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Abstract. We identify and fill some gaps with regard to consistency (the
extent to which false positives are produced) for public-key encryption
with keyword search (PEKS). We define computational and statistical
relaxations of the existing notion of perfect consistency, show that the
scheme of [7] is computationally consistent, and provide a new scheme
that is statistically consistent. We also provide a transform of an anony-
mous IBE scheme to a secure PEKS scheme that, unlike the previous
one, guarantees consistency. Finally we suggest three extensions of the
basic notions considered here, namely anonymous HIBE, public-key en-
cryption with temporary keyword search, and identity-based encryption
with keyword search.

1 Introduction

There has recently been interest in various forms of “searchable encryption” [18,
7, 12, 14, 20]. In this paper, we further explore one of the variants of this goal,
namely public-key encryption with keyword search (PEKS) as introduced by
Boneh, Di Crescenzo, Ostrovsky and Persiano [7]. We begin by discussing con-
sistency-related issues and results, then consider the connection to anonymous
identity-based encryption (IBE) and finally discuss some extensions.



1.1 Consistency in PEKS

Any cryptographic primitive must meet two conditions. One is of course a se-
curity condition. The other, which we will here call a consistency condition,
ensures that the primitive fulfills its function. For example, for public-key en-
cryption, the security condition is privacy. (This could be formalized in many
ways, eg. IND-CPA or IND-CCA.) The consistency condition is that decryption
reverses encryption, meaning that if M is encrypted under public key pk to re-
sult in ciphertext C, then decrypting C under the secret key corresponding to
pk results in M being returned.

PEKS. In a PEKS scheme, Alice can provide a gateway with a trapdoor tw
(computed as a function of her secret key) for any keyword w of her choice. A
sender encrypts a keyword w ′ under Alice’s public key pk to obtain a ciphertext
C that is sent to the gateway. The latter can apply a test function Test to tw ,

C to get back 0 or 1. The consistency condition as per [7] is that if w = w ′

then Test(tw , C) returns 1 and if w 6= w ′ it returns 0. The security condition
is that the gateway learn nothing about w ′ beyond whether or not it equals
w . (The corresponding formal notion will be denoted PEKS-IND-CPA.) The
application setting is that C can be attached to an email (ordinarily encrypted
for Alice under a different public key), allowing the gateway to route the email
to different locations (eg. Alice’s desktop, laptop or pager) based on w while
preserving privacy of the latter to the largest extent possible.

Consistency of BDOP -PEKS . It is easy to see (cf. Proposition 1) that the
main construction of [7] (a random oracle model, BDH-based PEKS-IND-CPA
secure PEKS scheme that we call BDOP -PEKS) fails to meet the consistency
condition defined in [7] and stated above. (Specifically, there are distinct key-
words w ,w ′ such that Test(tw , C) = 1 for any C that encrypts w ′.) The potential
problem this raises in practice is that email will be incorrectly routed.

New notions of consistency. It is natural to ask if BDOP -PEKS meets
some consistency condition that is weaker than theirs but still adequate in prac-
tice. To answer this, we provide some new definitions. Somewhat unusually for a
consistency condition, we formulate consistency more like a security condition,
via an experiment involving an adversary. The difference is that this adversary
is not very “adversarial”: it is supposed to reflect some kind of worst case but
not malicious behavior. However this turns out to be a difficult line to draw,
definitionally, so that some subtle issues arise. One advantage of this approach
is that it naturally gives rise to a hierarchy of notions of consistency, namely
perfect, statistical and computational. The first asks that the advantage of any
(even computationally unbounded) adversary be zero; the second that the ad-
vantage of any (even computationally unbounded) adversary be negligible; the
third that the advantage of any polynomial-time adversary be negligible. We
note that perfect consistency as per our definition coincides with consistency as
per [7], and so our notions can be viewed as natural weakenings of theirs.



An analogy. There is a natural notion of decryption error for encryption
schemes [13, Section 5.1.2]. A perfectly consistent PEKS is the analog of an
encryption scheme with zero decryption error (the usual requirement). A statis-
tically consistent PEKS is the analog of an encryption scheme with negligible
decryption error (a less common but still often used condition [2, 10]). However,
computational consistency is a non-standard relaxation, for consistency condi-
tions are typically not computational. This is not because one cannot define
them that way (one could certainly define a computational consistency require-
ment for encryption) but rather because there has never been any motivation to
do so. What makes PEKS different, as emerges from the results below, is that
computational consistency is relevant and arises naturally.

Consistency of BDOP -PEKS , revisited. The counter-example showing that
BDOP -PEKS is not perfectly consistent extends to show that it is not statisti-
cally consistent either. However, we show (cf. Theorem 4) that BDOP -PEKS is
computationally consistent. In the random-oracle model, this is not under any
computational assumption: the limitation on the running time of the adversary
is relevant because it limits the number of queries the adversary can make to
the random oracle. When the random oracle is instantiated via a hash function,
we would need to assume collision-resistance of the hash function. The implica-
tion of this result is that BDOP -PEKS is probably fine to use in practice, in
that incorrect routing of email, while possible in principle, is unlikely to actually
happen.

A statistically consistent PEKS scheme. We provide the first construc-
tion of a PEKS scheme that is statistically consistent. The scheme is in the RO
model, and is also PEKS-IND-CPA secure assuming the BDH problem is hard.
The motivation here was largely theoretical. From a foundational perspective,

we wanted to know whether PEKS was an anomaly in the sense that only com-
putational consistency is possible, or whether, like other primitives, statistical
consistency could be achieved. However, it is also true that while computational
consistency is arguably enough in an application, statistical might be preferable
because the guarantee is unconditional.

