
On 2-Round Secure Multiparty Computation

Rosario Gennaro1, Yuval Ishai2?, Eyal Kushilevitz3??, and Tal Rabin1

1 IBM T.J. Watson Research Center. E-mail: {rosario,talr}@watson.ibm.com.
2 Princeton University. E-mail: yishai@cs.princeton.edu.

3 Technion, Israel. E-mail: eyalk@cs.technion.ac.il.

Abstract. Substantial efforts have been spent on characterizing the
round complexity of various cryptographic tasks. In this work we study
the round complexity of secure multiparty computation in the presence
of an active (Byzantine) adversary, assuming the availability of secure
point-to-point channels and a broadcast primitive. It was recently shown
that in this setting three rounds are sufficient for arbitrary secure com-
putation tasks, with a linear security threshold, and two rounds are suf-
ficient for certain nontrivial tasks. This leaves open the question whether
every function can be securely computed in two rounds.
We show that the answer to this question is “no”: even some very simple
functions do not admit secure 2-round protocols (independently of their
communication and time complexity) and thus 3 is the exact round com-
plexity of general secure multiparty computation. Yet, we also present
some positive results by identifying a useful class of functions which
can be securely computed in two rounds. Our results apply both to the
information-theoretic and to the computational notions of security.

Key Words: Secure multiparty computation, round complexity, lower
bounds.

1 Introduction

The race for improving the round complexity of cryptographic protocols ap-
pears, quite miraculously, to never lose its steam.1 In this work we study the
round complexity of secure multiparty computation. Following the initial plau-
sibility results in this area [32, 21, 5, 10], considerable efforts have been spent
on obtaining round-efficient protocols [1, 4, 3, 13, 22, 31, 2, 8, 23, 17, 26, 11, 24]. In
the multiparty setting, it was recently shown in [17] that every function can
be securely computed in three rounds (tolerating a constant fraction of mali-
cious players)2 and that for certain nontrivial tasks two rounds suffice. This

? Most of this work was done while the author was at AT&T Labs—Research.
?? Most of this work was done while the author was at IBM T.J. Watson Research
Center.

1 It is somewhat reassuring to note in this context that the round complexity is re-
stricted to be a positive integer.

2 This is possible either with unconditional security, efficiently in the branching pro-
gram size of the function being computed, or with computational security, efficiently
in its circuit size.

On 2-Round Secure Multiparty Computation 179

naturally raises the question whether every function can be securely computed
in two rounds. In the current work we focus on this question, examining the
capabilities and limitations of 2-round protocols.

The Model. We consider a system of n players, who interact in synchronous
rounds via authenticated secure point-to-point channels and a broadcast medium3.
Interfering with the interaction is an active (Byzantine) adversary, who may cor-
rupt up to t players (where t is referred to as the security threshold), learn their
internal data, and arbitrarily modify their behavior. By default, we make the
standard assumption that the adversary has a rushing capability, namely in each
round it may learn the messages sent at this round by uncorrupted players to the
corrupted players before sending its own messages. This is the most commonly
used model in the general secure multiparty computation literature (e.g., [21, 5,
10, 30, 28, 12]), and in particular it is the standard model assumed in the context
of constant-round secure multiparty computation (e.g., [1, 4, 3, 2, 23, 17]). We will
also address the situation in the fully synchronous setting, where the messages of
each round are guaranteed to be simultaneous. As for other aspects of the model,
such as perfect vs. computational security, and adaptive vs. non-adaptive adver-
sary, they can be set appropriately so as to achieve the strongest statements
for both our positive and negative results. Section 2 includes a more detailed
description of the model and the standard definition of security in this model.

1.1 Our Results

We obtain both positive and negative results, resolving the main qualitative
questions concerning the possibility of 2-round secure multiparty computation.
Our main results are outlined below.

Positive results. We show that any function whose outputs are determined by
the input of a single player can be securely computed in two rounds with a linear
security threshold, efficiently in its circuit size. In contrast to its appearance, this
function class is neither trivial nor useless. In particular, this result generalizes
the 2-round protocols for verifiable secret-sharing and secure multicast from [17],
implies 2-round distributed zero-knowledge protocols for NP [16], and also has
other applications that we discuss. In addition, we observe that there are also
functions outside this class which admit 2-round protocols.

Negative results. Our main conclusion is that 3 rounds are necessary for
general secure multiparty computation in any “standard” model (i.e., without
public-key infrastructure or preprocessing and with full fairness requirement; see
below). Specifically, if t ≥ 2 (i.e., at least two players may be corrupted), then

3 Broadcast allows each player to send an identical message to all players, without
allowing it to violate the consistency requirement. This primitive can be simulated
using secure point-to-point channels via a Byzantine Agreement protocol [29, 25, 7,
14]; however the cost of such a simulation would exceed the round complexity we
consider here. From a more practical point of view, a broadcast medium may be
implemented either physically or via semi-trusted external parties, such as Internet
bulletin boards.

180 R. Gennaro et al.

even some very simple functions cannot be securely computed in two rounds, re-
gardless of the number of players, n, and the protocol’s communication and time
complexity. We consider the simple special cases of XORn2 and AND

n
2 (exclusive-

or and conjunction of two input bits, where all n players should learn the out-
put) and show that both functions do not admit 2-round protocols. Interestingly,
these two cases turn out to be quite different from each other, and each proof
represents a distinct type of security concern. Indeed, the impossibility result
in the former case is inherently linked to the adversary’s rushing capability, as
XORn2 (and more generally, any linear function) admits 2-round protocols in the
fully synchronous model. In contrast, the second negative result (for the function
ANDn2) applies also to the fully synchronous model. Naturally, the above two
special cases generalize to larger classes of functions with “similar” properties.
Combining the above negative results with the 3-round upper bound of [17], we
have that 3 is the exact round complexity of general secure multiparty compu-
tation with a linear security threshold.

