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Abstract. In this paper, we study several variations of the number field
sieve to compute discrete logarithms in finite fields of the form Fpn , with
p a medium to large prime. We show that when n is not too large, this
yields a Lpn(1/3) algorithm with efficiency similar to that of the regular
number field sieve over prime fields. This approach complements the
recent results of Joux and Lercier on the function field sieve. Combining
both results, we deduce that computing discrete logarithms have heuristic
complexity Lpn(1/3) in all finite fields. To illustrate the efficiency of our
algorithm, we computed discrete logarithms in a 120-digit finite field Fp3 .

1 Introduction

Today’s public key cryptosystems usually rely on either integer factorisation
or discrete logarithms in finite fields or on elliptic curves. In this paper, we
consider discrete logarithm computations in finite fields of the form Fpn , with
n > 1 and p a medium to large prime. For a long time, these fields have been
mostly ignored in cryptosystems, and the security of their discrete logarithm
problems are much less known than the security in prime fields Fp or fields of
fixed characteristic such as F2n or F3n . Indeed, in Fp it is well-known that the best
available algorithm is the number field sieve, first introduced in [7] and further
studied in [18, 20, 21, 12, 19]. Similarly, in fixed characteristic and n tending to
infinity, the best available algorithm is the function field sieve, first introduced in
[3] and further studied in [4, 11, 8]. Both algorithms have complexity Lpn(1/3).
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However, until very recently for the intermediate case Fpn , no general Lpn(1/3)
algorithm was known and the best available approach had complexity Lpn(1/2)
(see [2, 1]). With the advent of pairing-based and torus-based cryptography, the
security of discrete logarithms in Fpn is a growing concern. Recently, two very
different methods have been proposed to deal with some of these fields. The first
approach is based on rational torus representation and was proposed by Granger
and Vercauteren [9]. It was effectively used by Lercier and Vercauteren in [15].
The second approach, by Joux and Lercier [13], proposes a family of algorithms
which are based on the function field sieve and yields complexity Lpn(1/3) where
applicable.

In this paper, we introduce several variations of the number field sieve al-
gorithm that depend on the relative size of p and n. The main difference with
existing algorithms lies in the construction of the number fields and the choice
of sieving space: for p large compared to Lpn(2/3), we use a new polynomial
selection algorithm and for p small compared to Lpn(2/3), we sieve over ele-
ments of degree higher than one. Furthermore, we show that these variations
can fill the gap which was left open by [13]. As a consequence, we conclude that
discrete logarithm computation has heuristic complexity Lpn(1/3) for all finite
fields, which greatly improves the Lpn(1/2) complexity of [2, 1].

The paper is organised as follows: in Section 2 we describe our setup and the
basic number field sieve variation that we are considering. In Section 3 we show
how the basic algorithm can be modified in order to cover all the finite fields left
out by [13]. In Section 4 we describe the mathematical background required to
make this description rigorous and in Section 5 we give a precise heuristic analysis
of the algorithm. Finally in Section 6 we report on experiments obtained with
an actual implementation of this algorithm.

2 Our Basic Variation on the Number Field Sieve

The number and function field sieve algorithms are both index calculus algo-
rithms that search for multiplicative identities using smooth objects over well-
chosen smoothness bases. In the number field sieve, the smoothness bases contain
ideals of small norm. Since we are using ideals, some important mathematical
technicalities arise when transforming these multiplicative identities into lin-
ear equations involving logarithms. For the sake of simplicity, we defer these
technicalities to Section 4. When dealing with index calculus algorithms, the
complexities are usually expressed using the following notation:

Lq(α, c) = exp((c+ o(1))(log q)α(log log q)1−α) ,

where log denotes natural logarithm. When the constant c is not given explicitly,
the notation Lq(α) is often used. In particular, for the prime field Fp and for
extension fields Fpn with fixed characteristic p, the number field sieve and the
function field sieve respectively yield Lp(1/3, (64/9)1/3) and Lpn(1/3, (32/9)1/3)
algorithms. Moreover, in [13] it was shown that variations of the function field
sieve yield Lpn(1/3) algorithms for Fpn as long as p ≤ Lpn(1/3). In this paper,
we consider the complementary case: p ≥ Lpn(1/3).



2.1 Setup, Sieving and Linear Algebra

Our basic variation addresses finite fields Fpn with p = Lpn(2/3, c) and c near
2 · (1/3)1/3. Recall that the regular number field sieve algorithm over Fp starts
by choosing two polynomials f1, f2 ∈ Z[X ] with a common root in Fp. In our
basic variation, we generalise this to Fpn as follows: first, f1 is chosen as a degree
n polynomial, with very small coefficients and irreducible over Fp. Then, we set
f2 equal to the polynomial f1 +p. Since f2 ≡ f1 mod p, both polynomials clearly
have a common root in Fpn (in fact all of them are equal).