1.2 PEKS and Anonymous IBE

BDOP -PEKS is based on the Boneh-Franklin IBE (BF -IBE) scheme [8]. It is
natural to ask whether one might, more generally, build PEKS schemes from IBE
schemes in some blackbox way. To this end, a transform of an IBE scheme into
a PEKS scheme is presented in [7]. Interestingly, they note that the property of
the IBE scheme that appears necessary to provide PEKS-IND-CPA of the PEKS
scheme is not the usual IBE-IND-CPA but rather anonymity. (An IBE scheme is
anonymous if a ciphertext does not reveal the identity of the recipient [3].) While
[7] stops short of stating and proving a formal result here, it is not hard to verify
that their intuition is correct. Namely one can show that if the starting IBE
scheme IBE meets an appropriate formal notion of anonymity (IBE-ANO-CPA,
cf. Sect. 3) then PEKS = bdop-ibe-2-peks(IBE) is PEKS-IND-CPA.



Consistency in bdop-ibe-2-peks. Unfortunately, we show (cf. Theorem 6) that
there are IBE schemes for which the PEKS scheme output by bdop-ibe-2-peks is
not even computationally consistent. This means that bdop-ibe-2-peks is not in
general a suitable way to turn an IBE scheme into a PEKS scheme. (Although
it might be in some cases, and in particular is when the starting IBE scheme is
BF -IBE , for in that case the resulting PEKS scheme is BDOP -PEKS .)

new-ibe-2-peks. We propose a randomized variant of the bdop-ibe-2-peks trans-
form that we call new-ibe-2-peks, and prove that if an IBE scheme IBE is
IBE-ANO-CPA and IBE-IND-CPA then the PEKS scheme new-ibe-2-peks(IBE)
is PEKS-IND-CPA and computationally consistent. We do not know of a trans-
form where the resulting PEKS scheme is statistically or perfectly consistent.

Anonymous IBE schemes. The above motivates finding anonymous IBE
schemes. Towards this, we begin by extending Halevi’s condition for
anonymity [15] to the IBE setting. Based on this, we are able to give a sim-
ple proof that the (random-oracle model) BF -IBE scheme [8] is IBE-ANO-CPA
assuming the BDH problem is hard (cf. Theorem 8). (We clarify that a proof of
this result is implicit in the proof of security of the BF -IBE based BDOP -PEKS
scheme given in [7]. Our contribution is to have stated the formal definition of
anonymity and provided a simpler proof via the extension of Halevi’s condition.)
Towards answering the question of whether there exist anonymous IBE schemes
in the standard (as opposed to random oracle) model, we present in [1] an attack
to show that Water’s IBE scheme [19] is not IBE-ANO-CPA.

1.3 Extensions

Anonymous HIBE. We provide definitions of anonymity for hierarchical IBE
(HIBE) schemes. Our definition can be parameterized by a level, so that we can
talk of a HIBE that is anonymous at level l. We note that the HIBE schemes of
[11, 6] are not anonymous, even at level 1. (That of [16] appears to be anonymous
at both levels 1 and 2 but is very limited in nature and thus turns out not to be
useful for our applications.) We modify the construction of Gentry and Silverberg
[11] to obtain a HIBE that is (HIBE-IND-CPA and) anonymous at level 1. The
construction is in the random oracle model and assumes BDH is hard.

PETKS. In a PEKS scheme, once the gateway has the trapdoor for a certain
period, it can test whether this keyword was present in any past ciphertexts or
future ciphertexts. It may be useful to limit the period in which the trapdoor
can be used. Here we propose an extension of PEKS that we call public-key
encryption with temporary keyword search (PETKS) that allows this. A trap-
door here is created for a time interval [s..e] and will only allow the gateway to
test whether ciphertexts created in this time interval contain the keyword. We
provide definitions of privacy and consistency for PETKS, and then show how
to implement it with overhead that is only logarithmic in the total number of
time periods. Our construction can use any HIBE that is anonymous at level 1.
Using the above-mentioned HIBE we get a particular instantiation that is secure
in the random-oracle model if BDH is hard.



IBEKS. We define the notion of an identity-based encryption with keyword
search scheme. This is just like a PEKS scheme except that encryption is per-
formed given only the identity of the receiver and a master public-key, just like
in an IBE scheme. We show how to implement IBEKS given any level-2 anony-
mous HIBE scheme. However no suitable implementation of the latter is known,
so we have no concrete implementation of IBEKS.

1.4 Remarks

Limited PEKS schemes. Boneh et. al. [7] also present a couple of PEKS
schemes that are what they call limited. In the first scheme, the public key has
size polynomial in the number of keywords that can be used. In the second
scheme, the key and ciphertext have size polynomial in the number of trapdoors
that can be securely issued to the gateway. Although these schemes are not very
interesting due to their limited nature, one could ask about their consistency.
In the full version of this paper [1] we extend our definitions of consistency to
this limited setting and then show that the first scheme is statistically consistent
while the second scheme is computationally consistent, and statistically consis-
tent under some conditions.

Consistency of other searchable encryption schemes. Of the other pa-
pers on searchable encryption of which we are aware [18, 12, 14, 20], none formally
define or rigorously address the notion of consistency for their respective types
of searchable encryption schemes. Goh [12] and Golle, Staddon, and Waters [14]
define consistency conditions analogous to BDOP’s “perfect consistency” con-
dition, but none of the constructions in [12, 14] satisfy their respective perfect
consistency condition. Song, Wagner, and Perrig [18] and Waters et al. [20] do
not formally state and prove consistency conditions for their respective search-
able encryption schemes, but they, as well as Goh [12], do acknowledge and
informally bound the non-zero probability of a false positive.

2 Consistency in PEKS

PEKS. A public key encryption with keyword search (PEKS) scheme [7] PEKS =
(KG,PEKS,Td,Test) consists of four polynomial-time algorithms. Via (pk , sk)

$

←
KG(1k), where k ∈ N is the security parameter, the randomized key-generation

algorithm produces keys for the receiver; via C
$

← PEKSH(pk ,w) a sender en-

crypts a keyword w to get a ciphertext; via tw
$

← TdH(sk ,w) the receiver
computes a trapdoor tw for keyword w and provides it to the gateway; via
b ← TestH(tw ,C ) the gateway tests whether C encrypts w , where b is a bit
with 1 meaning “accept” or “yes” and 0 meaning “reject” or “no”. Here H is a
random oracle whose domain and/or range might depend on k and pk . (In con-
structs we might use multiple random oracles, but since one can always obtain
these from a single one [5], definitions will assume just one.)



