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Abstract. We present a security analysis of the Diffie-Hellman key-
exchange protocol authenticated with digital signatures used by the In-
ternet Key Exchange (IKE) standard. The analysis is based on an adap-
tation of the key-exchange model from [Canetti and Krawczyk, Euro-
crypt’01] to the setting where peers identities are not necessarily known
or disclosed from the start of the protocol. This is a common practi-
cal setting, including the case of IKE and other protocols that provide
confidentiality of identities over the network. The formal study of this
“post-specified peer” model is a further contribution of this paper.

1 Introduction

The Internet Key-Exchange (IKE) protocol [11] specifies the key exchange mech-
anisms used to establish secret shared keys for use in the Internet Protocol Se-
curity (IPsec) standards [14]. IKE provides several key-exchange mechanisms,
some based on public keys and others based on long-term shared keys. Its de-
sign emerged from the Photuris [13], SKEME [15] and Oakley [21] protocols.
All the IKE key-exchange options support Diffie-Hellman exchanges but differ
in the way authentication is provided. For authentication based on public-key
techniques two modes are supported: one based on public-key encryption and
the other based on digital signatures.
While the encryption-based modes of IKE are studied in [5], the security

of IKE’s signature-based mode has not been cryptographically analyzed so far.
(But see [19] where the IKE protocol is scrutinized under an automated protocol
analyzer.) This later mode originates with a variant of the STS protocol [8]
adopted into Photuris. However, this STS variant, in which the DH key is signed,
is actually insecure and was eventually replaced in IKE with the “sign-and-mac”
mechanism proposed in [16, 18]. This mechanism forms the basis for a larger
family of protocols referred to as SIGMA (“SIGn-and-MAc”) [18] from which
the IKE signature modes are particular cases.
The main goal of the current paper is to provide cryptographic analysis of

IKE, and the underlying SIGMA protocols. The practical interest in this anal-
ysis work is natural given the wide deployment and use of IKE and the fact
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that authentication via signatures is the most common mode of public-key au-
thentication used in the context of IKE.1 Yet, the more basic importance of
this analytical work is in contributing to a further development of a theory that
supports the analysis of complex and more functional protocols as required in
real-world applications. Let us discuss two such issues, that are directly relevant
to the design of IKE. One such issue (not dealt with in previous formal analy-
sis work of key-exchange protocols) is the requirement for identity concealment.
That is, the ability to protect the identities of the peers to a key-exchange ses-
sion from eavesdroppers in the network (and, in some case, from active attackers
as well). While this requirement may be perceived at first glance as having mi-
nor effects on the protocols, it actually poses significant challenges in terms of
design and analysis. One piece of evidence pointing out to this difficulty is the
fact that the STS protocol and its variants (see [8, 20]) that are considered as
prime examples of key-exchange protocols offering identity protection, turned
out to be insecure (they fail to ensure an authenticated binding between peers
to the session and the exchanged secret key). The general reason behind this dif-
ficulty is the conflicting character of the authentication and identity-concealment
requirements.

Another issue arising in the context of IKE is the possible unavailability
of the peer identity at the onset of the protocol. In previous analytical work
(such as [2, 22, 5]) the peer identities are assumed to be specified and given at
the onset of a session activation, and the task of the protocol is to guarantee
that it is this particular pre-specified peer the one which the key is agreed. In
contrast, in IKE a party may be activated to exchange a key with an “address”
of a peer but without a specified identity for that peer. This is a common case
in practical situations. For example, the key-exchange session may take place
with any one of a set of servers sitting behind a (url/ip) address specified in
the session activation. Or, a party may respond to a request for a key exchange
coming from a peer that is not willing to reveal its identity over the network
and, sometimes, not even to the responder before the latter has authenticated
itself (e.g., a roaming mobile user connecting from a temporary address, or a
smartcard that authenticates the legitimacy of the card-reader before disclosing
its own identity). So, how do the parties know who they are authenticating? The
point is that each party learns the peer’s identity during the protocol. A secure
protocol in this setting will detect impersonation and will ensure that the learned
identity is authentic (informally, if Alice completes a session with the view “I
exchanged the session key k with Bob”, then it is guaranteed that no other party
than Bob learns k, and if Bob completes the session then it associates the key k
with Alice).2 In this paper we refer to this general setting as the “post-specified
peer” model.

1 In particular, recent suggestions in the IPsec working group for variants of the key-
exchange protocols in IKE fall also under the family of protocols analyzed here.

2 The issue of whether a party may agree to establish a session with the particular
peer whose identity is learned during the key-exchange process is an orthogonal issue
taken care by a separate “policy engine” run by the party.
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Remark. Note the crucial difference between this “post-specified peer” model and the

“anonymous” model of protocols such as SSL where the server’s identity is publicly

known from the start of the protocol while the client’s identity remains undisclosed even

when the key exchange finishes. In the anonymous case, the client does not authenticate

at all to the server; authentication happens only in the other direction: the server

authenticates to the client. A formal treatment of this anonymous uni-directional model

of authentication is proposed in [22].

The combination of the requirement for identity protection and the “post-
specified peer” setting puts additional constraints on the design of protocols.
For example, the natural and simple Diffie-Hellman protocol authenticated with
digital signatures defined by ISO [12] and proven in [5], is not suitable for pro-
viding identity protection in the post-specified peer model. This is so since this
protocol instructs each party to sign the peer identity, which in turn implies that
the parties must know the peer identities before a session key is generated. In a
setting where the peer identities are not known in advance, these identities must
be sent over the network, in the clear, thus forfeiting identity concealment. As
we will see in Section 3, the IKE and SIGMA protocols use a significantly dif-
ferent approach to authentication. In particular, parties never sign other parties
identities; instead a MAC-based mechanism is added to “compensate” for the
unsigned peer’s identity. (See [18] for more information on the rationale behind
the design of the SIGMA protocols.)

