
Computing the RSA Secret Key is Deterministic

Polynomial Time Equivalent to Factoring

Alexander May

Faculty of Computer Science, Electrical Engineering and Mathematics
University of Paderborn

33102 Paderborn, Germany
alexx@uni-paderborn.de

Abstract. We address one of the most fundamental problems concern-
ing the RSA cryptoscheme: Does the knowledge of the RSA public key/
secret key pair (e, d) yield the factorization of N = pq in polynomial
time? It is well-known that there is a probabilistic polynomial time algo-
rithm that on input (N, e, d) outputs the factors p and q. We present the
first deterministic polynomial time algorithm that factors N provided
that e, d < φ(N) and that the factors p, q are of the same bit-size. Our
approach is an application of Coppersmith’s technique for finding small
roots of bivariate integer polynomials.

Keywords: RSA, Coppersmith’s method

1 Introduction

One of the most important tasks in public key cryptography is to establish the
polynomial time equivalence of

– the problem of computing the secret key from the public information to
– a well-known hard problem P that is believed to be computational infeasible.

This reduction establishes the security of the secret key under the assumption
that the problem P is computational infeasible. On the other hand, such a re-
duction does not provide any security for a public key system itself, since there
might be ways to break a system without computing the secret key.

Now let us look at the RSA scheme. We briefly define the RSA parameters:
Let N = pq be a product of two primes of the same bit-size. Furthermore, let e, d

be integers such that ed = 1 mod φ(N), where φ(N) is Euler’s totient function.
For the RSA scheme, we know that there exists a probabilistic polynomial

time equivalence between the secret key computation and the problem of fac-
toring the modulus N . The proof is given in the original RSA paper by Rivest,
Shamir and Adleman [9] and is based on a work by Miller [8].

In this paper, we present a deterministic polynomial time algorithm that on
input (N, e, d) outputs the factors p, q, provided that p and q are of the same
bit-size and that

ed ≤ N2.

In the normal RSA-case we have e, d < φ(N), since e, d are defined modulo
φ(N). This implies that ed ≤ N2 as required. Thus, our algorithm establishes the
deterministic polynomial time equivalence between the secret key computation
and the factorization problem in the most common RSA case. We reduce the
problem of factoring N to the problem of computing d, the reduction in the
opposite direction is trivial.

Our approach is an application of Coppersmith’s method [4] for finding small
roots of bivariate integer polynomials. We want to point out that some crypt-
analytic results [1, 2] are based on Coppersmith’s technique for solving modular

bivariate polynomial equations. In contrast to these, we make use of Copper-
smith’s algorithm for bivariate polynomials with a small root over the integers.
Therefore, our result does not depend on the usual heuristic for modular multi-
variate polynomial equations but is rigorous.

To the best of our knowledge, the only known application of Coppersmith’s
method for bivariate polynomials with a root over the integers is the so-called
“factoring with high bits known” [4]: Given half of the most significant bits of
p, one can factor N in polynomial time. Howgrave-Graham [6] showed that this
problem can be solved alternatively using an univariate modular approach (see
also [5]).

Since our approach directly uses Coppersmith’s method for bivariate integer
polynomials, the proof of our reduction is brief and simple.

The paper is organized as follows. First, we present in Sect. 2 a deterministic
polynomial time algorithm that factors N on input (N, e, d) provided that ed ≤

N
3

2 . This more restricted result is interesting, since RSA is frequently used with
small e in practice. Additionally, we need only elementary arithmetic in order to
prove the result. As a consequence, the underlying algorithm has running time
O(log2 N).

Second, we show in Sect. 3 how to improve the previous result to the desired
bound ed ≤ N2 by applying Coppersmith’s method for solving bivariate integer
polynomials. We conclude by giving experimental results in Sect. 4.

2 An Algorithm for ed ≤ N
3

2

In this work, we always assume that N is a product of two different prime factors
p, q of the same bitsize, wlog p < q. This implies

p < N
1

2 < q < 2p < 2N
1

2 .

We obtain the following useful estimates:

p + q < 3N
1

2 and φ(N) = N + 1 − (p + q) >
1

2
N.

Let us denote by dke the smallest integer greater or equal to k. Furthermore, we
denote by

�
∗

φ(N) the ring of invertible integers modulo φ(N).

In the following theorem, we present a very efficient algorithm that on input
(N, e, d) outputs the factors of N provided that ed ≤ N

3

2 .

Theorem 1 Let N = pq be an RSA-modulus, where p and q are of the same

bit-size. Suppose we know integers e, d with ed > 1,

ed = 1 mod φ(N) and ed ≤ N
3

2 .

Then N can be factored in time O(log2 N).

Proof: Since ed = 1 mod φ(N), we know that

ed = 1 + kφ(N) for some k ∈ � .

