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Abstract. One of the most basic requirements concerning Boolean func-
tions used in cryptosystems is that they must have high algebraic degrees.
This simple criterion is not always well adapted to the concrete situation
in which Boolean functions are used in symmetric cryptography, since
changing one or several output bits of a Boolean function considerably
changes its algebraic degree while it may not change its robustness. The
proper characteristic is the r-th order nonlinearity profile (which includes
the first-order nonlinearity). However, studying it is difficult and almost
no paper, in the literature, has ever been able to give general effective
results on it. The values of the nonlinearity profile are known for very few
functions and these functions have little cryptographic interest. A recent
paper has given a lower bound on the nonlinearity profile of functions,
given their algebraic immunity. We improve upon it, and we deduce that
it is enough, for a Boolean function, to have high algebraic immunity,
for having non-weak low order nonlinearity profile (even when it cannot
be evaluated), except maybe for the first order.
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1 Introduction

Boolean functions, that is, F2-valued functions defined over the vector space Fn
2

of all binary vectors of a given length n, are used in the S-boxes of block ciphers
and in the pseudo-random generators of stream ciphers. They play a central role
in their security.

In stream ciphers, the main model for the generation of the keystream con-
sists of a linear part, producing a sequence with a large period, usually composed
of one or several LFSRs, and a nonlinear combining or filtering function f which
produces the output, given the state of the linear part. In the nonlinear combiner
sub-model, the outputs to several LFSRs are combined using a nonlinear Boolean
function to produce the keystream. In the nonlinear filter sub-model, the con-
tent of some of the flip-flops in a single (longer) LFSR constitute the input to a
nonlinear Boolean function which produces the keystream. These models which
are very efficient, in particular in hardware, have undergone a lot of cryptanal-
ysis and to resist those attacks, different design criteria have been proposed for



both the LFSRs and the combining Boolean function. The main classical cryp-
tographic criteria for designing the function f are balancedness (f is balanced
if its Hamming weight equals 2n−1) to prevent the system from leaking statisti-
cal information on the plaintext when the ciphertext is known, a high algebraic
degree (that is, a high degree of the algebraic normal form of the function) to
prevent the system from Massey’s attack by the Berlekamp-Massey algorithm
(cf. [31, 39], see also [34]), the non-existence of (non-zero) linear structure a ∈ Fn

2

(such that f(x + a) + f(x) is constant) so that the function effectively depends
on all its variables, a high order of correlation immunity (and more precisely,
of resiliency, since the functions must be balanced - a function is t-resilient if
each of its restrictions obtained by keeping constant t input bits is balanced)
to counter correlation attacks (in the case of combining functions), and a high
nonlinearity (that is, a large Hamming distance to affine functions) to withstand
correlation attacks (again) and linear attacks.

The recent algebraic attacks [15] have led to further characteristics that a
cryptographic Boolean function must have. These attacks cleverly use over-
defined systems of multivariate nonlinear equations to recover the secret key
(the idea of using such systems comes from C. Shannon [40], but the improve-
ment in the efficiency of the method is recent). The core of the analysis in the
standard algebraic attack is to find out low degree functions g 6= 0 and h such
that fg = h. It has been shown in [37] that this is equivalent to the existence
of a low degree nonzero annihilator of f or of 1 + f , that is, of a function g
such that fg = 0 (i.e. whose support is disjoint of that of f) or (1 + f)g = 0.
The minimum degree of such g is called the (basic) algebraic immunity of f and
must be as high as possible (the maximum being

⌈
n
2

⌉
). This condition is not

sufficient, since a function can have sufficiently high algebraic immunity and be
weak against fast algebraic attacks [16]. If one can find g of low degree and h 6= 0
such that fg = h, then a fast algebraic attack is feasible if the degree of h is
not too high, see [16, 1, 24]. Since fg = h implies fh = ffg = fg = h, we see
that h is then an annihilator of f + 1 and its degree is then at least equal to the
algebraic immunity of f . This means that having a high algebraic immunity is
not only a necessary condition for a resistance to standard algebraic attacks but
also for a resistance to fast algebraic attacks.

Some of the criteria above play also important roles for S-boxes in block
ciphers: the nonlinearity (cf. the linear attack by Matsui [32], see also [12]) and
the algebraic degree (the complexity of the “higher order differential attack” on
block ciphers due to Knudsen and Lai [26, 28] depends on the algebraic degrees
of the Boolean functions involved in the system).

But these criteria must be considered in an extended way: suppose that, given
a function which does not satisfy some criterion, it is possible, by changing one
or a few bits in its output (that is, in its truth-table) to obtain a function which
satisfies the criterion; then this criterion cannot have a general relevance to
cryptography, since this change does not fundamentally modify the robustness
of the system using this function (however, this situation is not quite the same
according to whether the function is used in a synchronous stream cipher, a self-



synchronizing stream cipher or a block cipher). Some papers in the literature
have already addressed this problem for some criteria: see [38] for the criterion
of non-existence of nonzero linear structure (Meier and Staffelbach considered
the so-called distance to linear structures) and [29, 10] for the resiliency criterion.
Some other criteria – for instance the nonlinearity – do not change much when
a few bits of the output to the function are changed; hence, they do not need
such extension. On the contrary, changing one single bit in the output to an
n-variable function of algebraic degree at most n− 1 moves its degree to n, and
if, starting from a balanced function we want to keep balancedness, changing
two bits moves it almost surely to n − 1. A natural way of putting this right
is to do as Meier and Staffelbach did for the linear structures, considering, for
every r < n, the minimum Hamming distance to all functions of degrees at most
r (whose set is the so-called r-th order Reed-Muller code and will be denoted
by RM(r)). This distance is usually called the r-th order nonlinearity of the
function (and more simply its nonlinearity in the first-order case).