Consistency. The requirement of [7] can be divided into two parts. First,
Test(tw ,C ) always accept when C encrypts w . More formally, for all k ∈ N

and all w ∈ {0, 1}∗ we ask that Pr[TestH(TdH(sk ,w),PEKSH(pk ,w)) = 1] = 1,

where the probability is taken over the choice of (pk , sk)
$

← KG(1k), the random
choice of H, and the coins of all the algorithms in the expression above. Since we
will always require this too, it is convenient henceforth to take it as an integral
part of the PEKS notion and not mention it again, reserving the term “consis-
tency” to only refer to what happens when the ciphertext encrypts a keyword
different from the one for which the gateway is testing. In this regard, the re-
quirement of [7], which we will call perfect consistency, is that Test(tw ′ ,C ) always
reject when C doesn’t encrypt w ′. More formally, for all k ∈ N and all distinct
w ,w ′ ∈ {0, 1}∗, we ask that Pr[TestH(TdH(sk ,w ′),PEKSH(pk ,w)) = 1] = 0,

where the probability is taken over the choice of (pk , sk)
$

← KG(1k), the random
choice of H, and the coins of all the algorithms in the expression above. (We
note that [7] provide informal rather than formal statements, but it is hard to
interpret them in any way other than what we have done.)

Privacy. Privacy for a PEKS scheme [7] asks that an adversary should not
be able to distinguish between the encryption of two challenge keywords of its
choice, even if it is allowed to obtain trapdoors for any non-challenge keywords.
Formally, let A be an adversary and let k be the security parameter. Below, we
depict an experiment, where b ∈ {0, 1} is a bit, and also the oracle provided to
the adversary in this experiment.

Experiment Exp
peks-ind-cpa-b
PEKS ,A (k)

WSet ← ∅ ; (pk , sk)
$

← KG(1k)
Pick random oracle H

(w0,w1, st)
$

← ATrapd(·),H(find, pk)

C
$

← PEKSH(pk ,wb)

b′
$

← ATrapd(·),H(guess,C , st)
If {w0,w1} ∩WSet = ∅ then return b′ else return 0

Oracle Trapd(w)

WSet ←WSet ∪ {w}

tw
$

← TdH(sk ,w)
Return tw

The PEKS-IND-CPA-advantage Advpeks-ind-cpa
PEKS ,A (k) of A is defined as

Pr
[

Exp
peks-ind-cpa-1
PEKS ,A (k) = 1

]

− Pr
[

Exp
peks-ind-cpa-0
PEKS ,A (k) = 1

]

.

A scheme PEKS is said to be PEKS-IND-CPA-secure if the advantage is a
negligible function in k for all polynomial-time adversaries A.

Parameter generation algorithms and the BDH problem. All pairing
based schemes will be parameterized by a pairing parameter generator. This is a
randomized polynomial-time algorithm G that on input 1k returns the descrip-
tion of an additive cyclic group G1 of prime order p, where 2k < p < 2k+1, the
description of a multiplicative cyclic group G2 of the same order, and a non-
degenerate bilinear pairing e: G1 × G1 → G2. See [8] for a description of the
properties of such pairings. We use G

∗
1 to denote G1 \ {0}, i.e. the set of all



KG(1k)

(G1,G2, p, e)
$

← G(1k) ; P
$

← G
∗
1 ; s

$

← Z
∗
p

pk ← (G1,G2, p, e, P, sP ) ; sk ← (pk , s)
Return (pk , sk)

PEKSH1,H2(pk ,w)
Parse pk as (G1,G2, p, e, P, sP )

r
$

← Z
∗
p ; T ← e(H1(w), sP )r

C ← (rP,H2(T )) ; Return C

TdH1(sk ,w)
Parse sk as (pk = (G1,G2, p, e, P, sP ), s)
tw ← (pk , sH1(w)) ; Return tw

TestH1,H2(tw ,C )
Parse tw as ((G1,G2, p, e, P, sP ), X)
Parse C as (U, V ) ; T ← e(X,U)
If V = H2(T ) then return 1
Else return 0

Fig. 1. Algorithms constituting the PEKS scheme BDOP -PEKS . G is a pairing param-
eter generator and H1: {0, 1}

∗ → G1 and H2: G2 → {0, 1}
k are random oracles.

group elements except the neutral element. We define the advantage Advbdh
G,A(k)

of an adversary A in solving the BDH problem relative to a pairing parameter
generator G as the probability that, on input (1k, (G1, G2, p, e), P, aP, bP, cP )

for randomly chosen P
$

← G
∗
1 and a, b, c

$

← Z
∗
p, adversary A outputs e(P, P )abc.

We say that the BDH problem is hard relative to this generator if Advbdh
G,A is a

negligible function in k for all polynomial-time adversaries A.

Consistency of BDOP -PEKS . Figure 1 presents the BDOP -PEKS scheme.
It is based on a pairing parameter generator G.

Proposition 1. The BDOP -PEKS scheme is not perfectly consistent.

Proof. Since the number of possible keywords is infinite, there will certainly exist
distinct keywords w ,w ′ ∈ {0, 1}∗ such that H1(w) = H1(w

′). The trapdoors for
such keywords will be the same, and so TestH1,H2(Td(sk ,w),PEKSH1,H2(pk ,w ′))
will always return 1. ut

It is tempting to say that, since H1 is a random oracle, the probability of a
collision is small, and thus the above really does not matter. Whether or not
this is true depends on how one wants to define consistency, which is the issue
we explore next.

New notions of consistency. The full version of this paper [1] considers var-
ious possible relaxations of perfect consistency and argues that the obvious ones
are inadequate either because BDOP -PEKS continues to fail them or because
they are too weak. It then motivates and explains our approach and definitions.
In this extended abstract we simply state our definitions, referring the reader to
[1] for more information.

