
An Improved Correlation Attack Against

Irregular Clocked and Filtered Keystream

Generators

H̊avard Molland and Tor Helleseth

The Selmer Center??

Institute for Informatics,
University of Bergen,

Norway

Abstract. In this paper we propose a new key recovery attack on ir-
regular clocked keystream generators where the stream is filtered by a
nonlinear Boolean function. We show that the attack is much more ef-
ficient than expected from previous analytic methods, and we believe it
improves all previous attacks on the cipher model.

Keywords: Correlation attack, Stream cipher, Boolean functions, Irreg-
ular clocked shift registers.

1 Introduction

In this paper we present a new key recovery correlation attack on ciphers based
on an irregular clocked linear feedback shift register (LFSR) filtered by a Boolean
function. The cipher model we attack is composed of two components, the clock
control generator and the data generator and is shown in Fig. 1.

– The data generator sub system consists of LFSRu of length lu and the non-
linear multivariate function f . The internal state of LFSRu is filtered by a
Boolean function f . The output from f is the high linear complexity bit
stream v.

– The clock control sub system consists of LFSRs of length ls where the output
from LFSRs is sent through the clock function D(). The output from D() is
the clock control sequence of integers, c, which is used to clock LFSRu.

The effect of the irregular clocking is that v is irregularly decimated and the
positions of the bits in the stream are altered. The result from this decimation
is the keystream z. The secret key in this cipher is the (lu+ls) initialization bits
for LFSRu and LFSRs (Iu, Is).

To attack this encryption scheme we need to know the positions the keystream
bits z had in the stream v before v was irregularly decimated. The previous effec-
tive algorithms are not specially designed to attack irregular clocked and filtered

?? This work was supported by the Norwegian Research Council.

D

LFSR s

c

u
LFSR u

s

z=Q(c,v)

f

v
Q(c,v)

Fig. 1. The general cipher model we attack in this article

generators. But there exist effective attacks on the data generator sub system[6,
1, 10, 3, 4]. To deal with the irregular clocking, one of two techniques are often
used:

1. Do the attack on the data generator 2ls times[7]. The attack is done
one time for each guess for the 2ls possible initialization states for LFSRs. If
the attack on the sub system has complexity O(K) the full attack will have
complexity O(K · 2ls).

2. Ignore the clock control generator[3, 14, 4]. If the attack on the data
generator subsystem needs M keystream bits, we can use the fact[14] that
we know the original v position of every 2ls −1 bit in the keystream z. Thus
we can only use every 2ls − 1 keystream bit in the attack, which means that
we need (2ls − 1) ·M keystream bits to succeed.

None of these techniques are optimal. The first one leads to large runtime com-
plexity, the second leads to the need for a large number of keystream bits.

Our attack is not designed to attack the data generator subsystem only, but
is especially aimed at irregular clocked and filtered keystream generators as one
system. First we guess the initialization state Is for LFSRs. From this we can
reconstruct the positions the bits in z had in v. Using the iteration algorithm
from[11] this reconstruction is done using just a couple of operations per guess,
exploiting the cyclic redundancies in LFSRs. This method is fully explained in
Section 4.3. This method gives the guess v∗ = (.., ∗, zi, ..., zj , ...∗, ..., zk, ..., ∗, ...),
where zi, zj , zk are some keystream bits and the stars are the deleted bits. Then
we test v∗ to see if it is likely that the stream is generated by the data generator
subsystem LFSRu and f. Hence, we only use a distinguisher test on the the v∗

stream to decide if the guess for Is is correct. This is easier than to actually
decode the v∗ stream to find Iu, and then decide if we have found the correct
Is. When Is is determined, we can use one of the previous attacks on the data
generator sub system to determine Iu.

The distinguisher test is to evaluate a large number m of low weight parity
check equations on the bit stream v∗. All equations are derived from one mul-
tiple h(x) of weight 4 of the generator polynomial gu(x). Surprisingly this test
works much better than expected from previous evaluation methods. In previ-
ous correlation attacks, the Piling up lemma[9] is often used to calculate the
correlation[1, 7, 6] which the algorithm must decode. Since our algorithm only
uses a distinguisher on v∗ we can use a correlation property of the function f

which gives much higher correlation between v∗ and the keystream z. Thus we
need fewer parity check equations. This correlation property exists even if the
function is correlation immune in the normal sense.

Our attack has complexity O(2ls ·m), independently of the length of LFSRu.
A cipher based on the model we attack in this paper is LILI-128. To attack the
LILI-128 cipher our algorithm needs about 223 parity check equations. In LILI-
128, ls = 39, thus the runtime for our attack is 239+23 ≈ 262 parity checks, with
virtually no precomputation. We have implemented and tested the attack, and
it works on computers having under 300 MB of RAM, and needs only around
68 Mbyte of keystream data. The precomputation has low runtime complexity
and is negligible. When Is is found, we can use one of the previous algorithms
to attack the data generator sub system.

A comparable previous correlation attack by Johansson and Jönsson is pre-
sented in [7]. The runtime for the attack is 271 parity checks and the precom-
putations is 279 table lookups. The keystream length is approximately 230. This
attack uses the first technique to handle the irregular clocking.