Extension to more liberal models. We note that the above negative results
can be extended to the common random string model or, more generally, to a
setting where a public string from an arbitrary trusted distribution is given to all
players. However, the results do not apply if we allow either a preprocessing stage
or distribution of correlated random resources by a trusted party prior to the
computation. In fact, in these models two rounds are sufficient for securely com-
puting every function with a linear security threshold. For instance, [18] shows
that two rounds are sufficient for achieving independence (i.e., a simultaneous
broadcast among n players) given a public-key infrastructure. It follows from
our results that some underlying infrastructure is indeed necessary, as otherwise
the corresponding functionality is impossible to compute securely in two rounds.
Our negative results also rely on the fairness requirement of secure computation,
and do not apply if the adversary is allowed to “abort” the computation after
learning its output.

1.2 Related Work

Most relevant to the current work are the works on the round complexity of
secure multiparty computation, cited above. Among those, the only work to
prove lower bounds on the round complexity is [17], where it is proved that perfect
VSS and secure multicast with optimal resilience (t < n/3) require 3 rounds.
However, settling for a slightly smaller security threshold (t < n/4), these tasks
require only two rounds. In contrast, our negative results for 2 rounds apply even
when the number of players n is arbitrarily larger than t, and even for the relaxed
notions of statistical and computational security. We stress though that our
negative results do not apply to more liberal settings of secure computation. For
instance, if the adversary is passive, then two rounds are sufficient for computing
any function with t < n/3; this can be achieved either with computational
security, efficiently in the circuit size [4], or with perfect security, efficiently in the
branching program size [24]. In the two-party case, 2-round secure computation
is possible either against a passive adversary in the standard model [32, 31], or

On 2-Round Secure Multiparty Computation 181

against an active adversary in the common reference string model, assuming that
only one player has an output [8].
The round complexity of zero-knowledge protocols has been extensively stud-

ied in various settings (e.g., see [20]). However, this line of work is very different
from ours both in the type of task being considered (zero-knowledge vs. general
secure computation) and, more importantly, in the setting. Indeed, our multi-
party setting is more liberal in the sense that it only requires security against
limited collusions of players, and in particular allows to assume that a strict
majority of the players remain uncorrupted.
Various papers deal with the round complexity of implementing Byzantine

Agreement and broadcast using only point-to-point channels (e.g., see [29, 14,
27]). While these problems can be viewed as secure computation tasks, they are
trivialized in our model since we assume broadcast as a primitive.
Finally, the round complexity of collective coin-flipping (which may also be

viewed as a secure computation task) has been discussed in the full information
model [6]. This model is dual to the Byzantine Agreement one: it allows only
broadcast and no secure point-to-point communication. Similarly to our default
model, the adversary is allowed rushing. We note that the availability of secure
point-to-point channels in our model makes the coin-flipping task more feasible,
and thus negative results from the relevant literature do not apply in our context.

Organization. In Section 2 we present the model and definitions. Section 3
includes our positive results, followed by the lower bounds in Section 4.

2 Model and Definitions

In this section we outline the definition of secure computation, following Canetti’s
definition approach [9], and highlight some details that are important for our
purposes. The following version of the definition is somewhat simplified. In par-
ticular, this simplified version considers a protocol as a stand-alone application
and does not support any kind of composition; however, our positive results (and
obviously the negative results) hold for stronger versions of the definition as well.
We refer the reader to [9, 19] for more complete definitions.

Communication model. We consider a network of n processors, denoted
P1, . . . , Pn and referred to as players. Each pair of players is connected via a
private, authenticated point-to-point channel. In addition, all players share a
common broadcast channel, which allows a player to send an identical message
to all other players. In some sense, the broadcast channel can be viewed as a
medium which “commits” the player to a specific value.

Function. A secure computation task is defined by some n-party function f :
({0, 1}∗)n → ({0, 1}∗)n, specifying the desired mapping from the players’ inputs
to their final outputs. While in certain interesting cases the players will have
to reach an agreement on a joint output, the definition allows for each player
to compute its own output. When referring to a single-output function, it is
assumed by default that all players output its value. One may also consider
randomized functions, which take an additional random input; however, in this
work we focus by default on the deterministic case.

182 R. Gennaro et al.

Protocol. Initially, each player Pi holds an input xi, a random input ri, and
a common security parameter k. The players are restricted to (expected) poly-
nomial time in k. The protocol proceeds in rounds, where in each round each
player Pi may send a “private” message to each player Pj (including itself) and
broadcast a “public” message, to be received by all players. The messages Pi
sends in each round may depend on all its inputs (xi, ri and k) and the messages
it received in previous rounds. From now on, we assume without loss of general-
ity that each Pi sends xi, ri, k to itself in the first round, so that the messages it
sends in each subsequent round may be determined from the messages received
in previous rounds. We assume that the protocol terminates after a fixed num-
ber of rounds, and each player locally outputs some function of the messages it
received.

Adversary. We consider an active t-adversary A, where the parameter t is
referred to as the security threshold. The adversary is an efficient interactive
algorithm,4 which is initially given the security parameter k and a random in-
put r. Based on these, it may choose a set T of at most t players to corrupt.5

The adversary then starts interacting with a protocol (either a “real” protocol
as above, or an ideal-process protocol to be defined below), where it takes con-
trol of all players in T . In particular, it can read their inputs, random inputs,
and received messages, and it can fully control the messages they send. (In the
weaker setting of passive security, the adversary cannot modify the corrupted
players’ behavior, but only read their information.) We assume by default that
the adversary has a rushing capability: at any round it can first wait to hear all
messages sent by uncorrupted players to players in T , and use these to deter-
mine its own messages. However, we also consider the fully synchronous model,
in which the messages sent by the adversary in each round are independent of
the messages sent by uncorrupted players in the same round. Finally, upon the
protocol’s termination, A outputs some function of its entire view.

