
A practical attack on a braid group based

cryptographic protocol

Alexei Myasnikov1, Vladimir Shpilrain2, and Alexander Ushakov3

1 Department of Mathematics, McGill University, Montreal, Quebec H3A 2T5
alexeim@math.mcgill.ca ?

2 Department of Mathematics, The City College of New York, New York, NY 10031
shpilrain@yahoo.com ??

3 Department of Mathematics, CUNY Graduate Center, New York, NY 10016
aushakov@mail.ru ? ? ?

Abstract. In this paper we present a practical heuristic attack on the
Ko, Lee et al. key exchange protocol introduced at Crypto 2000 [11].
Using this attack, we were able to break the protocol in about 150 min-
utes with over 95% success rate for typical parameters. One of the ideas
behind our attack is using Dehornoy’s handle reduction method as a
counter measure to diffusion provided by the Garside normal form, and
as a tool for simplifying braid words. Another idea employed in our at-
tack is solving the decomposition problem in a braid group rather than
the conjugacy search problem.

1 Introduction

Braid group cryptography has attracted a lot of attention recently due to several
suggested key exchange protocols (see [1], [11]) using braid groups as a platform.
We refer to [2], [6] for more information on braid groups.
Here we start out by giving a brief description of the Ko, Lee et al. key

exchange protocol (subsequently called just the Ko-Lee protocol).
Let B2n be the group of braids on 2n strands and x1, . . . , x2n−1 its standard

generators. Define two subgroups Ln and Rn of B2n as follows:

Ln = 〈x1, . . . , xn−1〉

and
Rn = 〈xn+1, . . . , x2n−1〉.

Clearly, Ln and Rn commute elementwise. The Ko-Lee protocol [11] is the fol-
lowing sequence of operations:

? Partially supported by the NSF grant DMS-0405105.
?? Partially supported by the NSF grant DMS-0405105.

? ? ? Partially supported by Umbanet Inc. through an award from the U.S. Department
of Commerce NIST, Advanced Technology Program, Cooperative Agreement No.
70NANB2H3012

(0) One of the parties (say, Alice) publishes a random element w ∈ B2n (the
“base” word).

(1) Alice chooses a word a as a product of generators of Ln and their inverses.
The word a is Alice’s private key.

(2) Bob chooses a word b as a product of generators of Rn and their inverses.
The word b is Bob’s private key.

(3) Alice sends a normal form of the element a−1wa to Bob and Bob sends a
normal form of the element b−1wb to Alice.

(4) Alice computes a normal form of

Ka = a−1b−1wba

and Bob computes a normal form of

Kb = b−1a−1wab.

Since ab = ba in B2n, the normal forms of Ka and Kb coincide. Thus Alice and
Bob have the same normal form called their shared secret key.

We note that a particular normal form used in [11] is called the Garside
normal form (see our Section 2).
Initially, the security of this problem was claimed to depend on the complex-

ity of the conjugacy search problem in B2n which is the following: for a given
pair of words w1, w2 such that w1 is conjugate to w2 in B2n, find a particular
conjugator, i.e. a word x such that w1 = x−1w2x. However, it was shown in
[13] that solving the conjugacy search problem is not necessary to break the
Ko-Lee protocol. More precisely, it was shown that for an adversary to get the
shared secret key, it is sufficient to find a pair of words a1, a2 ∈ Ln such that
w1 = a1wa2. Then Ka = Kb = a1b

−1wba2, where the element b
−1wb is public

because it was transmitted at step 3. The latter problem is usually called the
decomposition problem. The fact that it is sufficient for the adversary to solve
the decomposition problem to get the shared secret key was also mentioned, in
passing, in the paper [11], but the significance of this observation was down-
played there by claiming that solving the decomposition problem does not really
give a computational advantage over solving the conjugacy search problem.
In this paper, we show (experimentally) that a particular heuristic attack on

the Ko-Lee protocol based on solving the decomposition problem is, in fact, by
far more efficient than all known attacks based on solving the conjugacy search
problem. With the running time of 150 minutes (on a cluster of 8 PCs with
2GHZ processor and 1GB memory each), the success rate of our attack program
was over 96%; see Section 5 for more details.
We note that there is a polynomial-time deterministic attack on the Ko-Lee

protocol based on solving a variant of the conjugacy search problem [3], but the
authors of [3] acknowledge themselves that their attack is not practical and, in
fact, has not been implemented.