We present a notion of security for key exchange protocols that is appro-
priate for the post-specified peer setting. This notion is a simple relaxation of
the key-exchange security model of [5] that suitably reflects the needs of the
“post-specified” model as well as allows for a treatment of identity concealment.
After presenting the adaptation of the security definition of [5] to our setting, we
develop a detailed security proof for the basic protocol (denoted Σ0) underlying
the signature-based modes of IKE. This is a somewhat simplified variant that
reflects the core cryptographic logic of the protocol and which already presents
many of the technical issues and subtleties that need to be dealt with in the anal-
ysis. One prime example of such subtleties is the fact that the IKE protocols use
the exchanged Diffie-Hellman key not only to derive a session key at the end of
the session but also to derive keys used inside the key-exchange protocol itself to
provide essential authentication functionality and for identity encryption. After
analyzing and providing a detailed proof of this simplified protocol, we show
how to extend the proof to deal with richer-functionality variants including the
IKE protocols. The resultant analysis approach and techniques are applicable to
other protocols, in particular other identity-concealing protocols and those that
use the DH key during the session establishment protocol.

The security properties guaranteed by our analysis consider a strong realis-
tic adversarial setting where the attacker has full control of the communication
lines, and may corrupt session and parties at will (in an adaptive fashion). In
particular, this security model and definition (even if relaxed with respect to [5])
guarantees that session keys derived in the protocol are secure for use in conjunc-
tion with symmetric encryption and authentication functions for implementing
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“secure channels” (as defined in [5]) that protect communications over realistic
adversarially-controlled networks. Deriving such keys is the quintessential appli-
cation of key-exchange protocols in general, and the fundamental requirement
from the IKE protocols.
In the full version of this paper [4] we show how to embed the post-specified

peer model in the framework of universally composable (UC) security [3]. Specif-
ically, we formulate a UC notion of post-specified secure key exchange and show
that protocol Σ0 presented here satisfies this notion. The UC notion ensures
strong composability guarantees with other protocols. In particular, we show
that it suffices for implementing secure channels, both in the UC formalization
of [6] and in the formalization of [5].

Paper’s organization. In Section 2 we describe the adaptation of the security
model of [5] to the post-specified peer setting, and establish the notion of secu-
rity for key-exchange used throughout this paper. In Section 3 we describe Σ0,
the basic SIGMA protocol underlying all the other variants including the IKE
signature-based protocols. In Section 4 we present the formal proof of the Σ0

protocol in the model from Section 2 (due to space constraints we omit most of
the lengthy technical details of this proof from this proceedings version – see [4]
for a full version). In Section 5 we treat several variants of the basic protocol and
extend the analysis from Section 4 to these cases. In particular, the two signature
authentication variants of IKE are analyzed here (Section 5.2 and 5.4).

2 The security model

Here we present the adaptation of the security model for key-exchange protocols
from [5] to the setting of post-specified peers as described above. We start by
providing an overview of the model in [5] (refer to that paper for the full details).
Then we describe the relaxation of the security definition required to support
the post-specified setting.

2.1 The SK-security definition from [5]

Following the work of [2, 1], Canetti and Krawczyk [5] model key-exchange (KE)
protocols as multi-party protocols where each party runs one or more copies
of the protocol. Each activation of the protocol at a party results in a local
procedure, called a session, that locally instantiates a run of the protocol and
produces outgoing messages and processes incoming messages. In the case of
key-exchange, a session is intended to agree on a “session key” with one other
party (the “peer” to the session) and involves the exchange of messages with that
party. Sessions can run concurrently and incoming messages are directed to its
corresponding session via a session identifier. The activation of a KE session at
a party has three input parameters (P, s,Q): the local party at which the session
is activated, a unique session identifier, and the identity of the intended peer to
the session. (There is also a fourth input field, specifying whether the party is
the initiator or the responder in the exchange; however this field has no bearing
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on the security requirements and is thus ignored in this overview.) A party can
be activated as initiator (e.g., by an application calling the KE procedure) or as
a responder (upon an incoming key-exchange initiation message arriving from
another party). The output of a KE session at a party P consists of a public triple
(P, s,Q) that identifies the session, and of a secret value called the session key.
Sessions can also be “aborted” without producing a session key value, in which
case a special symbol is output instead of the session key. Sessions maintain
a local state that is erased when the session completes (i.e., when the session
produces output). Each party may have additional state, such as a long-term
signature key, which is accessed by different sessions and which is not part of
any particular session state.

The attacker model in [5] follows the unauthenticated-links model (um) of [1]
where the attacker is a (probabilistic) polynomial-time machine with full control
of the communication lines between parties and free to intercept, delay, drop,
inject or change all messages sent over these lines (i.e., a full-fledge “man-in-the-
middle” attacker). The attacker can also schedule session activations at will and
sees the output of sessions except for the values of session keys. In addition, the
attacker can have access to secret information via session exposure attacks of
three types: session-state reveal, session-key queries, and party corruption. The
first type of attack is directed at a single session while still incomplete (i.e., be-
fore producing output) and its result is that the attacker learns the session state
for that particular session (which does not include long-term secret information,
such as private signature keys, shared by all sessions at the party). A session-
key query can be performed against an individual session after completion and
the result is that the attacker learns the corresponding session-key (this models
leakage on the session key either via usage of the key by applications, cryptanal-
ysis, break-ins, known-key attacks, etc.). Finally, party corruption means that
the attacker learns all information in the memory of that party (including ses-
sion states and session-key information and also long-term secrets); in addition,
from the moment a party is corrupted all its actions are totally controlled by the
attacker. (We stress that all attacker’s actions can be decided by the attacker in
a fully adaptive way, i.e., as a function of its current view).