Recently new algebraic attacks have been proposed by Courtois and Meier[3,
4]. This attack uses the second technique to handle the irregular clocking in
LILI-128. Although the attack has an impressive runtime complexity 231 ·C (an
optimistic estimation for some unknown constant C), the attack needs about 260

keystream bits to succeed, which is unpractical.
There is also a time-memory trade-off attack against LILI-128 by Markku-

Juhani Olavi Saarinen[14]. This attack needs approximately 251.4 bits of com-
puter memory and 246 keystream bits. The runtime complexity is claimed to be
248 DES operations, which is not easy to compare with our runtime complexity.
But the high use of computer memory and keystream bits also makes this attack
unpractical.

2 A Correlation Property of Nonlinear Functions

Let V = F n
2 and let f be a balanced Boolean function from V to F2. We start

by analyzing the boolean function f(x) for a correlation property that we will
use in the attack. A similar property is analyzed in [18] where they look at the
nonhomomorphicity of functions. In this paper we identify the probability

p = P (f(x1) + f(x2) + f(x3) + f(x4) = 0 | x1 + x2 + x3 + x4 = 0) (1)

which is crucial for our attacks success rate.

2.1 The Correlation Property

Let q = 2n and let a·b =
∑n

i=1 aibi denote the inner product of a = (a1, a2, . . . , an)
and b = (b1, b2, . . . , bn). Define the Walsh coefficients of f by

f̂(a) =
∑

x∈V

(−1)f(x)+a·x.

Lemma 1. Let f be a function from V = F n
2 to F2 and let xi ∈ F n

2 for i =
1, 2, 3, 4. Let q = 2n and let N denote the number of solutions of

x1 + x2 + x3 + x4 = 0 (2)

f(x1) + f(x2) + f(x3) + f(x4) = 0. (3)

Then

N =
q3

2
+

1

2q

∑

a∈V

f̂(a)4. (4)

Proof. Each term in the sum below gives a contribution 2q for each solution of
the system of equations, and zero otherwise. Therefore, we have

2qN =
∑

x1,x2,x3,x4∈V

(
∑

a∈V

(−1)a·(x1+x2+x3+x4))(

1∑

y=0

(−1)y(f(x1)+f(x2)+f(x3)+f(x4)))

=
∑

a∈V

1∑

y=0

∑

x1,x2,x3,x4∈V

(−1)yf(x1)+···+yf(x4)+a·x1+···+a·x4

=
∑

a∈V

1∑

y=0

(
∑

x∈V

(−1)yf(x)+a·x)4

= q4 +
∑

a∈V

f̂(a)4,

where the first term comes from the case y = 0 and a = 0, and the last term
from the case y = 1.

Corollary 1. If f(x) is a balanced function then the number of solutions N of
the system of equations above is,

N ≥
q3

2
+

q3

2(q − 1)
.

Proof. Since f(x) is balanced we obtain f̂(0) =
∑

x∈V (−1)f(x) = 0. It follows

from Parseval’s identity that the average value of f̂(a)2 is q2

q−1 . Hence, it follows

from the Cauchy-Schwartz inequality that
∑

a∈V f̂(a)4 ≥ (q − 1) q4

(q−1)2 , which

substituted in the lemma above gives the result.

Corollary 2. The expected number of solutions N of the system of equations
above is,

E(N) =
q3

2
+

3q2 − 2q

2
.

Proof. An average estimate of N can be found as follows. When there exist two
equal vectors xi1 = xi2 in Equation (2), the two other vectors xi3 , xi4 will also
be equal. When this occurs it follows that the Equation (3) will sum to zero.

This gives the unbalance that causes the high correlation. Equation (2) implies
x4 = x1 + x2 + x3 Then there are q(q − 1)(q − 2) triples in x1,x2,x3 where all
the xi’s are distinct and there are therefore 3q2−2q triples with one or two pairs
xi1 = xi2 . Using this fact and substituting Equation (2) into Equation (3), we
can write

2N =
∑

x1,x2,x3∈V

1∑

y=0

(−1)y(f(x1)+f(x2)+f(x3)+f(x1+x2+x3))

= q3 +
∑

x1,x2,x3∈V

(−1)f(x1)+f(x2)+f(x3)+f(x1+x2+x3)

= q3 + (3q2 − 2q) +
∑

x1,x2,x3 distinct∈V

(−1)f(x1)+f(x2)+f(x3)+f(x1+x2+x3).

Since for an arbitrary function f we can expect that f(x1), f(x2), f(x3), and
f(x1 +x2 +x3) take on all binary quadruples approximately equally often when
x1 6= x2 6= x3 6= x1, we expect in the average the last term to be 0. This implies
the result.

Corollary 3. Let f be an arbitrary balanced function, and let p denote the prob-
ability

p = Prob(f(x1) + f(x2) + f(x3) + f(x4) = 0 | x1 + x2 + x3 + x4 = 0),

then p is expected to be E(p) = 1
2 + 3q−2

2q2 and its minimum is pmin ≥
1
2 + 1

2(q−1) .