Another idea employed in our attack is using Dehornoy’s forms [4] for re-
covering words from Garside normal forms and for solving the decomposition
problem. In the Ko-Lee protocol, Garside’s algorithm for converting braid words
into normal forms plays the role of a diffusion algorithm. We show (experimen-
tally) that Dehornoy’s algorithm can be used to weaken the diffusion and make
the protocol vulnerable to a special kind of length based attack (see [7], [8], [9]
for different versions of length based attacks).
To conclude the introduction, we note that several other, less efficient, attacks

on the Ko-Lee protocol were suggested before; we refer to [5] for a comprehensive
survey of these attacks as well as for suggestions on countermeasures.

Acknowledgments.We are grateful to R. Haralick for making a computer cluster
in his lab available for our computer experiments.

2 Converting Garside normal forms to words

The Garside normal form of an element a ∈ Bn is the pair (k, (ξ1, . . . , ξm)),
where k ∈ Z and (ξ1, . . . , ξm) is a sequence of permutations (permutation braids)
satisfying certain conditions (see [6] for more information). The braid a can be
recovered from its normal form (k, (ξ1, . . . , ξm)) as a product of the kth power
of the half twist permutation braid ∆ and permutation braids ξ1, . . . , ξm:

a = ∆kξ1 . . . ξm.

In this section we describe an algorithm which, given a Garside normal form
of an element a, tries to find a geodesic braid word representing a. (A geodesic
braid word of a given braid is a braid word of minimum length representing this
braid.) Since all information transmitted by Alice and Bob is in Garside normal
forms, we need this algorithm for our attack.
Note that for permutation braids it is easy to find geodesic braid words.

Therefore, to convert a given Garside normal form (k, (ξ1, . . . , ξm)) to a word,
one can find geodesic braid words w∆, wξ1 , . . . , wξm

for ∆ and ξ1, . . . , ξm, respec-
tively, and compose a word

w = wk
∆wξ1 . . . wξm

which represents the same word as the given normal form. The length of the
obtained word w is

|k||w∆|+ |wξ1 |+ . . .+ |wξm
| = |k|

n(n− 1)

2
+ |wξ1 |+ . . .+ |wξm

|.

If k ≥ 0 then the given braid a is positive and the word w is geodesic in the
Cayley graph of Bn.
Before we proceed in the case k < 0, recall one property of the elemet ∆ (see

[2]). For any braid word w = xε1i1 . . . x
εk

ik
, one has

∆−1w∆ = xε1n−i1
. . . xεk

n−ik
.

The result of conjugation of w by ∆ will be denoted by w∆.
Consider now the case k < 0. Denote −k by p. One can rewrite the normal

form ∆−pξ1ξ2 . . . ξm in the following way:

∆1−p(∆−1ξ1)∆
p−1 ·∆2−p(∆−1ξ2)∆

p−2 ·∆3−p(∆−1ξ3)∆
p−3 · . . . (1)

Depending on the values of k and m the obtained decomposition (1) will end up
either with ∆m−p(∆−1ξm)∆

p−m when p > m or with ξm when p ≤ m.
Note that the expressions ∆−1ξi in brackets are inverted permutation braids

and the length of a geodesic for∆−1ξi is |∆|−|ξi|. Compute a geodesic braid word
wi for each ∆

−1ξi in (1). Since ∆
2 generates the center of Bn, the conjugation by

∆i−p either does not change the word (when i− p is even) or acts the same way
as the conjugation by ∆ does. We have mentioned above that the conjugation
by ∆ does not increase the length of the word. Finally, conjugate the obtained
words w1, . . . , wk by powers of ∆ and denote the results by w′1, . . . , w