Let K1 ' Q[X ]/(f1(X)) ∼= Q[θ1] and K2
∼= Q[X ]/(f2(X)) ∼= Q[θ2] be the

two number fields defined respectively by f1 and f2, i.e. θ1 and θ2 are roots
of f1 and f2 in C. Choose a smoothness bound B and a sieve limit S and
consider all pairs (a, b) of coprime integers, with |a| ≤ S and |b| ≤ S, such that
a − bθ1 and a − bθ2 both have B-smooth norms. After some post-processing
described in Section 4, which involves adding unit contributions or Schirokauer
maps, each such pair yields a linear equation between“logarithms of ideals”in the
smoothness bases. Since the number of small norm ideals involved on each side
is smaller than nπ(B), with π(x) the number of primes smaller than x, it suffices
to collect 2nπ(B) equations during the sieving phase. Once the sieving phase is
complete, we solve the resulting sparse system of linear equations modulo the
cardinality of F∗

pn , or more precisely, modulo a large factor of this cardinality
and recover logarithms of ideals of small norm. There are two options for this
large factor: either we take it prime, but then we need to factor pn − 1 (which
would not increase the total complexity) or we simply take it composite without
small factors, since all operations we perform modulo a large prime factor remain
valid for such a composite factor. Finally, small prime factors of pn − 1 can be
dealt with separately using a combination of the Pohlig-Hellman and Pollard rho
algorithm.

2.2 Individual Discrete Logarithms

Once the two steps described above, sieving and linear algebra, have been per-
formed, we obtain the logarithms of the ideals of the smoothness bases. In order
to complete the computation, an additional step is required, namely computing
the logarithm of random elements in the finite field. We propose a classical ap-
proach based on “special-q” descent, which is similar to the approach in [12] for
the case of logarithms over a prime field.

Represent Fpn as Fp[t]/(f1(t)) and assume we want to compute the discrete
logarithm of some element y ∈ Fpn . First, we search for an element of the form
z = yitj for some i, j ∈ N with the following additional properties:

1. after lifting z to the number field K1 (also denoted by z), its norm factors
into primes smaller than some bound B1 ∈ Lpn(2/3, 1/31/3),

2. the norm of the lift of z should be squarefree, implying that only degree one
prime ideals will appear in the factorisation of (z).



Assuming that z does not belong to a strict subfield1 of Fpn , nothing prevents
such a squarefree factorisation to occur. Therefore, we make the usual heuristic
hypothesis and assume that the norm has a squarefree factorisation into small
primes with probability similar to that of a random number of the same size.
According to [10], this probability can be expressed as a product of two terms.
The first term is the usual probability of smoothness, without the squarefree
condition. The second term, comes from the squarefree condition and quickly
tends to 6/π2. Since the constant 6/π2 vanishes into the o(1) of the L notation,
we simply ignore this technicality in the remainder of the paper.

Whilst the first condition on the element z is standard, the second condition
is required to guarantee that only degree one prime ideals will appear in the
factorisation of (z). This condition is necessary since during the sieving phase,
we only computed logarithms of degree one prime ideals. Since squared factors
in the norm could correspond to higher degree ideals, we would not know the
corresponding logarithms.

After finding an adequate candidate, we factor the principal ideal generated
by z into degree one prime ideals of small norm. Note that there will be several
prime ideals not contained in the factor base, since their norm is allowed to be
bigger than the smoothness bound B. To compute the logarithm of such an ideal
q, we start a special-q descent as follows: we sieve on pairs (a, b), where a and b
are chosen to ensure that q divides a− bθ1 in the number field K1. After finding
a pair (a, b) such that the norm of a − bθ1 (divided by the norm of q) and the
norm of a− bθ2 factor into primes smaller than B2 < B1, we iterate the descent
lowering the bound at each step until it becomes lower than B. At this point, all
the discrete logarithms are known and we can backtrack to recover the logarithm
of each of the initial q and consequently the logarithm of z. Note that during
the descent, we will need to consider special-q ideals in both number fields.

2.3 Practical Improvements

Galois extensions If possible, we should choose f1 such that K1 is Galois over
Q. Let Gal(K1/Q) be its Galois group, then since p is inert in K1, we obtain an
isomorphism Gal(K1/Q) ' Gal(Fq/Fp) (see [17, Chapter I, 9.6]) which implies
that K1 has to be a cyclic number field of degree n. The first major improvement
for Galois K1, is that the factor basis associated with K1 can be n times smaller.
We refer to Section 4.3 for a detailed description. The second improvement is
related to finding an adequate z in the individual logarithm phase. Assuming
that n is prime, the prime ideals lying above a rational prime l are of two types
only: either (l) is inert or splits into degree one prime ideals. In the former case,
we simply have to compute logarithms in Fp, which is a much smaller finite field,
so we can neglect its cost. In the latter case, we proceed as before. For Galois K1

of prime extension degree n, we therefore only need to find a z with sufficiently
smooth norm and can ignore the squarefree condition.

1 Of course, when z belongs to a strict subfield, we are in an easier case of the algo-
rithm, since it then suffices to compute the logarithm in F∗

p of z w.r.t. the norm of
a generator of Fpn .



Choice of polynomials Instead of simply setting f2 = f1 + p, we can in fact take
any polynomial f2 such that f1|f2 over the finite field Fp. In particular, if f1

defines a cyclic number field, f2 should be chosen to maximise the automorphism
group of K2. For instance, for all primes p ≡ 2, 5 mod 9, f1 = x6 + x3 + 1 is
irreducible over Fp and by choosing f2 = x6 + (p + 1)x3 + 1, K2 will have
a non-trivial automorphism group of order 2. Constructing a K2 with large
automorphism group for general p remains an open problem.

Since f1 normally has tiny coefficients, the coefficients of the polynomial f2

will be much larger than those of f1. To balance the size of the norms we compute
during the algorithm, there are basically two approaches: unbalance the size of
a and b of the elements we sieve over or change the polynomial selection such
that the coefficients of both polynomials are of the same size. One possibility is
to choose f1 such that (at least) one of its coefficients, c, is of order

√
p. Write

c ≡ c1/c2 mod p with c1 and c2 also of order
√
p and define f2 ≡ c2f1 mod p.