Security. Informally, a protocol computing f is said to be t-secure if whatever a
t-adversary can “achieve” by attacking the protocol, it could have also achieved
(by corrupting the same set of players) in an ideal process in which f is evalu-
ated using a trusted party. To formalize this definition, we have to define what
“achieve” means and what the ideal process is. The ideal process for evaluating
the function f is a protocol πf involving the n players and an additional, incor-
ruptible, trusted party TP. The protocol proceeds as follows: (1) each Pi sends
its input xi to TP; (2) TP computes f on the inputs (using its own random input
in the randomized case), and sends to each player its corresponding output. Note
that when an adversary corrupts the ideal process, it can pick the inputs sent by
players in T to TP (possibly, based on their original inputs) and then output an

4 It is usually assumed that the adversary is given an “advice” string a, or is alter-
natively modeled by a nonuniform algorithm. In fact, the proofs of our negative
results are formulated in this nonuniform setting, but can be modified to apply in
the uniform one as well.

5 This corresponds to the non-adaptive security model; however, all our results apply
to the stronger adaptive model as well.

On 2-Round Secure Multiparty Computation 183

arbitrary function of all its view (including the outputs it received from TP). To
formally define security, we capture what the adversary “achieves” by a random
variable concatenating the adversary’s output together with the outputs and the
identities of the uncorrupted players. For a protocol π, adversary A, input vector
x, and security parameter k, let execπ,A(k, x) denote the above random variable,
where the randomness is over the random inputs of the uncorrupted players, the
trusted party (if f is randomized), and the adversary. The security of a proto-
col Π (also referred to as a real-life protocol) is defined by comparing the exec
variable of the protocol Π to that of the ideal process πf . Formally:

Definition 1. We say that a protocol Π t-securely computes f if, for any (real-
life) t-adversary A, there exists (an ideal-process) t-adversary A′ such that the
distribution ensembles execΠ,A(k, x) and execπf ,A′(k, x) are indistinguishable.
The security is referred to as perfect, statistical, or computational according to
the notion of indistinguishability being achieved. For instance, in the computa-
tional case it is required that for any family of polynomial-size circuits {Ck}
there exists some negligible function neg, such that for any x,

|Ck(execΠ,A(k, x))− Ck(execπf ,A′(k, x))| ≤ neg(k).

An equivalent form of Definition 1 quantifies over all input distributions X
rather than specific input vectors x, and gives X as an additional input to the
distinguisher Ck. This equivalent form is convenient for proving our negative
results.

Intuitive discussion. Definition 1 asserts that for any real-life t-adversary A
attacking the real protocol there is an ideal-process t-adversary A′ which can
“achieve” in the ideal process as much as A does in the real life. The latter
means that the output produced by A′ together with the inputs and outputs
of uncorrupted players in the ideal process is indistinguishable from the output
(wlog, the entire view) of A concatenated with the inputs and outputs of un-
corrupted players in the real protocol. This concatenation captures both privacy
and correctness requirements. On the one hand, it guarantees that the view of
A does not allow it to gain more information about inputs and outputs of un-
corrupted players than is possible in the ideal process and, on the other hand,
it ensures that the inputs and outputs of the uncorrupted players in the real
protocol be consistent with some correct computation of f in the ideal process.
Additional intuition regarding the definition, including our general paradigm

for proving negative results, is given in Section 4.

3 Positive Results

Which functions are the easiest to compute securely? In this section we obtain a
2-round protocol for every function whose outputs are determined by the input of
a single player. We stress that this class of secure computation tasks is nontrivial,
and in fact it can be used to implement some important tasks such as VSS
and distributed zero-knowledge. To see that this class is nontrivial, note that

184 R. Gennaro et al.

in the multi-output case the protocol has to ensure that all local outputs be
consistent with the same input, and at the same time must hide the players’
outputs from each other. Moreover, even in the single-output case (i.e., where
the same output is learned by all players) it is not enough to let the player
holding the input compute and broadcast the global output; indeed, in this naive
protocol the players may not be able to efficiently verify that the broadcasted
value is consistent with some valid input.
We now show that every function in the above class can be securely computed

in 2 rounds with perfect security and a linear security threshold, efficiently in its
circuit size. To prove our claim, we reduce the task of securely computing such a
function to that of securely computing a related vector of degree-2 polynomials,
and in return show how to compute such a vector in 2 rounds. We start by
describing the latter.

Lemma 1. Let p = (p1, . . . , ps) be a vector of degree-2 multivariate polynomials
in the inputs x = (x1, . . . , xm) over a finite field F , where |F | > n.6 Moreover,
suppose that P1 holds the entire input vector x and that each player gets some
specified subset of the outputs. Then, p(x) admits a perfectly secure 2-round
protocol with a linear security threshold in which the communication and time
complexity are linear in s+m and polynomial in the number of players.