′
k. Clearly,

the product
w′ = w′1 . . . w

′
k

defines the same element of Bn as the given normal form does, but the word w′

is shorter than w:

|w′| =











|k|n(n−1)
2 −

∑m
i=1 |wξi

|, if − k > m

|k|n(n−1)
2 −

∑|k|
i=1 |wξi

|+
∑m

i=|k|+1 |wξi
| if − k ≤ m

We performed a series of experiments in which we generated words of length
l in generators of Bn and computed their Garside normal forms (k, (ξ1, . . . , ξm)).
In the experiments, l was chosen to be sufficiently greater than n, e.g. l > n2. In
all cases k was approximately − 3l

4n while m was approximately
3l
2n . Thus, almost

in all cases the word w is longer than w′.

3 Minimization of braids

Let Bn be the group of braids on n strands and let

〈x1, . . . , xn−1 ; [xi, xj] = 1 (where |i− j| > 1), xixi+1xi = xi+1xixi+1〉

be its standard presentation. Let w be a word in generators of Bn and their
inverses. The problem of computing a geodesic word for w in B∞ was shown to
be NP-complete in [12]. It is known however (see e.g. [10], [15]) that many NP-
complete problems have polynomial time generic- or average-case solutions, or
have good approximate solutions. In this section we present heuristic algorithms
for approximating geodesics of braids and cyclic braids.
By Dehornoy’s form of a braid we mean a braid word without any “han-

dles”, i.e. a completely reduced braid word in the sense of [4]. The procedure
that computes Dehornoy’s form for a given word chooses a specific (“permit-
ted”) handle inside of the word and removes it. This can introduce new handles

but the main result about Dehornoy’s forms states that any sequence of han-
dle reductions eventually terminates. Of course, the result depends on how one
chooses the handles at every step. Let us fix any particular strategy for selecting
handles. For a word w = w(x1, . . . , xn−1) we denote by D(w) the corresponding
Dehornoy’s form (i.e., the result of handle reductions where handles are chosen
by the fixed strategy).

The following algorithm tries to minimize the given braid word. It exploits the
property of Dehornoy’s form that for a “generic” braid word one has |D(w)| <
|w|.

Algorithm 1 (Minimization of braids)
Signature. w′ = Shorten(w).
Input. A word w = w(x1, . . . , xn−1) in generators of the braid group Bn.
Output. A word w′ such that |w′| ≤ |w| and w′ = w in Bn.
Initialization. Put w0 = w and i = 0.
Computations.

A. Increment i.

B. Put wi = D(wi−1).

C. If |wi| < |wi−1| then

1) Put wi = w∆
i .

2) Goto A.

D. If i is even then output w∆
i+1.

E. If i is odd then output wi+1.

The following simple example illustrates why the idea with conjugation by ∆
works. Consider the braid word w = x−1

2 x1x2x1. This braid is in Dehornoy’s
form, but the geodesic for the corresponding braid is x1x2, hence w is not
geodesic. Now, the word w∆ = x−1

1 x2x1x2 is not in Dehornoy’s form. It con-
tains one handle, removing of which results in the word x2x1 which is shorter
than the initial word. If we call handles introduced by Dehornoy left handles and
define right handles as subwords symmetric to left handles with respect to the
direction of a braid, then the computation of Dehornoy’s form of a word con-
jugated by ∆ and conjugating the obtained result by ∆ is essentially a process
of removing right handles. We note that removing left handles might introduce
right handles and vice versa, and the existence of forms without both left and
right handles is questionable.

We would like to emphasize practical efficiency of Algorithm 1. We performed
a series of experiments to test it; one of the experiments was the following se-
quence of steps:

1) generate a random freely reduced braid word w ∈ B100 of length 4000;

2) compute its Garside normal form ξ;

3) transform ξ back into a word w′ as described in Section 2;

4) apply Algorithm 1 to w′. Denote the obtained word by w′′.