In the model of [5] sessions can be expired. From the time a session is expired
the attacker is not allowed to perform a session-key query or a state-reveal attack
against the session, but is allowed to corrupt the party that holds the session.
Protocols that ensure that expired sessions are protected even in case of party
corruption are said to enjoy “perfect forward secrecy” [20] (this is a central
property of the KE protocols analyzed here).

For defining the security of a KE protocol, [5] follows the indistinguishability
style of definitions as used in [2] where the “success” of an attacker is measured
via its ability to distinguish the real values of session keys from independent
random values. In order to be considered successful the attacker should be able
to distinguish session-key values for sessions that were not exposed by any of
the above three types of attacks. (Indeed, the attacker could always succeed
in its distinguishing task by exposing the corresponding session and learning
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the session key.) Moreover, [5] prohibits attackers from exposing the “matching
session” either, where two sessions (P, s,Q) and (P ′, s′, Q′) are called matching
if s = s′, P = Q′ and Q = P ′ (this restriction of the attacker is needed since the
matching session contains the session key as well).
As is customary, the ability of the attacker to distinguish between real and

random values of the session key is formalized via the notion of a test session that
the attacker is free to choose among all complete sessions in the protocol. When
the attacker chooses the test session it is provided with a value v which is chosen
as follows: a random bit b is tossed, if b = 0 then v is the real value of the output
session key, otherwise v is a random value chosen under the same distribution
of session-keys produced by the protocol but independent of the value of the
real session key. After receiving v the attacker may continue with the regular
actions against the protocol; at the end of its run the attacker outputs a bit b′.
The attacker succeeds in its attack if (1) the test session is not exposed, and (2)
the probability that b = b′ is significantly larger than 1/2. We note that in the
model of [5] the attacker is allowed to corrupt a peer to the test session once
the test session expires at that peer (this captures perfect forward secrecy). The
resultant security notion for KE protocols is called SK-security and is stated as
follows:

Definition 1. (SK-security [5]) An attacker with the above capabilities is called
an SK-attacker. A key-exchange protocol π is called SK-secure if for all SK-
attackers A running against π it holds:

1. If two uncorrupted parties complete matching sessions in a run of protocol
π under attacker A then, except for a negligible probability, the session key
output in these sessions is the same.

2. A succeeds (in its test-session distinguishing attack) with probability not more
that 1/2 plus a negligible fraction.

(The term ‘negligible’ represents any function (in the security parameter) that
diminishes asymptotically faster than any polynomial fraction, or a small specific
quantity in a concrete security treatment).

Remark. In [5] there are two additional notions that play a central role in the
analysis of KE protocols: the “authenticated-links model” (am) and “authenti-
cators” [1]. While these notions could have been used in our analysis too, they
would have required their re-formulation to adapt to the post-specified peer set-
ting treated here. We have chosen to save definitional complexity and develop
our protocol analysis in the current paper directly in the um model.

2.2 Adapting SK-security to the post-specified peer setting

The model of [5] makes a significant assumption: a party that is activated with
a new session knows already at activation the identity of the intended peer to
the session. That is, the authentication process in [5] is directed to verify that
the “intended peer” is the party we are actually talking to. In contrast, in the
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“post-specified setting” analyzed here (in particular in the setting of the IKE
protocol) the information of who the other party is does not necessarily exist
at the session initiation stage. It may be learned by the parties only after the
protocol run evolves.

Adapting the security model from [5] to the post-specified peer setting re-
quires: (A) generalizing the formalism of key-exchange protocols to allow for
unspecified peers at the start of the protocol; and (B) relaxing the security
definition to accept protocols where the peer of a session may be decided (or
learned) only after a session evolves (possibly not earlier than the last protocol
message as is the case of IKE). Fortunately this adaptation requires only small
technical changes which we describe next; all the other definitional elements
remain unchanged from [5]. In particular, we keep the um model and most of
the key-exchange formalism unchanged (including full adversarial control of the
communication lines and the three types of session exposure: session-state reveal,
session-key queries, and party corruption).

(A) Session activation and identification. Instead of activating sessions
with input a triple (P, s,Q) as in [5] (where P is the identity of the local party, s
a session identifier, and Q the identity of the intended peer for the session), in the
post-specified case a session at a party P is activated with a triple (P, s, d) where
d represents a “destination address” that may have no implications regarding
the peer’s identity sitting behind this address, and is used only as information
for delivery of messages related to this session. This may be, for example, a
temporary address used by arbitrary parties, or an address that may identify a
set of parties, etc. Note that the above (P, s, d) formalism represents a gener-
alization of the formalism from [5]; in the latter, d is uniquely associated with
(and identifies) a specific party. We keep the convention from [5] that session
id’s are assumed to be unique among all the session id’s used by party P (this
is a simple abstraction of the practice where parties provide unique session id’s
for their own local sessions; we can see the identifier s as a concatenation of
these local identifiers – see [5] for more discussion on this topic). We use the pair
of entity identity and session-id (P, s) to uniquely name sessions for the pur-
pose of attacker actions (as well as for identification of sessions for the purpose
of protocol analysis). The output of a session (P, s) consists of a public triple
(P, s,Q) where Q is the peer to the session, and the secret value of the session
key. When the session produces such an output it is called completed and its
state is erased (only the session output persists after the session completes and
until the session expires). Sessions can abort without producing a session-key
output in which case the session is referred to as aborted (and not completed).