We shall call the nonlinearity profile of a function the sequence whose r-th
term, for r = 1, . . . , n − 1, equals the r-th order nonlinearity of the function.
Note that the nonlinearity profile is extended-affine-invariant, in the sense that
if φ is an affine automorphism of Fn

2 and if ` is an affine Boolean function on
Fn

2 , then for every n-variable Boolean function f , the nonlinearity profile of the
function f ◦ φ + ` equals that of f . The best known upper bound on the r-th
order nonlinearity of general functions has been given in [11]. Several papers
have shown the role played by this parameter in relation to some cryptanalyses
(note that, contrary to the first order nonlinearity, it must have low value for
allowing the attacks to be realistic) and studied it from an algorithmic viewpoint
[14, 23, 25, 27, 33, 35]. However, very few have attempted to give constructions of
functions with reasonably good nonlinearity profile or to show general properties
of this parameter [25]. In fact, until recently, almost nothing relevant was known
on this criterion (see Section 2). Fortunately, it has been shown lately that, if
the algebraic immunity AI(f) of a function f is known, then we can deduce a
lower bound on its r-th order nonlinearity for every r ≤ AI(f)− 1: for the first
order, see [17] and the improvement of [30]; for any order, see [8] (see Section
2 for a recall of these bounds). This changes completely the situation with the
nonlinearity profile. In this paper, we obtain a new bound which improves upon
the bound of [8] for all values of AI(f) when the number of variables is smaller
than or equal to 12, and for most values of AI(f) when the number of variables
is smaller than or equal to 22 (which covers the practical situation of stream
ciphers). It also improves asymptotically upon it.

The paper is organized as follows. In Section 2 are given the necessary defi-
nitions and properties of the main cryptographic criteria on Boolean functions.
In Section 3, we study the dimension of the vector space of annihilators with
prescribed algebraic degrees, of a Boolean function with given algebraic degree.
The results of this section are used in Section 4 to obtain the lower bound on
the r-th order nonlinearity of a function of given algebraic immunity. Finally,



in Section 5, we show that the bound of Section 4 simplifies the question of
designing cryptographic Boolean functions meeting all necessary criteria.

2 Preliminaries

Let n be any positive integer. Any Boolean function f on n variables admits a
unique algebraic normal form (ANF):

f(x1, . . . , xn) =
∑

I⊆{1,...,n}

aI

∏
i∈I

xi,

where the aI ’s are in F2. The terms
∏

i∈I xi are called monomials. The alge-
braic degree d◦f of a Boolean function f equals the maximum degree of those
monomials whose coefficients are nonzero in its algebraic normal form. Affine
functions are those Boolean functions of degrees at most 1.
A slightly different form for the ANF is f(x) =

∑
u∈F n

2
auxu, where au ∈ F2

and where xu =
∏n

i=1 xui
i . Then d◦f equals max

au 6=0
wt(u), where wt(u) denotes the

Hamming weight |{i = 1, . . . , n / ui = 1}| of u. Note that, for every x ∈ Fn
2 , we

have then f(x) =
∑

u�x au, where u � x means that every coordinate of u is
upper bounded by the corresponding coordinate of x, that is, that the support
of u is included in the support of x.

The Hamming weight of a Boolean function is the Hamming weight of its
list of values, that is, the size of its support {x ∈ Fn

2 / f(x) = 1}. The Hamming
distance between two Boolean functions is the Hamming weight of f + g, that is
d(f, g) = |{x ∈ Fn

2 / f(x) 6= g(x)}|.

Definition 1. Let f : Fn
2 → F2 be an n-variable Boolean function. Let r be a

positive integer such that r ≤ n. The r-th order nonlinearity of f is the minimum
Hamming distance between f and all n-variable functions of algebraic degrees at
most r.

We shall denote the r-th order nonlinearity of f by nlr(f). The first-order non-
linearity of f is simply called the nonlinearity of f and denoted by nl(f).
Clearly we have nlr(f) = 0 if and only if f has degree at most r. So, the knowl-
edge of the nonlinearity profile (i.e. of all the nonlinearities of orders r ≥ 1) of
a Boolean function includes the knowledge of its algebraic degree. It is in fact
a much more complete cryptographic parameter than are the single (first-order)
nonlinearity and the algebraic degree: the former is not sufficient for knowing the
cryptographic behavior of a function (it does not allow to quantify for instance
the resistance to Berlekamp-Massey attack) and the latter is still less sufficient,
as explained in introduction.
As far as we know, the nonlinearity profile (or a great part of it) is known in
general only for quadratic functions (the functions of algebraic degrees at most
2) and for their sums with functions of very small Hamming weights. Indeed, the
first-order nonlinearities of quadratic functions are known (see [36]) and the r-th
order nonlinearity of a quadratic function is obviously null for every r ≥ 2. The



first-order nonlinearities of the functions of degrees greater than or equal to 3 are
unknown, except for some particular primary constructions of Boolean functions
(such as the indicators of flats, or some concatenations of such indicators or of
quadratic functions - including the Maiorana-McFarland functions) and for some
secondary constructions; nothing is known on the second-order nonlinearities of
functions of degrees at least 3 (except for functions of small weights). In the
case of functions of small Hamming weights (e.g. the indicators of flats of small
dimensions), the r-th order nonlinearity is equal, for sufficiently low values of r
(namely, for 2n−r > 2wt(f)), to the weight wt(f) itself.