In all experiments the length of the obtained words w′′ varied in the interval
[2500, 3100]. Thus, the result was shorter than the input. It is possible that for
a longer initial word w we would not get the same results, but the length 4000
is more than is used in the Ko-Lee protocol anyway.
The next algorithm is a variation of Algorithm 1 for cyclic braid words.

Algorithm 2 (Minimization of cyclic braids)
Signature. w′ = CycShorten(w).
Input. A word w = w(x1, . . . , xn−1) in generators of the braid group Bn.
Output. A word w′ such that |w′| ≤ |w| and w′ = w in Bn.
Initialization. Put w0 = w and i = 0.
Computations.

A. Increment i.
B. Put wi = wi−1.
C. If |D(wi)| < |wi| then put wi = D(wi).
D. If wi = w′i ◦ w

′′
i (where |w′i| − |w

′′
i | ≤ 1) and |D(w′′i w

′
i)| < |wi| then put

wi = D(w′′i w
′
i).

E. If |wi| < |wi−1| then Goto A.
F. Output wi.

4 The attack

In this section we describe a heuristic algorithm for solving the decomposition
problem for a pair of words w1 and w2 as in the Ko-Lee protocol.
First we describe two auxiliary algorithms. The first algorithm decomposes a

given word w into a product usv, where u, v ∈ Ln, trying to to make s as short
as possible.

Algorithm 3 (Decomposition 1)
Input. A braid word w = w(x1, . . . , xn−1).
Output. A triple of words (u, s, v) such that u, v ∈ Ln, |s| ≤ |w|, and usv = w

in Bn.
Initialization. Put u0 = v0 = ε and s0 = w and i = 0.
Computations.

A. Increment i.
B. Put ui = ui−1, si = si−1, and vi = vi−1.
C. For each j = 1, . . . , n− 1 check:

1) If |D(xjsi)| < |si| then
– put ui = uix

−1
j ;

– put si = D(xjsi);
– goto A.

2) If |D(x−1
j si)| < |si| then

– put ui = uixj;
– put si = D(x−1

j si);

– goto A.
3) If |D(sixj)| < |si| then

– put vi = x−1
j vi;

– put si = D(sixj);
– goto A.

4) If |D(six
−1
j)| < |si| then

– put vi = xjvi;
– put si = D(six

−1
j);

– goto A.
D. Output the triple (ui, si, vi).

The next algorithm decomposes two given braid words w1 and w2 into prod-
ucts us1v and us2v, respectively, where u, v ∈ Rn, trying to make s1 and s2 as
short as possible.

Algorithm 4 (Decomposition 2)
Input. Braid words w1 and w2.
Output. A quadruple of words (u, s, t, v) such that u, v ∈ Rn, |s| ≤ |w1|, |t| ≤
|w2|, utv = w2 in Bn, and usv = w1 in Bn.
Initialization. Put u0 = v0 = ε, s0 = w1, t0 = w2, and i = 0.
Computations.

A. Increment i.
B. Put ui = ui−1, si = si−1, ti = ti−1, and vi = vi−1.
C. For each j = n+ 1, . . . , 2n− 1 check:

1) If |D(xjsi)| < |si| and |D(xjti)| < |ti| then
– put ui = uix

−1
j ;

– put si = D(xjsi);
– put ti = D(xjti);
– goto A.

2) If |D(x−1
j si)| < |si| and |D(x

−1
j ti)| < |ti| then

– put ui = uixj;
– put si = D(x−1

j si);

– put ti = D(x−1
j ti);

– goto A.
3) If |D(sixj)| < |si| and |D(tixj)| < |ti| then

– put vi = x−1
j vi;

– put si = D(sixj);
– put ti = D(tixj);
– goto A.

