Fast Algebraic Attacks
on Stream Ciphers with Linear Feedback

Nicolas T. Courtois

Cryptography Research, Schlumberger Smart Cards, 36-38 rue de la Princesse,
BP 45, F-78430 Louveciennes Cedex, France, courtois@minrank.org

Abstract. Many popular stream ciphers apply a filter/combiner to the
state of one or several LFSRs. Algebraic attacks on such ciphers [10, 11]
are possible, if there is a multivariate relation involving the key/state
bits and the output bits. Recent papers by Courtois, Meier, Krause and
Armknecht [1,2,10,11] show that such relations exist for several well
known constructions of stream ciphers immune to all previously known
attacks. In particular, they allow to break two ciphers using LFSRs and
completely “well designed” Boolean functions: Toyocrypt and LILI-128,
see [10, 11]. Surprisingly, similar algebraic attacks exist also for the state-
ful combiner construction used in Bluetooth keystream generator EO [1].
More generally, in [2] it is proven that they can break in polynomial
time, any combiner with a fixed number of inputs and a fixed number of
memory bits.

In this paper we present a method that allows to substantially reduce the
complexity of all these attacks. We show that when the known keystream
bits are consecutive, an important part of the equations will have a re-
cursive structure, and this allows to partially replace the usual sub-cubic
Gaussian algorithms for eliminating the monomials, by a much faster,
essentially linear, version of the Berlekamp-Massey algorithm. The new
method gives the fastest attack proposed so far for Toyocrypt, LILI-128
and the keystream generator that is used in EO cipher. Moreover we
present two new fast general algebraic attacks for stream ciphers using
Boolean functions, applicable when the degree and/or the number of
inputs is not too big.

Key Words: Algebraic attacks, stream ciphers, multivariate equations, nonlinear
filters, Boolean functions, combiners with memory, LFSR synthesis, Berlekamp-
Massey algorithm, Toyocrypt, Cryptrec, LILI-128, Nessie, EO, Bluetooth.

1 Introduction

In this paper we study stream ciphers with linear feedback. In such ciphers
there is a linear component, and a stateful or stateless nonlinear combiner that
produces the output, given the state of the first part. For stateless combiners -
using a Boolean function, most of the general attacks known are correlation
attacks, see for example [20,16,15,9]. In order to resist such attacks, many
authors focused on proposing Boolean functions that will have no good linear
approximation and that will be correlation immune with regard to a subset of
several input bits, see for example [9]. Unfortunately there is a tradeoff between
these two properties. One of the proposed remedies is to use a stateful combiner,
as for example in the Bluetooth cipher EO [6].

178 Nicolas T. Courtois

Recently the scope of application of the correlation attacks have been extended
to consider higher degree correlation attacks with respect to non-linear low de-
gree multivariate functions, or in other words, allowing to exploit low degree
approximations [10]. The paper [10], proposes a novel algebraic approach to
the cryptanalysis of stream ciphers. It will reduce the problem of key recovery,
to solving an overdefined system of algebraic equations (i.e. many equations).
Following [10] and [11], all stream ciphers with linear feedback are potentially
vulnerable to algebraic attacks. If for one state we are able, by some method,
to deduce from the output bits, only one multivariate equation of low degree
in the state bits, then the same can (probably) be done for many other states.
Each equation remains also linear with respect to any other state, and given
many keystream bits, we inevitably obtain a very overdefined system of equa-
tions. Then we may apply the XL algorithm from Eurocrypt 2000 [25], adapted
for this purpose in [10], or the simple linearization as in [11], to efficiently solve
the system.

In the paper [11], the scope of algebraic attacks is substantially extended, by
showing new non-trivial methods to obtain low degree equations, that are not
low degree approximations. The method to reduce the degree of the equations,
is analogous to the method proposed by Courtois and Pieprzyk to attack some
block ciphers [13], and the basic idea goes back to [12] and [23]. Instead of con-
sidering outputs as functions of inputs, one should rather study multivariate
relations between the input and output bits. They turn out to have a substan-
tially lower degree. In this paper we take this idea further, and consider more
general equations that include potentially many output bits, instead of one (or
few) considered in [11, 1]. Then we propose a new fast method to find and exploit
such equations, mainly due to an application of a non-trivial asymptotically fast
algorithm. This method allows to obtain equations that cannot be obtained by
any other known method (due to their size), and to get much faster algebraic
attacks.

The paper is organized as follows: in Section 2 we give a general view of algebraic
attacks on stream ciphers. In Sections 2.2, 2.4 and 3 we discuss in details the
types of equations that will be used in our attacks. In Section 4 we design our
pre-computation attack and in Section 5 we show how to speed-up this attack.
Then in Section 6 we apply it to Toyocrypt, LILI-128 and EO. In Section 7.1
we present a new general fast attack on ciphers with Boolean functions of low
degree. Finally in Section 7.2 we apply our fast method to substantially speed up
the general attack on stream ciphers using (arbitrary) Boolean functions with a
small number of inputs from [11].

2 Algebraic Attacks on Stream Ciphers

For simplicity we restrict to binary stream ciphers defined over GF(2). We con-
sider only synchronous stream ciphers [21], in which there is a state s € GF'(2)".
At each clock t the state s is updated by a “connection function” s — L(s)
that is assumed to be linear over GF(2). Then a combiner f is applied to s, to
produce the output bit by = f(s). In principle also, we consider only regularly

Fast Algebraic Attacks on Stream Ciphers with Linear Feedback 179

clocked stream ciphers. However this condition can sometimes be relaxed, see
the attacks on LILI-128 described in [11]. Then the successive keystream bits
bo, b1, ... are XORed with the plaintext.