Proof sketch: The protocol proceeds similarly to the 2-round VSS proto-
col from [17]. Here we outline a somewhat simplified version which does not
achieve an optimal security threshold, but suffices for our purposes. For sim-
plicity, assume that s = 1; the general case is handled by parallel repetition. In
the first round, P1 uses the bivariate polynomial secret-sharing of [5] to share
each of its inputs; that is, it chooses a random bivariate polynomial F l(y, z) over
F of degree at most t in each variable under the condition that F l(0, 0) = xl
for l = 1, 2, . . . ,m. It sends to player Pi the polynomials f

l
i (y) = F l(y, i) and

gli(z) = F l(i, z). In parallel, each pair of players privately exchange random pads.
In the second round, each player Pi lets its primary share of xl be s

l
i = f li (0)

(note that if P1 is honest then the points (i, s
l
i) lie on a degree-t polynomial) and

sends, to each player who should receive the output, the value p(s1
i , . . . , s

m
i), i.e.

its share of the output p(x).7 In parallel, each player Pj broadcasts the value
of each secondary share f li (j) and gli(j) masked with the pad exchanged with
Pj in Round 1. These broadcasts induce an inconsistency graph, each edge of
which represents a conflict between secondary shares of different players that
were supposed to be equal (if P1 and the two relevant players were honest).
We now describe how each player reconstructs the value of p from the n

output shares it received and from the (public) inconsistency graph. Suppose that
n > 6t. The players run a deterministic 2-approximation algorithm for vertex
cover on the inconsistency graph [15]. If it returns a vertex cover of size> 2t

6 This assumption on the size of F can be eliminated by the use of extension fields.
7 To guarantee privacy, these values have to be randomized so that they lie on a

random degree-2t polynomial with p(x) as its free coefficient. We ignore this detail,
since it complicates the presentation and is addressed in a standard way by letting
P1 share additional random values.

On 2-Round Secure Multiparty Computation 185

(implying that there is no vertex cover of size t), then it is clear that P1 is
dishonest, and the output is taken to be p(0). Otherwise, let I be the complement
of the vertex cover (which is an independent set in the graph). Note that |I| > 4t,
and so the players in I contain at least 3t+ 1 uncorrupted players whose input
shares were all consistent with some input vector x′ = (x′1, . . . , x

′
m), and thus

their output shares lie on a degree-2t polynomial with free coefficient p(x′).
The output value is computed from the |I| output shares of the players in I by
applying a Reed-Solomon error correction procedure to find the “nearest” degree-
2t polynomial, and taking its free coefficient. Note that if P1 is uncorrupted then,
since the distance of the relevant code is greater than 2t, the correct output will
be computed. Conversely, if I indeed contains more than 4t players, then the
output will be consistent with the value of p on some input x′ defined by the
(consistent) shares of the uncorrupted players in I. ut

Theorem 1. Suppose that f is a deterministic function whose inputs are all
held by a single player. Then, f admits a perfectly secure 2-round protocol with
a linear security threshold, computing f efficiently in its circuit size.

Proof. We prove the theorem for the case of a single-output function represented
by a boolean circuit; a proof for the general case proceeds similarly. We reduce
the secure computation of f to the secure computation of degree-2 polynomials.
Suppose that C is a boolean circuit computing f , and let F be a finite field
where |F | > n. We construct a vector p of degree-2 polynomials over F . The
input variables of p are of three types: (1) variables x, such that xi corresponds
to the i-th input of f ; (2) variables y, such that yi corresponds to the i-th
intermediate wire in C (i.e., excluding input and output wires); (3) variables z,
such that zi corresponds to the i-th output wire of C. The vector p(x, y, z) will
serve to verify that the input values x are valid (i.e., each of these variables is
assigned either 0 or 1), and that the wire labels y, z are consistent with the gates
of C and the inputs x. Specifically, it should hold that p(x, y, z) is the zero vector
if all the above consistency requirements are met, and otherwise it contains at
least one nonzero entry. Note that each atomic consistency requirement can be
verified by a single degree-2 polynomial. For instance, the validity of an input
value xi can be verified by the polynomial xi(1− xi), and the consistency of an
internal NAND gate having input wires i, j and output wire k can be verified by
1− yiyj − yk. Hence, the total length of p is proportional to the size of C.
Now, let p′(x, y, z) = p(x, y, z) ◦ z (where ◦ denotes concatenation). Given a

secure protocol Π for computing p′(x, y, z), a secure protocol for C(x) proceeds
as follows:

– On input x ∈ {0, 1}m, player P1 computes the wire labels y, z, and invokes
Π on inputs x, y, z. Let v ◦ z denote the output of Π (by its security, the
same output must be obtained by all uncorrupted players).

– Each player computes its output as follows: If v = 0 output z, otherwise
output C(0).

The correctness of this reduction can be sketched as follows. If P1 is honest,
the correct output z = C(x) will clearly be obtained (even in the presence of

186 R. Gennaro et al.

an active t-adversary), and no additional information about x will be revealed.
Conversely, for either of the two possibilities for obtaining the output, it must
be consistent with some input x. ut

As a corollary of Theorem 1, it is possible to obtain 2-round distributed zero-
knowledge protocols for NP [16]. Indeed, if R is a polynomial-time predicate
defining an NP-language, P1 can prove that it knows a witness w such that
R(x,w) = 1 by invoking a secure protocol for the function f(x, y) = x ◦R(x, y)
(substituting w for y). Theorem 1 can also be applied for obtaining a wide array
of “certified secret-distribution” schemes, generalizing the VSS primitive. For
instance, let D(s, r) be a (t, n)-secret-sharing scheme (such that Di(s, r) is the
share of the secret s held by Pi), and let R(s) be an efficient predicate testing
whether s satisfies some validity condition. Define a function f whose inputs s, r
are held by P1, and such that Pi’s output is (Di(s, r), R(s)). Then, the secure
computation of f allows P1 to securely distribute his secret s among n players
ensuring consistency of the shares with some valid secret s, which can at a later
stage be reconstructed even in the presence of faulty players. Note that if P1

fails to pick the input r at random, then at most the secrecy of the secret s is
compromised (which anyway cannot be avoided) but not its validity.

We end this section by noting that Theorem 1 does not cover all functions
which admit 2-round protocols. We demonstrate this using the following “de-
generate” example, which in fact requires only one round, but more interesting
examples (requiring 2 rounds) can be obtained.