(B) SK security and matching sessions. The formalism used in [2, 5] to
define the security of key-exchange protocols via a test session is preserved in
our work. The significant (and necessary) change here is in the definition of
“matching sessions” which in turn influences the limitations on the attacker’s
actions against the “test session” and its peers (recall, that the attacker is allowed
to attack any session except for the test-session and its matching session). In [5]
the matching session of a (complete) session (P, s,Q) within party P is defined
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as (Q, s, P ) (running within Q). This is well-defined in the pre-specified setting
where both peer identities are fixed from the start of the session. In our case,
however, the peer of a session may only be decided (or learned) just before the
completion of that session. In particular, a session (P, s) may complete with
peer Q, while the session (Q, s) may not have completed and therefore its peer
is not determined. In this case, corrupting Q or learning the state of (Q, s) could
obviously provide the attacker with information about the session key output
by (P, s,Q). We thus introduce the following modified definition of matching
session.

Definition 2. Let (P, s) be a completed session with public output (P, s,Q).
The session (Q, s) is called the matching session of (P, s) if either

1. (Q, s) is not completed; or
2. (Q, s) is completed and its public output is (Q, s, P ).

Note that by this definition only completed sessions have a matching session;
in particular the “matching” relation defined above is not symmetric (except
if the matching session is completed too — in which case the above definition
of matching session coincides with the definition in [5]). Also, note that if Q is
uncorrupted then the matching session of (P, s) is unique.

Definition 3. (SK-security in the post-specified setting) SK-security in the
post-specified peer setting is defined identically as in Definition 1 but with the
notion of matching sessions re-formulated via Definition 2.

Notes on the definition: 1.We argue that the combination of the two match-
ing conditions in Definition 2 above results in a sound definition of SK-security.
In particular, it is sufficient to preserve the proof from [5] that SK-security guar-
antees secure channels (see below). On the other hand, none of the two matching
conditions in isolation induces a satisfactory definition of security. In particular,
defining the session (Q, s) to always be the matching session of (P, s) without
requiring that the determined peer is correct (in condition (2)) would result
in an over-restriction of the actions of the attacker against the test session to
the point that such a definition would allow weak protocols to be called secure.
An example of such an insecure protocol is obtained by modifying protocol Σ0

from Section 3 by deleting from it the MAC applied to the parties identities.
This modified protocol can be shown to succumb to a key-identity mis-binding
(or “unknown key share”) attack as in [8], yet it would be considered secure
without the conditioning on the output of session (Q, s) as formulated in (2).
On the other hand, condition (2) alone is too permissive for the attacker, thus
resulting in a too strong definition that would exclude many natural protocols.
Specifically, if we eliminate (1) then an attacker could perform a state-reveal
query against (Q, s) and reveal the secret key (e.g., gxy) when this information
is still in the session’s state memory. This would allow the attacker a strategy in
which it chooses (P, s,Q) at the test session and forces (Q, s) to be incomplete,
and then learn the test session key through a state-reveal attack against (Q, s).
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2. The above definition of secure key-exchange in the post-specified peer setting
implies a strict relaxation of the SK-security definition in [5]. On the one hand,
any SK-secure protocol according to [5] is also post-specified secure provided that
we take care of the following formalities. First, we use the “address field” d in the
input to the session to specify the identity of a party. Then, before completing
a session, the protocol checks that the identity to be output is the same as the
identity specified in the “address field” (if not, the session is aborted). On the
other hand, there are protocols that are secure according to Definition 3 in the
post-specified model but are not secure in the pre-specified setting of [5]. The
IKE protocols studied here (in particular, protocols Σ0 and Σ1 presented in
the following sections) constitute such examples (see the remark at the end of
Section 3).
3. A natural question is whether the relaxation of SK-security adopted here is
adequate. One strong evidence supporting the appropriateness of the definition
is the fact that the proof in [5] that SK-security implies secure channels applies
also for SK-security in the post-specified peer setting (Definition 3). One tech-
nical issue that arises when applying the notion of secure channels from [5] in
our context is that this notion is formulated in the “pre-specified peer” model.
Yet, one can use a post-specified SK-secure KE protocol also in this setting. All
is needed is that each peer verifies, before completing a KE session, that the au-
thenticated peer (i.e., the identity to be output as the session’s peer) is the same
as the identity specified in the activation of the secure channels protocol. If this
verification fails, then the party aborts the KE session and the secure-channels
session. Alternatively, one can easily adapt the model of secure channels in [5] to
the post-specified peer setting. Also in this case an SK-secure KE protocol in the
post-specified model suffices for constructing (post-specified) secure channels. In
all we have:

Theorem 1. SK-security in the post-specified peer setting implies secure chan-
nels in the formulation of [5] (either with pre-specified or post-specified secure-
channel peers).

3 The basic SIGMA protocol: Σ0

Here we provide a description of a key-exchange protocol, denoted Σ0, that rep-
resents a simplified version of the signature-mode of IKE. The protocol contains
most of the core cryptographic elements and properties found in the full-fledge
IKE and SIGMA protocols. In the next section we provide a proof of this ba-
sic protocol, and in the subsequent section we will treat some variants and the
changes they require in the security analysis. These variants will include the
actual IKE protocols (see Sections 5.2 and 5.4). The Σ0 protocol is presented in
Figure 1. Further notes and clarifications on the protocol follow.

Notes on the description and actions of the protocol

– For simplicity we describe the protocol under a specific type of Diffie-Hellman
groups, namely, a sub-group of Z∗

p of prime order. However, the protocol and
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Protocol Σ0

Initial information: Primes p, q, q/p−1, and g of order q in Z∗

p . Each
player has a private key for a signature algorithm sig, and all have the
public verification keys of the other players. The protocol also uses a message
authentication family mac, and a pseudorandom function family prf.