We assume that L and f are public, and only the state is secret. In many cases
we assume that f is stateless, i.e. a Boolean function. Then our description
covers “filter generators”, in which the state of a single LFSR is transformed by
a Boolean function, and also not less popular “nonlinear function generators”,
in which outputs of several LFSRs are combined by a Boolean function [21],
and also many other known constructions. We will also apply our fast algebraic
attacks to the case when the combiner f is not a Boolean function, and contains
memory bits, as for example in EQ. Then if if the number of memory bits is not
too big, efficient algebraic attacks will still exist.

2.1 The General Framework of the Attack

The problem we want to solve is the following: find the initial state given some
keystream bits. In principle, it is a known plaintext attack. However in some
cases, ciphertext-only attacks are possible: For example if the plaintext is written
in the Latin alphabet, and does not use too many special characters, we expect
all the bytes to have their most significant bit equal to 0. Then all our attacks
will work, only multiplying the amount of ciphertext needed by 8. Indeed this
is equivalent to knowing all consecutive keystream bits for the same cipher, in
which we replaced L by its eight-fold composition (L?).

The goal of our attacks is to recover the initial state (ko,. .., kn—1) from some m
consecutive keystream bits by . . . by, —1, by solving multivariate equations. (Unlike
in [11], our fast algebraic attacks do require consecutive bits.)

There are many different closely related approaches to algebraic attacks on
stream ciphers and they differ mainly by the types of equations they use. This
usually determines the methods used to generate, and to solve these equations.

Attacks Based on Direct Equations Following [10, 11]
This approach applies only for stateless combiners. The problem of cryptanalysis
of such a stream cipher is described as follows in [11].
Let (ko,...,kn—1) be the initial state. Then the output of the cipher (i.e. the
keystream) gives the following system of equations:

bo=[f (kos... kn-1)

bl = f (L (k07 ceey knfl))

bo = f (L*(ko, -, kn-1))

In [10] such equations are solved directly. In [11] they are first multiplied by well
chosen multivariate polynomials, which decreases their degree, and then solved.
In this paper we describe a more advanced method of generating (better) derived
equations.

2.2 More General Attacks Using “Ad-hoc” Equations

Following [11], multivariate equations/relations that relate (only) key bits and
output bits, may exist, for very different reasons, for (potentially) any cipher:

180 Nicolas T. Courtois

{ 0=oa+ 3 Biki + 3 7ibi + 3 i5kibj + > €ijkibjbp+

In this paper we restrict ourselves to equations that are true with probability 1.
Types of Equations: Following the notations introduced in Section 5.1. of
[12], the equations given above may be called of type 1 U k U b U kb U kb
This notation is obvious to understand, for example 1 denotes the presence of a
constant monomial and kb® of all monomials of type k;b;by. Following another
convention used in [12], we use capital letters to denote types of equations that
also contain lower degree monomials, for example K? = k?UkU1 and B = bU 1.
Therefore the equations given above can also be said of type KB U kb? but
they are not of type K B2 because they do not contain monomials in b;b; (ak.a.
monomials of type b?).

Using Ad-hoc Such Equations: Our attacks will proceed in three steps:

e Step Al. Pre-computation stage: Find these equations.

e Step A2. Given some keystream, substitute the b; in the equations to get
an overdefined system of multivariate equations in the ;.

e Step A3. Solve this (very overdefined) system of equations. Given suffi-
ciently many keystream bits, we apply the simple linearization technique
[25,11], which consists of adding one new variable for each monomial that
appears in the system, and then solves a big linear system. If less keystream
is available, one should use a version of the XL algorithm [25] for equations
of any small degree over GF'(2), described and studied in [10].

2.3 Remarks on Ad-hoc Equations

The idea of ad-hoc equations follows closely the idea called scenario S5 in Section
7 of [11]. The word emphasises their unexpected character: they may be found be
clever elimination by hand as in [1, 2] or by an indirect unexpectedly fast method
as in the present paper. The idea itself can be seen as a higher-degree generali-
sation of the concept of “augmented function” proposed by Anderson in [3] and
recently exploited in [18]. It is also, yet another application in cryptography of
looking for multivariate relations of low degree, main method for attacking nu-
merous multivariate asymmetric schemes [12, 23], and recently proposed also for
attacking block ciphers [13].

Obviously, if such equations involving, say, 7" monomials exist, they can be found
in time T%, with w < 3 being the exponent of the Gaussian reduction. The
important contribution of this paper is to show that in some cases such equations
can be found in a time linear or even sub-linear! in T

! It will be essentially linear in the number of equations involved in elimination, de-
noted later by L. This, assuming that the equations are written in a compressed
form, can indeed be sub-linear in their size T

Fast Algebraic Attacks on Stream Ciphers with Linear Feedback 181

A different view of “ad-hoc” equations is adopted in [2]. Instead of considering
the equations with no limitation in the degree in the b;, and study their degree
when we substitute for b; their respective values, it is possible to look at the
equations in the state/key bits that are true each when several consecutive out-
puts are fixed to some fixed values. This approach used in [2] allows to study
equations that contain much less monomials, which allows to find them faster,
yet cannot be applied to systems in which the number of outputs is very big, as
in the present paper.

Another way of looking at “ad-hoc” equations will be to consider that the stream

cipher having one output, is in fact using several output functions f; def folL.
Then “ad-hoc” equations boil down to look for algebraic combinations of type
>, figi that would be of unusually low degree, exactly as in Section 2 of [12].
Then, if the g; are also of low degree, the attack will exploit, for j =0,1,2,...,
the following equation of low degree:

Zfi(Lj(S)) 29i(s) =D by - gi(s).

i
This approach is much more powerful than the S3 attack scenario [11]. Such
equations may (and will) exist, without a low degree product fg to exist. They
may (and do) exist even for stateful combiners f [1,2].