The polynomial f2 is no longer monic, but its coefficients are O(
√
p) instead of

O(p).

Individual logarithms Instead of directly decomposing z as a product of ideals,
it is useful in practice to start by writing z as a fraction of the form:

∑

ait
i

∑

biti
,

where the coefficients ai and bi are of the order of
√
p.

More precisely, this is done by reducing the following lattice L, where the
generating vectors are in columns and where the algebraic numbers in the first
line stand for the subcolumns of their coordinates:

L =



















z tz t2z · · · tn−1z p pt pt2 · · · ptn−1

1 0 0 · · · 0 0 0 0 · · · 0
0 1 0 · · · 0 0 0 0 · · · 0
0 0 1 · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 1 0 0 0 · · · 0



















.

Clearly, any vector in this lattice represents a fraction equal to z, where the
numerator is encoded by the upper half of the vector and the denominator by
the lower half. Since the determinant of the lattice is pn and the dimension 2n,
we expect that lattice reduction can find a short vector of norm

√
p. Note that

this is only a practical expectation in small dimension that does not hold when
n becomes too large.

3 Extension to Other Fields

The analysis (cf. Section 5) of the previous algorithm yields a Lpn(1/3) com-
plexity when p has the right size compared to pn. In this section, we discuss the
possible adaptations to larger and smaller values of p.



3.1 Smaller Values of p

When p is smaller than in the basic case, we encounter a major problem, when
sieving over the (a, b) pairs. Indeed, we would like to keep the norms of a− bθ1

and a−bθ2 below Lpn(2/3), however, since p is small, n is larger than before and
there are less than Lpn(1/3) relations. To summarise, the possible sieving space
is too small and we cannot collect enough relations. Thus, we need to enlarge
the sieving space. A simple technique is to sieve over elements of higher degree.
Instead of pairs (a, b), we consider (t + 1)-tuples (a0, · · · , at) and compute the
norms of

∑t
i=0 aiθ

i
1 and

∑t
i=0 aiθ

i
2. Each of these norms can be obtained through

a resultant computation of two polynomials A(x) =
∑t

i=0 aix
i and f1(x) (resp.

f2(x)). It is well-known that the resultant can be obtained as the determinant of
an (n+ t) × (n+ t) matrix formed of t columns containing the coefficients of f1

and n columns containing the coefficients of A. Thus, we can clearly bound the
norm by (n+ t)n+tBa

nBf
t, where Ba is an upper bound on the absolute values

of the ai and Bf a similar bound on the coefficients of f1 (resp. f2).

3.2 Larger Values of p

When p is larger than in the basic case, the basic polynomial construction is no
longer usable, because due to the addition of p, a coefficient of f2 is larger than
Lpn(2/3). In order to lower the size of the coefficients, we need to change the
polynomial construction and to use polynomials with higher total degree. This
is not completely surprising, since the number field sieve in the prime field case
uses polynomials with total degree increasing with p. The most difficult part is
to find a polynomial construction which does not somehow fail in the individual
logarithm phase. We propose the following simple construction. Start from a
polynomial f0 of degree n with small coefficients (and optionally cyclic Galois
group when possible). Then, we choose a constant W and let f1(x) = f0(x+W ),
the largest coefficient of f1 is aroundWn. Then, using lattice reduction, we search
for a polynomial f2 of degree D and coefficients smaller than W n, such that
f1|f2 mod p. This can be done by reducing the lattice L, where the generating
vectors are in columns

L =
(

f1(x) xf1(x) x2f1(x) · · · xD−nf1(x) p px px2 · · · pxD
)

It is clear that every linear combination of the columns results in a polynomial
which is divisible by f1 modulo p. Furthermore, the dimension of the lattice L
is D + 1 and its determinant is pD+1. We know that for lattices of dimension s
and determinant D, LLL [14] outputs a vector shorter than 2s/4D1/s. We want
this vector to encode a polynomial different from f1. This can be ensured if the
vector is smaller than the encoding of f1. Thus, we need:

2(D+1)/4pn/(D+1) ≤Wn.

Since the term 2(D+1)/4 can be hidden in the o(1) of the L representation, the
optimal size of the coefficients in f1 and f2 is R = Wn ≈ pn/(D+1).



4 Mathematical Aspects

In this section, we describe the mathematical background required to make our
algorithm rigorous. As before, let Fq be a finite field with q = pn elements, with
p prime. Given h = gx ∈ F∗

q and a large prime divisor l of q− 1, we show how to
recover x mod l.

We will work in several number fields of the form K = Q[θ] for some algebraic
integer θ with minimal polynomial f(X) ∈ Z[X ]. In the basic case, all these
number fields will be of degree n over Q, such that p remains prime in the
ring of integers OK of K, i.e. OK/(p) ∼= Fq. In general, we also need number
fields of degree m > n, such that there exists a prime ideal Q of degree n lying
above p, i.e. OK/Q ∼= Fq. To construct such a number field, it simply suffices
for f(X) mod p to have an irreducible factor of degree n. Denote by ϕQ the
surjective ring homomorphism obtained by dividing out the ideal Q, then for
any element x ∈ OK we define x = ϕQ(x).

4.1 Factoring Ideals in OK

Recall that in the algorithm we look for coprime pairs of integers (a, b) such that
the principal ideal (a− bθ) factors into prime ideals of small norm, i.e. of norm
smaller than some predefined bound B. The possible prime ideals occurring in
the factorisation of (a− bθ) are given by the following lemma [6, Lemma 10.5.1].