Proof. Since Equation (2) has q3 solutions, it follows from Corollary 1 that the

expected probability is equal to E(p) = E(N)
q3 = 1

2 + 3q−2
2q2 . Further from Corollary

2 we obtain that the minimum is pmin ≥ (q3

2 + q3

2(q−1))/q3 = 1
2 + 1

2(q−1) .

Corollary 4. Given a specific balanced function f , the probability

p = Prob(f(x1) + f(x2) + f(x3) + f(x4) = 0 | x1 + x2 + x3 + x4 = 0),

is p = 1
2 +

∑
a∈V

f̂(a)4

2q4

Proof. Using the N from Lemma 1 we get p = N
q3 = 1

2 +

∑
a∈V

f̂(a)4

2q4

It is straightforward to extend Lemma 1 to compute the number of common
solutions of the two equations

x1 + x2 + · · ·+ xw = 0

f(x1) + f(x2) + · · ·+ f(xw) = 0.

and show that the corresponding probability

Prob(f(x1) + f(x2) + · · ·+ f(xw−1) = 0 | x1 + x2 + · · ·+ xw−1 = 0),

equals p = 1
2 +

∑
a∈V

f̂(a)w

2qw , which reduces to the result of Corollary 4 when
w = 4.

In the case w = 3, we can calculate the expected value of a balanced Boolean
function, with a given f(0), to be E(p) = 1

2 + 3q−2
2q2 (−1)f(0). This implies that

the bias is the same for the case w = 3 as for w = 4. Similar arguments for
equations with w ≥ 5 show that these equations give too low correlation, which
would lead to a high runtime complexity for our attack. It turns out that for
w = 3 the attack needs much more keystream bits to succeed, see the Sections
4.1 and 5.2. Since the correlation bias is exactly the same for w = 3 and w = 4
it is optimal to use w = 4.

2.2 Analysis of Some Functions

In Table 1 we have analyzed some functions using Corollary 4. This correlation
is surprisingly high. Let papp = 0.53125 be the best linear approximation to
the LILI-128 function. Due to the design of the previous attacks[6, 7, 10] the
channel noise has been independent of the stream u generated by LFSRu. Thus
the Piling up lemma [9], ppil = 1

2 + 2w−1(1
2 − papp)

w, is used to evaluate the
crossover correlation 1−ppil which the algorithms must be able to decode. Using
the Piling up lemma for weight w = 4 equations, the correlation ppil for LILI-128
will be ppil = 0.50000763. From Table 1 we have the correlation p = 0.501862.

Table 1. The probability P (f(x1)+f(x2)+f(x3)+f(x4) = 0 | x1 +x2 +x3 +x4 = 0)
calculated for some given functions. E(p) is the expected correlation for given q = 2n

and p is the actual correlation for the given function

Function Number of Best linear E(p) p

inputs bits n approximation.

Geffe function 2 0.75 0.671875 0.625

LILI-128 10 0.53125 0.501464 0.501862

LILI-II 12 0.51367 0.500366 0.500190

The reason for the higher correlation, is that our attack only uses a distinguisher
on the data generator sub system, and not a complete decoder. Hence, in our key
recovery attack on the clock control system, we can use Corollary 4 from Section
2.1 to calculate the correlation. To test the corollary we generated 2000 random
and balanced Boolean tables for n = 10, and calculated the average correlation.
The result was that the average p was 0.501466 which is close to the theoretical
expected E(p) = 0.5001464.

3 A General Model

Here we define a general model for irregular clocked and filtered stream ciphers,
and some well known properties for the model.

3.1 General Model

Let gu(x) and gs(x) be the feedback polynomials for the shift registers LFSRu

of length lu and LFSRs of length ls. We let Is = (s0, s1, ..., sls−1) and Iu =
(u0, u1, ..., ulu−1) be the initialization states for LFSRs and LFSRu. The initial-
ization states (Is, Iu) define the secret key for the given cipher system.

From gs(x) we can calculate a clock control sequence c in the following way.
Let ct = D(Lt

s(Is)) ∈ {a1, a2, ..., aA} , aj ≥ 0, be a function where the input
Lt

s(Is) is the inner state of LFSRs after t feedback shifts and A is the number of
values that ct can take. Let pj be the probability pj = Prob(ct = aj).

LFSRu produces the stream u = (u0, u1, ...) which is filtered by f . The output
from f is vk = f(uk+i0 , uk+i1 , ..., uk+in−1

), or the equivalent vk = f(Lk
u(Iu)). The

clock ct decides how many times LFSRu is clocked before the output bit vk is
taken as keystream bit zt. Thus the keystream zt is produced by zt = vk(t),
where k(t) is the total sum of the clock at time t, that is k(t) ← k(t − 1) + ct.
This gives the following definition for the clocking of LFSRu.

Definition 1. Given bit stream v and clock control sequence c, let z = Q(c,v)
be the function that generates z of length M by

Q(c,v) : zt ← vk(t), 0 ≤ t < M

where k(t) =
∑t

j=0 cj − 1.

