to operate at a point where the Leaked
Bits sum is no more than half the number of parameters in the PUF.

ΣLB ≈ 1

2
0.5

k + 1

ϵ

∣∣∣∣
ϵ=0.5,k=64

= 32.5 bits per 64-sum PUF

As an example, using a 6-bit index with a clobber rate of 5/8, the average error
correction power is between 4 and 5-bit index (best out of 64 x 3/8 = 24 bits on
the average). The LB is:

LB = I(SW=6,p=5/8,M∞) = 2.45 bits per Syndrome Word

With k = 64 sum stages, we allow ΣLB = k/2 = 32 bits to be leaked per PUF;
this translates to the use of 32 / 2.45 = 13 SDS indices. To generate a 128-bit key,
we need ten (128/13) 64-sum PUFs, using 640 delay parameters to keep secret
128-bits worth of information (PUF complexity = 640/128 = 5). It is likely a safe
assumption that if less than k/2 equations are leaked from a k parameter PUF,
a machine-learning-equipped adversary cannot learn much about the PUF since
there remain k/2 degrees of freedom. This construction is formally equivalent to
security obtained using an i.i.d. PUF output assumption, with a 2x margin on
the certainty of ϵ = 0.5.

Secure Construction #2: ΣLB at ϵ = 0.5 boundary. We remove the 2x margin
on the certainty of ϵ = 0.5, thus requiring half the number of PUFs. This con-
struction is formally equivalent to security obtained using an i.i.d. PUF output
assumption.

Secure Construction #3: Challenge Modification on Block Boundary. Here,
we operate across multiple blocks in the range where ϵ ≤ 0.5, and compute the

10 Formally, Leaked Bits for raw PUF responses can be computed using a null Syndrome

notation: LB(Snull) ≡ I(Snull;M∞) = H(Snull)−H(Snull|M∞) = 1− 0 = 1 bit,

since the unconditional entropy of Snull (raw PUF response bit) is H(Snull) = 1

bit, and when conditioned with a perfect PUF model, Snull is completely known,

i.e., H(Snull|M∞) = 0 bit. As such, each bit leaked in the context of Leaked Bits
(as defined) can also be interpreted as a leak of one equation for the PUF system
with a 1-bit outcome.

average min-entropy to account for cases where ϵ ̸= 0.5. Continuing the example
from above, the first block of 26 SDS indices leaks 64 bits worth of information,
but ϵ = 0.5. Now, let’s assume that the results of the first block (consisting of
26 data bits) are used to modify the challenge bits for the second block; that is,
we use a Challenge Modification Schedule at the block boundary so that the 26
Syndrome indices for the second block cannot be used by the machine learning
algorithm unless the first 26 bits are guessed or estimated correctly. The machine
learning algorithm requires input / output sets, i.e., Challenge/Syndrome sets
in our case, in order to train the delay parameters and the Challenges are known
for the second block 0.526 of the time. Now, let’s compute average min-entropy
of this chained scheme given that after the first block ϵ ̸= 0.5.

First, we recall the definition of min-entropy H∞(.) ≡ − log2(Prmax(.)) and
average min-entropy H̃∞(X|Y) ≡ − log2(Ey←Y [2

−H∞(X|Y=y)]) using the defi-
nitions and notation from [4].

In our context: H̃∞(P |CS) ≡ − log2(Ecs←CS [2
−H∞(P |CS=cs)]) where P is a

random variable predicting all #(P) PUF-derived bits, and CS = cs a subset of
the available Challenge/Syndrome sets used for regenerating P . The subset is
based on the number of Challenge/Syndrome sets that is known to the adversary
at any one time as the result of the Challenge Modification Schedule.

Now let’s consider the case where two blocks are generated using a 64-sum
PUF, with syndrome modification at the block boundary. There is γ = 0.5#(P)/2

probability that the syndrome for the second block is useful; this is for the case
where the 26 bits of the first block are guessed or estimated correctly.

H̃∞(P |CS) ≡ − log2(Ecs←CS [2
−H∞(P |CS=cs)])

= − log2{[(1− γ)max(ϵ, 1− ϵ)#(P)]|ϵ=0.5,#(P)=52,γ=0.526

+ [γmax(ϵ, 1− ϵ)#(P)]|ϵ=0.5,#(P)=52,γ=0.526} = 47.51 bits

The number of PUFs required is reduced to three (128 / 47.51) for 128-bit
secret (PUF complexity = 3 x 64 / 128 = 1.5), if we assume that the machine
learning result in [14] is a good proxy in estimating ϵ.