Next, we show that k can be computed up to a small constant for our choice of
e and d. Therefore, let us define k̃ = ed−1

N
as an underestimate of k. We observe

that

k − k̃ =
ed − 1

φ(N)
−

ed − 1

N

=
N(ed − 1) − (N − p − q + 1)(ed − 1)

φ(N)N

=
(p + q − 1)(ed − 1)

φ(N)N

Using the inequalities p + q − 1 < 3N
1

2 and φ(N) ≥ 1
2N , we conclude that

k − k̃ < 6N−
3

2 (ed − 1). (1)

Since ed ≤ N
3

2 , we know that k − k̃ < 6. Thus, one of the six values
⌈

k̃
⌉

+ i,

i = 0, 1, . . .5 must be equal to k. We test these six candidates successively. For
the right choice k, we can compute

N + 1 +
1 − ed

k
= p + q.

From the value p + q, we can easily find the factorization of N .
Our approach uses only elementary arithmetic on integers of size log(N).

Thus, the running time is O(log2 N) which concludes the proof of the theorem.

3 The Main Result

In this section, we present a polynomial time algorithm that on input (N, e, d)
outputs the factorization of N provided that ed ≤ N 2. This improves upon the
result of Theorem 1. However, the algorithm is less efficient, especially when we
get close to the bound N2.

Our approach makes use of the following result of Coppersmith [4] for finding
small roots of bivariate integer polynomials.

Theorem 2 (Coppersmith) Let f(x, y) be an irreducible polynomial in two

variables over
�
, of maximum degree δ in each variable separately. Let X, Y be

bounds on the desired solution (x0, y0). Let W be the absolute value of the largest

entry in the coefficient vector of f(xX, yY). If

XY ≤ W
2

3δ

then in time polynomial in log W and 2δ we can find all integer pairs (x0, y0)
with f(x0, y0) = 0, |x0| ≤ X and |y0| ≤ Y .

Now, let us prove our main theorem.

Theorem 3 Let N = pq be an RSA-modulus, where p and q are of the same

bit-size. Suppose we know integers e, d with ed > 1,

ed = 1 mod φ(N) and ed ≤ N2.

Then N can be factored in time polynomial in the bit-size of N .

Proof: Let us start with the equation

ed = 1 + kφ(N) for some k ∈ � . (2)

Analogous to the proof of Theorem 1, we define the underestimate k̃ = ed−1
N

of
k. Using (1), we know that

k − k̃ < 6N−
3

2 (ed − 1) < 6N
1

2 .

Let us denote x = k− k̃. Therefore, we have an approximation k̃ for the unknown
parameter k in (2) up to an additive error of x.

Next, we also want to find an approximation for the second unknown param-
eter φ(N) in (2). Note that

N − φ(N) = p + q − 1 < 3N
1

2 .

That is, φ(N) lies in the interval [N −3N
1

2 , N]. We can easily guess an estimate

of φ(N) with additive error at most 1
4N

1

2 by doing a brute-force search on the
most significant bits of φ(N).

More precisely, we divide the interval [N − 3N
1

2 , N] into 6 sub-interval of

length 1
2N

1

2 with centers N − 2i−1
4 N

1

2 , i = 1, 2, . . . , 6. For the correct choice of
i we have

∣

∣

∣

∣

N −
2i− 1

4
N

1

2 − φ(N)

∣

∣

∣

∣

≤
1

4
N

1

2 .

Let g denote the term 2i−1
4 N

1

2 for the right choice of i. That is, we know φ(N) =

N − g − y for some unknown y with |y| ≤ 1
4N

1

2 .
Plugging our approximations for k and φ(N) in (2) leads to

ed − 1 − (k̃ + x)(N − g − y) = 0.

Let us round k̃ and g to the next integers. Here we omit the rounding brackets
dk̃e, dge for ease of simplicity. Notice that the effect of this rounding on the
bounds of the estimation errors x and y can be neglected (x becomes even
smaller). Thus, we assume in the following that k̃, g are integers. Therefore, we
can define the following bivariate integer polynomial

f(x, y) = xy − (N − g)x + k̃y − k̃(N − g) + ed − 1

with a root (x0, y0) = (k − k̃, p + q − 1 − g) over the integers.
In order to apply Coppersmith’s theorem (Theorem 2), we have to bound

the size of the root (x0, y0). We define X = 6N
1

2 and Y = 1
4N

1

2 . Then, |x0| ≤ X

and |y0| ≤ Y .
Let W denote the `∞-norm of the coefficient vector of f(xX, yY). We have

W ≥ (N − g)X ≥ 3N
3

2 .

By Coppersmith’s theorem, we have to satisfy the condition XY ≤ W
2

3 . Using
our bounds, we obtain

XY =
3

2
N <

(

3N
3

2

)
2

3

≤ W
2

3 .

Thus, we can find the root (x0, y0) in time polynomial in the bit-size of W using
Coppersmith’s method. Note that the running time is also polynomial in the
bit-size of N since W ≤ NX = 6N

3

2 . Finally, the term y0 = p + q − 1− g yields
the factorization of N . This concludes the proof of the theorem.

We want to point out that Theorem 3 can be easily generalized to the case,
where p+ q ≤ poly(log N) ·N

1

2 . I.e., we do not necessarily need that p and q are
of the same bit-size. All that we have to require is that they are balanced up to
some polylogarithmic factor in N .