Definition 2. Let PEKS = (KG,PEKS,Td,Test) be a PEKS scheme. Let U
be an adversary and let k be the security parameter. Consider the following
experiment:

Experiment Exp
peks-consist
PEKS ,U (k)

(pk , sk)
$

← KG(1k) ; Pick random oracle H



(w ,w ′)
$

← UH(pk) ; C
$

← PEKSH(pk ,w) ; tw ′
$

← TdH(sk ,w ′)

If w 6= w ′ and TestH(tw ′ ,C ) = 1 then return 1 else return 0

We define the advantage of U as

Adv
peks-consist
PEKS ,U (k) = Pr

[

Exp
peks-consist
PEKS ,U (k) = 1

]

.

The scheme is said to be perfectly consistent if this advantage is 0 for all (com-
putationally unrestricted) adversaries U , statistically consistent if it is negligible
for all (computationally unrestricted) adversaries, and computationally consis-
tent if it is negligible for all polynomial-time adversaries.

We have purposely re-used the term perfect consistency, for in fact the above
notion of perfect consistency coincides with the one from [7] recalled above.

Consistency of BDOP -PEKS , revisited. Having formally defined the statis-
tical and computational consistency requirements for PEKS schemes, we return
to evaluating the consistency of BDOP -PEKS . We first observe that Proposi-
tion 1 extends to show:

Proposition 3. The BDOP -PEKS scheme is not statistically consistent.

The proof is in [1]. On the positive side, the following, proved in [1], means that
BDOP -PEKS is probably just fine in practice:

Theorem 4. The BDOP -PEKS scheme is computationally consistent in the
random oracle model.

A statistically consistent PEKS scheme. We present the first PEKS
scheme that is (PEKS-IND-CPA and) statistically consistent. To define the
scheme, we first introduce the function f(k) = klg(k). (Any function that is
super-polynomial but sub-exponential would suffice. This choice is made for
concreteness.) The algorithms constituting our scheme PEKS -STAT are then
depicted in Fig. 2. We are denoting by |x| the length of a string x. The scheme
uses ideas from the BDOP -PEKS scheme [7] as well as from the BF -IBE scheme
[8], but adds some new elements. In particular the random choice of “session”
key K, and the fact that the random oracle H2 is length-increasing, are im-
portant. The first thing we stress about the scheme is that the algorithms are
polynomial-time. This is because polynomial time means in the length of the
inputs, and the input of (say) the encryption algorithm includes w as well as 1k,
so it can test whether |w | ≥ f(k) in polynomial time. Now the formal statement
of our result is the following:

Theorem 5. The PEKS -STAT scheme is statistically consistent in the random
oracle model. Further, PEKS -STAT is PEKS-IND-CPA-secure in the random
oracle model assuming that the BDH problem is hard relative to generator G.

We refer to [1] for the proof, and provide a little intuition here. Privacy when
the adversary is restricted to attacking the scheme only on keywords of size at



KG(1k)

(G1,G2, p, e)
$

← G(1k) ; P
$

← G
∗
1

s
$

← Z
∗
p ; pk ← (1k, P, sP,G1,G2, p, e)

sk ← (pk , s) ; Return (pk , sk)

PEKSH1,H2,H3,H4(pk ,w)

Parse pk as (1k, P, sP,G1,G2, p, e)
If |w | ≥ f(k) then return w

r
$

← Z
∗
p ; T ← e(sP,H1(w))r

K1 ← H4(T ) ; K2 ← H2(T )

K
$

← {0, 1}k ; c← K1 ⊕K

t← H3(K||w)
Return (rP, c, t,K2)

TdH1(sk ,w)

Parse sk as (pk = (1k, P, sP,G1,G2, p, e), s)
tw ← (pk , sH1(w),w)
Return tw

TestH1,H2,H3,H4(tw ,C )
Parse tw as

((1k, P, sP,G1,G2, p, e), sH1(w),w)
If |w | ≥ f(k) then

If C = w then return 1 else return 0
If C cannot be parsed as (rP, c, t,K2)

then return 0
T ← e(rP, sH1(w))
K ← c⊕H4(T )
If K2 6= H2(T ) then return 0
If t = H3(K||w) then return 1 else return 0

Fig. 2. Algorithms constituting the PEKS scheme PEKS -STAT . Here f(k) = klg(k),
G is a pairing parameter generator and H1 : {0, 1}∗ → G1, H2 : G2 → {0, 1}

3k, H3 :
{0, 1}∗ → {0, 1}k, and H4 : {0, 1}∗ → {0, 1}k are random oracles. In implementations
we require that the lengths of the encodings of (rP, c, t,K2) be polynomial in k.

most f(k) can be shown based on techniques used to prove IBE-IND-CPA of the
BF -IBE scheme [8] and to prove anonymity of the same scheme (cf. Theorem 8).
When the keyword has length at least f(k) it is sent in the clear, but intuitively
the reason this does not violate privacy is that the adversary is poly(k) time and
thus cannot even write down such a keyword in order to query it to its challenge
oracle. More interesting is the proof of statistical consistency. The main issue
is that the computationally unbounded consistency adversary U can easily find
any collisions that exist for the random-oracle hash functions. The scheme is
designed so that the adversary effectively has to find a large number of collisions
to win. It uses the fact that H2 is with high probability injective, and then uses
a counting argument based on an occupancy problem bound.

3 PEKS and Anonymous IBE

IBE. An identity-based encryption (IBE) scheme [17, 8] IBE = (Setup,KeyDer,

Enc,Dec) consists of four polynomial-time algorithms. Via (pk ,msk)
$

←Setup(1k)
the randomized key-generation algorithm produces master keys for security pa-

rameter k ∈ N; via usk [id ]
$

← KeyDerH(msk , id) the master computes the secret

key for identity id ; via C
$

← EncH(pk , id ,M) a sender encrypts a message M to
identity id to get a ciphertext; via M ← DecH(usk ,C ) the possessor of secret
key usk decrypts ciphertext C to get back a message. Here H is a random oracle
with domain and range possibly depending on k and pk . (In constructs we might
use multiple random oracles, but since one can always obtain these from a single
one [5], definitions will assume just one.) Associated to the scheme is a message



space MsgSp where for MsgSp(k) ⊆ {0, 1}∗ for every k ∈ N. For consistency, we
require that for all k ∈ N, all identities id and messages M ∈ MsgSp(k) we have
Pr[DecH(KeyDerH(msk , id),EncH(pk , id ,M)) =M ] = 1, where the probability

is taken over the choice of (pk ,msk)
$

← Setup(1k), the random choice of H, and
the coins of all the algorithms in the expression above. Unless otherwise stated,
it is assumed that {0, 1}k ⊆ MsgSp(k) for all k ∈ N.