Lemma 1. Let K = Q[θ] and (a, b) coprime integers, then any prime ideal p

which divides a− bθ either divides the index fθ = [OK : Z[θ]] or is of degree one.

Therefore, let F consist of degree one prime ideals of norm smaller than B and
the finitely many prime ideals that divide the index fθ, then we try to decompose
(a − bθ) over F . Each degree one prime ideal is generated by (pi, θ − cpi

) with
pi a rational prime smaller than B and cpi

a root of f(X) mod pi.
Furthermore, finding the decomposition of the ideal (a−bθ) into prime ideals

is equally easy. First compute its norm NK/Q(a − bθ) = bdeg(f)f(a/b) and test
whether NK/Q(a − bθ) is B-smooth. If it is, write NK/Q(a − bθ) =

∏

i p
ei

i ; now
we need to make the following distinction:

– For rational primes pi - fθ, we obtain that pi = (pi, θ − cpi
) with cpi

≡
a/b mod pi will occur in the ideal factorisation of (a − bθ) and that the pi-
adic valuation is precisely ei.

– For rational primes pi|fθ, use Algorithm 4.8.17 in Cohen [6].

At the end, we therefore have several pairs of coprime integers (a, b) with
corresponding ideal decompositions

(a− bθ) =
∏

i

pei

i . (1)

For p smaller than in the basic case, we will need to sieve over (t+ 1)-tuples
of coprime integers (a0, a1, . . . , at) such that the principal ideal (

∑t
i=0 aiθ

i) fac-
tors into prime ideals of norm smaller than B. The following lemma is an easy
generalisation of Lemma 1.



Lemma 2. Let K = Q[θ] and (a0, . . . , at) a (t + 1)-tuple of coprime integers,

then any prime ideal p that divides (
∑t

i=0 aiθ
i) either divides the index fθ =

[OK : Z[θ]] or is of degree ≤ t.

To find the decomposition of the ideal (
∑t

i=0 aiθ
i), we compute its norm

as NK/Q(
∑t

i=0 aiθ
i) = Res(

∑t
i=0 aiX

i, f(X)), with Res the resultant. For each
prime factor pi not dividing the index fθ, we proceed as follows: each irreducible
factor of gcd(

∑t
i=0 aiX

i, f(X)) over Fpi
, corresponds to an ideal pi lying above p

occurring in the ideal decomposition. Furthermore, if the gcd itself is irreducible,
the pi-adic valuation is simply m/ deg pi; if not, we use Algorithm 4.8.17 in
Cohen [6]. For prime factors dividing the index, we proceed as described above.

4.2 From Ideals to Elements

We now show how to transform the relations involving ideals into multiplicative
relations involving elements only. After mapping these relations to F∗

q using ϕQ

and taking logarithms, we obtain linear equations between logarithms of elements
in F∗

q modulo the prime factor l.
We make a distinction between two cases: the simple case where K has class

number one and computable unit group, the general case.

K with Class Number One and Computable Unit Group Since the class
number equals one, every ideal I in OK is principal, i.e. there exists γI ∈ OK

with I = (γI). The ideal decomposition (a− bθ) =
∏

i pei

i then leads to

a− bθ = u
∏

i

γei

i

with (γi) = pi and u a unit in OK . Let (r1, r2) be the signature of K, then
the unit group O∗

K
∼= µ(K) × Zr1+r2−1, with µ(K) = 〈u0〉 a finite cyclic group

of order v. Assuming we can compute a system of fundamental units u1, . . . , ur

with r = r1 + r2 − 1, we can write u = un0

0 un1

1 · · ·unr
r . In this setting we thus

obtain r logarithmic maps λi for i = 1, . . . , r defined by

λi : O∗
K → Z : u 7→ ni ,

and a logarithmic map λ0 : O∗
K 7→ Z/vZ : u 7→ n0. Finally, we obtain the

decomposition

a− bθ =

r
∏

i=0

u
λi(u)
i

∏

i

γei

i .

Applying ϕQ and taking logarithms of both sides then leads to

logg(a− bθ) ≡
r
∑

i=0

λi(u) logg ui +
∑

i

ei logg γi mod q − 1 . (2)



General K Here we assume that the large prime factor l of q − 1 does not
divide the class number h(K), which constitutes a very minor restriction. To
obtain a relation between elements, we raise both sides of the ideal decomposition
(a− bθ) =

∏

i pei

i to the power h = h(K) and obtain

(a− bθ)h = u
∏

i

δei

i (3)

with u a unit and δi ∈ OK with (δi) = ph
i . Note that the left hand side denotes

the h-th power of the element (not the ideal) a− bθ. Furthermore, we will never
compute the elements δi, but only need that these exist and correspond to the
ideals pi.

It is tempting to apply ϕQ to both sides and take logarithms as in the easy
case, leading to

h logg(a− bθ) ≡ logg u+
∑

i

ei logg δi mod q − 1 .

The problem with this approach is that for each equation, the unit u will be
different, so logg u is a new unknown for every equation, and thus we will never
obtain a linear system of full rank. Note that in the easy case, we could express u
as a product of fundamental units, which effectively circumvented this problem.