Example 1. Consider the function f(x1, x2, . . . , xn) = (x1 ⊕ x2,⊥, . . . ,⊥). The
value xi is the input of player Pi, only player P1 should output the exclusive-or
of the bits x1, x2 and other players have no output. Note that the output of f
depends on inputs of two players. Yet, it can be verified that the trivial protocol,
in which P2 sends its input to P1 and the latter computes the correct output, is
t-secure for any threshold t.

In the next section we will show that the above function does not admit a
2-round protocol if all players should output x1 ⊕ x2.

4 Negative Results

In this section we prove impossibility of 2-round secure computation for some
simple specific functions. Since defining the notion of security is a delicate issue,
it is not surprising that negative results may also involve some subtleties. In
particular, one has to account for all possible strategies of the ideal-process
adversary, who is not restricted to any particular behavior pattern. Our general
paradigm for proving negative results is the following. For a given function f and
a protocol Π, we define a specific real-life adversary A0 which “breaks” Π in the
sense that it has some advantage over any ideal-process adversary A′ attacking
πf . To demonstrate this, we typically define some distribution on the inputs of
uncorrupted players, and then specify some concrete “challenge” which no A′

On 2-Round Secure Multiparty Computation 187

can meet (in the ideal process) as successfully as A0 by corrupting the same
players as A0 does. For specifying such a challenge, we may use any predicate on
the inputs and outputs of uncorrupted players. For instance, A0 may challenge
A′ to guess the input of a specific uncorrupted player, or to fix the output of
some uncorrupted player to 0. If we show that A0 can significantly outperform
every A′ in meeting such a challenge, then we have shown Π to be insecure.

4.1 The Functions SB and XOR, or: The Power of Rushing

In this section, we prove negative results for simultaneous broadcast (defined
below) and XOR. A common characteristic of these tasks is that they become
easier in the fully synchronous model; thus, in addition to proving the necessity
of 3 rounds, these examples also serve to separate the fully synchronous model
from the standard model.
We start by showing the impossibility of a 2-round simultaneous broadcast

(SB) protocol. This natural task is formally defined by the function SB(x1, x2, . . . ,
xn) = x1◦x2, i.e., each player should output the concatenation of the first two in-
puts. (We refer to each of the two parts of the global output as an output entry.)
Note that the main security requirement imposed by an SB protocol is indepen-
dence: any ideal-process adversary attacking at most one of the first two players
should be unable to induce a non-negligible correlation between the two output
entries. We obtain our impossibility result by describing a strategy which allows
the adversary to break this independence requirement. The high-level idea is the
following. The adversary will corrupt one of the two input holders, say P2, and
some carefully chosen additional player Pj , where j > 2. It will pick its Round 1
messages in such a way that will allow its action in Round 2 to have a non-
negligible effect on the second output entry (as seen by uncorrupted players). It
will then use its rushing capabilities and the fact that Pj was “honest-looking”
in Round 1 to first learn the first output entry, and then correlate the second
entry with the first one. This will contradict the independence requirement.
We now formalize the above intuition and fill in some missing details. It will

be convenient to use the following notation. By (B,M), whereM = (M1, . . . ,Mn),
we denote some joint distribution of messages and broadcast sent by P2 in
Round 1 (where Mi is the message sent to Pi). By (B

0,M0) (resp., (B1,M1))
we denote the honest distributions corresponding to the input x2 = 0 (resp.,
x2 = 1). For a distribution (B,M), let qσ(B,M) denote the probability that
the protocol’s second output entry is equal to 1, given that: (1) x1 = σ; (2)
P2’s Round 1 messages and broadcast are distributed according to (B,M);
(3) everyone else follows the protocol (including P2 in Round 2). Finally, let
q(B,M) = (q0(B,M), q1(B,M)). All the above distributions and probabilities
are parameterized by the security parameter k, which will usually be omitted.
We start with the following lemma.

Lemma 2. The distributions ensembles (B0,M0
1)(k) and (B

1,M1
1)(k) are com-

putationally indistinguishable.

Proof. Assume towards a contradiction that there is a distinguisher D such that
D always outputs 0 or 1, and |Pr[D(B0,M0

1 , k) = 1]− Pr[D(B
1,M1

1 , k) = 1]| >

188 R. Gennaro et al.

k−c, for some constant c and infinitely many values of k. We use D to show
that an adversary corrupting P1 can break the independence requirement. The
adversary’s strategy is simple: it waits to hear the broadcast b and message m
received from P2 in Round 1, evaluates D(b,m, k), and uses the result as its
input. Clearly, the correlation induced by the adversary cannot be emulated in
the ideal process (even up to computational indistinguishability). ut

Theorem 2. There is no 2-round (computationally) secure SB protocol, for any
t ≥ 2 and an arbitrarily large number of players n ≥ 3.

Proof. Assume towards a contradiction that a 2-round SB protocol is given.
Consider the following four pairs of probabilities:

Q1 = q(B1,M1
1 ,M

1
2 , . . . ,M

1
n)

Q2 = q(B1,M1
1 , 0, 0, . . . , 0)

Q3 = q(B0,M0
1 , 0, 0, . . . , 0)

Q4 = q(B0,M0
1 ,M

0
2 , . . . ,M

0
n)

By the protocol’s correctness, we must have Q1 ≥ (1 − neg, 1 − neg) and Q4 ≤
(neg, neg), where neg denotes some negligible function in k. Moreover, by Lemma
2, the difference betweenQ2 andQ3 is negligible. Hence, there is a substantial dif-
ference either between Q1 and Q2 or between Q3 and Q4. Assume wlog that the
difference between the first entries of Q1 and Q2 (corresponding to the probabil-
ity q0) is large, say, more than 1/3. By a hybrid argument, there exists i ≥ 2 such
that q0(B