Privacy and anonymity. Privacy (IBE-IND-CPA) follows [8] while anonymity
(IBE-ANO-CPA) is a straightforward adaptation of [3] to IBE schemes. Let
IBE = (Setup,KeyDer,Enc,Dec) be an IBE scheme. Let A be an adversary and
let k be the security parameter. Now consider the following experiments, where
b ∈ {0, 1} is a bit:

Experiment Exp
ibe-ind-cpa-b
IBE,A

(k)

IDSet ← ∅ ; (pk ,msk)
$

← Setup(1k)
Pick random oracle H

(id ,M0,M1, st)
$

← AKeyDer,H(find, pk)

C
$

← EncH(pk , id ,Mb)

b′
$

← AKeyDer,H(guess,C , st)
If {M0,M1} 6⊆ MsgSp(k) then return 0
If id 6∈ IDSet and |M0| = |M1|
Then return b′ else return 0

Experiment Exp
ibe-ano-cpa-b
IBE,A

(k)

IDSet ← ∅ ; (pk ,msk)
$

← Setup(1k)
Pick random oracle H

(id0, id1,M, st)
$

← AKeyDer,H(find, pk)

C
$

← EncH(pk , idb,M)

b′
$

← AKeyDer,H(guess,C , st)
If M 6∈ MsgSp(k) then return 0
If {id0, id1} ∩ IDSet = ∅
Then return b′ else return 0

where the oracle KeyDer(id) is defined as

IDSet ← IDSet ∪ {id} ; usk [id ]
$

← KeyDerH(msk , id) ; Return usk [id ]

For prop ∈ {ind, ano}, we define the advantage Advibe-prop-cpa
IBE ,A (k) of A in the

corresponding experiment as

Pr
[

Exp
ibe-prop-cpa-1
IBE ,A (k) = 1

]

− Pr
[

Exp
ibe-prop-cpa-0
IBE ,A (k) = 1

]

.

IBE scheme IBE is said to be IBE-IND-CPA-secure (resp., IBE-ANO-CPA-

secure) if Advibe-ind-cpa
IBE ,A (resp., Advibe-ano-cpa

IBE ,A ) is a negligible function in k for
all polynomial-time adversaries A.

bdop-ibe-2-peks. The bdop-ibe-2-peks transform [7] takes input an IBE scheme
IBE = (Setup,KeyDer,Enc,Dec) and returns the PEKS scheme PEKS = (KG,

Td,PEKS,Test) where KG(1k) = Setup(1k), Td(sk ,w) = KeyDer(sk ,w), PEKS(
pk ,w) = Enc(pk ,w , 0k), and Test(tw ,C ) returns 1 iff Dec(tw ,C ) = 0k. Since
BF -IBE is anonymous (Theorem 8), since BDOP -PEKS is exactly BF -IBE
transformed via bdop-ibe-2-peks, and since BDOP -PEKS is not statistically con-
sistent (Proposition 3), we can conclude that the bdop-ibe-2-peks transformation
does not necessarily yield a statistically consistent PEKS scheme. The following
theorem strengthens this result, showing that, under the minimal assumption of
the existence of an IBE-IND-CPA- and IBE-ANO-CPA-secure IBE scheme, there
exists an IBE scheme such that the resulting PEKS scheme via bdop-ibe-2-peks

fails to be even computationally consistent.



Theorem 6. For any IBE-ANO-CPA-secure and IBE-IND-CPA-secure IBE
scheme IBE , there exists another IBE-ANO-CPA-secure and IBE-IND-CPA-
secure IBE scheme IBE such that the PEKS scheme PEKS derived from IBE
via bdop-ibe-2-peks is not computationally consistent.

The full proof can be found in the full version [1]; here we sketch the main idea.
Given IBE scheme IBE , consider the following IBE scheme IBE . The public
key includes a normal public key for IBE and a random string R of length k.
A message M is encrypted by encrypting M‖R under IBE . When decrypting a
ciphertext C , the result is parsed asM‖R′. If R′ = R, thenM is returned as the
plaintext, otherwise the decryption algorithm returns 0k. The resulting Test al-
gorithm will return 1, except with negligible probability, regardless of what trap-
door is being used. This is because the decryption algorithm returns 0k whenever
the last k bits of the plaintext are not equal to R. Intuitively, this should hap-
pen with all but negligible probability since, if IBE is IBE-IND-CPA-secure, a
portion of a string encrypted to one identity should not correctly decrypt with
the secret key for a different identity.

Fixing the bdop-ibe-2-peks transformation. The negative result in Theo-
rem 6 raises the question: Does the existence of IBE schemes imply the existence
of computationally consistent PEKS schemes? We answer that in the affirma-
tive by presenting a revision to the BDOP transformation, called new-ibe-2-peks,
that transforms any IBE-IND-CPA- and IBE-ANO-CPA-secure IBE scheme into
a PEKS-IND-CPA-secure and computationally consistent PEKS scheme. Our
new new-ibe-2-peks transform, instead of always encrypting the same message
0k, chooses and encrypts a random message R and appends R in the clear to
the ciphertext. Thus, given IBE scheme IBE = (Setup,KeyDer,Enc,Dec), the
PEKS scheme PEKS = new-ibe-2-peks(IBE) = (KG,Td,PEKS,Test) is such that
KG(1k) = Setup(1k), Td(sk ,w) = KeyDer(sk ,w), PEKS(pk ,w) = (Enc(pk ,w , R),

R) where R
$

← {0, 1}k, and Test(tw ,C = (C1,C2)) returns 1 iff Dec(tw ,C1)
returns C2. Intuitively, this construction avoids the problem of oddly-behaving
Dec algorithms by making sure that the only way to ruin the consistency of
the PEKS scheme is by correctly guessing the value encrypted by a ciphertext,
using the secret key of a different identity, which should not be possible for an
IBE-IND-CPA-secure IBE scheme. Hence, the consistency of the resulting PEKS
scheme is due to the data privacy property of the IBE scheme, while the data
privacy property of the PEKS scheme comes from the anonymity of the IBE
scheme. We prove the theorem statement below in the full version [1].