4) If |D(six
−1
j)| < |si| and |D(tix

−1
j)| < |ti| then

– put vi = xjvi;
– put si = D(six

−1
j);

– put ti = D(tix
−1
j);

– goto A.
D. Output (ui, si, ti, vi).

Now let w1, w2 be braid words in B2n for which there exist words a1, a2 in
Ln such that w1 = a1w2a2 in B2n. Denote by S(w1,w2) the solution set for the
decomposition problem for the pair (w1, w2), i.e.,

S(w1,w2) = {(q1, q2) ∈ Ln × Ln | q1w1q2 = w2} in B2n.

Let the triple (ui, si, vi) be the result of applying Algorithm 3 to the word
wi (where i = 1, 2) and (u, s, t, v) the result of applying Algorithm 4 to the pair
(s1, s2). We will say that the pair (s, t) is a simplified pair of (w1, w2).

Lemma 1. For a simplified pair (s, t) of (w1, w2) the following holds:

S(w1,w2) = {(u2q1u
−1
1 , v−1

1 q2v2) | (q1, q2) ∈ S(s,t)}.

Proof. We have s = u−1u−1
1 w1v

−1
1 v−1 and t = u−1u−1

2 w2v
−1
2 v−1, where u1, u2,

v1, v2 ∈ Ln and u, v ∈ Rn. By the definition of S(s,t), one has (q1, q2) ∈ S(s,t) if
and only if q1sq2 =B2n

t in B2n, or if and only if

q1u
−1u−1

1 w1v
−1
1 v−1q2 = u−1u−1

2 w2v
−1
2 v−1.

Since q1, q2 ∈ Ln and u, v ∈ Rn, the last equality holds if and only if

q1u
−1
1 w1v

−1
1 q2 = u−1

2 w2v
−1
2 ,

or if and only if
u−1

2 q1u
−1
1 w1v

−1
1 q2v

−1
2 = w2,

or if and only if (u−1
2 q1u

−1
1 , v−1

1 q2v
−1
2) ∈ S(w1,w2).

Now represent the set of possible solutions S = S(w1,w2) of the decomposition
problem for (w1, w2) as a directed graph with the vertex set

V = Ln × Ln

and the edge set E containing edges of the following two types:

– (q1, q2) → (q3, q4) if q1 = q3 and q4 = q′2 ◦ x
ε
j ◦ q

′′
2 (where q2 = q′2 ◦ q

′′
2 ,

j ∈ {1, . . . , n− 1}, and ε = ±1);
– (q1, q2) → (q3, q4) if q2 = q4 and q3 = s′1 ◦ x

ε
j ◦ q

′′
1 (where q1 = q′1 ◦ q

′′
1 ,

j ∈ {1, . . . , n− 1}, and ε = ±1).

Define a function ω : S → N as follows:

(q1, q2)
ω
7→ |CycShorten(q1w1q2w

−1
2)|.

(cf. our Algorithm 2).
Let w1 be the base word in the Ko-Lee protocol and w2 a word representing

the normal form ξ = a−1w1a transmitted by Alice. In this notation we can
formulate the problem of finding Alice’s keys as a search problem in S(w1,w2).
Clearly

S(w1,w2) = {(q1, q2) ∈ S(w1,w2) | ω(q1, q2) = 0}

and, therefore, the problem is to find a pair of braid words (q1, q2) such that
ω(q1, q2) = 0.
We want to stress that in some cases the set S(w1,w2) can be reduced. For

example, let m be the smallest index of a generator in both words w1 and w2.
Then we can impose a restriction j ∈ {m, . . . , n−1} and solve the search problem
in a smaller space. This situation where m > 1 was very often the case in our
computations.
The next algorithm is an attack on Alice’s private key. The input of the al-

gorithm is the base word w and the Garside normal form ξ of the braid word
a−1wa transmitted by Alice. The algorithm finds a pair of words (α, β) in gen-
erators of Ln such that αwβ = u in B2n, where u is a braid word with the
Garside normal form ξ. At step A, the algorithm transforms ξ into a word w. At
steps B and C, it computes a simplified pair (s, t) for (w,w). At steps D-F, the
algorithm performs a heuristic search in the key space S(s,t). The search starts
at the point (ε, ε), where ε is the empty word. In each iteration we choose an
unchecked vertex with the minimum ω value and construct its neighborhood.
The search stops when the point with zero ω value is found.