To solve this problem we follow Schirokauer [18]: since it is sufficient to com-
pute the discrete logarithm modulo a large prime l|q− 1, we need not work with
the whole unit group O∗

K , but only modulo l-th powers of units, i.e. O∗
K/(O∗

K)l.
Clearly, for u ∈ (O∗

K)l, we have logg u ≡ 0 mod l. Instead of defining logarithmic

maps on the whole unit group, Schirokauer defines such maps on O∗
K/(O∗

K)l.
For simplicity we will assume that l does not ramify in K. Consider the set

ΓK = {γ ∈ OK | NK/Q(γ) 6= 0 mod l}, and note that the elements a − bθ are
in Γ , since they are smooth and thus l - NK/Q(a − bθ). Also note that ΓK is
multiplicative and contains the unit group O∗

K .
Let ε = lD − 1, with D the least common multiples of the irreducible factors

of f(X) mod l, then for all γ ∈ ΓK we have

γε ≡ 1 mod l .

Define the map λ from ΓK to lOK/l
2OK by λ(γ) = (γε − 1)+ l2OK . Fix a basis

{lbi + l2OK : i = 1, . . . , n} for lOK/l
2OK with {lbi + l2OK : i = 1, . . . , r} a basis

for λ(O∗
K) and define maps λi : ΓK → Z/lZ by

(γε − 1) ≡ l

n
∑

i=1

λi(γ)bi mod l2 .

Note that λ(γ ·γ′) = λ(γ)+λ(γ′) and similarly λi(γ ·γ′) = λi(γ)+λi(γ
′), so these

maps are logarithmic on ΓK . As a consequence, the maps λi for i = 1, . . . , n are
in fact homomorphisms from O∗

K to Z/lZ. Consider the homomorphism

λ : O∗
K/(O∗

K)l → (Z/lZ)r : u 7→ (λ1(u), . . . , λr(u)) .



We have the following trivial lemma which is a special case of Schirokauer’s
theorem.

Lemma 3. Assuming that λ is injective, u ∈ O∗
K is an l-th power if and only if

λ(u) = 0.

If we furthermore assume that O∗
K does not contain the primitive l-th roots

of unity, then O∗
K/(O∗

K)l has lr elements and thus λ defines an isomorphism.
Therefore, there exist units u1, . . . , ur ∈ O∗

K such that λi(ui) = 1 and λi(uj) = 0
for i 6= j. Note that these units are not unique, since they are only determined
modulo (O∗

K)l. Any unit u ∈ OK can thus be written as

u =
r
∏

i=1

u
λi(u)
i · ξl (4)

for some unit ξ.
In Equation (3) we now modify the elements δi by multiplying with a well

defined unit

δ′i = δi ·
r
∏

j=1

u
−λj(δi)
j ,

such that λj(δ
′
i) = 0 for j = 1, . . . , r. Note that δ′i still generates ph

i .
Rewriting Equation (3) then leads to (a− bθ)h = u′

∏

i(δ
′
i)

ei , with u′ a unit.
Since we have constructed δ′i such that λj(δ

′
i) = 0 for j = 1, . . . , r, we have

hλj(a− bθ) = λj(u
′). Rewriting the unit u′ as in (4) finally leads to the equation

(a− bθ)h = ξl
a,b ·

r
∏

i=1

u
hλi(a−bθ)
i ·

∏

i

(δ′i)
ei ,

for some ξa,b ∈ O∗
K . Applying ϕQ and taking logarithms of both sides modulo l

then gives

logg(a− bθ) ≡
r
∑

i=0

λi(a− bθ) logg ui +
∑

i

eih
−1 logg δ

′

i mod l . (5)

Note that h−1 logg δ
′

i and logg ui correspond precisely to the virtual logarithms
of ideals and Schirokauer maps introduced in [12] and [19], but are now given
as logarithms of the reduction of specific elements in pi and O∗

K . Furthermore,
note that these values are well defined modulo l.

4.3 Exploiting Automorphisms

In this section we show that if the number fieldK has a non-trivial automorphism
group Aut(K), the size of the factor basis F can be reduced by a factor of
#Aut(K).

Let K be a number field of degree n with non-trivial automorphism group
Aut(K) and assume p is inert in K. Clearly, the prime ideal (p) is invariant under



each φ ∈ Aut(K). Therefore, each automorphism φ defines an automorphism φ
of Fq by reduction modulo p. Furthermore, since p is unramified, this map will
be injective, so Aut(K) ⊂ Gal(Fq/Fp), implying that Aut(K) has to be cyclic
and #Aut(K)|n.

Let A = #Aut(K) and d = n/A and denote by ψ ∈ Aut(K) the unique

automorphism such that ψ(x) ≡ xpd

mod p for all x ∈ OK . Then Aut(K) = 〈ψ〉
and define ψk = ψk for k = 0, . . . , A− 1.

Write F = Fe ∪ Fu where Fu contains all unramified degree one prime
ideals and Fe the others. Note that Fe is tiny, since these prime ideals have to
divide the discriminant of f . Since ψk(p) is a prime ideal of the same degree
and ramification index as p, we can partition Fu into A disjunct sets Fu,k for
k = 0, . . . , A− 1 such that p ∈ Fu,0 ⇔ ψk(p) ∈ Fu,k. The decomposition (1) can
then be rewritten as

(a− bθ) =
∏

pi∈Fe

pei

i

A−1
∏

k=0

∏

pi∈Fu,0

ψk(pi)
ei,k ,

where most of the ei and ei,k will be zero.
Let δi be a generator of the principal ideal ph

i , then clearly ψk(δi) is a gener-

ator of (ψk(pi))
h and logg ψk(δi) ≡ pdk logg δi mod q − 1. Rewrite Equation (3)

as

(a− bθ)h = u′
∏

i∈[Fe]

δei

i

A−1
∏

k=0

∏

i∈[Fu,0]

ψk(δi)
ei,k ,

for some unit u′ and with [·] denoting the index set of a set. Note that we no
longer have the equality λj(u

′) = hλj(a− bθ), since λj(ψk(δi)) will not be zero.
However, we can explicitly compute

λj(u
′) ≡ hλj(a− bθ) −

∑

i∈[Fe]

eiλj(δi) −
A−1
∑

k=0

∑

i∈[Fu,0]

ei,kλj(ψk(δi)) mod l .