The algebraic immunity [37] of a Boolean function f quantifies the resistance
to the standard algebraic attack of the pseudo-random generators using it as a
nonlinear function.

Definition 2. Let f : Fn
2 → F2 be an n-variable Boolean function. We call

annihilator of f any n-variable function g whose product with f is null (i.e.
whose support is included in the support of f +1, or in other words any function
which is a multiple of f + 1). The algebraic immunity of f is the minimum
algebraic degree of all the nonzero annihilators of f or of f + 1.

We shall denote the algebraic immunity of f by AI(f).
A very useful property is its affine invariance: for every affine automorphism φ
of Fn

2 , we have AI(f ◦ φ) = AI(f). This comes from the affine invariance of the
algebraic degree.

Clearly, since f is an annihilator of f + 1 (and f + 1 is an annihilator of f)
we have AI(f) ≤ d◦f .
As shown in [15], we always have AI(f) ≤

⌈
n
2

⌉
. This bound is tight (see below).

Also, we know that almost all Boolean functions have algebraic immunities close
to this optimum; more precisely, for all a < 1, AI(f) is almost surely greater than
n
2 −

√
n
2 ln

(
n

a ln 2

)
when n tends to infinity: see [21].

Even when restricting ourselves to functions with optimum algebraic immu-
nity, the algebraic attacks oblige to use now functions on at least 13 variables,
see [4, 8] (this number is a strict minimum and is in fact risky; a safer number
of variables would better be near 20).

Very few functions are known (up to affine equivalence) with provably op-
timum algebraic immunities: the functions whose construction is introduced in
[18] (see in [8] their further properties) and some functions which are symmetric
(that is, whose outputs depend only on the Hamming weights of their inputs)
[19, 3]. These functions have some drawbacks: all of them have insufficient non-
linearities and all but one are non-balanced. Moreover, the functions studied in
[19, 3], and to a slightly smaller extent the functions introduced in [18], have not
a good behavior against fast algebraic attacks, see [2, 20]. But the research in
this domain is very active and it is probable that better examples of functions
will be found in the future.

It was shown in [17] that the weight of a function f with given algebraic
immunity satisfies:

∑AI(f)−1
i=0

(
n
i

)
≤ wt(f) ≤

∑n−AI(f)
i=0

(
n
i

)
. In particular, if n is

odd and f has optimum algebraic immunity, then f is balanced.



The first lower bound on the (first-order) nonlinearity of functions with given
algebraic immunity has been obtained in [17]: nl(f) ≥

∑AI(f)−2
i=0

(
n
i

)
. In [30], M.

Lobanov has improved upon this lower bound: nl(f) ≥ 2
∑AI(f)−2

i=0

(
n−1

i

)
. In [8],

an easy generalization to the r-th order nonlinearity of the bound obtained in
[17] has been given: nlr(f) ≥

∑AI(f)−r−1
i=0

(
n
i

)
. In the present paper, we extend

Lobanov’s bound into a bound which improves, asymptotically and in most cases
of practical situations, upon the bound obtained in [8]. This bound is related to
the dimension of the annihilators with prescribed algebraic degrees of Boolean
functions with given algebraic degrees.

3 The dimension of the vector space of prescribed degree
annihilators of a function

The number of linearly independent low degree annihilators of a given Boolean
function f and of the function f + 1 is an important parameter for evaluating
the complexity of algebraic attacks on the systems using this function. We shall
see in the next section that it plays also an important role in relation to the r-th
order nonlinearity.

Definition 3. Let h be an n-variable Boolean function. We denote by Ank(h)
the vector space of those annihilators of degrees at most k of h and by dk,h the
dimension of Ank(h).

Little is known on the behavior of dk,h. For k = n, we have clearly dn,h =
2n − wt(h) since Ann(h) contains all functions whose supports are disjoint of
that of h. It is also shown in [17, 8] that:
- for k = AI(h), we have dk,h ≤

(
n
k

)
,

- if h is balanced and has algebraic immunity n
2 (n even), then dn

2 ,h ≥ 1
2 ·

(
n
n
2

)
,

- if h has algebraic immunity n+1
2 (n odd), then dn+1

2 ,h =
(

n
n+1

2

)
.

Also, Lobanov [30] showed that for every non-constant affine function h and
every k, we have dk,h =

∑k−1
i=0

(
n−1

i

)
.

Before introducing an upper bound on dk,h which is valid for all functions, we
generalize Lobanov’s result by determining the values of dk,h for several classes
of functions. This will be useful in the sequel.

Proposition 1. Let h be any n-variable function of degree r, such that 0 ≤
r ≤ n, and of weight 2n−r. Then for every k ≥ 0 we have dk,h =

∑k
i=0

(
n
i

)
−∑k

i=0

(
n−r

i

)
.