1,M1
1 , . . . ,M

1
i , 0, . . . , 0) − q0(B

1,M1
1 , . . . ,M

1
i−1, 0, . . . , 0) > 1/(3n). It

follows that one of the two q0 probabilities above must be different by at least
1/(6n) from one of the two corresponding q1 probabilities. Assume, without loss
of generality, that

|q0(B
1,M1

1 , . . . ,M
1
i , 0, . . . , 0)− q1(B

1,M1
1 , . . . ,M

1
i−1, 0, . . . , 0)| >

1

6n
(1)

(the other cases are similar).
Now, we need to identify two players to complete two tasks in our attack. Yet,

it might be the case that both these tasks can be embodied into a single player.
We need an honest looking player Pj from whose local view we will compute the
correct output, and a second player Pi who can toggle the output of the rest
of the players in the protocol. The index of player Pi is given from Eq. (1). If
i > 2 then this player has acted honestly until now and thus can also be “used”
as the player Pj from which we extract the output. Otherwise, i.e. if i = 2,
then we set Pj = P3, as the player whose view we will examine. An adversary
corrupting P2, Pj can correlate the second output entry with the first as follows.
Its Round 1 messages are distributed according to (B1,M1

1 ,M
1
2 ,M

1
3 , . . . ,M

1
i , 0,

. . . , 0). In Round 2, it waits to hear the messages from all uncorrupted players,
and then computes the first output entry from the entire view of Pj . Since Pj
was honest so far, the protocol’s correctness guarantees that it learns the correct
output with overwhelming probability.8 Let α be the value of the first output

8 Note that there is no guarantee that the correct output can be inferred from the
view of P2, since P2 has deviated from the protocol in Round 1.

On 2-Round Secure Multiparty Computation 189

entry computed by Pj . The adversary correlates its output with α by letting Pi,
the toggling player, act as follows. If α = 0, Pi behaves honestly (i.e., uses the
original message M1

i received from P2 in Round 1). Otherwise, it behaves as if
this message was set to 0. It follows from Eq. (1) that the second output entry
will be significantly correlated with the first, contradicting the independence
requirement. ut

Note that the SB function admits a trivial 1-round protocol in the fully
synchronous model; thus in this case coping with a rushing adversary costs two
additional rounds. Another observation is that the requirement t ≥ 2 is essential.
Indeed, the following 5-player protocol computes SB with perfect 1-security in
two rounds: (1) Each of P1, P2 privately sends its input to each of the remaining
3 players; (2) Each of P3, P4, P5 passes the inputs it received to all other players;
Each player outputs the majority of the 3 candidates for each input it received
in Round 2. It is not hard to verify that the above protocol is a 1-secure SB
protocol.

The function XOR. We now turn to the function XOR(x1, x2, . . . , xn) defined
as x1 ⊕ x2. We show, by refining the previous arguments for the SB function,
that this function as well cannot be securely computed in two rounds.

Theorem 3. There is no 2-round (computationally) secure XOR protocol, for
any t ≥ 2 and an arbitrarily large number of players n ≥ 3.

Proof. Similarly to the proof of Theorem 2, the adversary corrupts the player
P2 which, together with an additional player (to be chosen carefully), is used
to violate the properties of the alleged protocol. We also follow some of the
notations used in the proof of Theorem 2. Specifically, by (B,M) we denote
some joint distribution of the broadcast and the private messages (respectively)
sent by P2 in Round 1 of the protocol. By (B

b,M b) (b ∈ {0, 1}) we denote
the honest distribution corresponding to the input x2 = b. Consider a scenario
where P1 chooses its input x1, at random. In such a case, in the ideal process,
the output is totally random (i.e., each value {0, 1} is obtained with probability
of exactly 0.5). On the other hand, we will show a strategy for the adversary to
significantly bias the output (towards one of the output values). As in the proof
of Theorem 2, let q(B,M) be a pair (p0, p1) indicating the probability that the
output of the function (as seen by the good players) is 1 provided that the input
x1 is 0 or 1 (respectively) and that the first round messages of P2 are distributed
as in (B,M). As before, consider the following four pairs:

Q1 = q(B0,M0
1 ,M

0
2 , . . . ,M

0
n)

Q2 = q(B0,M0
1 , 0, . . . , 0)

Q3 = q(B1,M1
1 , 0, . . . , 0)

Q4 = q(B1,M1
1 ,M

1
2 , . . . ,M

1
n)

By the protocol’s correctness, it follows that Q1 = (neg, 1− neg) while Q4 =
(1 − neg, neg). In addition, similarly to Lemma 2, the distributions (B0,M0

1)
and (B1,M1

1) must be indistinguishable (as otherwise P1, by using its rushing
capability in the first round is able to correlate its input x1 with input x2 and

190 R. Gennaro et al.

bias the output; this is impossible to achieve in the ideal process). Hence, the
difference between q2, q3 is neg. Consider the L1-distance between two pairs
(p0, p1), (p

′
0, p

′
1) (defined as |p0−p

′
0|+|p1−p

′
1|). It follows that either the distance

between q1 and q2 is at least 1−neg or the distance between q3 and q4 is at least
1− neg. Assume, without loss of generality, that the first is true. We now argue
that, for some i (2 ≤ i < n), the two pairs

(pi0, p
i
1)

4
= q(B0,M0

1 , . . . ,M
0
i , 0, . . . , 0)

and

(pi−1
0 , pi−1

1)
4
= q(B0,M0

1 , . . . ,M
0
i−1, 0, . . . , 0)

are such that either max{pi0, p
i−1
0 } + max{pi1, p

i−1
1 } > 1 − neg + 1/(5n) or

min{pi0, p
i−1
0 }+min{pi1, p

i−1
1 } < 1− neg − 1/(5n). Otherwise, this in particular

implies that all the points (pi0, p
i
1) are such that 1 − neg − 1/(5n) < pi0 + pi1 <