Algorithm 5 (Attack on Alice’s key)
Input. A braid word w and a Garside normal form ξ corresponding to a braid
u for which there exists a ∈ Ln such that a−1wa = u in B2n.
Output. A pair of words α, β ∈ Ln such that αwβ = u in B2n.
Initialization. Put u0 = v0 = ε, s0 = w1, and i = 0.
Computations.

A. Convert a normal form ξ to a word w.
B. Apply Algorithm 1 to words w and w.
B. Let (u1, s1, v1) be the result of applying Algorithm 3 to the word w and
(u2, s2, v2) the result of applying Algorithm 3 to the word w.

C. Let (u, s, t, v) be the result of applying Algorithm 4 to the pair of words
(s1, s2).

D. Let Q = {(ε, ε)} ⊂ S(s,t).
E. Choose an unchecked pair (q1, q2) from the set Q with the minimum ω value.
F. For each edge (q1, q2)→ (q′1, q

′
2) ∈ S(s,st) add a pair (q′1, q

′
2) to Q. If ω-value

of some new pair (q′1, q
′
2) is 0, then output (u2q

′
1u
−1
1 , v−1

1 q′2v2). Otherwise
goto E.

5 Experiments and conclusions

We have performed numerous experiments of two types. Experiments of the first
type tested security of the original Ko-Lee protocol, whereas experiments of the
second type tested security of a protocol similar to that of Ko-Lee, but based on
the decomposition problem.
An experiment of the first type is the following sequence of steps:

1) Fix the braid group B100.

2) Randomly generate a base word w as a freely reduced word of length 2000
in the generators of B100.

3) Randomly generate a word a = a(x1, . . . , x49) as a freely reduced word of
length 1000 in the generators of B100.

4) Compute Garside normal forms ρ1 and ρ2 of w and a−1wa, respectively.
5) Transform normal forms back into words w1 and w2 (see Section 2).
6) Apply Algorithm 1 to words w1 and w2.
7) Finally, apply Algorithm 5 to the pair (w1, w2).

We say that an experiment is successful if all of the above steps were per-
formed in a reasonable amount of time (we allowed 150 minutes); otherwise we
stopped the program. We performed 2466 such experiments and had success in
2378 of them, which means the success rate was 96.43%.
Experiments of the second type have different steps 3) and 4). They are as

follows:

3’) Randomly generate two words a1 = a1(x1, . . . , x49) and a2 = a2(x1, . . . , x49)
as freely reduced words of length 1000.

4’) Compute Garside normal forms ρ1 and ρ2 of w and a1wa2, respectively.

We performed 827 experiments of the second type and had success in 794 of
them. This gives the success rate of 96.00%, so that the difference in the success
rates of two types of experiments is statistically insignificant.
The conclusion therefore is that we were able to break the Ko-Lee protocol

in about 150 minutes with over 95.00% success rate for typical parameters.
Finally, we note that there are several ways to improve the success rate. The

easiest way is simply to increase the time allocated to experiments. Also, one
can improve the algorithms themselves, in particular, Algorithm 1. With a better
minimization algorithm the attack is likely to be more efficient. One can also
somewhat narrow down the search space, etc.

6 Suggestions on improving the key exchange protocol

In this section, we briefly sketch a couple of ideas that may help to enhance
security of the Ko-Lee protocol and, in particular, make it less vulnerable to the
attack described in the previous sections.