2.4 Equations Used in the S3 Attack [11] and Additional Properties
Let f be a Boolean function. We assume that the multivariate polynomial f
has some multiple fg of low degree, with g being some non-zero multivariate
polynomial. Let deg(fg) = d and let d be not too big, then following [11],
efficient attacks exist. For each known keystream bit at position t, we obtain a
concrete value of by = f(s) and this gives the following equation:
f(s)-g(s) =bi-g(s),

which, for the current s = L'(kg, ..., k,_1), rewrites as:

f (Lt(]f(), ey knfl)) g (Lt(k(], ey]fnfl)) = bt g (Lt(k(), ey knfl)) .
If the degree of g is also < d, this equation can be used for any value of by,
otherwise it can still be used when b; = 0, i.e. for half of the time. We get one
multivariate equation for each one or about two keystream bits. Each of these
equations will be of the same degree and we inevitably obtain a very overdefined
system of equations (number of equations >> n), that can be efficiently solved,
see [10,11,25].
Important Remark: Following [11], the chief advantage of the equations ex-
plained above may be of very low degree, without f being of low degree. In this
paper we explore an additional property of these equations. Let e the degree of g.
In [11], no distinction is made? between d and e. In this paper, on the contrary,
we will exploit equations in which e < d, and show that for the same n and d, a
smaller e leads allows to compute another type of “ad-hoc” equations, that will
only be of degree e in the k;, leading to much faster attacks than in [11].

2 In the extended version of the paper [11], two versions of the main attack are studied,
called S3a and S3b, that simply require that e < d. The complexity of the attack
does not depend on e, only on (Td‘) For another proposed version S3c, successful
attacks could be possible even when e is very big.

182 Nicolas T. Courtois

More generally, in the next section we define a subclass of “ad-hoc” equations
(including the example above with e < d) that will be subsequently used in the
next sections to compute efficiently other (much better) “ad-hoc” equations.

3 The Double-Decker Equations

Definition 3.0.1 (Double-Decker Equations). For any e < d, we call
“double-decker equations” with degrees (d, e, f), any set of multivariate equa-
tions of type K¢ U K°Bf, with d,e, f € IN. In other words, equations with a
maximum degree d in the monomials containing only the k;, and the maximum
degree e in the k; among the monomials being divisible by one of the b;.

The Double-decker equations will be used to find even better “ad-hoc” equations
of type K¢Bf, with f € IN, and finally used in our attacks. These equations
cannot be obtained directly due to their size, and will be found indirectly in two
major steps that will be described later:

e Step Al.1. Find some “double-decker equations” with degrees (d, e, f).

e Step A1.2. Then eliminate (at least) all the monomials of types k¢! ... k%,
leaving only monomials of type K¢Bf with a maximum degree e in the k;.

3.1 Step Al.1. - Find the Basic Double-Decker Equations

The exact method to find the “double-decker equations” we will use later varies
from one cipher to another.

Toyocrypt: Toyocrypt is a stream cipher, submitted to the Japanese govern-
ment call for cryptographic primitives Cryptrec and accepted to the second
phase. An impractical attack on Toyocrypt has been proposed [22] and it has
been rejected by Cryptrec. A description can be found in [22]. From Section 5.1.
of [11] we know that there are 2 equations of type f(s) - g(s) = b; - g(s) in which
e =deg(g) =1 and d = deg(fg) = 3. For example, anyone can verify that when
g(s) = (s23 — 1), then in f(s)g(s), all the terms of degrees > 4 cancel out and
what remains is of degree 3.

LILI-128: LILI-128 is a stream cipher, that was submitted to the European
evaluation effort Nessie, and was subsequently rejected due to attacks [27]. A
description can be found in [26]. From Section 5.1. of [11] we know that there
are 4 equations of type f(s) - g(s) = b; - g(s) in which e = deg(g) = 2 and
d = deg(fg) = 4. For example, when ¢(s) = s448s0, anyone can verify that
f(s)g(s) is equal to the following multivariate polynomial of degree 4:

f(s) - 542580 = Saa580 (51565 + 53530 + 57530 + S12565 + S0 + 57 + S12 + S20) -

EO0: EO is the keystream generator used in the Bluetooth wireless interface [6].
We will look for some equations of the following type:

Fast Algebraic Attacks on Stream Ciphers with Linear Feedback 183

Table 1. The equations that will be used in our attacks

stream the degrees equation | number of | successive b;
cipher d | e | f type equations | per equation
|T0yocrypt|| 3 I 1 | 1 | K3Ubk! | 2 | 1 |
[LILI-128][4 | 2 | 1 [K'UbK”] 4 | 1 |
| E0 | 4] 3] 2 |[K'UBK’| 1 | 4 |

h(s) = Zb - gi o(s) + Zbibj - gi ;(s),

in which e = max(deg(g; ;)) < d = deg(h). They may be called of type K¢ U
B2?K¢ following notation of Section 2.2 or [12]. Such an equation of type K* U
B2K3, combining only 4 successive states, and eliminating all the state bits
has been found by careful study of the cipher and successive elimination done
by hand in [1,2]. In this equation we have d = 4 and e = 3. Our simulations
confirmed that this equation exists, and is always true. We also found that it
was unique (when combining only 4 consecutive states).

3.2 Summary: The Equations that will be Used in Our Attacks
Important Remark: Nothing proves that there are no better equations. For

KRy phithatbyeeinbessy Tavatrywheh Hlol 2ind: T bhatseargrodaiiliedsshar
PIShionTe etombiiiakeyespticntical BiRe dsimotddpdds withdhefollowing
destRPtead to a (fast) algebraic attack.

4 The Pre-Computation Attack on Stream Ciphers

This idea has been suggested to us by Philip Hawkes. Starting from the above
“double-decker equations” with degrees (d, e, f), we will be able to compute “ad-
hoc” equations of degree only e, by eliminating the monomials of type K¢, as
defined in Step A1.2. First, it will be done by Gaussian elimination, then by a
much faster method.