Proof:
We know that h is the indicator of an (n − r)-dimensional flat (see e.g. [36]),
and thanks to the affine invariance of the algebraic immunity, we may without
loss of generality assume that it equals (x1 + 1)(x2 + 1) · · · (xr + 1). The sys-
tem characterizing the elements of Ank(h), that is, the system of all equations∑

u�x |wt(u)≤k au = 0 where x ranges over the support {(0, . . . , 0)}×Fn−r
2 of h,



does not involve any unknown au such that (u1, . . . , ur) 6= (0, . . . , 0). And when
considering it as a system with unknowns au such that (u1, . . . , ur) = (0, . . . , 0),
it is the system obtained when characterizing the (n − r)-variable annihilators
of degrees at most k of the constant function 1. This last system has rank∑k

i=0

(
n−r

i

)
, since the function 1 admits the null function as only annihilator,

and this implies that dk,h =
∑k

i=0

(
n
i

)
−

∑k
i=0

(
n−r

i

)
. Note that, in the case r = 1,

this is the value given by Lobanov for non-constant affine functions. �

Proposition 2. Let h be any n-variable function of degree r, such that 0 ≤ r ≤
n, and of weight 2n − 2n−r. Then for every k ≥ 0 we have dk,h =

∑k−r
i=0

(
n−r

i

)
.

Proof:
h + 1 is the indicator of an (n− r)-dimensional flat, and we may without loss of
generality assume that it equals x1x2 · · ·xr. Then the elements of Ank(h) are the
products of x1x2 · · ·xr with those functions in the variables xr+1, . . . , xn whose
degrees are at most k − r. Then dk,h =

∑k−r
i=0

(
n−r

i

)
. In the case r = 1, this is

also the value given by Lobanov. �

Proposition 3. Let t be an integer such that t ≤ n and let h be the symmetric
function defined by h(x) = 1 if and only if wt(x) < t. Then, for every k, we have
dk,h =

∑k
i=t

(
n
i

)
.

Proof:
The coefficients in the ANFs of the elements of Ank(h) are the solutions of the
system of equations

∑
u�x |wt(u)≤k

au = 0, where x ranges over the set of vectors

of weights strictly smaller than t. If k ≥ t − 1, then these equations become∑
u�x au = 0 and these ANFs are the polynomials such that au = 0 if wt(u) < t

(and au is any element of F2 if t ≤ wt(u) ≤ k). Otherwise, it is clear that
Ank(h) = {0}. �
If t ≤

⌈
n
2

⌉
, we have then AI(h) = t, since it is easy to show then that Ank(h+1)

does not contain nonzero functions of degrees strictly smaller than t.
Note that, denoting by f the majority function (i.e. the symmetric function
of support {x ∈ Fn

2 / wt(x) ≥
⌈

n
2

⌉
), Proposition 3 with t =

⌈
n
2

⌉
(resp. with

t =
⌊

n
2

⌋
+1) gives the value of dk,f+1 (resp. of dk,f , thanks to affine invariance).

The functions studied in Propositions 1 and 2 are balanced when r = 1 only,
and those studied in Proposition 3 are balanced when t = n+1

2 (n odd). We
study in the next proposition a more general case of balanced functions.

Proposition 4. Let h be an n-variable function of weight 2n−r (1 < r ≤ n− 1)
and ` a non-constant affine function such that h + ` is balanced. Then

dk,h+` =
k−1∑
i=0

(
n− 1

i

)
−

k−1∑
i=k−r+1

(
n− r − 1

i

)
+

k−r−1∑
i=0

(
n− r − 1

i

)
.



Proof:
We may without loss of generality assume that h(x) equals (x1+1)(x2+1) · · · (xr+
1) and that l(x) is the function xr+1. The annihilators of h+ ` are then the mul-
tiples of (x1 + 1)(x2 + 1) · · · (xr + 1) + (xr+1 + 1).
Let

(
(x1 +1)(x2 +1) · · · (xr +1)+(xr+1 +1)

) (∑
u∈F n

2
auxu

)
be such a multiple.

1. For every u such that ur+1 = 1 and for which there exists i ≤ r such that
ui = 1, we have ((x1 + 1)(x2 + 1) · · · (xr + 1) + (xr+1 + 1))xu = 0. Hence, we
must not take this case into account when quantifying the dimension.
2. For every u such that ur+1 = 0 and for which there exists i ≤ r such that ui =
1, the corresponding multiple ((x1 + 1)(x2 + 1) · · · (xr + 1) + (xr+1 + 1))xu equals
(xr+1 + 1)

∏n
i=1 xui

i . Its degree equals 1 + wt(u1, . . . , un).
3. For every u such that u1 = · · · = ur = 0 and ur+1 = 1, the correspond-
ing multiple equals ((x1 + 1)(x2 + 1) · · · (xr + 1))

∏n
i=r+1 xui

i . Its degree equals
r + 1 + wt(ur+2, . . . , un).
4. For every u such that u1 = · · · = ur = ur+1 = 0, the corresponding multiple
equals ((x1 + 1)(x2 + 1) · · · (xr + 1) + (xr+1 + 1))

∏n
i=r+2 xui

i . Its degree equals
r + wt(ur+2, . . . , un).
The functions of cases 2, 3 and 4 are linearly independent. Then dk,h+` equals∑k−1

i=0

(
n−1

i

)
−

∑k−1
i=0

(
n−r−1

i

)
+

∑k−r−1
i=0

(
n−r−1

i

)
+

∑k−r
i=0

(
n−r−1

i

)
. �

Remark: The knowledge of dk,h for some function h gives information on dk,h′

for some other functions h′:
1. For every n-variable functions h and h′ and every positive integer k, we have
|dk,h − dk,h′ | ≤ max(wt(h(h′ + 1)), wt((h + 1)h′)) ≤ wt(h + h′), since the ranks
of the systems characterizing Ank(h) and Ank(h′) satisfy the same inequality
(indeed, adding equations to a system increases its rank by at most the number
of added equations, and the system characterizing the ANFs of the annihilators
of h′ can be obtained from the system characterizing the ANFs of those of h by
adding wt(h′(h + 1)) equations and suppressing wt(h(h′ + 1)) equations).
2. Let h be an n-variable function and let h′ be the (n + 1)-variable function
h′(x1, . . . , xn+1) = h(x1, . . . , xn). Let k be an integer. The ANFs of the elements
of Ank(h) are the solutions of the system of equations