1) Either increase the length of the private keys and the base or decrease the
rank of the group. With the parameters suggested in [11], transmitted braids
are sort of “sparse” which allows the adversary to simplify the initial braids
substantially. The lengths of the transmitted braids should be at least on
the order of n2 (where n is the rank of the braid group) to prevent fast
reconstruction of a short braid word from its normal form.
We note however that increasing the key length is a trade-off between se-
curity and efficiency. By comparison, the current key size used in the RSA
cryptosystem is 512 bits, whereas to store a braid word of length l from the
group Bn, lblog2(2n)c bits are required. This number is approximately 8000
for l = 1000 and n = 100.

2) Choosing a “base” word w requires special attention. It might be a good
idea to generate w as a geodesic in the Cayley graph of B2n starting and
terminating with the generator xn or its inverse (the one which does not
belong to Ln or Rn) such that any other geodesic representing w starts and
terminates with x±1

n . Observe that for such w Algorithm 3 stops with the
result (ε, w, ε). Also, for such w and an arbitrary braid word w′, Algorithm
4 applied to (w,w′) stops with the result (ε, w,w′, ε).

3) Choose different commuting subgroups instead of Ln and Rn. This looks
like the most promising suggestion at the moment; we refer to [14] for more
details.

References

1. I. Anshel, M. Anshel, D. Goldfeld, An algebraic method for public-key cryp-
tography, Math. Res. Lett. 6 (1999), 287–291.

2. J. S. Birman, Braids, links and mapping class groups, Ann. Math. Studies
82, Princeton Univ. Press, 1974.

3. J. H. Cheon and B. Jun, A polynomial time algorithm for the braid Diffie-
Hellman conjugacy problem, Crypto 2003, Lecture Notes in Comput. Sci.
2729 (2003), 212–225 .

4. P. Dehornoy, A fast method for comparing braids, Adv. Math. 125 (1997),
200–235.

5. P. Dehornoy, Braid-based cryptography, Contemp. Math., Amer. Math. Soc.
360 (2004), 5–33.

6. D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson,
W. P. Thurston, Word processing in groups. Jones and Bartlett Publishers,
Boston, MA, 1992.

7. D. Garber, S. Kaplan, M. Teicher, B. Tsaban, U. Vishne, Probabilistic so-
lutions of equations in the braid group, preprint.
http://arxiv.org/abs/math.GR/0404076

8. D. Hofheinz and R. Steinwandt, A practical attack on some braid group
based cryptographic primitives, in Public Key Cryptography, 6th Interna-
tional Workshop on Practice and Theory in Public Key Cryptography, PKC
2003 Proceedings, Y.G. Desmedt, ed., Lecture Notes in Computer Science
2567, pp. 187–198, Springer, 2002.

9. J. Hughes and A. Tannenbaum, Length-based attacks for certain group based
encryption rewriting systems, Workshop SECI02 Securitè de la Communi-
cation sur Intenet, September 2002, Tunis, Tunisia.
http://www.storagetek.com/hughes/

10. I. Kapovich, A. Myasnikov, P. Schupp and V. Shpilrain, Average-case com-
plexity for the word and membership problems in group theory, Advances in
Math. 190 (2005), 343–359.

11. K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. Kang, C. Park, New public-
key cryptosystem using braid groups, Advances in cryptology—CRYPTO
2000 (Santa Barbara, CA), 166–183, Lecture Notes in Comput. Sci. 1880,
Springer, Berlin, 2000.

12. M. S. Paterson, A. A. Razborov, The set of minimal braids is co-NP-
complete, J. Algorithms 12 (1991), 393–408.

13. V. Shpilrain and A. Ushakov, The conjugacy search problem in public key
cryptography: unnecessary and insufficient, Applicable Algebra in Engineer-
ing, Communication and Computing, to appear.
http://eprint.iacr.org/2004/321/

14. V. Shpilrain and G. Zapata, Combinatorial group theory and public key cryp-
tography, Applicable Algebra in Engineering, Communication and Comput-
ing, to appear.
http://eprint.iacr.org/2004/242

15. J. Wang, Average-case computational complexity theory, Complexity Theory
Retrospective, II. Springer-Verlag, New York, 1997, 295–334.