4.1 The General (Slow) Pre-computation Algebraic Attack

We assume that for a given stream cipher, we have a system of “double-decker
equations” being of type K¢ U K¢BYf, with f being small, for example in all our
attacks f < 2. We also assume that the size of these initial equations is a small
constant O(1) (for example, they are sparse or/and use a small subset of state
bits). We will write the equations in the following form

Left(L!(k)) = Right(L(k), b),

and we will put all the monomials of type K¢ on the left side, and all the other
monomials of type KB on the right side. For monomials of type K¢ we may
place them indifferently on one or the other side. Then we do the following:

184 Nicolas T. Courtois

8.

We assume that we have at least R = (Z) + (Z) ~ (Z) equations, this can be
achieved given about at most® about (Z) keystream bits.

We will do a complete Gaussian elimination of all monomials that appear
on the left sides, i.e. of all monomials of degree up to d in the k;. This is
possible because R is chosen to exceed the number of monomials. This gives

at least one linear combination « of the left-hand sides that is 0:
0= a; - Left(L'(k)).
t

Since R = (Z) + (:), we are able to produce at least (Z) such linearly

independent linear combinations. Each of them involves about (Z) left sides.
The complexity of this first step is about (Z)w to find several solutions « (we
need about (Z) solutions, and (Z) < (Z)
We apply these linear combinations to the right sides. We get a system of
equations of type Bf K¢.
0= o - Right(L'(k)).
t

For example, for Toyocrypt or LILI-128, we get:
0=> a; b -g(L'k)).
t

Similarly for EQ we get equations of the type B2K? using up to (Z) consec-
utive b;.

Now we obtain a pre-computed information (a sort of trapdoor) that consists
of (7) equations. Each of these equations is of size O((7})), this is because
we assume that the size of the initial equations is a small constant O(1).
This trapdoor information allows, given a sequence b; at the previously de-
termined positions t that were in the sequence, to compute the secret key k
by solving a system of equations of degree e instead of d.

Given a sequence b;, we substitute it to all the equations. This step about
takes O((7)) - (7)) computations.

Then we have a system of (Z) equations of degree e, that can be solved by
linearization.

The complexity of the last linearization step is about (Z)w

Remark: If all the equations are not linearly independent, the attack still works.
Simulations done in the extended version of [11] suggest that the number of
linearly dependent equations should always be negligible. Moreover, it is possible

to

see that even if we had to produce, say 10 times more equations, it would not

greatly increase the complexity of the attack.

3

As a matter of fact, here for many ciphers there will be several, say M, equations

that exist for each keystream bit. Then given about (Z) /M keystream bits, we still

get about (Z) equations as required. Unfortunately, for the fast attack described in
Section 5 below, we only know how to use one of them and will assume M = 1.

Fast Algebraic Attacks on Stream Ciphers with Linear Feedback 185

4.2 Summary: The General (Slow) Pre-Computation Attack

To summarize we have a pre-computation attack that, given (3) initial equations,

allows to compute a trapdoor information, that later for any values of b; obtained
. . . , w
from the cipher, will allow to compute the key using only roughly (%) - (%) +(?)
operations. For now, when applied with equations from Section 3.2, it does not
improve on the attacks from [11] and [1, 2], except that with the same complexity
we may do a pre-computation once, and then break the cipher again and again

with a much lower complexity.
5 The Fast Pre-Computation Attack

In this (fast) attack there are three additional requirements (or limitations):

1. The equation used has to be exactly the same for each keystream bit, mod-
ulo a variable change resulting from the fact that s = L!. For example in
the previous attack we could use, for each keystream bit b;, one or several
equations of type f(L'(k))-g(L!(k)) = b;-g(L'(k)) with different linearly in-
dependent functions g. In this attack we may only use one g that has always
to be the same.

2. The slow pre-computation attack given above, as all attacks given in [11],
will work given any subset of keystream bits. The improved (fast) attack
will require consecutive keystream bits. (The attack will also work if they
are taken at regular intervals. This amounts simply to taking a different
linear feedback function L and without loss of generality we will assume
that all the keystream bits are consecutive.)

3. Moreover we assume that the linear feedback L is non-singular, in a sense
that the sequence k, L(k), L?(k), ... is always periodic, and we will also as-
sume that this sequence has only one single cycle. This is true for all known
stream ciphers with linear feedback, in particular when they are based on
one or several maximum-length LFSRs.

When all the equations are of the form Equation(L(k)) and if all the keystream
bits are consecutive, then the system has a very regular recursive structure:

Left (/f(), ey knfl) = Right (ko, ey knfl; bo . bmfl)

Left (Lt(k’o, ey kn71)> == nght (Lt(ko, ceey knfl); bt [N bertfl)

Now we are going (for some time) to ignore the right sides of these equations.
Their left sides do not depend on the b;, they are just multivariate polynomials of
type K. If we consider at least (Z) consecutive equations, a linear dependency
« must exist. This linear dependency does not depend on the outputs b;. Let S
be the size of the smallest such linear dependency a. We have S < (Z)

One dependency is enough. Due to the recursive structure of the equations,
this dependency « can be applied at any place. Indeed we have:

186 Nicolas T. Courtois

S5-1 S5—1
VE 0= o-Left (L'(k)) = VkVYi 0= o-Left (S (k).
t=0 t=0
Moreover, since we assumed that the sequence k, L(k), L?(k), ... has one single

cycle, this dependency a does not depend on the secret key of the cipher, and
is the same for all k.

In the previous (slow) pre-computation attack we had to find (Z) linear depen-
dencies . Here we find one « and re-use it on (Z) < S successive windows of
S < (Z) equations.