If aj ≥ 1, 1 ≤ j ≤ A, the function Q(c,v) can be considered as a deletion
channel with input v and output z. The deletion rate is

Pd = 1−
1

∑A
j=1 pjaj

. (5)

The D() function described above can in this model be among others the shrink-
ing generator, the step-1/step-2 generator and the stop and go generator. Next
we define the (not complete) reverse of Definition 1.

Definition 2. Given the clock control sequence c and keystream z, let the func-
tion v∗ = Q∗(c, z) be the (not complete) reverse of Q, defined as

Q∗(c, z) : v∗k(t) ← zt, 0 ≤ t < M,

where k(t) =
∑t

j=0 cj−1, and vk = ∗ for the entries k in v∗ where v∗

k is deleted.
When this occurs we say that v∗

k is not defined.

The length of v∗ will be N∗ =
∑M−1

j=0 cj . Given a stream z of length M , the
expected length N of the stream v is

E(N) =
M

(1− Pd)
= M

A∑

j=1

pjaj . (6)

Note that the only difference between this definition and Definition 1, is that v

and z have switched sides. Thus Q∗(c, z) is a reverse of Q(c,v). But since some
bits are deleted, the reverse is not complete and we get the stream v∗.

The probability for a bit v∗

k being defined is Prob(v∗

k) = 1−Pd. This happens
when k = k(t) holds for some t, 0 ≤ t < M . It follows that the sum v∗

k + v∗k+j1
+

... + v∗k+jw−1
will be defined if and only if all of the bits in the sum are defined.

Thus the sum will be defined for given k in v∗ with probability

Pdef = (1− Pd)w. (7)

4 The Attack

4.1 Equations of Weight 4

To succeed with our attack we need to find exactly one weight 4 equation

λu : uk + uk+j1 + uk+j2 + uk+j3 = 0 (8)

that holds over all u generated by LFSRu for k ≥ 0. This corresponds to finding a
multiple h(x) = a(x)gu(x) of weight 4. There exist several algorithms for finding
such a multiple, see among others [13, 2, 5, 17, 12].

In this paper we use the fast search algorithm in [12, 11], which is a modified
version of the David Wagner’s Generalized Birthday Algorithm[17]. If the stream
u has length N , this algorithm has runtime complexity O(N log N) and memory
complexity O(N), where N is of order 2lu/3 . The algorithm is effective in practice,
and we have succeeded in finding multiples of the generator polynomial of high
degree, see Section 6.3 for an example. We refer to Appendix C in [11] for the
details for this search algorithm.

Next, we let the input vector xk to the Boolean function f(x) be

xk = (uk+i0 , uk+i1 , ..., uk+in−1
), (9)

where (i0, i1, ..., in−1) defines the tapping positions from the internal state Lk
u(Iu)

of LFSRu after k feedback shifts. Substituting the vector (9) into the Equation
(8) we have that xk + xk+j1 + xk+j2 + xk+j3 = 0 always holds for k ≥ 0. Since
vk = f(xk) we have from Corollary 4 that the equation

λv : vk + vk+j1 + vk+j2 + vk+j3 ≈ 0, (10)

will hold for k ≥ 0 with probability p = 1
2 +

∑
a∈V

f̂(a)4

2q4 .

Remark 1. In [8] the multiple of gu(x) of weight w = 3 is exploited to define
an iterative decoding attack on regularly clocked LFSRs filtered by Boolean
functions. The constrained system

w−1∑

a=0

xk+ja = 0 (11)

zk+ja = f(xk+ja), 0 ≤ a < w

is analyzed. This system is similar to the one we use in this paper, but it is used
differently. Since there are limited solutions to this system, the a posteriori prob-
abilities for each of the input bits (uk+ja+i0 , uk+ja+i1 , ..., uk+ja+in−1

) in xk+ja

can be calculated. Then these probabilities are put into a Gallager like prob-
abilistic decoding algorithm(SOJA) which outputs Iu. However the correlation
property in Corollary 4 is neither identified or exploited in [8].

4.2 Naive Algorithm

Let Îs be a guess for the initialization state Is. Given the keystream z of length
M , we generate ĉt = D(Lt

s(̂Is)), 0 ≤ t ≤ M and v̂∗ = Q∗(ĉ, z) of length
N ≈

∑
M−1

t=0
ĉi
t. Then we test if v̂∗ is likely to have been generated by LFSRu

using the following method.
Find m entries in v̂∗ where the equation is defined. From this we get a set of

m equations. We test the m equations, and let the metric for the guess be the
number of equations that hold. When we have the correct guess for Is we expect
pm of the equations to hold, where p is calculated using Corollary 4. Thus, this
is a maximum likelihood decoding algorithm.

The runtime complexity for the attack will be of order 2ls · (m + N), since
we have to generate the bit stream v̂∗ of length N for each of the 2ls guesses. In
a real attack, N will be a large number and the naive algorithm will have very
high runtime complexity.

4.3 Some Observations

If we use the technique in the previous section the attack has the runtime
2ls · (m + N). In [11, Sec. 3.3] two important observations were made that re-
duce the complexity down to 2ls ·m. Since N � m, these observations will speed
up the attack considerably. We start with an initial guess I0

s = (1, 0, ..., 0) and
let the i’th guess be the internal state of LFSRs after i feedback shifts, that is
Ii
s = Li

s(I
0
s).