The following theorem is a direct consequence of Theorem 3. It establishes
the polynomial time equivalence of computing d and factoring N in the common
RSA case, where e, d ∈

�
∗

φ(N).

Theorem 4 Let N = pq be an RSA-modulus, where p and q are of the same

bit-size. Furthermore, let e ∈
�
∗

φ(N) be an RSA public exponent.

Suppose we have an algorithm that on input (N, e) outputs in deterministic

polynomial time the RSA secret exponent d ∈
�
∗

φ(N) satisfying ed = 1 mod φ(N).
Then N can be factored in deterministic polynomial time.

4 Experiments

We want to provide some experimental results. We implemented the algorithm
introduced in the previous section on an 1GHz Linux-PC. Our implementation
of Coppersmith’s method follows the description given by Coron [4]. L3-lattice
reduction [7] is done using Shoup’s NTL library [10].

We choose e < φ(N) randomly. Therefore, in every experiment the product
ed is very close to the bound N 2. Notice that in Theorem 3, we have to do a
small brute-force search on the most significant bits of φ(N) in order to prove
the desired bound. The polynomial time algorithm of Coppersmith given by
Theorem 2 requires a similar brute-force search on the most significant bits.

In Table 1, we added a column that states the total number c of bits that one
has to guess in order to find a sufficiently small lattice vector. Thus, we have to
multiply the running time of the lattice reduction algorithm by a factor of 2c.
As the results indicate, the number c heavily depends on the lattice dimension.
Coppersmith’s technique yields a polynomial time algorithm when the lattice
dimension is of size θ(log W). However, we only tested our algorithm for lattices
of small fixed dimensions 16, 25 and 36.

Our experiments compare well to the experimental results of Coron [3]: One
cannot come close to the bounds of Coppersmith’s theorem without reducing
lattices of large dimension. Notice that we have to guess a large number of bits.
In contrast, by the proof of Coppersmith’s theorem (see [4]) the number of bits
that one has to guess for lattice dimension θ(log W) is a small constant. However,
it is a non-trivial task to handle lattices of these dimensions in practice.

Table 1. Results for ed ≈ N2

N c dim L3-time

512 bit 55 bit 16 0.5 min

512 bit 43 bit 25 6 min

512 bit 36 bit 36 53 min

768 bit 80 bit 16 1 min

768 bit 63 bit 25 13 min

768 bit 53 bit 36 128 min

1024 bit 105 bit 16 2.5 min

1024 bit 82 bit 25 26 min

1024 bit 67 bit 36 242 min

One might conclude that our method is of purely theoretical interest. But let
us point out that we have a worst case for our approach when the product ed is
very close to the bound N2. In Table 2, we provide some more practical results
for the case ed ≈ N1.75.

Table 2. Results for ed ≈ N1.75

N c dim L3-time

512 bit 10 bit 25 6 min

768 bit 13 bit 25 13 min

1024 bit 18 bit 25 26 min

References

1. D. Boneh, G. Durfee, “Cryptanalysis of RSA with private key d less than N 0.292”,
IEEE Trans. on Information Theory, Vol. 46(4), pp. 1339–1349, 2000

2. J. Blömer, A. May, “New Partial Key Exposure Attacks on RSA”, Advances in
Cryptology – Crypto 2003, Lecture Notes in Computer Science Vol. 2729, pp. 27–43,
Springer-Verlag, 2003

3. Jean-Sébastien Coron, “Finding Small Roots of Bivariate Integer Polynomial Equa-
tions Revisited”, Advances in Cryptology – Eurocrypt ’04, Lecture Notes in Com-
puter Science Vol. 3027, pp. 492–505, Springer-Verlag, 2004

4. D. Coppersmith, “Small solutions to polynomial equations and low exponent vul-
nerabilities”, Journal of Cryptology, Vol. 10(4), pp. 223–260, 1997.

5. D. Coppersmith, “Finding Small Solutions to Small Degree Polynomials”, Cryp-
tography and Lattice Conference (CaLC 2001), Lecture Notes in Computer Science
Volume 2146, Springer-Verlag, pp. 20–31, 2001.

6. N. Howgrave-Graham, “Finding small roots of univariate modular equations revis-
ited”, Proceedings of Cryptography and Coding, Lecture Notes in Computer Science
Vol. 1355, Springer-Verlag, pp. 131–142, 1997

7. A. K. Lenstra, H. W. Lenstra, and L. Lovász, ”Factoring polynomials with rational
coefficients,” Mathematische Annalen, Vol. 261, pp. 513–534, 1982

8. G. L. Miller, “Riemann’s hypothesis and tests for primality”, Seventh Annual ACM
Symposium on the Theory of Computing, pp. 234–239, 1975

9. R. Rivest, A. Shamir and L. Adleman, “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems”, Communications of the ACM, Vol. 21(2), pp.120–
126, 1978

10. V. Shoup, NTL: A Library for doing Number Theory, online available at http://
www.shoup.net/ntl/index.html