5.1 Finding o Faster - LFSR Synthesis

We have shown a (well known) fact, that for every initial k, the values of the
left sides of our equations can be obtained from some LFSR of length at most
S and defined by a. We can also do the reverse: recover o from the sequence
(LFSR synthesis). It can be done given 2S5 bits of the sequence, see [19,21].
For this we choose a random key k', (o does not depend on k), and we will
compute 2S5 output bits of this LFSR ¢; = Left (L*(k")) for t = 0...25 — 1.
Then we apply the well known Berlekamp-Massey algorithm [19,21] to find the
connection polynomial of this LFSR that will be essentially «.. Done in this way,
both these steps (computing the sequence ¢; and the LFSR synthesis) will take
O(S?) operations.* However both can be improved to become essentially linear
in S.

Finding o Faster:

¢ First of all we observe that all the Li(k’) can be computed in time about
O(Sn?) and even in O(Sn) if L is composed only of a combination of LF-
SRs and MLFSRs. Then, since n < S = (Z), the time is indeed essentially
linear in S. Moreover, in many interesting cases in practice, the equations
Left (S*(k’)) are sparse or/and have a known structure that allows to com-
pute them very fast, in a time that can be assumed constant, being less than
n and therefore much smaller than S. It is the case for Toyocrypt, LILI-128
and E0. We exploit here the fact that these ciphers have been designed to
be very fast.

{ To recover a takes O(S?) computations using Berlekamp-Massey Algorithm,
but it will take only O(Slog(S)) operations using improved asymptotically
fast versions of the Berlekamp-Massey Algorithm, see [5, 14, 7]. However we
do not know how fast are these algorithms for the concrete values of S used
in this paper.

How to Use a: We recall that the same linear dependency will be used (Z)
times:

4 A quadratic time is already much faster than doing this by Gaussian elimination in
O(S%), and only this would already give the fastest attack known on all the three
stream ciphers studied in this paper.

Fast Algebraic Attacks on Stream Ciphers with Linear Feedback 187

S+4i—1
Vi 0= > o Right (S'(k);br...bmie-1) .
t=i
Since Right(t) does depend on many b;, in general a sliding subset, and the
output sequence b; is not likely to have any periodic structure, all these equations
are expected to be very different for different i. From simulations on a simpler
but similar algebraic attack on Toyocrypt done in [11], we also expect that only a
negligible number of these equations will be redundant (i.e. linearly dependent).

5.2 Summary - the Fast Pre-Computation Attack

1. Given about m = (1) 4+ () &~ (7}) consecutive keystream bits.

2. We compute the linear dependency « using an improved version of the
Berlekamp-Massey Algorithm. This step is expected to be essentially lin-
ear in S and take at most O(Slog(S) + Sn) steps with S = (7). This « is
our pre-computed information (or the trapdoor). It allows, given a sequence
b; of consecutive keystream bits, to recover the secret key k by solving a
system of equations of degree only e < d.

3. The second step takes (as before) about O((%) - (%)) + (”)w operations.

€ €

Memory Requirements: In this attack, the most memory-consuming opera-
tion will be to store the (") equations of size at most (") (we only store them

after substituting the b; by the output bits). It will be at most (2)2 bits.

6 Application to Toyocrypt, LILI-128 and EO

In this paper, write O(22°) to say that the complexity is at most C - 220 for
some constant C', yet for simplicity we did not evaluate the exact value of C.
All our results given in such form should be regarded as rough (and optimistic)
approximations.

6.1 Application to Toyocrypt

For Toyocrypt we have n = 128, d = 3, e = 1. We obtain the following attack:
¢ With a pre-computation step in O(223).
& Given 2'84 consecutive keystream bits.
¢ The secret key can be computed in about O(22°) CPU clocks and with about

2™ bits of memory.

6.2 Application to LILI-128
In the second component of LILI-128 we have n = 89, d = 4, e = 2. The sequence
will only become regularly clocked if we clock the first LFSR of LILI-128 239 — 1
steps at a time, see [11]. We get the following attack:
¢ With a pre-computation step in O(226).
& Given 2213439 x 260 consecutive keystream bits.
¢ The state of the second component can be computed in about O(23!) CPU
clocks and with about 224 bits of memory.
¢ Once the initial state of the second LFSR is recovered, the state of the first
LFSR can be found easily in less than about 22° (many thanks to Philip
Hawkes for remarking this). Indeed, once the second LFSR is known, we can

188 Nicolas T. Courtois

Table 2. The results of this paper vs. the best previous attacks

l cryptosystem | | Toyocrypt | | LILI-128 ‘ | EO
n 128 | 128 128 89 89 89 89 128 128
d 3 3 4 4 4 4 4
e 1 2 2
Attack [22] | [11] | new [11] [11] [27] | new || [1,2] | new
Data 58 518 518 918 557 546 560 5% 574
Memory 248 237 214 243 243 251 224 248 237
Pre-computation|| 2%° 0(2% 2°% 10(22%9) 0(2%%®)
Attack Cxty 204 27 10(220)|| 2% 2°7 2°5 Jo(23h)|| 2% |0(2%7)

predict any number of consecutive bits a; of the second component (without
decimation), then we may guess several (for example 20) consecutive output
bits ¢; of the first component, which determines a subsequence of the a; that
should be equal to the observed output sequence fragment b;. Our choice
will be confirmed only for on average 1 or 2 strings of 20 bits of ¢;. For each
of these (very few) cases, we will find the remaining 39 — 20 = 19 bits by the
exhaustive search.

6.3 Application to EO

For EO we have n = 128, d = 4, e = 3. Then we obtain:

¢ With a pre-computation step in O(2%%).
& Given 2234 consecutive keystream bits.

¢ The secret key can be computed in about O(24?) CPU clocks and with about
237 bits of memory.