Let ci = (ci
0, c

i
1, ..., c

i
M−1) be the i’th guess for the clock control sequence

defined by ci
t = D(Li+t

s (1, 0, ..., 0)), 0 ≤ t < M . Let vi = Q∗(ci, z) be the
corresponding guess for v∗ of length Ni =

∑M−1

t=0
ci
t. We can now give a iterative

method for generating vi+1 from vi.

Lemma 2. We can transform vi into vi+1 = Q∗(ci+1, z) using the following
method: Delete the first ci

0 entries (∗, ..., ∗, z0) in vi, append the ci+1
M−1 = ci

M

entries (∗, ..., ∗, zM) at the end, and replace zt with zt−1 for 1 ≤ t ≤M .

Proof. See Appendix B.1 in [11].

Lemma 2 shows that we can generate each vi using just a few operations instead
of N operations, when implemented properly (See Appendix A.1 for the imple-
mentation details). This gives a fast method for generating all possible guesses
for v∗ given a keystream z. But using this lemma we still have to search for m

entries in v∗ where the equations are defined. Since on average we must search
through 1/Pdef entries in v∗ per equation, we want to avoid this search. In the
next theorem we show how this can be done. The theorem proves that we can
reuse the equation set for vi in vi+1.

Theorem 1. If the sum

vk + vk+k1
+ ... + vk+kw−1

= zt + zt+j1 + ... + zt+jw−1
= γz,t

is defined over vi, then the sum

vk−ci
0

+ ... + vk+kw−1−ci
0

= zt−1 + zt+j1−1... + zt+jw−1−1 = γz,t−1

is defined over vi+1.

Proof. See Appendix B.2 in [11].

The main result from this theorem is that the equation set defined over vi will
be defined over vi+1 when we shift the equations ci

0 entries to the left over vi+1.
This means that we can just shift the equations one entry to the left over z, and
we will have a sum that is defined for the guess Îs = D(Li+1

s (1, 0, ..., 0). Thus,
the theorem shows that we can avoid a lot of computations if we let the i’th
guess for the inner state of LFSRs be Li

s(1, 0, ..., 0).

Remark 2. To use the lemma and theorem above we do not put the actual bit
values zt and restore them to the position k(t) in v∗ given by Q∗(c, z). Instead
we store the index zt (the pointer to the position t in z) in vk(t). This means
that v∗k(t) holds the position t, which the keystream bit zt have in z. But when
we evaluate an equation we use the indices to put in the actual bit values.

4.4 An Efficient Algorithm

Assume we have found an equation λv : vk + vk+j1 + vk+j2 + vk+j3 ≈ 0. The
equation holds over v with probability p calculated using Corollary 4. Let the
first guess for the initialization state for s be I0

s = (1, 0, 0, ..., 0), generate c0

by c0
t = D(Lt

s(1, 0, ...0)), t < M , and v0 = Q∗(c0, z). Next we try to find m
entries (k1, k2, ..., km) in v0 where the equation λv is defined. From this we get
the equation set

v0
k1

+ v0
k1+j1

+ v0
k1+j2

+ v0
k1+j3

≈ 0

v0
k2

+ v0
k2+j1

+ v0
k2+j2

+ v0
k2+j3

≈ 0
...

...
v0

km
+ v0

km+j1
+ v0

km+j2
+ v0

km+j3
≈ 0.

(12)

Since every vkx+jy in this equation set is defined in v0 and zt = vk(t), we can
replace vkx+jy with the corresponding bit ztx from the keystream z. Thus, v0 is
a sequence of pointers to z and we can write the equations over z as the equation
set Ω :

zt1,1 + zt1,2 + zt1,3 + zt1,4 ≈ 0
zt2,1 + zt2,2 + zt2,3 + zt2,w ≈ 0

...
...

ztm,1 + ztm,2 + ztm,3 + ztm,w ≈ 0.

(13)

We are now finished with the precomputation. Let metricbest be the number of
equations in Ω that hold. We iterate as follows:

Input The keystream z of length M , the equation λ, the equation set Ω, the
index sequence v0, the states L0(1, 0, ...0) and LM (1, 0..., 0), and let i← 0.

1. Calculate ci+1
M−1 = ci

M = D(LM+i
s (1, 0, ..., 0)).

2. Use Lemma 2 to generate vi+1 = Q∗(ci+1, z) and lower all indexes in the
equation set Ω by one. Theorem 1 guarantees that the equations are defined
over vi+1.

3. If the first equation in Ω gets a negative index, then remove the equation
from Ω. Find a new index at the end of vi+1 where λ is defined, and add
the new equation over z to Ω.

4. Calculate metric as the number of equations in Ω that hold.
5. If metricbest > metric, set metricbest ← metric and Ii

s = Li
s(10, 0, ...0).

6. Set i← i + 1 and go to step 1.
7. Output Ii

s as the initialization state for LFSRs.

Remark 3. The algorithm is presented this way to make it readable and to show
the basic idea. To reach the complexity O(2ls ·m) a few technical details on the
implementation of the algorithm are needed. These details are given in Appendix
A.