1 − neg + 1/(rn). This in turn implies that the distance between two adjacent
pairs is smaller than 1/(2n) and the total distance between q1 and q2 is less than
0.5 < 1−neg, contradicting what we know about this distance. Suppose that for
some i we have max{pi0, p

i−1
0 }+max{pi1, p

i−1
1 } > 1− neg + 1/(5n); we describe

a strategy for the adversary to bias the output towards 1 (in the other case
there is a dual strategy to bias the output towards 0). Now, the adversary picks
another corrupted player Pj : if i > 2 the adversary uses Pj = Pi; otherwise, if
i = 2 the adversary uses, say, Pj = P3. The adversary lets P2 play in the first
round as in (B0,M0

1 , . . . ,M
0
i , 0, . . . , 0). In the second round, the adversary uses

Pj as a Trojan horse; it lets Pj first get all the second round messages by other
players (rushing) and checks which message from P2 (either M

0
i or 0) will cause

Pj to output 1 (the idea being that a difference which is only in the first round
message sent to Pi will only influence the second round message sent by Pi and
no other message). If there is such a message then Pj proceeds as if it got this
message (and since Pj is honest-looking its output is the same as the output of all
good players); otherwise, the adversary picks one of the two messages arbitrarily.
Since x1 is randomly chosen and by the choice of i, the probability of getting
the output 1 is now 0.5 · (max{pi0, p

i−1
0 }+max{pi1, p

i−1
1 }) which is significantly

larger than 0.5, as needed. ut

4.2 The Function AND, or: The Advantage of Being Selfish

In this section we consider the function AND(x1, x2, . . . , xn) defined as x1 ∧ x2.
We will show that this function cannot be securely computed in two rounds. This
case differs from the previous ones in that the relevant impossibility result does
not rely on the adversary’s rushing capability, and thus holds also in the fully
synchronous model. The intuition here is also different. In the previous examples,
we showed that the adversary could violate the correctness of the protocol by
inducing some invalid output distribution. In the current case, we will show that
the real-life adversary can somehow gain an information advantage over its ideal-
process counterpart. This will be achieved by practicing a typical selfish behavior:
the adversary, corrupting P2 and some other player Pj (j > 2), will manage to

On 2-Round Secure Multiparty Computation 191

collect information about x1 from all uncorrupted players and at the same time
refuse to contribute its own share of information to the community. This will
allow the real-life adversary to obtain a better prediction of the unknown input
than any of the uncorrupted players, which (for the specific case of the AND
function) is impossible to achieve in the ideal process.

Theorem 4. There is no 2-round (computationally) secure AND protocol, for
any t ≥ 2 and an arbitrarily large number of players n ≥ 3, even in the fully
synchronous model.

Proof. Similarly to the previous proofs, the adversary corrupts player P2, which
together with an additional player is used to violate the properties of the alleged
protocol. We also follow some of the previous notation. Specifically, by (B,M)
we denote some joint distribution of the broadcast and the private messages
(respectively) sent by P2 in Round 1 of the protocol. By (B

b,M b) (b ∈ {0, 1})
we denote the honest distribution corresponding to the input x2 = b. Consider
a scenario where P1 chooses its input x1 at random. We now argue that in the
ideal process the best prediction that the adversary has for the value of x1 is
OUT, the output of the good players, whereas we show a real-life adversary that
can guess x1 with significantly better probability than by using this output. For
(B,M) as above, let COR(B,M) denote the correlation of OUT with x1 provided
that the first round messages by P2 are distributed as in (B,M). Namely,

COR(B,M)
4
= |Pr[OUT = 1|x1 = 1, (B,M)]− Pr[OUT = 1|x1 = 0, (B,M)]| .

Consider the following four quantities:

q1 = COR(B0,M0
1 ,M

0
2 , . . . ,M

0
n)

q2 = COR(B0,M0
1 , 0, . . . , 0)

q3 = COR(B1,M1
1 , 0, . . . , 0)

q4 = COR(B1,M1
1 ,M

1
2 , . . . ,M

1
n)

By the protocol’s correctness, it follows that q1 = neg while q4 = 1 − neg. In
addition, similarly to Lemma 2, the distributions (B0,M0

1) and (B
1,M1

1) must
be indistinguishable (otherwise an adversary corrupting, in a passive manner,
the player P1 gets a significantly better than 50% chance of guessing the input
x2 even when the honest players’ output is 0; this is impossible in the ideal
process). Hence, the difference between q2, q3 is neg. It follows that either the
distance between q1 and q2 is at least 0.5− neg or the distance between q3 and
q4 is at least 0.5− neg. Assume, without loss of generality, that the first is true.
Therefore, for some i (2 ≤ i < n) the quantity COR(B0,M0

1 , . . . ,M
0
i , 0, . . . , 0)

is significantly smaller than COR(B0,M0
1 , . . . ,M

0
i+1, 0, . . . , 0) (by at least (1 −

neg)/(2n)). Now, the adversary picks another corrupted player Pj : if i > 2 the
adversary uses Pj = Pi; otherwise, if i = 2 the adversary uses, say, Pj = P3.
The adversary plays as in the distribution (B0,M0

1 , . . . ,M
0
i , 0, . . . , 0)

9 so as to
guarantee a lower correlation between the output of good players, OUT, and x1;
however, it also uses Pj to compute the output OUT

′ of the good players (Pj

9 namely it samples from the distribution (B0, M0) and creates the hybrid distribution
by replacing some of the messages by 0-messages.