∑
u∈F n

2 |wt(u)≤k

auxu = 0,

where x ranges over supp(h) and the ANFs of the elements of Ank(h′) are the
solutions of the system of equations

∑
v∈F n+1

2 |wt(v)≤k

bvyv = 0, where y ranges over

supp(h′) = supp(h)× F2. This last equation is equal to
∑

u∈F n
2 |wt(u)≤k

bu,0x
u = 0

if y = (x, 0) and to
∑

u∈F n
2 |wt(u)≤k

bu,0x
u+

∑
u∈F n

2 |wt(u)≤k−1

bu,1x
u = 0 if y = (x, 1).

Hence, dk,h′ = dk,h + dk−1,h.

In the next lemma, we extend to all Boolean functions the result from [30],
recalled above, which dealt only with affine functions.



Lemma 1. Let n be a positive integer. Let r and k be positive integers smaller
than or equal to n. Let h be any n-variable Boolean function of algebraic degree
r. Then

dk,h ≤ min

 k∑
i=AI(h)

(
n

i

)
,

k∑
i=0

(
n

i

)
−

k∑
i=0

(
n− r

i

) .

Proof:
We first prove that dk,h ≤

∑k
i=AI(h)

(
n
i

)
. If two elements of Ank(h) have the

same degree k part
∑

u∈F n
2 |wt(u)=k xu, then their sum belongs to Ank−1(h). We

deduce that dk,h is smaller than or equal to the sum of dk−1,h and of the dimen-
sion of RM(k)/RM(k − 1), where RM(k) is the Reed-Muller code of order k.
This proves dk,h ≤ dk−1,h +

(
n
k

)
and we deduce the relation dk,h ≤

∑k
i=AI(h)

(
n
i

)
by induction on k, since, by definition, dAI(h)−1,h = 0.
We prove now that dk,h ≤

∑k
i=0

(
n
i

)
−

∑k
i=0

(
n−r

i

)
. Since h has degree r and since

the dimension of Ank(h) is invariant under affine equivalence, we can assume
without loss of generality that h(x) = x1x2 · · ·xr +h′(x), where h′ has degree at
most r and where the term x1x2 · · ·xr has null coefficient in its ANF. For any
choice of n− r bits ur+1, . . . , un, the restriction hur+1,...,un

of h obtained by fix-
ing the variables xr+1, . . . , xn to the values ur+1, . . . , un (respectively) has then
degree r, and has therefore odd weight, since r is the number of its variables.
Hence it has weight at least 1. For every (ur+1, . . . , un) ∈ Fn−r

2 , let us denote by
xur+1,...,un

a vector x such that (xr+1, . . . , xn) = (ur+1, . . . , un) and h(x) = 1.
A function g(x) =

∑
u∈F n

2 |wt(u)≤k auxu is an annihilator of h if and only if, for
every x ∈ Fn

2 such that h(x) = 1, we have g(x) = 0. A necessary condition is that
g(x) = 0 for every x = xur+1,...,un

. If, in each of the resulting equations, we trans-
fer all unknowns au such that (u1, . . . , ur) 6= (0, . . . , 0) to the right hand side, we
obtain a system S′ in the unknowns au such that (u1, . . . , ur) = (0, . . . , 0). Re-
placing the right hand sides of the resulting equations by 0 (i.e. considering the
corresponding homogeneous system S′0) gives the system that we obtain when
we characterize the (n− r)-variable annihilators of degrees at most k of the con-
stant function 1, considered as a function in the variables xr+1, . . . , xn. Since the
constant function 1 admits only the null function as annihilator, this means that
the matrix of S′0 has full rank

∑k
i=0

(
n−r

i

)
. Hence the rank of the whole system of

equations
∑

u∈F n
2 |wt(u)≤k auxu = 0, where x ranges over the support of h, is at

least
∑k

i=0

(
n−r

i

)
and the dimension of Ak(h) is at most

∑k
i=0

(
n
i

)
−

∑k
i=0

(
n−r

i

)
.�

Note that, for k = n, Lemma 1 gives wt(h) ≥ max(
∑AI(h)−1

i=0

(
n
i

)
, 2n−r) since

dn,h = 2n − wt(h), but we already knew that wt(h) ≥ 2n−r, see [36].

Remarks:
1. The bound of Lemma 1, which generalizes and improves upon the bound
dAI(h),h ≤

(
n

AI(h)

)
of [8], is tight for every value of AI(h) (upper bounded by⌈

n
2

⌉
) and for every k ≤ n. When AI(h) = 1, it is achieved at least by all functions

of weight 2n−r, according to Proposition 1 (all of these functions have algebraic



immunity 1). When AI(h) = t > 1, it is achieved by the function of Proposition
3. Note that in this case, the value of r is large. We do not assert that the bound
is also tight for every r.
2. We show in Appendix that the bound of Lemma 1 can be improved in some
cases. We do not know whether the stronger inequality dk,h ≤

∑k
i=AI(h)

(
n
i

)
−∑k

i=AI(h)

(
n−r

i

)
can be true for every function of degree r and for some values

of k (depending on the value of AI(h)). The functions of Proposition 1 are not
counter-examples since they have algebraic immunity 1, and those of Proposition
3 neither since they have degree r > n− t. �

4 The lower bound on the r-th order nonlinearity

We need a preliminary result before stating our main result.