5 Theoretical Properties

5.1 Success Formula

We can let an (unusual) encoder be defined by removing the Boolean function
from the cipher. Then we can use coding theory to evaluate the attack. Let the
initialization state Is for LFSRs define the information bits in such a system.

Let y = (y0, y1, ..., yM−1) be the (not filtered) irregular clocked stream from
LFSRu, that is y = Q(c,u) and ct = D(Lt

s(Is)). Then the bitstream y defines
the codeword that is sent over a noisy channel. Let the keystream z = Q(c,v)
(the filtered version of y) be the received codeword.

Assume we have the wrong guess for Is, then approximately m/2 of the equa-
tions in the set (13) will hold. Now assume we have have guessed the correct Is.
According to the observation in Section 2.1 the equations in the set (13) will hold

with probability p = 1
2 +

∑
a∈V f̂(a)4/2q4, independently of the initialization bits

Iu.

Let p define the channel ’noise’. The uncertainty is defined by H(p) =
−p log p−(1−p) log(1−p), and the channel capacity is given by C(p) = 1−H(p).
We can approximate C(p) with C(p) ≈ 2(p− 1

2)2/ ln 2. Following Shannon’s noisy
coding theorem we can set up this bound for success.

Proposition 1. The attack will succeed with probability > 1
2 if the number of

parity check equations m is

m > m0 =
ls

C(p)
≈

0.347ls

(p− 1
2)2

where p ≈ 1
2 +

∑
y∈V f̂(y)4/2q4 and q = 2n, where n is the number of input bits

in f(x).

When m is close to 2 ·m0 we expect the probability for success to be close to 1,
see [15]. The simulations of our algorithm show that if we set m = 2.1 ·m0 the
success rate is approximately 99%.

5.2 Keystream Length

If the generator polynomial gu(x) has weight w > 4, we must find a multiple
h(x) of gu(x) of weight 4 and a degree lh. We need at least the v stream to be
of length lh. In addition, to find m entries in v where the equation is defined v

must at least have length
N > lh + m/Pdef . (14)

From the expectation (6) of N we get E(M) = N(1−Pd) = (1−Pd)lh +m/(1−
Pd)3, which proves the following proposition:

Proposition 2. Let an equation over v be defined by h(x) of weight 4 and degree
lh. To obtain an equation set Ω of m equations over z, the length of the z stream
must be

M > (1− Pd)lh + m/(1− Pd)3. (15)

The keystream length M depends on the number of equations m, the deletion
rate Pd and the degree lh of h(x) . The degree lh is then again highly dependent
on the search algorithm we use to find h(x). When we use the search algorithm
in [11, 17] the degree lh of gh(x) will be of order lh = 2(2+lu)/3, which is close to
the theoretical expected degree 2lu/(w−1) [5] for w = 4.

5.3 Runtime Complexity

The runtime complexity for our attack is

O(2ls ·m) = O(
2ls · ls

(p− 1
2)2

) (16)

parity check tests, where p is calculated using Corollary 4. Note that the runtime
is independent of the length lu of LFSRu.

5.4 Memory Complexity

If we implement the attack directly as described in Sections 4.3 and 4.4 the
algorithm will need around 32N +4∗32m bits of computer memory. The reason
for the 32N term is that vi = z0, ∗, ∗, z1, z2, ..., ∗, zM−1 of length N is a sequence
of pointers of 32 bits. In appendix A.2 we show how we can store vi using
N memory bits without affecting the runtime complexity. The total amount of
memory bytes needed is then

N

8
+ 16m (17)

6 Simulations of the Attack

The LILI-128 cipher[16] is based on the general model we attack in this paper.
To be able to compare our attack with previous attacks, we have tested the
attack on this cipher.

6.1 The LILI-128 cipher

In the LILI cipher the clock control generator is defined by

gs(x) = x39 + x35 + x33 + x31 + x17 + x15 + x14 + x2 + 1,

and ct = D(st+12, st+20) = 1 + st+12 + 2st+20. The data generator sub system is

gu(x) = x89 + x83 + x80 + x55 + x53 + x42 + x39 + x + 1,

and vk = f(uk, uk+1, uk+3, uk+7, uk+12, uk+20, uk+30, uk+44, uk+65, uk+80), de-
fined by a Boolean table of size 1024. Further on we get Pd = 0.6, and Pdef =
0.0256 for w = 4, and p = 0.501862. The number of keybits in the secret key
(Is, Iu) is 39 + 89 = 128.

6.2 Simulations

We have done the simulations on some versions of the LILI-128 cipher with
LFSRs of different lengths to empirically verify the success formula in Section
5.1. See Table 2 for the simulations. Note that we use the full size LFSRu from
the LILI cipher in the three attacks in the bottom of the table. For ls = 11 and
p = 0.501862 we get m0 = 1.1 · 106.

We have implemented the attack in C code using the Intel icc compiler on a
Pentium IV processor. Using the full 32-bit capability and all the implementation
tricks explained in Appendix A our implementation uses only approximately 7
cycles per parity check test. Hence the algorithm works fast in practice and will
take 7 · 2lsm processor cycles.