The protocol messages

Start message (I→R): s, gx

Response message (R→I): s, gy, IDr, sigr(“1”, s, g
x, gy),mack1

(“1”, s, IDr)
Finish message (I→R): s, IDi, sigi(“0”, s, g

y, gx),mack1
(“0”, s, IDi)

The protocol actions

1. The start message is sent by the initiator IDi upon activation with
session-id s (after checking that no previous session at IDi was initiated

with identifier s); the DH exponent gx is computed with x
R

← Zq and x
is stored in the state of session (IDi, s).

2. When a start message with session-id s is delivered to a party IDr

the (if session-id s did not exist before at IDr) IDr activates a local
session s (as responder). It now generates the response message where

the DH exponent gy is computed with y
R

← Zq, the signature sigr

is computed under the signature key of IDr, and the value g
x placed

under the signature is the DH exponent received by IDr in the incoming
start message. The mack1

value is produced with k1 = prfgxy (1) where
gxy is computed by IDr as (g

x)y. Finally, the value k0 = prfgxy (0) is
computed and kept in memory, and the values y and gxy are erased.

3. Upon receiving a (first) response message with session-id s, IDi retrieves
the public key of the party whose identity IDr appears in this message
and uses this key to verify the signature on the quadruple (“1”, s, gx, gy)
where gx is the value sent by IDr in the start message, and g

y the value
received in this response message. IDi also checks the received mac un-
der key k1 = prfgxy (1) (where gxy is computed as (gy)x) and on the
identity IDr as it appears in the response message. If any of these verifi-
cation steps fails the session is aborted and a session output of “aborted
(IDi, s)” is generated; the session state is erased. If verification succeeds
then IDi completes the session with public output (IDi, s, IDr) and se-
cret session key k0 computed as k0 = prfgxy (0). The finish message is
sent and the session state erased.

4. Upon receiving the finish message of session s, IDr verifies the signature
(under the public key of party IDi and with g

y being the DH value that
IDr sent in the response message), and verifies the mac under key k1

computed in step 2. If any of the verifications steps fails the session is
aborted (with the “aborted (IDr, s)” output), otherwise IDr completes
the session with public output (IDr, s, IDi) and secret session key k0.
The session state is erased.

Fig. 1. The basic SIGMA protocol

subsequent analysis apply to any Diffie-Hellman group for which the DDH
assumption holds (see Section 4).



Security Analysis of IKE’s Signature-based Key-Exchange Protocol 153

– The notation I → R and R→ I is intended just to indicate the direction
between initiator and responser of the messages. The protocol as described
here does not specify where the messages are sent to. They can be sent to
a pool of messages, to a local broadcast network, to a physical or logical
address, etc. The protocol and its analysis accommodate any of these (or
other) possibilities. What is important is that the protocol does not make
any assumption on who will eventually get a message, how many times,
and when (these are all actions decided by the attacker). Also, there is no
assumption on the logical connection between the address where a message
is delivered and the identity (either IDi or IDr) behind that address. This
allows us to design the protocol (and prove its security) in the “post-specified
peer” model introduced in Section 2.

– IDi and IDr represent the real identities of the parties to the exchange. In
our model we assume that every party knows the other’s party public key
before hand. However, one can think of the above identities as full certificates
signed by a trusted CA and verified by the recipient. (In this case, the full
certificate may be included as the peer’s identity under the mac or just the
identity in the certificate – e.g. the “distinguished name”). Our proofs work
under this certification-based model as well.

– The strings “0” and “1” are intended to separate between authentication
information created by the initiator and responder in the protocol. They
serve as “symmetry breakers” in the protocol. However, in the case of Σ0

these tags are not strictly needed for security; we will see later (Section 5.1)
that the protocol is secure even without them. Yet, we include them here for
two reasons. First, they simplify analysis; second, they make the protocol’s
security more robust to changes as we will also discuss later (e.g., they defeat
reflection attacks in some of the protocol’s variants).

– Recall the uniqueness of session-id’s assumed by our model. We use this
assumption in order to simplify the model and to accommodate different
implementations of this assumption. A typical way to achieve this is to re-
quire each party in the exchange to choose a random number (say, si and
sr respectively) and then define s to be the concatenation of these values.
In this case the values si and sr can be exchanged before the protocol, or
si can replace s in the start message, and (si, sr) replace s in the response
message.

– Parties use the session id’s to bind incoming messages to existing (incom-
plete) sessions. However, only the first message of each type is processed.
For example if a response message arrives with session id s at the initiator
of session s, then the message is processed only if no previous response mes-
sage under this session was received. Otherwise the message is discarded.
Same for the other message types, or if a message arrives after the session is
completed or aborted.

– We note that in this description of Σ0 session identifiers serve a dual func-
tionality: they serve to identify sessions and bind incoming messages to these
sessions, but they also serve as “freshness guarantees” against replay attacks.
We choose to “overload” session id’s with the two functionalities in order to
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simplify presentation. However, actual protocol implementations may use
two different elements for these functions: a session identifier for the first
functionality above, and random (or non-repeating) nonces for replay pro-
tection.

– In practice, it is recommended not to use the plain value gxy of the DH key
but a hashed value H(gxy) where H is a hash function (e.g. a cryptographic
hash function such as SHA or a universal hash function, etc.). This has the
effect of producing a number of bits as required to key the prf, and (de-
pending on the properties of the hash function) may also help to “extracting
the security entropy” from the gxy output. If the plain gxy is used, our se-
curity results hold under the DDH assumption. Using a hashed value of gxy

is secure under the (possibly weaker) HDH assumption [9].