Note: In the real-life implementation of Bluetooth cipher, at most about 2745 ~
211 bits can be obtained, see [17,6]. However this attack shows that the design
of EO is not (cryptographically) very good. It is possible that even a real-life
application of EO will be broken by our attack, if some other equations with a
smaller d are found. This possibility cannot at all be excluded, the computer
simulations only allow to explore equations that combine a few (e.g. up to 10)
output bits. Better equations may exist when more bits are combined, and may
be found by a clever elimination as in [1,2].

6.4 Summary of the Results

The fast algebraic attack gives the best attack known on three well known stream
ciphers:

Fast Algebraic Attacks on Stream Ciphers with Linear Feedback 189

7 Fast General Attacks on Stream Ciphers Using Boolean
Functions

In [11] it is shown that for any cipher with linear feedback and a non-linear
stateless filtering function that uses only a small subset of state bits, for example
k bits out of n state bits, the key can be recovered in essentially (k%)w operations,

which at most about n*% < n!-19% using the fairly theoretical result from [8]. In

practice, if we consider the Strassen’s algorithm, we get rather n'-4¥. This attack
works given any subset of (k’/LQ) keystream bits.

In this paper we show that, given less than (}) keystream bits, that (now) have to
be consecutive, we may recover the key using only essentially n* computations
instead of n'4*. In the two following subsections we will show two separate
attacks of this type that both will be better than nF«/2.

The first attack assumes that the Boolean function of the cipher is constructed in
such a way that it can be computed in constant time (for example using a table,
the usual case, otherwise the cipher is not practical !). Given (Z) consecutive
keystream bits, the key is recovered in n4+°M) computations, with d < k being
the degree of the Boolean function used. This attack can be sometimes much
faster than n*, as frequently we have d < k.

We also present a fast version of the general attack in n*% from [11], that for
ciphers using only a small subset of output bits k, (k is a small constant, e.g.

n

k = 10), will require (substantially) less than (k) consecutive keystream bits,
and about n*tM) computations.

7.1 Fast General Attack on Stream Ciphers Using Boolean
Functions of Small Degree

Theorem 7.1.1 (New General Attack on Stream Ciphers with Linear
Feedback). If the degree of the Boolean function f is d, and its output can
be computed in time O(1), then given (Z) consecutive keystream bits, one can
recover the key using only O(n?*2) operations.

All this is achieved immediately by a straightforward application of our fast
algebraic attack. The cipher is first described by the following set of equations:
f (Lt(kjo, cey kn—l)) = b;.

We will split this equation into two 0 = f(s) + by = Left(s) + Right(s, b;) with:

e Right(s, b;) containing b; and the linear part of f.

e Left(s) being exactly the part of degrees 2...d of f.
It is easy to see that, from the assumption that the computation of f is done
in constant time, the time to compute Left() will be in O(n), knowing that it
differs from f only by the linear part. Then we get the following set of equations
for some m consecutive bits t =0...m — 1:

Left (Lt(ko, ey kn—l)) = nght (Lt(ko, ey kn—l)y bt) 3 t= O7 1, 2, NN

with the left sides being of type K@ and right sizes of type K Ub, and using only
one b; each. We have “double-decker equations” with degrees (d,e, f) = (d, 1,1).

190 Nicolas T. Courtois

Table 3. Fast algebraic attack when f has degree d

Consecutive Data (3)
Memory O(n*t)
Pre-computation [O(n?+?)

Complexity [O(n®TT)

The LFSR Synthesis. Let S = (7). Let &’ be a random key. From Section
5.1, we recall that the time to compute all the L*(k’),i = 0...2S — 1 is at most
O(Sn?), and in many practical cases even O(Sn).
Since the time to compute Left(s) is O(n) computing 25 outputs Left(Lt (k"))
fort =0...25 — 1 will take time O(Sn). Then as in Section 5 we compute the
LFSR connection polynomial o which takes about O(Slog.S) operations.
Using the Pre-computed Information «. Again, as in Section 5, with a
pre-computation in time at most O(Sn? + Slog S) we get an equation in which
a linear combination of S = (Z) successive keystream bits b; is equal to a linear
combination of the k;:

51

Vit Z ayibir; = ResultingLinearCombination(ko, . . ., kn—1).

i=0
By using this equation n times for n successive windows of S keystream bits, we
get a linear system that will give the key k. The complexity of the whole fast
bréaonmhiohliod sreavillicamprrst Hhsat @dsH phmaprackiéeom Heewetitespediang
andnolhed pseniowmshaknown genekidd tithecksn be thought as essentially linear in
Enpeat ant BeiWwardetRhis fisllawiery sitapke linear attack on a stream cipher.
Such equations of size S = (Z) do always exist. Let LC of the linear complexity
of a cipher. We always have LC' < (2) and when S < LC, the existence of such
an equation of size S can be excluded. Conversely, if the linear complexity LC is
less than expected (LC < (7)), the attack described here will still work with a
complexity essentially linear in LC'. This attack shows that, ciphers in which the
Boolean functions f is of low degree and can be computed in constant time, can
be broken in time essentially linear in the linear complexity LC' of the cipher.
This is, to the best of our knowledge, has never happened before.

7.2 Fast General Attack on Stream Ciphers Using a Subset of
LFSR bits

This section improves the general attack from [11]. We consider a stream cipher
with n state bits, in which the keystream bit is derived by a Boolean function f
using only a small subset of k state bits: {z1,za,..., 2} C {s0,81,...,8n-1}. We
assume that k is a small constant and n is the security parameter. For example
in LILI-128 k£ = 10,n = 89.

As in [11] we are looking for polynomials g # 0, such that fg is of low degree,
and for this we check for linear dependencies in the set of polynomials C = AUB
defined as follows. A contains all possible monomials up to some maximum degree
d (this part will later compose fg).

Fast Algebraic Attacks on Stream Ciphers with Linear Feedback 191

A:{1,1‘1,1‘2,...,3311‘2,...}.