Each attack is run 100 times, and the table shows that the estimated success
rate holds and that the algorithm is efficient.

Table 2. We have tested the attack on the LILI-128 Boolean function with p =
0.501862. Note that the runtime for finding Is is independent of the length lu of LFSRu,
and the length M of the keystream. The attack on a full LFSRu of length 89 and re-
duced LFSRs of length 11 took 12 seconds

ls lu Keystream length M
Successes
out of 100

m Runtime 2ls · m

11 60 224,1 59 m0 6 sec. 231

11 60 225,1 100 2.2 · m0 13 sec. 232

11 40 224,0 51 m0 6 sec. 231

11 40 225,0 100 2.2 · m0 13 sec. 232

10 89 229 99 2.1 · m0 6 sec 232

11 89 229 99 2.1 · m0 12 sec 233

12 89 229 99 2.1 · m0 24 sec 234

6.3 A Complete Attack on LILI-128

Preprocessing For the LILI cipher, we have found a multiple h(x) = a(x)gu(x)
which corresponds to the recursion ut+ut+139501803+ut+210123252+ut+1243366916 =
0 and we have that

Prob(vt + vt+139501803 + vt+210123252 + vt+1243366916 = 0) = 0.501862. (18)

This precomputation took only 5 hours and 40 Gbyte hard disk space. We see
that lh = 1243366916.

Finding Is We have p = 0.501862, and m0 = 39/C(0.501862)≈ 3.9·106 ≈ 221.9.
To be almost sure to succeed we use m = 2.1m0 equations. Hence, the runtime
for attacking LILI-128 is

239 · 223 = 262

parity checks. Using our implementation this corresponds to 262 · 7 processor
cycles. Using Proposition 2 with Pd = 0.6 we need a keystream of length M ≈
229. The attack needs about 290 Mbyte of RAM. It can easily be parallelized
and distributed among processors with virtually no overhead, since there is no
need for communcation between the processor, and no need for shared memory.
If we have 1024 Pentium IV 2.53 GHz processors, each having access to about
290 MB of memory, the attack would take about 4.5 months using 68 Mbyte of
keystream data.

Finding Iu when Is is known Our attack only finds the initialization bits Is

for LFSRs. It is possible to combine the Quick Metric from [12] with the previous
attack against LILI in [7] to find Iu when Is is given. Since this is not the scope
of this paper we will not go into details, and we refer to [7, 12] for the exact
description. The preprosessing stage will have complexity of order 244.7 memory

lookups, and runtime complexity of order 242.5 parity checks. The complexity
for the method above is much lower than the complexity for finding Is and will
therefore have little effect on the overall runtime for a full attack.

7 Conclusion

We have proposed a new key recovery correlation attack on irregular clocked
keystream generators where the stream is filtered by a nonlinear Boolean func-
tion. Our attack uses a correlation property of Boolean functions, that gives
higher correlation than previous methods. Thus we need fewer equations to suc-
ceed. The property holds even if the function is correlation immune. Using this
property together with the iteration techniques from [11] we get a low runtime
and low memory complexity algorithm for attacking the model. The algorithm
outputs the initialization bits Is for LFSRs. Knowing Is there exist previous
algorithms which can determine Iu efficiently.

Acknowledgment

We would like to thank Matthew Parker, John Erik Mathiassen and the anony-
mous referees for many helpful comments.

References

1. V. Chepyzhov, T. Johansson, and B. Smeets. A simple algorithm for fast correlation
attacks on stream ciphers. In Fast Software Encryption, FSE 2000, volume 1978 of
Lecture Notes in Computer Science, pages 181–195. Springer-Verlag, 2001.

2. Philippe Chose, Antoine Joux, and Michel Mitton. Fast correlation attacks: An
algorithmic point of view. In Advances in Cryptology - EUROCRYPT 2002, volume
2332 of Lecture Notes in Computer Science, pages 209–221. Springer-Verlag, 2002.

3. Nicolas Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In
Advances in Cryptology-CRYPTO’ 2003, volume 2729 of Lecture Notes in Computer
Science, pages 176–194, 2003.

4. Nicolas Courtois and Willi Meier. Algebraic attacks on stream ciphers with linear
feedback. In Advances in Cryptology - EUROCRYPT 2003, volume 2656 of Lecture
Notes in Computer Science, pages 345–359, 2003.

5. J.D Golić. Computation of low-weight parity-check polynomials. Electronic Letters,
october 1996. 32(21):1981-1982.

6. T. Johansson and F. Jönsson. Theoretical analysis of a correlation attack based
on convolutional codes. In Proceedings of 2000 IEEE International Symposium on
Information Theory, IEEE Transaction on Information Theory, page 212, 2000.

7. Fredrik Jönsson and Thomas Johansson. A fast correlation attack on LILI-128. In
Inf. Process. Lett. 81(3), pages 127–132, 2002.

8. Sabine Leveiller, Gilles Zémor, Philippe Guillot, and Joseph Boutros. A new crypt-
analytic attack for pn-generators filtered by a boolean function. In Selected Areas
in Cryptography: 9th Annual International Workshop, SAC 2002, volume 2595 of
Lecture Notes in Computer Science, pages 232–249. Springer-Verlag, 2003.