Remark. As mentioned in Section 2 it is illustrative to note that protocol
Σ0 is not secure in the original (pre-specified) model of [5]. In that model an
attacker could apply the following strategy: (1) initiate a session (P, s,Q) at
P ; (2) activate a session (Q, s,Eve) at Q as responder with the start message
from (P, s,Q) where Eve is a corrupted party (let gx be the DH exponent in
this message); (3) deliver the response message produced by Q to P (let gy be
the DH exponent in this message). The result is that P completes (P, s,Q) with
a session key derived from gxy, while the session (Q, s,Eve) is still incomplete
and its state contains the value gxy. Therefore, in the [5] model, the attacker
can choose (P, s,Q) as the test session and expose (Q, s,Eve) via a state-reveal
attack to learn gxy. This is allowed in [5] since (Q, s,Eve) is not a matching
session to the test session (only (Q, s, P ) is matching to the test session). In
our post-specified model, however, the attacker is not allowed to expose (Q, s)
which is incomplete and then by Definition 2 it is matching to the test session
(P, s). This restriction of the adversary is needed in the post-specified setting
since from the point of view of Q there is no information about who the peer is
until the very end of the protocol and then its temporary internal state (before
receiving the finish message) is identical whether its session is controlled by the
adversary (via Eve as in the above example) or it is a regular run with a honest
peer P . What is crucial to note is that protocol Σ0 (and any SK-secure protocol
in the post-specified model) guarantees that if Q completes the session (Q, s)
then its view of the peer’s identity is correct and consistent with the view in the
matching session (e.g., in the above example it is guaranteed that if Q completes
the session, it outputs P as the peer, and only P can compute the key gxy).

4 Proof of Protocol Σ0

4.1 The Statements

We start by formulating the Decisional Diffie-Hellman (DDH) assumption which
is the standard assumption underlying the security of the DH key exchange
against passive attackers. For simplicity, we formulate this assumption for a
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specific family of DH groups, but analogous assumptions can be formulated for
other groups (e.g., based on elliptic curves).

Assumption 2 Let κ be a security parameter. Let p, q be primes, where q is
of length κ bits and q/p−1, and g be of order q in Z∗

p . Then the probability
distributions of quintuples

Q0 = {〈p, g, g
x, gy, gxy〉 : x, y

R

← Zq} and Q1 = {〈p, g, g
x, gy, gr〉 : x, y, r

R

← Zq}
are computationally indistinguishable.

In addition to the DDH assumption we will assume the security of the other
underlying cryptographic primitives in the protocol (digital signatures, message
authentication codes, and pseudorandom functions) under the standard security
notions in the cryptographic literature.

Theorem 3. (Main Theorem) Assuming DDH and the security of the under-
lying cryptographic functions sig, mac, prf, the Σ0 protocol is SK-secure in the
post-specified model, as defined in Section 2.

Proving the theorem requires proving the two defining properties of SK-secure
protocols (we use the term Σ0-attacker to denote an SK-attacker working against
the Σ0 protocol):

P1. If two uncorrupted parties IDi and IDr complete matching sessions ((IDi, s,
IDr) and (IDr, s, IDi), respectively) under protocol Σ0 then, except for a negligi-
ble probability, the session key output in these sessions is the same. The proof
of this property can be found in [4].

P2. No efficient Σ0-attacker can distinguish a real response to the test-session
query from a random response with non-negligible advantage. More precisely, if
for a given Σ0-attacker we define:

– Preal(A) = Prob(A outputs 1 when given the real test session key)
– Prand(A) = Prob(A outputs 1 when given a random test session key)

then we need to prove that for any Σ0-attacker A: |Preal(A) − Prand(A)| is
negligible.

4.2 Proof Plan of Property P2.

We prove property P2 by showing that if a Σ0-attacker A can win the “real
vs. random” game with significant advantage then we can build an attacker
against one of the underlying cryptographic primitives used in the protocol: the
Diffie-Hellman exchange (DDH assumption), the signature scheme sig, the MAC
scheme mac, or the pseudorandom family prf.
More specifically we will show that from any Σ0-attacker A that succeeds in

distinguishing between a real and a random response to the test-session query
we can build a DDH distinguisher D that distinguishes triples gx, gy, gxy from
random triples gx, gy, gr with the same success advantage as A, or there is an
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algorithm (that we can construct explicitly) that breaks one of the other un-
derlying cryptographic primitives. This distinguisher D gets as input a triple

(gx, gy, z) where z is either gxy or gr for r
R

← Zq. D starts by simulating a run
of A on a virtual instantiation of protocol Σ0 and uses the values g

x and gy

from the input triple as the DH exponents in the start and response message of
one randomly chosen session, say s0, initiated by A in this run of protocol Σ0.
The idea is that if A happens to choose this session s0 (or the corresponding
responder’s session) as its test session then D can provide A with z as the re-
sponse to the test-session query. In this case, if A outputs that the response was
real then D will decide that z = gxy, otherwise D will decide that z is random.
One difficulty here is that since D actually changes the regular behavior of the
parties in session s0 (e.g. it uses the value z to derive the key k1 used in the
mac function) then we still have to show that D has a good probability to guess
the right test session, and that the original ability of A to distinguish between
“real” and “random” is not significantly reduced by the simulation changes.
Proving this involves showing several properties of the protocol that relate to
the authentication elements such as signatures and MAC.