The equivalent of Equation (5) then becomes

logg(a− bθ) ≡
r
∑

j=0

h−1λj(u
′) logg uj +

∑

i∈[Fe]

h−1ei logg δi

+
∑

i∈[Fu,0]

(

h−1
A−1
∑

k=0

pdkei,k

)

logg δi mod l .

(6)

Note that the number of unknowns in the right hand side of the above equa-
tion now only amounts to #Fu,0 + #Fe + r, which is roughly #Aut(K) times
smaller than in the previous section. However, this approach is only feasible
when we are able to compute the class number h. Furthermore, for each ideal
pi ∈ Fu,0 we now have to explicitly compute a δi that generates ph

i . and all the
Schirokauer maps λj(ψk(δi)) for j = 1, . . . , r, k = 0, . . . , A− 1 and all i. Clearly
none of these issues arise when K has class number one and computable unit
group.



5 Asymptotic Heuristic Complexity

In this section we summarise the heuristic complexity of the different variations
described in Sections 2 and 3. The details of this complexity analysis are given
in Appendix A. Note that the basic algorithm is a special case of the algorithm
given in Section 3.1, so we do not treat it separately.

The precise complexity depends on the ratio of p compared to pn and we
have the following cases:

– p can be written as Lq(lp, c) with 1/3 < lp < 2/3, then the algorithm given
in 3.1 has complexity

Lq(1/3, (128/9)1/3) .

– p can be written as Lq(2/3, c) for a constant c, then the algorithm given
in 3.1 has complexity

Lq(1/3, 2c
′) with c′ =

4

3

(

3t

4(t+ 1)

)1/3

,

where we sieve over (t+ 1)-tuples where the degree t is taken as the natural
number closest to the real root of 3c3t(t+ 1)2 − 32 = 0.

– p can be written as Lq(2/3, c) for a constant c, then the algorithm given
in 3.2 has complexity

Lq(1/3, 2c
′) with 9c′3 − 6

c
c′2 +

1

c2
c′ − 8 = 0 .

– p can be written as Lq(lp, c) with lp > 2/3, then the algorithm given in 3.2
has complexity

Lq(1/3, (64/9)1/3) .

In Figure 1 we have plotted the constant c′ which determines the complexity
Lq(1/3, 2c

′) as a function of the constant c. The plot also shows for which c to
switch from algorithm 3.1 to algorithm 3.2.

6 Numerical Experiments

We modified Joux and Lercier’s discrete logarithm C-implementation in order to
handle a 120-digit realistic experiment. More precisely, we consider a finite field
of the form Fp3 with

p = b1039πc + 2622 = 3141592653589793238462643383279502886819 ,

the smallest 40-digit integer than 1039π such that (p− 1)/2 is prime. Its multi-
plicative group has p3 − 1 elements, which factors as

2×13×19×199×4177×212145751×547465820443×337091202666800863×l×(p−1)/2 ,
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Fig. 1. Asymptotic complexity Lq(1/3, 2c′) (note factor 2) as a function of c with
p ∈ Lq(1/3, c). Also indicated are the degree t of the elements in the sieving space and
the degree D ≥ n of the number field K2.

where l = 1227853277188311599267416539617839. The hardest part is of course
to compute discrete logarithms modulo the 110-bit factor l since smaller factors
can be easily handled with the Pollard-rho algorithm and discrete logarithms
modulo p− 1 are the same as discrete logarithms of norms in Fp. To solve this
problem, let Q[θ1] and Q[θ2] be the two number fields defined respectively by

f1(X) = X3 +X2 − 2X − 1 and f2(X) = f1(X) + p ,

where we have Fp3 ' Fp[t]/(f1(t)). With these settings, Q[θ1] is a cubic cyclic
number field, the Galois group of which is given by Aut(Q[θ1]) = {θ1 7→ θ1, θ1 7→
θ21 − 2, θ1 7→ −θ21 − θ1 + 1}, and a system of fundamental units by u1 = θ1 +
1 and u2 = θ21 + θ1 −1. Q[θ2] has signature (1, 1), thus we will have to apply one
single Schirokauer logarithmic map λ1 to our relations to deal with obstructions
in the Q[θ2] side.

We construct smoothness bases with 1 000 000 prime ideals as follows,

– in the Q[θ1] side, we include 899999 prime ideals, but only 300000 are mean-
ingful due to the Galois action,

– in the Q[θ2] side, we include 700 000 prime ideals.

The lattice sieving considers only algebraic integers a + bθ2 which are already
divisible by a prime ideal in Q[θ2], such that norms to be smoothed in Q[θ2]
are 150 bit integers (once removed the known prime ideal) and norms in Q[θ1]
are 110 bit integers (an important tip to improve the running time with such



polynomials is to unbalance the size of a versus the size of b). The sieving took
12 days on a 1.15 GHz 16-processors HP AlphaServer GS1280.