9. M. Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryptology-
EUROCRYPT’93, volume 765 of Lecture Notes in Computer Science, pages 386–397.
Springer-Verlag, 1994.

10. W. Meier and O. Staffelbach. Fast correlation attacks on stream ciphers. In
Advances in Cryptology-EUROCRYPT’88, volume 330 of Lecture Notes in Computer
Science, pages 301–314. Springer-Verlag, 1998.

11. H̊avard Molland. Improved linear consistency attack on irregular clocked keystream
generators. In Fast Software Encryption, FSE 2004, To appear in LNCS. Springer-
Verlag, 2004. Available at http://www.ii.uib.no/˜molland/crypto

12. H̊avard Molland, John Erik Mathiassen, and Tor Helleseth. Improved fast corre-
lation attack using low rate codes. In Cryptography and Coding, IMA 2003, volume
2898 of Lecture Notes in Computer Science, pages 67–81, 2003.

13. W.T. Penzhorn and G.J Kuhn. Computation of low-weight parity checks for cor-
relation attacks on stream ciphers. In Cryptography and Coding, IMA 1995, volume
1025 of Lecture Notes in Computer Science, pages 74–83. Springer-Verlag, 1995.

14. Markku-Juhani Olavi Saarinen. A time-memory tradeoff attack against LILI-128.
In Fast Software Encryption, FSE 2002, volume 2365 of Lecture Notes in Computer
Science, pages 231–236, 2002.

15. T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE
Trans. on Comp., C-34:81–85, 1985.

16. L. Simpson, E. Dawson, J. Golić, and W. Millan. LILI keystream generator.
In SAC’2000, volume 2012 of Lecture Notes in Computer Science, pages 231–236.
Springer-Verlag, 2002. Available at http://www.isrc.qut.edu.au/lili.

17. D. Wagner. A generalized birthday problem. In Advances in cryptology-CRYPTO’
2002, volume 2442 of Lecture Notes in Computer Science, pages 288–303, 2002.

18. Xian-Mo Zhang and Yuliang Zheng. The nonhomomorphicity of boolean func-
tions. In Selected Areas in Cryptography, SAC 98, volume 1556 of Lecture Notes in
Computer Science, pages 280–295. Springer-Verlag, 1998.

Appendix

A Implementation Details

To reach the runtime complexity O(2ls · m) and memory complexity down to
N + 128m bits, the implementation of the algorithm has some tricks. Since not
all of these tricks are obvious we give more detailed descriptions of them below.

A.1 Runtime details

Sliding window In Lemma 2 we get vi+1 by among other things deleting the
ci
0 first bits of vi. This is done using the sliding window technique, which means

that we move the viewing to the right instead of shifting the whole sequence to
the left. This way the shifting can be done in just a couple of operations. To
avoid heavy use of memory, we slide the window over an array of fixed length
N , so that the entries that become free at the beginning of the array are reused.
Thus, the left and right indexes of the sliding window after i iterations will be

(left, right) = (i mod N, i + Ni mod N),

where N > Ni, for all i, 0 ≤ i < 2ls .
The same sliding window technique is also used on the equation set when

equations are deleted and added to the equation set.

Updating the indices In Lemma 2 every pointer zt+1 in v∗ is replaced with zt

for every 0 ≤ t ≤M , which would take M operations. If we skip the replacements
we note that after i iterations the entry zt in v∗ will become zt+i. It is also
important to note that when we write v = (..., z0..., zt, ..., zM , ...), the entries
z0, ..., zt, ..., zM are pointers from v∗ to z. They are not the actual key bits.
Thus, in the implementation we do not replace zt with zt−1. But when we after i
iterations in the search for equations find an equation vi

k+vi
k+j1

+...+vi
k+jw−1

= 0
that is defined, we replace the corresponding equation zt1 + zt2 + ... + ztw with
zt1−i + zt2−i + ... + ztw−i, to compensate.

Reducing the memory access time When we test an equation we must use
pointers to pointers to the keystream. Then each equation test will have high
memory access time. We can reduce this significantly by testing the equations
on 32 states simultaneously. This is possible since the next state Ii+1

s is tested
by shifting all the equations one entry to the left over z. We can now take the
bits zta , zta+1, ..., zta+31 for each of the term 1 < a ≤ 4 in the equations and
put them into 32 bit registers. Now we can test the states and add one to the
metrics of the states that satisfy the equation. This speeds up the runtime by a
factor of approximately 20.

A.2 Memory Details

Reducing the use of memory Instead of storing all the pointers, we set 1
in vi where the bits are defined and 0 otherwise. When we search in vi to find
entries where the equation λv is defined, we keep track of where in z the four
terms in λv points to by counting the number of 1’s we pass during the search.
This is done for each of the 4 terms in the equation λv. This way we always
know where in z the given equation of vi points to. Using this trick the number
of memory bits needed during an attack is reduced from 32N + 128m bits to

N + 128m

Implementing this trick will not affect the runtime of the attack.