Proposition 5. Let f be a Boolean function in n variables and let r, r′ be non-
negative integers such that r′ ≤ r and AI(f) − r − 1 ≥ 0. For every n-variable
function h of degree r and of algebraic immunity r′, we have

wt(fh) ≥ max

r′−1∑
i=0

(
n

i

)
,

AI(f)−r−1∑
i=0

(
n− r

i

) if r′ ≤ AI(f)− r − 1,

≥
AI(f)−r−1∑

i=0

(
n

i

)
if r′ > AI(f)− r − 1.

In all cases, we have:

wt(fh) ≥
AI(f)−r−1∑

i=0

(
n− r

i

)
.

Proof:
Let k be any non-negative integer. A Boolean function of degree at most k
belongs to Ank(fh) if and only if the coefficients in its ANF satisfy a system
of wt(fh) equations in

∑k
i=0

(
n
i

)
variables. Hence we have: dim(Ank(fh)) ≥∑k

i=0

(
n
i

)
− wt(fh).

According to Lemma 1: dim(Ank(h)) ≤ min
(∑k

i=r′

(
n
i

)
,
∑k

i=0

(
n
i

)
−

∑k
i=0

(
n−r

i

))
.

If dim(Ank(fh)) > dim(Ank(h)), then there exists an annihilator g of degree at
most k of fh which is not an annihilator of h. Then, gh is a nonzero annihilator
of f and has degree at most k + r. Thus, if k = AI(f)− r− 1 ≥ 0, we arrive to a
contradiction. We deduce that dim(AnAI(f)−r−1(fh)) ≤ dim(AnAI(f)−r−1(h)).
This implies that

∑AI(f)−r−1
i=0

(
n
i

)
− wt(fh) is upper bounded by:

min

AI(f)−r−1∑
i=r′

(
n

i

)
,

AI(f)−r−1∑
i=0

(
n

i

)
−

AI(f)−r−1∑
i=0

(
n− r

i

) ,



that is:

wt(fh) ≥ max

r′−1∑
i=0

(
n

i

)
,

AI(f)−r−1∑
i=0

(
n− r

i

) if r′ ≤ AI(f)− r − 1,

and

wt(fh) ≥
AI(f)−r−1∑

i=0

(
n

i

)
if r′ > AI(f)− r − 1. �

Theorem 1. Let f be any Boolean function in n variables and let r be any

nonegative integer such that AI(f)−r−1 ≥ 0. Then nlr(f) ≥ 2
AI(f)−r−1∑

i=0

(
n− r

i

)
.

More precisely, we have nlr(f) ≥ max
r′≤n

(min (λr′ , µr′)), where:

λr′ = 2 max

r′−1∑
i=0

(
n

i

)
,

AI(f)−r−1∑
i=0

(
n− r

i

) if r′ ≤ AI(f)− r − 1,

= 2
AI(f)−r−1∑

i=0

(
n

i

)
if r′ > AI(f)− r − 1,

µr′ =
AI(f)−r−1∑

i=0

(
n− r

i

)
+

AI(f)−r′∑
i=0

(
n− r′ + 1

i

)
.

Proof:
Let h be a function of degree at most r such that nlr(f) = wt(f +h) = wt(f(h+
1)) + wt((f + 1)h). Proposition 5 implies nlr(f) ≥ 2

∑AI(f)−r−1
i=0

(
n−r

i

)
. Let r′

be any nonnegative integer. If AI(h) ≥ r′, then Proposition 5 applied to the
functions f and h + 1 and to the functions f + 1 and h shows that wt(f(h + 1))
and wt((f + 1)h) are lower bounded by:

max

r′−1∑
i=0

(
n

i

)
,

AI(f)−r−1∑
i=0

(
n− r

i

) if r′ ≤ AI(f)− r − 1,

AI(f)−r−1∑
i=0

(
n

i

)
if r′ > AI(f)− r − 1.

If AI(h) < r′, then there exists g 6= 0 such that either g ∈ Anr′−1(h + 1),
and therefore supp(g) ⊆ supp(h), or g ∈ Anr′−1(h), and therefore supp(g) ⊆
supp(h + 1). If supp(g) ⊆ supp(h), then we apply Proposition 5 (last sentence
of) to the functions f and h + 1 and to the functions f + 1 and g. We ob-
tain: wt(f(h + 1)) ≥

∑AI(f)−r−1
i=0

(
n−r

i

)
and wt((f + 1)h) ≥ wt((f + 1)g) ≥∑AI(f)−r′

i=0

(
n−r′+1

i

)
. The case where supp(g) ⊆ supp(h + 1) is similar. �



Remarks:
1. Let δ be the algebraic degree of f . We assume that r < δ since, otherwise,
nlr(f) is null. According to McEliece’s theorem (see [36] or [7]), nlr(f) is divis-
ible by 2d

n
δ e−1 = 2b

n−1
δ c.