We then had to compute the kernel of a 1 163 482 × 793 188 matrix, the
coefficients of which are mostly equal modulo ` to ±1, ±p or ±p2. We thus
first modified the Joux-Lercier structured gaussian elimination step to reduce
such a system to 450246 equations in 445097 unknowns with 44544 016 non
null entries. Time needed for this on one processor was only a few minutes.
Then, the critical phase was the final computation via Lanczos’s algorithm. Our
parallelised version of this algorithm (modified for such matrices too) took one
additional week. At the end, since Q[θ1] is principal, we may check that we have
discrete logarithms of generators of ideals in the smoothness bases, for instance,

(t2 + t+ 1)(p
3
−1)/l = G294066886450155961127467122432171 ,

(t− 3)(p
3
−1)/l = G364224563635095380733340123490719 ,

(3 t− 1)(p
3
−1)/l = G468876587747396380675723502928257 ,

where G = g(p3
−1)/1159268202574177739715462155841484 l and g = −2t+ 1.

In the final step, we took as a challenge γ =
∑2

i=0(bπ × pi+1c mod p)ti. We
first easily computed its discrete logarithm in basis g modulo (p3 − 1)/l,

3889538915890151897584592293694118467753499109961221460457697271386147286910282477328.

To obtain a complete result, we expressed

γ =
−90987980355959529347 t2 − 114443008248522156910 t + 154493664373341271998

94912764441570771406 t2 − 120055569809711861965 t − 81959619964446352567
,

where numerator and denominator are both smooth once considered as algebraic
integers in Q[θ1]. Using a three level tree with 80 special-q ideals, we recovered
the discrete logarithm modulo l, namely 110781190155780903592153105706975.
Each special-q sieving took 10 minutes or a total of 14 hours.

7 Conclusion

In this paper, we have presented a new variation of the number field sieve al-
gorithm to compute discrete logarithms in F∗

pn . For p > Lpn(1/3), our variation
yields a complexity of Lpn(1/3). For smaller values of p, the function field sieve
algorithm described in [13] also gives Lpn(1/3) complexity. As a consequence,
we have Lpn(1/3) heuristic algorithms to compute discrete logarithms in all fi-
nite fields Fpn . This should be compared to the previous Lpn(1/2) algorithms
given in [1, 2]. Another major advantage is that this algorithm has a fast post-
processing phase for individual logarithms, once the main algorithm terminates.
This is extremely useful for applications which require the computation of many
logarithms in the same field. To give an example, this was required by the identity
based cryptosystem of Maurer and Yacobi [16].
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A Asymptotic Heuristic Complexity

A.1 Basic Algorithm

In order to analyse the heuristic asymptotic complexity of the basic algorithm
described in Section 2 we first assume that we can write the following relations
between q = pn, p and n, for some constant c to be determined later on:

n =
1

c
·
(

log q

log log q

)1/3

, p = exp

(

c · 3

√

log2 q · log log q

)

.

We further assume that the sieve limit S and the smoothness bound B are chosen
equal and expressed as:

S = B = exp

(

c′ · 3

√

log q · log2 log q

)

,

for some constant c′. Since f1 has small coefficients, say bounded by b0, the norm
of a − bθ1 is smaller than nb0B

n = Bn+o(1). Similarly, the norm of a − bθ2 is
smaller than p · Bn+o(1). Thus, the product of these two norms is smaller than
p · B2n+o(1) = Lq(2/3, c + 2c′/c). We make the usual heuristic hypothesis and
assume that the probability for each value of this product to split into primes
lower than B follows the well-known theorem of Canfield, Erdös and Pomer-
ance [5]: a random number below Lq(r, γ) is Lq(s, δ)-smooth with probability
Lq(r − s,−γ(r− s)/δ). As explained above, in the squarefree factorisation case,
this probability is lower, by a factor 6/π2 which we can neglect in the L-notation.
Plugging in our values, we find that the product of the norms is smooth with
probability Lq(1/3,−(1/3) · (c/c′+2/c)). In order to minimise the total runtime,
we want to roughly balance the complexities of the sieving phase and of the
linear algebra phase. This is achieved when c′ = (1/3) · (c/c′ + 2/c) and thus:

c′ =
1

3

(

1

c
+
√

3c+ c−2

)

.

The heuristic complexity is Lq(1/3, 2c
′) and it varies depending on c. It is min-

imal for c = 2 · (1/3)1/3, where c′ = 2 · (1/3)2/3. At this minimal point, the
complexity is Lq(1/3, (64/9)1/3), thus identical to the complexity of the number
field sieve over prime fields.



A.2 Algorithm for Smaller p

When considering our algorithmic variants for smaller values of p, two cases are
possible. Either p is written Lq(2/3, c) as before or it is of the form Lq(lp, c) with
1/3 < lp < 2/3. In the first case, the overall complexity is Lq(1/3) with a constant
which depends on c, in the second case, the complexity is Lq(1/3, (128/9)1/3).
The parameters of the algorithms are the smoothness bound B, the degree t
of the elements we are sieving over and the bound on the coefficients of these
elements S. Clearly, the norm on the f1 side is bounded by Sn+o(1) and the norm
on the f2 side is bounded by Sn+o(1)pt+o(1). Thus the product of the norms is
bounded by S2n+o(1)pt+o(1). Choose for t the nearest integer to:

ct
c
·
(

log q

log log q

)2/3−lp

,

for a constant ct to be determined later on. Choose the sieve bound as:

S = exp
(

cSc · loglp−1/3 q · log4/3−lp log q
)

.