Theorem 7. Let IBE be an IBE scheme and let PEKS be the PEKS scheme
built from IBE via new-ibe-2-peks. If IBE is IBE-IND-CPA-secure, then PEKS
is computationally consistent. Further, if IBE is IBE-ANO-CPA-secure, then
PEKS is PEKS-IND-CPA-secure.

Anonymous IBE schemes. Theorem 7 motivates a search for IBE-ANO-CPA-
secure IBE schemes. The following shows that the Boneh-Franklin BasicIdent
IBE scheme, BF -IBE , is anonymous. The proof is simple due to our use of an



extension to Halevi’s technique for proving the anonymity of public key encryp-
tion schemes [15]. This extension and the proof can be found in [1].

Theorem 8. The BF -IBE scheme is IBE-ANO-CPA-secure in the random or-
acle model assuming that BDH is hard relative to the underlying pairing gener-
ator.

4 Extensions

We propose three extensions of concepts seen above, namely anonymous HIBEs,
public-key encryption with temporary keyword search, and identity-based PEKS.

4.1 Anonymous HIBE

HIBEs. A hierarchical identity-based encryption (HIBE) scheme [16, 11, 6] is
a generalization of an IBE scheme in which an identity is a vector of strings
id = (id1, . . . , id l) with the understanding that when l = 0 this is the empty
string ε. The number of components in this vector is called the level of the
identity and is denoted |id |. If 0 ≤ i ≤ l then id |i = (id1, . . . , id i) denotes the
vector containing the first i components of id (this is ε if i = 0). If |id ′| ≥ l + 1
(l ≥ 0) and id ′|l = id then we say that id is an ancestor of id ′, or equivalently,
that id ′ is a descendant of id . If the level of id ′ is l + 1 then id is a parent
of id ′, or, equivalently, id ′ is a child of id . For any id with |id | ≥ 1 we let
par(id) = id ||id|−1 denote its parent. Two nodes id = (id1, . . . , id l) and id ′ =
(id ′1, . . . , id

′
l) at level l are said to be siblings iff id |l−1 = id ′|l−1. Moreover, if

id l < id ′l in lexicographic order, then id is a left sibling of id
′ and id ′ is a right

sibling of id . An identity at level one or more can be issued a secret key by
its parent. (And thus an identity can issue keys for any of its descendants if
necessary.)
Formally a HIBE scheme HIBE = (Setup,KeyDer,Enc,Dec) consists of four

polynomial-time algorithms. Via (pk ,msk = usk [ε])
$

← Setup(1k), where k ∈ N is
a security parameter, the randomized key-generation algorithm produces master
keys, with the secret key being associated to the (unique) identity at level 0; via

usk [id ]
$

← KeyDerH(usk [par(id)], id) the parent of an identity id with |id | ≥ 1

can compute a secret key for id ; via C
$

← EncH(pk , id ,M) a sender encrypts a
message M to identity id to get a ciphertext; via M ← DecH(usk [id ],C ) the
identity id decrypts ciphertext C to get back a message. Here H is a random
oracle with domain and range possibly depending on k and pk . (In constructs we
might use multiple random oracles, but since one can always obtain these from a
single one [5], definitions will assume just one.) Associated to the scheme is a mes-
sage space MsgSp where for MsgSp(k) ⊆ {0, 1}∗ for every k ∈ N. For consistency,
we require that for all k ∈ N, all identities id with |id | ≥ 1 and all messages
M ∈ MsgSp(k), Pr[DecH(KeyDerH(usk [par(id)], id),EncH(pk , id ,M)) =M ] =

1, where the probability is taken over the choice of (pk , usk [ε])
$

← Setup(1k), the



Setup(1k)

(G1,G2, p, e)
$

← G(1k) ; P
$

← G
∗
1

s0
$

← Z
∗
p ; S0 ← 0 ; Q0 ← s0P

pk ← (G1,G2, p, e, P,Q0)
msk ← (pk , ε, S0, s0)
Return (pk ,msk)

KeyDerH1,1,...,H1,l(usk , id)
Parse id as (id1, . . . , id l+1)
Parse usk as (pk , id |l, Sl, Q1, . . . , Ql−1, sl)
Parse pk as (G1,G2, p, e, P,Q0)
Sl+1 ← Sl + slH1,l+1(id l+1)

Ql ← slP ; sl+1
$

← Z
∗
p

Return (pk , id , Sl+1, Q1, . . . , Ql, sl+1)

EncH1,1,...,H1,l,H2(pk , id ,m)
Parse pk as (G1,G2, p, e, P,Q0)
Parse id as (id1, . . . , id l)

r
$

← Z
∗
p ; C1 ← rP

For i = 2, . . . , l do Ci ← rH1,i(id i)
Cl+1 ← m ⊕H2(e(rH1,1(id1), Q0))
Return (C1, . . . ,Cl+1)

DecH2(usk ,C )
Parse usk as (pk , id , Sl, Q1, . . . , Ql−1, sl)
Parse id as (id1, . . . , id l)
Parse pk as (G1,G2, p, e, P,Q0)
Parse C as (C1, . . . ,Cl+1)

κ← e(Sl,C1) ·
∏l

i=2 e(Qi−1,Ci)
−1

Return Cl+1 ⊕H2(κ)

Fig. 3. Algorithms of the mGS -HIBE scheme mGS -HIBE . G is a pairing parameter
generator and H1,i: {0, 1}

∗ → G
∗
1 and H2: G2 → {0, 1}

k are random oracles.

random choice of H, and the coins of all the algorithms in the expression above.
Unless otherwise stated, it is assumed that {0, 1}k ⊆ MsgSp(k) for all k ∈ N.