In order to specify the distinguisher D we need to define the above simula-
tion process and the exact rules on how to choose session s0 and how to change
the behavior of the parties to that session. In order to facilitate our analysis
we will actually define a sequence of several simulators which differ from each
other by the way they choose the keys (k0 and k1) used in the processing of the
s0 session. Each of these simulators will define a probability distribution on the
runs of attacker A. At one end of the sequence of simulators will be one that cor-
responds to a “real” run of A while at the other end the simulation corresponds
to a “random” experiment where the session key in session s0 provided to A is
chosen as a random and independent value k0. In between, there will be several
“hybrid” simulators. We will show that either all the distributions generated
by these simulators are computationally indistinguishable, or that a successful
distinguisher against DDH or against the prf family exists. From this we get
a proof that the “real” and “random” simulators at the ends of the sequence
are actually indistinguishable, and from this that the values Prand and Preal

differ by at most a negligible quantity (this negligible difference will depend on
the quantified security of DDH and of the cryptographic functions).
For a full proof of property P2 see [4].

Detailed proof. The detailed proof of properties P1 and P2 (and thus of the
Main Theorem 3) is lengthy and therefore omitted from these proceedings. See
[4] for a complete proof.

5 Variants and Discussions

We consider the security of several variants of the protocol and extensions to its
functionality. In particular, we extend the analysis to the elements found in the
IKE protocols and not included in the basic protocol Σ0.
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5.1 Eliminating the initiator and responder tags in Σ0

In protocol Σ0 the initiator and responder include under their signatures and
mac a special tag “0” and “1”, respectively. Here we show that protocol Σ0

′

defined identically to Σ0 except for the lack of these tags is still secure. (We
stress that the signature modes of IKE do not use these tags; this is one main
reason to provide the analysis here without tags.)
For lack of space the rest of this subsection is omitted from these proceedings
(see [4]).

5.2 Putting the MAC under the signature

One seemingly significant difference between protocol Σ0 and IKE signature-
mode is that in the latter the mac tag is not sent separately but rather it is
computed under the signature operation. That is, in the response message of
IKE the responder does not send sigr(“1”, s, g

x, gy),mack1
(“1”, s, IDr), as in

Σ0, but rather sends the value sigr(mack1
(s, gx, gy, IDr)). Similarly, the pair of

signature-mac is replaced in the finish message by the value sigi(mack1
(s, gy, gx,

IDi)). The reason for this inclusion of the mac under the signature in IKE is
twofold: to save the extra space taken by the mac tag and to provide a message
format consistent with other authentication modes of IKE.3

Fortunately, the analysis of the protocol when the mac goes under the sig-
nature is essentially the same as the simplified Σ0 version analyzed before. The
analysis adaptation is straightforward and is based in the following simple fact.

Lemma 1. If sig is a secure signature scheme and mac a secure message au-
thentication function then it is infeasible for an attacker to find different mes-
sages M and M ′ such that for a randomly chosen secret mac-key k1 the attacker
can compute sig(mack1

(M ′)) even after seeing sig(mack1
(M)).

Indeed, if the attacker can do that then either mack1
(M ′) 6= mack1

(M) with sig-
nificant probability and this results in a signature forgery strategy, or mack1

(M ′)
= mack1

(M) with significant probability in which case the attacker has a strat-
egy to break the mac. (Note that the attacker cannot choose k1; if it could, the
lemma would not hold.)
This lemma implies that all the arguments in our proofs of Section 4 that use

the unforgeability of signatures remain valid in this case. More precisely, they are
extended through the above lemma to claim that if an attack is successful then
either the signature scheme or the mac are broken (the cases where the weakness
comes from the insecurity of either the prf family or the DDH assumption are
treated identically as in the proof of Σ0).

IKE’s aggressive mode. With the above changes, in which the mac is in-
cluded under the signature and the “0”/“1” tags are not included, Σ0 becomes

3 For example, the IKE mode where authentication is provided by a pre-shared key
is obtained from the signature mode by using the same mac expression but without
applying the signature on it (in this case the mac key is derived from the pre-shared
key).
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basically the so called “aggressive mode of signature authentication” which is
one of the two IKE’s protocols based on authentication via digital signatures.
One additional difference is that the IKE protocol uses the function prf itself
to implement the mac function. Since a pseudorandom family is always a secure
MAC then this implementation preserves security (in this case the key to the
prf is gxy itself as in the other uses of this function in the protocol; the protocol
also makes sure that the input to prf when used as MAC is different that the
inputs used for key derivation).

5.3 Encrypting the identities

Here we consider the augmentation of Σ0 for providing identity concealment
over the network. We present the main ideas behind our treatment, and omit
much of the formal and technical issues.

We start by considering the following variant of protocol Σ0. Before trans-
mitting the response message, the responder computes a key k2 = prfgxy (2) and
encrypts under key k2 the response message excluding s and g

y. That is, the re-
sponse message is changed to s, gy,enck2

(IDr, sigr(“1”, s, g
x, gy),mack1

(“1”, s,
IDr)) where enc is a symmetric-key encryption algorithm. Upon receiving the
response message the initiator computes the key k2 as above, decrypts the in-
coming message with this key, and then follows with the regular verification
operations of Σ0. If successful, it prepares the finish message as in Σ0 but sends
it encrypted under enck2

(only s is sent in the clear). Upon reception of this
message the responder decrypts it and follows with the regular operations of Σ0.

The main goal of this use of encryption is to protect the identities of the
peers from disclosure over the network (at least in cases that these identities are
not uniquely derivable from the visible (say, IP) address from which communi-
cation takes place). We first argue that the addition of encryption preserves the
SK-security of the protocol. Then we claim that the encryption provides seman-
tic security of the encrypted information. For the response message semantic
security is provided against passive attackers only (indeed, at the point that this
encryption is applied by IDr, the initiator has not yet authenticated to IDr so
this encryption can be decrypted by whoever chose the DH exponent gx). For
information encrypted in the finish message we can provide a stronger guarantee
of security, namely, semantic security also against active attackers.