2. The bound of Theorem 1 improves upon the bound nlr(f) ≥
∑AI(f)−r−1

i=0

(
n
i

)
of [8] for r = 1 (this is Lobanov’s result). For r > 1, it improves upon it for every
n ≤ 12 and if we go up to n ≤ 22, it improves upon it for every AI(f) and most
of the possible values of r (all of them, unless AI(f) is very large). We give in
Appendix the table of the values of the bounds of Theorem 1 and of [8] when
AI(f) =

⌈
n
2

⌉
(i.e. when AI(f) is optimal - this is the worst case for the bound

of Theorem 1), for all values of n from 13 to 22 and for all values of r from 1 to
AI(f)− 1.
3. Both bounds of Theorem 1 and [8] show that, for most values of r, functions
with high algebraic immunities are (much better than) “r-th order bent”, in the
sense of the paper [25]. In particular, they give more robust functions than those
constructed in this paper.
4. In the case of optimal AI(f) =

⌈
n
2

⌉
, the bound of Theorem 1 gives nlr(f) ≥

2
(
2n−r−1 −

∑(n−r)/2−1
i=n/2−r

(
n−r

i

)
− 1

2

(
n−r

(n−r)/2

))
when n and r are even; it gives

nlr(f) ≥ 2
(
2n−r−1 −

∑(n−r−1)/2
i=n/2−r

(
n−r

i

))
when n is even and r is odd, nlr(f) ≥

2
(
2n−r−1 −

∑(n−r)/2−1
i=(n+1)/2−r

(
n−r

i

)
− 1

2

(
n−r

(n−r)/2

))
when n and r are odd and finally

nlr(f) ≥ 2
(
2n−r−1 −

∑(n−r−1)/2
i=(n+1)/2−r

(
n−r

i

))
when n is odd and r is even. This is

in all cases asymptotically greater than 2n−r−(r+1)
( n−r
bn−r

2 c
)
≈ 2n−r

(
1− (r+1)

√
2√

πn

)
when n tends to ∞ and r is fixed.
5. For r ≥ 2, the asymptotic lower bound 2n−r

(
1− (r+1)

√
2√

πn

)
given by Theorem

1 is far from the asymptotic lower bound 2n−1−2n/2 nr/2
√

ln 2
2r! given in [13]. But

this last bound, which can be shown by a simple argument (counting the number
of those functions whose r-th order nonlinearities are smaller than this number
and showing that it is negligible compared to the number of all functions), is
only a proof of existence and gives absolutely no idea of what can be explicitly
a function with greater r-th order nonlinearity. Before our bound, as far as we
know, obtaining for every low r > 1 an effective way of designing functions with
provably non-weak r-th order nonlinearities was open. Moreover (and most im-
portantly), the functions with high algebraic immunities satisfy our bound for
every r of reasonably low value.

5 The consequences on the necessary criteria for the use
of Boolean functions in symmetric ciphers

The impact of our result may be greater for block ciphers and for self-synchronizing
stream ciphers than for synchronous stream ciphers. Indeed, the role of the r-
th order nonlinearity relatively to the currently known attacks has been more



clearly shown for the former than for the latter (see [14, 23, 25, 27, 33, 35]). As far
as we know, and except in extreme situations, no explicit attack is known, that
can use the approximation by a low degree function of the combining or filtering
function in the pseudo-random generator of a stream cipher (except that an ap-
proximate pseudo-random sequence can be generated with a lower complexity,
which may allow predicting bits after the observation of a part of the sequence).
However, such attack may be found in the future and we know now that a high
algebraic immunity will help in this matter. Note that a high algebraic immunity
does not necessarily prevent the system from fast algebraic attacks, see e.g. [2],
but these attacks were not the subject of the present paper.
The requirements concerning the Boolean functions used in symmetric ciphers
are going towards a simplification. We know that the functions with optimum
algebraic immunity are balanced, for n odd. A very high (first-order) nonlin-
earity takes care of the distance to linear structures, since we know that if a
function has a nonzero linear structure then its nonlinearity is upper bounded
by 2n−1 − 2

n−1
2 and, therefore that, if its distance to linear structures is d then

its nonlinearity is upper bounded by 2n−1 − 2
n−1

2 + d. Lobanov’s bound does
not guarantee a resistance to attacks using approximations by affine functions,
since such resistance needs (see e.g. [22, 5]) a high nonlinearity, but Theorem
1 (with r ≥ 2) shows that having a high algebraic immunity helps protecting
against attacks by approximations by non-affine functions of low degrees, since
the complexity of such attacks increases fastly with the degree.
However, the problem of determining functions meeting all the criteria needed
for the combining or the filtering model of stream ciphers is still wide open.
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6 Appendix

6.1 Remark on Lemma 1

For every choice of an element x in the support of h, let us denote by Ex the corre-
sponding equation

∑
u∈F n

2 |wt(u)≤k auxu = 0. We obtain an equivalent system by
replacing every equation Ex such that x 6∈ {xvr+1,...,vn