Secure Construction #4: Challenge Modification on Syndrome Word Bound-
ary. Here, the challenge schedule is deviated once per Syndrome Word (e.g.,
index) vs. once per block. Due to space constraints, the derivation is omitted.
Results for different number of blocks extracted per 64-sum PUF are below:

– 1 Block: H̃∞(P |CS)|#(P)=26 = 26 bits

– 2 Blocks: H̃∞(P |CS)|#(P)=52 = 52 bits

– 3 Blocks: H̃∞(P |CS)|#(P)=78 = 70 bits

Two PUFs (128/70) are required for a 128-bit secret (PUF complexity = 1).

5 Conclusions

A PUF-based key storage is built using a lightweight ECC, without the use of
traditional error correction techniques, and one or more 64-sum PUFs. The ECC

complexity is low, with a register count of 69 for the encoder / decoder core, yet
producing robust environmental stability results on FPGAs and ASICs. To our
knowledge, this is the first time an integrated key generator ASIC implementa-
tion has been evaluated. We presented a new security argument that relies on
what cannot be learned from a machine learning perspective, allowing a large
reduction in PUF complexity. Future work includes further validation and re-
finements of the machine learning results in [14], applying the machine learning
security method to XOR’ed PUFs (that are more difficult to learn), and methods
to de-rate the ϵ vs. leaked bits curve to account for side channel leaks.

References

1. C. Bosch et al., ”Efficient Helper Data Key Extractor on FPGAs,” Proc. CHES
’08, LNCS 5154, Springer, pp. 181-197.

2. T. Cover, J. Thomas, ”Elements of Information Theory,” 2nd, 2006.
3. S. Devadas, E. Suh, S. Paral, R. Sowell, T. Ziola, and V. Khandelwal, ”Design and

Implementation of PUF-Based ’Unclonable’ RFID ICs for Anti-Counterfeiting and
Security Applications,” Proc. RFID 2008, May 2008, pp. 58-64.

4. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, ”Fuzzy Extractors: How to
Generate Strong Keys from Biometrics and Other Noisy Data,” 2008 ed.

5. B. Gassend, ”Physical Random Functions,” Master’s Thesis, EECS, MIT, 2003.
6. B. Gassend, D. Clarke, M. van Dijk and S. Devadas, ”Silicon Physical Random

Functions,” Proc. ACM CCS, ACM Press, 2002, pp. 148-160.
7. J. Guajardo, S. Kumar, G. Schrijen, and P. Tuyls, ”FPGA Intrinsic PUFs and

Their Use for IP Protection,” Proc. CHES ’07, pp. 63-80.
8. D. Holcomb, W. Burleson, and K. Fu, ”Initial SRAM State as a Fingerprint and

Source of True Random Numbers for RFID Tags,” Conf. RFID Security, 2007.
9. P. Kocher, J. Jaffe, and B. Jun, ”Differential Power Analysis,” Lecture Notes in

Computer Science, vol. 1666, pp. 388-397, 1999.
10. Krawczyk, H.: ”LFSR-based Hasing and Authentication,” Proc. CRYPTO ’94,

London, UK, Springer-Verlag (1994) 129-139.
11. D. Lim, ”Extracting Secret Keys from Integrated Circuits,” MS Thesis, MIT, 2004.
12. R. Maes, P. Tuyls, and I. Verbauwhede, ”A Soft Decision Helper Data Algorithm

for SRAM PUFs,” IEEE ISIT ’09, IEEE Press, 2009.
13. U. Ruhrmair, ”On the Foundations of Physical Unclonable Functions,” 2009.
14. U. Ruhrmair, F. Sehnke, J. Solter, G. Dror, S. Devadas and J. Schmidhuber, ”Mod-

eling Attacks on Physical Unclonable Functions,” Proc. ACM CCS, Oct. 2010.
15. F. Sehnke, C. Osendorfer, J. Solter, J. Schmidhuber and U. Ruhrmair, ”Policy

Gradients for Cryptanalysis,” LNCS, 2010, Volume 6354/2010, pp. 168-177.
16. Skorobogatov, S.P., ”Semi-Invasive Attacks: A New Approach to Hardware Secu-

rity Analysis,” Univ. Cambridge, Computer Lab.: Tech. Report, April, 2005.
17. Y. Su, J. Holleman, and B. Otis, ”A 1.6pJ/bit 96 (percent) Stable Chip ID Gen-

erating Circuit Using Process Variations,” ISSCC, 2007, pp. 200 - 201.
18. G. Suh, ”AEGIS: A Single-Chip Secure Processor”, PhD thesis, EECS, MIT, 2005.
19. G. Suh and S. Devadas, ”Physical Unclonable Functions for Device Authentication

and Secret Key Generation,” DAC, 2007, pp. 9-14.
20. V. Vapnik and A. Chervonenkis. ”On the uniform convergence of relative frequen-

cies of events to their probabilities,” Theory of Prob. and its App., 1971.
21. M. Yu and S. Devadas, ”Secure and Robust Error Correction for Physical Unclon-

able Functions,” IEEE D&T, vol. 27, no. 1, pp.48-65, Jan./Feb. 2010.