192 R. Gennaro et al.

behaves like such a player) in case the messages of P2 come from the distribution
(B0,M0

1 , . . . ,M
0
i+1, 0, . . . , 0). This value OUT

′ is significantly better correlated
with x1 than the actual output OUT.
Finally, we argue that in the ideal process the adversary has no better pre-

dictor for the value of x1 than OUT. For this, simply consider all the 4 poten-
tial views (x2,OUT) that the adversary may see. The view (0, 1) is impossible;
for both views (1, 0) and (1, 1) we have x1 = OUT. If the view is (0, 0) then
the adversary has no information about x1; in such a case, guessing the value
x1 = OUT is correct with probability 1/2 and is as good as any other way of
guessing. Hence, OUT is an optimal predictor for x1. ut

5 Concluding Remarks

We have answered some of the main qualitative questions concerning the round
complexity of secure multiparty computation in our standard model. In partic-
ular, we have shown that security against an active adversary requires strictly
more interaction than security against a passive adversary, and that general se-
cure computation tasks require more interaction than distributed zero-knowledge
and similar tasks. As a future goal, it remains to find a characterization of secure
computation tasks according to their exact round complexity. This question ap-
pears to be nontrivial, partly due to the difficulty of capturing the exact power
of an adversary attacking an ideal-process implementation of complex functions.

References

1. J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a con-
stant number of rounds. In Proc. 8th ACM PODC, pages 201–209. ACM, 1989.

2. D. Beaver. Minimal-Latency Secure Function Evaluation. In Eurocrypt ’00, pages
335–350, 2000. LNCS No. 1807.

3. D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Security with low commu-
nication overhead (extended abstract). In Proc. of CRYPTO ’90.

4. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols
(extended abstract). In Proc. 22nd STOC, pages 503–513. ACM, 1990.

5. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-
cryptographic Fault-Tolerant Distributed Computations. Proc. 20th STOC88 , pp.
1–10.

6. M. Ben-Or and N. Linial. Collective Coin-Flipping. In Randomness and Compu-

tation, pages 91–115, 1990.
7. P. Berman, J. Garay, and K. Perry. Bit Optimal Distributed Consensus. In
R. Yaeza-Bates and U. Manber, editors, Computer Science Research, pages 313–
322. Plenum Publishing Corporation, 1992.

8. C. Cachin, J. Camenisch, J. Kilian, and J. Muller. One-round secure computation
and secure autonomous mobile agents. In Proceedings of ICALP’00, 2000.

9. R. Canetti. Security and composition of multiparty cryptographic protocols. Jour-

nal of Cryptology, 13(1):143–202, 2000.
10. D. Chaum, C. Crepeau, and I. Damgard. Multiparty Unconditionally Secure Pro-

tocols. In Proc. 20th STOC88 , pages 11–19.

On 2-Round Secure Multiparty Computation 193

11. R. Cramer and I. Damg̊ard. Secure distributed linear algebra in a constant number
of rounds. In Proc. Crypto 2001.

12. R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient mul-
tiparty computations with dishonest minority. In Eurocrypt ’99, pages 311–326,
1999. LNCS No. 1592.

13. Uri Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation
(extended abstract). In Proc. 26th STOC, pages 554–563. ACM, 1994.

14. P. Feldman and S. Micali. An Optimal Algorithm for Synchronous Byzantine
Agreement. SIAM. J. Computing, 26(2):873–933, 1997.

15. F. Gavril. Manuscript, 1974.
16. R. Gennaro, S. Halevi, and T. Rabin. Round-optimal zero knowledge with dis-

tributed verifiers. www.research.ibm.com/security, 2002.
17. R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The Round Complexity of

Verifiable Secret Sharing and Secure Multicast. In Proc. 33th STOC. ACM, 2001.
18. Rosario Gennaro. Achieving Independence Efficiently and Securely. In Proc. 14th

ACM PODC, pages 130–136. ACM, 1995.
19. O.Goldreich. Secure multi-party computation (manuscript).

www.wisdom.weizmann.ac.il/∼oded/pp.html, 1998.
20. O. Goldreich. Foundation of Cryptography – Fragments of a Book. ECCC 1995.

Available online from http://www.eccc.uni-trier.de/eccc/.
21. O. Goldreich, S. Micali, and A. Wigderson. How to Play Any Mental Game. In

Proc. 19th STOC, pages 218–229. ACM, 1987.
22. Y. Ishai and E. Kushilevitz. Private simultaneous messages protocols with appli-

cations. In ISTCS97, pages 174–184, 1997.
23. Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with

applications to round-efficient secure computation. In Proc. 41st FOCS, 2000.
24. Y. Ishai and E. Kushilevitz. Perfect Constant-Round Secure Computation via

Perfect Randomizing Polynomials. In Proc. ICALP ’02.
25. L. Lamport, R.E. Shostack, and M. Pease. The Byzantine generals problem. ACM

Trans. Prog. Lang. and Systems, 4(3):382–401, 1982.
26. Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Compu-

tation. In Crypto ’01, pages 171–189, 2001. LNCS No. 2139.
27. N. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.
28. R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In Proc. 10th

ACM PODC, pages 51–59. ACM, 1991.
29. M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the Presence of

Faults. Journal of the ACM, 27(2):228–234, 1980.
30. T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty Protocols with

Honest Majority. In Proc. 21st STOC, pages 73–85. ACM, 1989.
31. T. Sander, A. Young, and M. Yung. Non-Interactive CryptoComputing For NC1.

In Proc. 40th FOCS, pages 554–567. IEEE, 1999.
32. A. C-C. Yao. How to Generate and Exchange Secrets. In Proc. 27th FOCS, pages

162–167. IEEE, 1986.