Then we consider all multiples of f, multiplied by monomials of the degree up
to e (this degree corresponds to the degree of g):

B:{f(x),f(x)xl,f(x)xg,,f(x)xlmg,}

Let C = AU B. All elements of A,B and C, can be seen as multivariate polyno-
mials in the z;: for this we need to substitute f with its expression in the z;. A
set of multivariate polynomials with k variables cannot have a dimension greater
than 2%. If there are more than 2* elements in our set, linear dependencies will
exist. Such linear combinations allow to find a function g of degree < e such that
f - g is of degree < d. More precisely, we will prove the following theorem that
generalizes the Theorem given in [11]:

Theorem 7.2.1 (Tradeoff Between the Degrees of fg and g).

Let f be any Boolean function f : GF(2)¥ — GF(2). For any pair of integers
(d,e) such that d + e > k there is a Boolean function g # 0 of degree at most e
such that: f(z) - g(x) is of degree at most d.

d e
s ey () wa im0 (0)

=0 =0

-S0-50-50-E00) - £0) -+

=0 =0 =0 =0

Then, since the rank of C = A U B cannot exceed 2¥, and |C| > 2* some
linear dependencies must exist. Moreover, g # 0 because there are no linear
dependencies in A, and therefore linear dependencies must combine either only
the elements of B, or both A and B. This ends the proof. O

From this we see that for any pair of integers (d,e) such that d + e > k and
for any stream cipher with linear feedback, for which the non-linear filter uses
k variables, it is possible to generate “double-decker equations” with degrees
(d,e, 1) in the n keystream bits.

With this assumption, computing Left(), and Right(), that by construction have
at most 2871 monomials, will be very fast (using a table) and given 2* bits of
memory. this will be small, because we assumed that k is a small constant, for
example for LILI-128 k = 10, 2* = 1024 is very small compared to the memory
requirements of other parts of the attack.

Then the whole LFSR, synthesis will take a time of at most O(Sn?+ Slog S). By
inspection we verify that our fast pre-computation attack gives roughly about:

192 Nicolas T. Courtois

Table 4. Fast algebraic attack when f has k inputs

| V(d,e)st.d+e>k |
Consecutive Data (n) (:

)
Memory 2]“ ()()
14+o0(1
d

Pre-computation
Complexity |O((g) (2)) + (:) “

Table 5. General attacks on LFSR-based stream ciphers using a Boolean function f

State bits n n n n
inputs of f k k k k
d k [k/2] d=deg(f) <k| k(1 -1/w)
e |k/2] 1 k(1/w)
Attack [4,16] [11] Section 7.1 Section 7.2
Data () (1i/21) (2) (k1)
Consecutive no no yes yes
Memory (:)Z ([knﬂ)d O(nth) O(nFh)
Pre-computation O(n™*?) O(nF+2
Attack Cxty OnF) O(nF7?) O(na*) O(n)

Under the condition d 4+ ¢ > k, we may assume d + ¢ = k, and we see that
very roughly: O((%) (%)) ~ n?/d! - n°/e! ~ n* - (¥). The complexity of this
attack will never be essentially lower than n*. However, to choose a bigger e will
substantially decrease the amount of keystream needed for the attack. Many
tradeoffs are possible, but two of them seem particularly interesting:

e It is easy to see that the maximum e that can be used in this attack without
increasing the complexity, is such that (7)* ~ O((%)(")) ~ n*. Thus we
have e ~ k(1/w) and then d is about k(1 —1/w). The amount of consecutive
keystream required is then about (7)) = (k(l_"l /w)).

e We may also try to achieve the smallest possible amount of keystream, which
is achieved when e = d &~ k/2, with a slower attack. It can be seen that in
this attack the fast pre-computation will not help because the final step will
be slower than the pre-computation step. Moreover, sine d = e the pre-
computation step is not necessary at all to obtain equations of degree e, and
this attack finally boils down to the general attack given in [11].

7.3 Summary - Fast General Attacks on Stream Ciphers Using
Boolean Functions

In the following table we give a simplified analysis of the complexity of the
attacks from Section 7.1 and 7.2 compared to previously known attacks.

Fast Algebraic Attacks on Stream Ciphers with Linear Feedback 193

8 Conclusion

In this paper we have studied algebraic attacks on stream ciphers with lin-
ear feedback, using overdefined systems of algebraic multivariate equations over
GF(2). This gives many interesting attacks on both stateless combiners based
on Boolean functions and also on combiners with memory. Using equations of
a very special form, and by a novel application of known asymptotically fast
results on LFSR reconstruction, we are able to propose the best attack known
so far on three important stream ciphers. All these ciphers were believed quite
secure up till very recently, now they can be broken quickly on a PC.

We also present two general algebraic attacks, for all regularly clocked ciphers
with linear feedback (e.g. using LFSRs) filtered by a Boolean function. Both may
be faster than all previously known attacks. In particular we show a surprising
result to the effect that some ciphers may be broken in time essentially linear in
their linear complexity.

There are good arguments to say that these attacks will work exactly as pre-
dicted, because one may generate as many equations as one wants, and if some
are linearly dependent, one may generate more new equations. The computer
simulations done in the extended version of [11] suggest that the number of
equations that are linearly dependent in our attacks will be negligible.

Our attacks lead to, more or less the same design criterion for stream ciphers
as proposed in [11]: the non-existence of multivariate relations of reasonable size
and low degree linking the key bits and the output bits. This criterion turns out
to be almost identical to the security criterion defined in Section 2 of [12] for
multivariate trapdoor functions, and also to the requirements advocated in [13]
for S-boxes of block ciphers. However, in this paper we show that some equations
may be found and used in a time linear (or even sub-linear) in the size of the
equations. Therefore such equations should be taken very seriously in the design
of stream ciphers, and this even for systems of equations of sizes bigger than
e.g. 280, Then, the existence of such big systems of equations cannot be a priori
excluded by computer simulations, that would be too slow.