Then, the total sieving space contains St elements, where

St = exp
(

(cSct + o(1)) · log1/3 q · log2/3 log q
)

when lp < 2/3. For the lp = 2/3 case, the round-off error in t is no longer
negligible, which explains why the complexity varies with c. We continue the
analysis for lp < 2/3, the lp = 2/3 case is discussed in the next subsection
and summarised in Figure 1. Let the smoothness bound be B = Lq(1/3, c

′) as
before. Rewrite the bound on the product of norms as Lq(2/3, 2cS + ct), then
the smoothness probability is

Pr = Lq(1/3,−(1/3) · (2cS/c′ + ct/c
′)) .

In order to choose cS and ct, we need to equate the runtime of the sieving, i.e.
the size of the sieving space St, with the time of the linear algebra, i.e. B2, and
also with B/Pr. This implies St/2 = B = 1/Pr. Translating this into equations
involving the various constants, we find:

c′ =
1

3

(

2cS
c′

+
ct
c′

)

=
cSct
2
.

As a consequence, we deduce:

c′ =

√

2cS + ct
3

=
cSct
2
.

We now write ct = x, cS = µx and minimise c′. With this notation:

(2µ+ 1)x

3
=
µ2x4

4
or equivalently x3 =

4(2µ+ 1)

3µ2
.



Since c′ = µx2/2, we write:

c′3 =
2(2µ+ 1)2

9µ
.

Clearly, minimising c′ is equivalent to minimising c′3 and implies:

8(2µ+ 1)

9µ
=

2(2µ+ 1)2

9µ2
, or 4µ = 1 + 2µ, and finally µ =

1

2
.

As a consequence x = (32/3)1/3, c′ = x2/4 = (16/9)1/3. Thus, the complexity of
the algorithm is Lq(1/3, 2c

′) = Lq(1/3, (128/9)1/3).

The case of lp = 2/3. In this case, it is easier to consider a family of al-
gorithms, indexed by t and to compute the complexity of each algorithm. We
then choose B = Lq(1/3, c

′) and S = Lq(1/3, 2c
′/(t + 1)), the total size of the

sieving space and the runtime of the linear algebra are Lq(1/3, 2c
′), the product

of the norms is Lq(2/3, 4c
′/(t + 1)c + tc) and the probability of smoothness is

Lq(1/3, (−1/3) · (4/(t+ 1)c+ tc/c′)). As usual, we equalise c′ with the constant
in the probability expression and find:

c′ =
1

3

(

4

(t+ 1)c
+
tc

c′

)

.

This implies:

3c′2 − 4c′

(t+ 1)c
− tc = 0.

Thus:

c′ =
1

3

(

2

(t+ 1)c
+

√

4

(t+ 1)2c2
+ 3tc

)

.

Note that for t = 1, we recover the formula of the basic case. This comes to a
minimum when:

2
(t+1)c2 = −8(t+1)−2c−3+3t

2
√

4(t+1)−2c−2+3tc

⇔
64(t+ 1)−2c−2 + 48tc =

(

−8(t+ 1)−1c−1 + 3t(t+ 1)c2
)2

⇔
48tc = −48tc+ 9t2(t+ 1)2c4 .

Thus, we take:

c = 2

(

4

3t(t+ 1)2

)1/3

.

As a consequence:

c′ =
4

3

(

3t

4(t+ 1)

)1/3

.



We recover the basic complexity Lq(1/3, (64/9)1/3) when t = 1 and find the
expected limit

Lq(1/3, (128/9)1/3)

when t tends to infinity. We show how the complexity constant varies with c in
Figure 1.

A.3 Algorithm for Larger p

For larger p, as for smaller p, two cases arise. Either p is written Lq(2/3, c) or it
is of the form Lq(lp, c) with lp > 2/3. In the first case, the overall complexity is
Lq(1/3) with a constant which depends on c, in the second case, the complexity
is Lq(1/3, (64/9)1/3). The parameters in this case are the smoothness bound B
and the degree D. The degree of f1 is n, the bound on the coefficients when
sieving is S = B and the size of the coefficients of both f1 and f2, according
to the construction of polynomials described above is R = pn/(D+1) = q1/(D+1).
Choose:

D = cD

(

log q

log log q

)1/3

and write B = Lq(1/3, c
′). Bound the norms on the f1 side by RSn+o(1) and

the norms on the f2 side by RSD+1+o(1). Thus the product of the norms is
bounded by Bn+D+1+o(1)q2/(D+1). When lp > 2/3, n is negligible compared to
D and the product of the norms can be rewritten as Lq(2/3, c

′cD + 2/cD). This

is minimised when cD = (2/c′)1/2, and becomes Lq(2/3, 2
√

2c′). The probability

of smoothness is Lq(1/3,−(1/3) · 2
√

2/c′). As usual, we equalise the (opposite
of) this constant with c′. This yields c′ = (8/9)1/3 and finally the expected
Lq(1/3, (64/9)1/3) complexity.

When lp = 2/3, matters are more complicated. The product of the norms
is now rewritten as Lq(2/3, c

′(cD + 1/c) + 2/cD), again this is minimised at

cD = (2/c′)1/2. However, it now becomes, Lq(2/3, c
′/c+2

√
2c′). The probability

of smoothness is Lq(1/3,−(1/3) · (1/c+ 2
√

2/c′)). Equating this constant to c′

yields:

(3c′ − 1/c)2 = 8/c′ or 9c′3 − 6

c
c′2 +

1

c2
c′ − 8 = 0.

When c tends to infinity, we recover the (64/9)1/3 constant in the complexity.