; (vr+1, . . . , vn) ∈ Fn−r
2 }

(see the proof of Lemma 1) by the equation Ex +Exvr+1,...,vn
, where vr+1, . . . , vn



are the n − r last coordinates of x. Note that, in this equation, every au such
that (u1, . . . , ur) = (0, . . . , 0) vanishes. The resulting system contains the 2n−r

equations Exvr+1,...,vn
(in the

∑k
i=0

(
n
i

)
unknowns au such that wt(u) ≤ k) and

wt(h) − 2n−r equations in the
∑k

i=0

(
n
i

)
−

∑k
i=0

(
n−r

i

)
unknowns au such that

wt(u) ≤ k and (u1, . . . , ur) 6= (0, . . . , 0). Let us denote these two sub-systems
by S1

k and S2
k, respectively. Moving in each of the equations Exvr+1,...,vn

of S1
k

all unknowns such that (u1, . . . , ur) 6= (0, . . . , 0) to the right hand side, we ob-
tain a sub-system expressing the au’s such that (u1, . . . , ur) = (0, . . . , 0) by
means of the au’s such that (u1, . . . , ur) 6= (0, . . . , 0), if such au’s can exist
(note that the number of equations in S1

k is greater than the number of the
au’s such that (u1, . . . , ur) = (0, . . . , 0)). Indeed, we have seen that this system
has full rank

∑k
i=0

(
n−r

i

)
. Hence, a solution of S2

k may allow zero or one solu-
tion of S1

k. Let d′k,h be the dimension of the vector space of solutions of S2
k.

Then we have dk,h ≤ d′k,h and d′k,h equals
∑k

i=0

(
n
i

)
−

∑k
i=0

(
n−r

i

)
minus the

rank of the system S2
k. Similarly, d′k−1,h equals

∑k−1
i=0

(
n
i

)
−

∑k−1
i=0

(
n−r

i

)
minus

the rank of the system S2
k−1. We deduce that d′k,h ≤ d′k−1,h +

(
n
k

)
−

(
n−r

k

)
,

since the rank of S2
k−1 is upper bounded by the rank of S2

k (the system S2
k−1

can be obtained from S2
k by erasing the unknowns au such that wt(u) = k).

We deduce by induction on k that dk,h ≤
∑k

i=AI′(h)

(
n
i

)
−

∑k
i=AI′(h)

(
n−r

i

)
,

where AI ′(h) equals the minimum value of k such that S2
k has non-trivial solu-

tions. Note that AI ′(h) ≤ AI(h) and that AI ′(h) may be strictly smaller than
AI(h), since S2

k may have non-trivial solutions when S1
k ∪ S2

k has none. Hence,
we cannot deduce that dk,h ≤

∑k
i=AI(h)

(
n
i

)
−

∑k
i=AI(h)

(
n−r

i

)
. But the bound

dk,h ≤
∑k

i=AI′(h)

(
n
i

)
−

∑k
i=AI′(h)

(
n−r

i

)
may be better, in many concrete situa-

tions, than the bound of Lemma 1.
In particular, for k = n, it implies wt(h) ≥

∑AI′(h)−1
i=0

(
n
i

)
+

∑n
i=AI′(h)

(
n−r

i

)
, and

therefore (applying it also to h+1):
∑AI′(h)−1

i=0

(
n
i

)
+

∑n
i=AI′(h)

(
n−r

i

)
≤ wt(h) ≤∑n−AI′(h)

i=0

(
n
i

)
+

∑n
i=AI′(h)

(
n−r

i

)
and, when AI(h) is not large and AI ′(h) is not

too small, this is better than the double inequality max(
∑AI(h)−1

i=0

(
n
i

)
, 2n−r) ≤

wt(h) ≤ min(
∑n−AI(h)

i=0

(
n
i

)
, 2n − 2n−r) implied by Lemma 1 for k = n.

6.2 Table

We give in the next table the values of the lower bounds of Theorem 1 and
of [8], for n ranging from 13 to 22 (this covers all practical cases, currently
for stream ciphers), for optimum algebraic immunity

⌈
n
2

⌉
(note that this is the

most unfavorable case for the bound of Theorem 1) and for r ranging from 1 to
AI(f)− 1.



n AI(f) r The bound of Th. 1 The bound of [8]

13 7 1 3172 2380
2 1124 1093
3 352 378
4 184 92
5 28 14
6 2 1

14 7 1 4760 3473
2 1588 1471
3 464 470
4 212 106
5 30 15
6 2 1

15 8 1 12952 9949
2 4760 4944
3 1588 1941
4 1026 576
5 242 121
6 32 16
7 2 1

16 8 1 19898 14893
2 6946 6885
3 2186 2517
4 1392 697
5 274 137
6 34 17
7 2 1

17 9 1 52666 41226
2 19898 21778
3 6946 9402
4 2186 3214
5 1668 834
6 308 154
7 36 18
8 2 1

18 9 1 82452 63004
2 29786 31180
3 9888 12616
4 2942 4048
5 1976 988
6 344 172
7 38 19
8 2 1



n AI(f) r The bound of Th. 1 The bound of [8]

19 10 1 213524 169766
2 82452 94184
3 29786 43796
4 9888 16664
5 6415 5036
6 2320 1160
7 382 191
8 40 20
9 2 1

20 10 1 339532 263950
2 126008 137980
3 43556 60460
4 13770 21700
5 8826 6196
6 2702 1351
7 422 211
8 42 21
9 2 1

21 11 1 863820 695860
2 339532 401930
3 126008 198440
4 43556 82160
5 15094 27896
6 15094 7547
7 3124 1562
8 464 232
9 44 22
10 2 1

22 11 1 1391720 1097790
2 527900 600370
3 188368 280600
4 62360 110056
5 18804 35443
6 18218 9109
7 3588 1794
8 508 254
9 46 23
10 2 1

Table 1. The lower bounds on nlr(f) given by Theorem 1 and by [8], for
13 ≤ n ≤ 22, r ≤ AI(f)− 1 and AI(f) optimum