Therefore we do not recommend using stream ciphers with linear feedback with
fairly simple clocking control. However, all algebraic attacks we are aware of,
will not work, when the connections polynomials of the LFSRs are secret, or
when the clocking is very complex and uses the full entropy of the key, and/or
when the output sequence is decimated in a very complex way (as in shrinking
generators).

Acknowledgments: The pre-computation attack on stream ciphers has been
designed following an initial idea suggested by Philip Hawkes. I also thank Fred-
erik Armknecht, Philip Hawkes, Willi Meier, Greg Rose, David Wagner, and
above all, the anonymous referees of Crypto, for their very helpful comments.

194

Nicolas T. Courtois

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

26.

27.

Frederik Armknecht: A Linearization Attack on the Bluetooth Key Stream Gen-
erator, Available on http://eprint.iacr.org/2002/191/. 13 December 2002
Frederik Armknecht, Matthias Krause: Algebraic Atacks on Combiners with Mem-
ory, in these proceedings, Crypto 2003, LNCS 2729, Springer, 2003.

Ross Anderson: Searching for the Optimum Correlation Attack, FSE’94, LNCS
1008, pp 137-143, Springer. 1994.

Steve Babbage: Cryptanalysis of LILI-128, Nessie project internal report,
https://www.cosic.esat.kuleuven.ac.be/nessie/reports/, 22 January 2001.

R. E. Blahut: Theory and Practice of Error Control Codes, Addison-Wesley, 1983.
Bluetooth CIG, Specification of the Bluetooth system, Version 1.1, February 22
2001, available from www.bluetooth.com.

R. P. Brent, F. G. Gustavson, D. Y. Y. Yun: Fast solution of Toeplitz systems of
equations and computation of Padé approximants. J. Algorithms, 1:259-295, 1980.
Don Coppersmith, Shmuel Winograd: Matrix multiplication via arithmetic pro-
gressions, J. Symbolic Computation (1990), 9, pp. 251-280.

Paul Camion, Claude Carlet, Pascale Charpin and Nicolas Sendrier, On
Correlation-immune Functions, Crypto’91, LNCS 576, pp. 86-100, Springer, 1991.
Nicolas Courtois: Higher Order Correlation Attacks, XL algorithm and Cryptanal-
ysis of Toyocrypt, ICISC 2002, LNCS 2587, Springer. An updated version (2002)
is available at http://eprint.iacr.org/2002/087/.

Nicolas Courtois and Willi Meier: Algebraic Attacks on Stream Ciphers with Linear
Feedback, Eurocrypt 2003, Warsaw, Poland, LNCS 2656, pp. 345-359, Springer. An
extended version is available at http://www.minrank.org/toyolili.pdf

Nicolas Courtois: The security of Hidden Field Equations (HFE), Cryptographers’
Track Rsa Conference 2001, San Francisco 8-12 April 2001, LNCS 2020, Springer,
pp- 266-281, April 2001.

Nicolas Courtois and Josef Pieprzyk, Cryptanalysis of Block Ciphers with Overde-
fined Systems of Equations, Asiacrypt 2002, LNCS 2501, Springer, a preprint with
a different version of the attack is available at http://eprint.iacr.org/2002/044/.
Jean-Louis Dornstetter: On the Equivalence Between Berlekamp’s and Euclid’s
Algorithms. IEEE Trans. on Information Theory. IT-33(3): 428-431. May 1987.
Eric Filiol: Decimation Attack of Stream Ciphers, Indocrypt 2000, LNCS 1977, pp.
31-42, 2000. Available on eprint.iacr.org/2000,/040.

Jovan Dj. Golic: On the Security of Nonlinear Filter Generators, FSE’96, LNCS
1039, pp. 173-188, Springer, 1996.

Jovan Dj. Golic, Vittorio Bagini, Guglielmo Morgari: Linear Cryptanalysis of Blue-
tooth Stream Cipher, Eurocrypt 2002, LNCS 2332, pp. 238-255, Springer, 2002.
Bernhard Lohlein: Attacks based on Conditional Correlations against the Nonlinear
Filter Generator, Available at http://eprint.iacr.org/2003/020/,

J. L. Massey: Shift-register synthesis and BCH decoding, IEEE Trans. Information
Theory, IT-15 (1969), 122-127.

Willi Meier and Othmar Staffelbach: Fast correlation attacks on certain stream
ciphers, Journal of Cryptology, 1(3):159-176, 1989.

Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone: Handbook of Applied
Cryptography, Chapter 6, CRC Press.

M. Mihaljevic, H. Imai: Cryptanalysis of Toyocrypt-HS1 stream cipher,

IEICE Transactions on Fundamentals, vol. E85-A, pp. 66-73, Jan. 2002. Available
at http://www.csl.sony.co.jp/ATL/papers/IEICEjan02.pdf.

Jacques Patarin: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of
Eurocrypt’88, Crypto’95, Springer, LNCS 963, pp. 248-261, 1995.

Rainer A. Rueppel: Analysis and Design of Stream Ciphers, Springer, 1986.

. Adi Shamir, Jacques Patarin, Nicolas Courtois, Alexander Klimov, Efficient Al-

gorithms for solving Overdefined Systems of Multivariate Polynomial Equations,
Eurocrypt’2000, LNCS 1807, pp. 392-407, Springer, 2000.

L. Simpson, E. Dawson, J. Golic and W. Millan: LILI Keystream Generator,
SAC’2000, LNCS 2012, pp. 248-261, Springer, 2000. See www.isrc.qut.edu.au/lili/.
Markku-Juhani Olavi Saarinen: A Time-Memory Tradeoff Attack Against
LILI-128, FSE 2002, LNCS 2365, pp. 231-236, Springer, 2002, available at
http://eprint.iacr.org/2001/077/.