Privacy and anonymity. Let d: N → N be a maximum depth parameter.
The notion of privacy, denoted HIBE-IND-CPA[d(k)], is analogous to that for
IBE schemes (IBE-IND-CPA) but using identity vectors rather than identity
strings and where the adversary is not allowed to query the KeyDer ora-
cle for the secret key of any ancestor of the identity under attack, and all
identities id (in queries or challenges) must have |id | ≤ d(k). For anonymity,
we define the notion of the scheme being anonymous at level l ≥ 1, denoted
HIBE-ANO-CPA[l, d(k)]. (Stronger notions are possible, but not needed here.)
It is analogous to IBE-ANO-CPA except that the identities returned by the ad-
versary must differ only in the l-th component. The adversary can ask the key
derivation oracle KeyDer for the secret keys of all identities except for those of
the challenge identities or any of their ancestors, and all identities id (in queries
or challenges) must have |id | ≤ d(k). The definitions are provided in full in [1].

Construction. The HIBE scheme of [16] appears to be anonymous, but sup-
ports only two levels of identities, and is only resistant against limited collusions
at the second level, and hence is not usable for our constructions that follow.
Since the HIBE of [11] (here denoted GS -HIBE) is equivalent to the (provably
anonymous as per Theorem 8) Boneh-Franklin IBE scheme [8] when restricted
to the first level, one could hope that GS -HIBE is level-1 anonymous, but this
turns out not to be true, and the HIBE of [6] is not level-1 anonymous either.
We suggest a modified version of GS -HIBE called mGS -HIBE . It is depicted in
Fig. 3. The following, proved in [1], implies in particular that mGS -HIBE is the
first full HIBE scheme providing any anonymity at all. The restriction on d is
inherited from [11].



Theorem 9. The mGS -HIBE scheme is HIBE-ANO-CPA[1, d(k)]-secure and
HIBE-IND-CPA[d(k)]-secure for any d(k) = O(log(k)) in the random oracle
model assuming the BDH problem is hard relative to the generator G.

4.2 Temporarily Searchable Encryption

PETKS. Public-key encryption with temporary keyword search (PETKS) is a
generalization of PEKS in which a trapdoor can be issued for any desired window
of time rather than forever. Formally, the scheme PETKS = (KG,Td,PETKS,

Test, N) consists of four polynomial-time algorithms and a polynomially bounded

function N : N → N. Via (pk , sk)
$

← KG(1k), the randomized key-generation

algorithm produces keys for the receiver; via C
$

← PETKSH(pk ,w , i) a sender
encrypts a keyword w in time period i ∈ [0..N(k) − 1] to get a ciphertext; via

tw
$

← TdH(sk ,w , s, e) the receiver computes a trapdoor tw for keyword w in
period [s..e] where 0 ≤ s ≤ e ≤ N(k) − 1, and provides it to the gateway; via
b← TestH(tw ,C ) the gateway tests whether C encrypts w , where b is a bit with
1 meaning “accept” or “yes” and 0 meaning “reject” or “no”. HereH is a random
oracle whose domain and/or range might depend on k and pk . (In constructs
we might use multiple random oracles, but since one can always obtain these
from a single one [5], definitions will assume just one.) We require that for all
k ∈ N, all s, e, i with 0 ≤ s ≤ i ≤ e ≤ N(k) − 1, and all w ∈ {0, 1}∗, we have
Pr[TestH(TdH(sk ,w , s, e),PEKSH(pk ,w , i)) = 1] = 1, where the probability is

taken over the choice of (pk , sk)
$

← KG(1k), the random choice of H, and the
coins of all the algorithms in the expression above.

Consistency. Computational, statistical and perfect consistency can be defined
analogously to the way they were defined for PEKS. For details, see [1].

Privacy. Privacy for a PETKS scheme asks that an adversary should not be
able to distinguish between the encryption of two challenge keywords of its choice
in a time period i ∈ [0..N(k) − 1] of its choice, even if it is allowed not only to
obtain trapdoors for non-challenge keywords issued for any time interval, but
also is allowed to obtain trapdoors for any keywords (even the challenge ones),
issued for time intervals not containing i. A formal definition of the notion of
privacy, which we denote PETKS-IND-CPA, is in [1].

Constructions with linear complexity. PETKS is reminiscent of forward-
security [4, 9], and, as in these works, there are straightforward solutions with
keys of length linear in N . One such solution is to use a standard PEKS scheme
and generate a different key pair (pk i, sk i) for each time period i ∈ [0..N(k)−1].
Let pk = (pk0, . . . , pkN(k)−1) be the PETKS public key and sk = (sk 0, . . . ,

skN(k)−1) be the PETKS secret key. During time period i, the sender encrypts
a keyword by encrypting under pk i using the PEKS scheme. The trapdoor for
interval [s..e] consists of all PEKS trapdoors of periods s, . . . , e. A somewhat
more efficient solution is to let the PETKS master key pair be a single key pair
for the standard PEKS scheme, and append the time period to the keyword
when encrypting or computing trapdoors. This scheme achieves O(N) public



and secret key length, but still has linear trapdoor length, because the PETKS
trapdoor still contains PEKS trapdoors for all time periods s, . . . , e.

A construction with O(log(N)) complexity.We now present a transforma-
tion hibe-2-petks of a HIBE scheme into a PETKS scheme that yields a PETKS
scheme with complexity logarithmic in N for all parameters. The construction
is very similar to the generic construction of forward-secure encryption from
binary-tree encryption [9]. The number of time periods is N(k) = 2t(k) for some
t(k) = O(log(k)). If i ∈ [0..N(k)− 1], then let i1 . . . it(k) denote its binary repre-
sentation as a t(k)-bit string. Intuitively, our construction instantiates a HIBE
of depth t(k)+1 with keywords as the first level of the identity tree and the time
structure on the lower levels. The trapdoor for keyword w and interval of time
periods [s..e] consists of the user secret keys of all identities from (w , s1, . . . , st(k))
to (w , e1, . . . , et(k)), but taking advantage of the hierarchical structure to include
entire subtrees of keys.
More precisely, let HIBE = (Setup,KeyDer,Enc,Dec) be a HIBE scheme.