We start by claiming that the modified Σ0 protocol with encryption as de-
scribed above satisfies Theorem 3. The basic idea is that if we were encrypting
under a random key independent from the Diffie-Hellman exchange then the se-
curity of the protocol would be preserved (in particular, since the attacker itself
can simulate such an independent encryption on top of Σ0). However, since we
are using an encryption key that is derived from gxy then we need to show that if
the encryption helps the attacker in breaking the SK-security of (the encrypted)
Σ0 then we can use this attacker to distinguish g

xy from a random value. Tech-
nically, this requires an adaptation of the proof of Theorem 3 (see [4] for more
details).



Security Analysis of IKE’s Signature-based Key-Exchange Protocol 159

In order to show secrecy protection against a passive attacker (note that a
passive attacker means an eavesdropper in the network that does not collaborate
with the SK-attacker which is active by definition) we consider a run of the
protocol where k2 is chosen randomly. In this case semantic security against a
passive attacker follows from the assumption that the encryption function (under
a random secret key) is semantically secure against chosen plaintext attacks.
Accounting for the fact that k2 is actually derived from gxy requires an argument
similar to the “hybrid simulators” technique in the proof of Theorem 3 (see [4]).
In the case of the finish message, the security guarantee is stronger and the

secrecy protection can stand active attackers too (assuming a suitable encryption
function secure against active attacks [5, 17]). We can show that for any complete
session (IDi, s, IDr) that is not exposed by the attacker (i.e., neither this session
or its matching session are corrupted), breaking the semantic security of the
information transmitted under enck2

in the finish message of session (IDi, s)
implies a distinguishing test between k2 and a random (encryption) key. This in
turn can be used to build an attack against the SK-security of the protocol or
against one of its underlying cryptographic primitives.

5.4 A four message variant: IKE main mode

Here we study a four-message variant of the Σ0 protocol. The interest in this
protocol is two-fold: on one hand, if encryption is added to it (as discussed be-
low) it allows concealing the responder’s identity from active attackers and the
initiator’s identity from passive attacks. This is in contrast to Σ0 where the
strong active protection is provided to the initiator’s identity (see Section 5.3).
The other source of interest for this protocol is that it actually represents the
core cryptographic skeleton of the so called “main mode with signature authen-
tication” in IKE (which is one of the two signature-based protocols in IKE – see
Section 5.2 for a discussion of the other IKE variant).
The four-message protocol, denoted Σ1, is similar to Σ0 except that the

responder delays its authentication (via sigr) to a fourth message.

I→R: s, gx

R→I: s, gy

I→R: s, IDi, sigi(“0”, s, g
y, gx),mack1

(“0”, s, IDi)
R→I: s, IDr, sigr(“1”, s, g

x, gy),mack1
(“1”, s, IDr)

The security analysis of Σ1 is similar to that of Σ0 as presented in Section 4.
It follows the same basic logic and structure of that proof but it requires some
changes due to the addition of the fourth message and the fact that the responder
authenticates after the initiator. The adaptation, however, of the previous proof
to this new protocol is mostly straightforward. The details are omitted. One
important point to note is that in this case (as opposed to Σ0 – see Section 5.1)
the use of the tags “0” and “1” is essential for security; at least if one regards
reflection attacks (where the attacker impersonates the initiator of the exchange
as responder by just replying to each of the initiator’s messages with exactly the
same message) as a real security threat (see discussion below).
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Providing identity concealment in Σ1 is possible via the encryption of the last
two messages of the protocol (under a key k2 = prfgxy (2) as in Section 5.3). In
this case, the identity IDr is protected against active attacks, while IDi against
passive attackers.

IKE’s main mode. Protocol Σ1 with the mac included under the signature
(as in Section 5.2), with encryption of the last two messages (not including the
session-id s), and without the “0”, “1” tags is essentially the “main mode signa-
ture authentication” in IKE. (There are some other secondary differences such
as: (i) the session id s equals a pair s1, s2, where s1, s2 are “cookies” exchanged
between the parties in two additional messages preceding the above four-message
exchange, and (ii) the MAC function is implemented using prfgxy ). Our analysis
here applies to this IKE protocol except for the fact that IKE does not use the
“0”, “1” tags and thus it is open to reflection attacks. We note that without the
use of these tags the protocol can be proven secure in our model if exchanges
from a party with itself are considered invalid, or if the initiator verifies, for
example, that the incoming DH exponent in the second message differs from the
one sent in the initial message. From a practical point of view, these potential
reflection attacks have been regarded as no real threats in the context of IKE;
in particular based on other details of the IKE specification, such as the way
encryption is specified, that make these attacks unrealistic. Yet, the addition of
tags as in Σ1 would have been advisable to close these “design holes” even if
currently considered as theoretical threats only.
Note: In case that the MAC goes under the signature (as in IKE and in Sec-
tion 5.2) then the “0”, “1” tags can go under the MAC only. Moreover, in this
case one can dispense of these tags and use instead different (and computation-
ally independent) keys k1 and k′1 to key the MAC going from IDi to IDr and
from IDr to IDi, respectively.

5.5 Not signing the peer’s DH exponent

The protocols as presented before take care of signing each party’s own DH ex-
ponent as well as the peer’s DH exponent. While the former is strictly necessary
for security (against “man in the middle” attacks), the later is not essential and
is used mainly for simplifying the proofs. If the peer’s exponent is not included
under the signature then the proofs become more involved since the essential
binding between gx and gy cannot be argued directly but via a binding of these
exponents to the session id.
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