Then we associate to it a PETKS scheme PETKS = hibe-2-petks(HIBE , t(k)) =
(KG,Td,PETKS,Test, N) such that N(k) = 2t(k), KG(1k) = Setup(1k) and

PETKS(pk ,w , i) = (i,C1,C2) where C1
$

← {0, 1}k and C2 ← Enc(pk , (w , i1,

. . . , it(k)),C1). The trapdoor algorithm Td(sk ,w , s, e) first constructs a set T of
identities as follows. Let j be the smallest index so that sj 6= ej . Then T is the
set containing (w , s1, . . . , st(k)), (w , e1, . . . , et(k)), the right siblings of all nodes
on the path from (w , s1, . . . , sj+1) to (w , s1, . . . , st(k)), and the left siblings of
all nodes on the path from (w , e1, . . . , ej+1) to (w , e1, . . . , et(k)). If j does not
exist, meaning s = e, then T ← {(w , s1, . . . , st(k))}. The trapdoor tw is the set
of tuples ((w , i1, . . . , ir),KeyDer(sk , (w , i1, . . . , ir))) for all (i1, . . . , ir) ∈ T . To
test a ciphertext (i,C1,C2), the Test algorithm looks up a tuple ((w , i1, . . . , ir),
usk [(w , i1, . . . , ir)]) in tw , derives usk [(w , i1, . . . , it(k))] using repetitive calls to
the KeyDer algorithm, and returns 1 iff Dec(usk [(w , i1, . . . , it(k))],C2) = C1. The
proof of the following is in [1]:

Theorem 10. Let HIBE be a HIBE scheme, and let PETKS = hibe-2-petks(
HIBE , t(k)) where t(k) = O(log(k)). If HIBE is HIBE-ANO-CPA[1, t(k) +
1]-secure, then PETKS is PETKS-IND-CPA-secure. Furthermore, if HIBE is
HIBE-IND-CPA[t(k) + 1]-secure, then PETKS is computationally consistent.

Since the mGS -HIBE has user secret keys and ciphertexts of size linear in the
depth of the tree, our resulting PETKS scheme has public and secret keys of size
O(1), ciphertexts of size O(logN) and trapdoors of size O(log2 N). We note that
in this case a user can decrypt ciphertexts intended for any of its descendants
directly, without needing to derive the corresponding secret key first. This makes
the call to the KeyDer algorithm in the Test algorithm superfluous, thereby
improving the efficiency of Test.

4.3 ID-based Searchable Encryption

In this section, we show how to combine the concepts of identity-based encryption
and PEKS to obtain identity-based encryption with keyword search (IBEKS).



Like in IBE schemes, this allows to use any string as a recipient’s public key for
the PEKS scheme.

IBEKS. An identity-based encryption with keyword search scheme IBEKS =
(Setup,KeyDer,Td,Enc,Test) is made up of five algorithms. Via (pk ,msk)

$

←
Setup(1k), where k ∈ N is the security parameter, the randomized setup algo-

rithm produces master keys; via usk [id ]
$

← KeyDerH(msk , id), the master com-

putes the secret key for identity id ; via C
$

← EncH(pk , id ,w), a sender encrypts

a keyword w to identity id to get a ciphertext; via tw
$

← TdH(usk [id ],w), the
receiver computes a trapdoor tw for keyword w and identity id and provides it
to the gateway; via b← TestH(tw ,C ), the gateway tests whether C encrypts w ,
where b is a bit with 1 meaning “accept” or “yes” and 0 meaning “reject” or “no”.
As usual H is a random oracle whose domain and/or range might depend on k

and pk . For consistency, we require that for all k ∈ N, all identities id , and all
w ∈ {0, 1}∗, we have Pr[TestH(TdH(KeyDerH(msk , id),w),EncH(pk , id ,w)) =

1] = 1, where the probability is taken over the choice of (pk ,msk)
$

← Setup(1k),
the random choice of H, and the coins of all algorithms in the expression above.

Consistency and privacy. Computational, statistical and perfect consistency
can be defined analogously to the way they were defined for PEKS. A privacy
notion (denoted IBEKS-IND-CPA) can be obtained by appropriately combining
ideas of the definitions of privacy for PEKS and IBE. For details, see [1].

Construction. We now propose a generic transformation, called hibe-2-ibeks,
to convert any HIBE scheme with two levels into an IBEKS scheme. Given a
HIBE scheme HIBE = (Setup,KeyDer,Enc,Dec) with two levels, hibe-2-ibeks

returns the IBEKS scheme IBEKS = (Setup,KeyDer,Enc,Td,Test) such that

KeyDer(msk , id) = (usk , id) where usk
$

← KeyDer(msk , id), Enc(pk , id ,w) =

(C1,C2) where C1
$

← {0, 1}k and C2 = Enc(pk , (id ,w),C1), Td(usk = (usk , id),
w) = KeyDer(usk , (id ,w)) and Test(tw , (C1,C2)) returns 1 iff Dec(tw ,C2) = C1.
The proof of the following is in [1]:

Theorem 11. Let HIBE be a HIBE scheme and IBEKS =hibe-2-ibeks(HIBE).
If HIBE is HIBE-IND-CPA[2]-secure, then IBEKS is computationally consis-
tent. Furthermore, if HIBE is HIBE-ANO-CPA[2, 2]-secure, then IBEKS is
IBEKS-IND-CPA-secure.

We know of no HIBE scheme that is anonymous at level 2, and thus we have no
concrete instantiations of the above. (We exclude the scheme of [16] because it
is not secure against a polynomial number of level-2 key extractions, as required
for HIBE-ANO-CPA[2,2]-security and in particular for our construction.)
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