
Bits Security of the Elliptic Curve
Diffie–Hellman Secret Keys

Dimitar Jetchev1 and Ramarathnam Venkatesan2,3

1 Dept. of Mathematics, University of California at Berkeley, Berkeley, CA 94720
jetchev@math.berkeley.edu

2 Microsoft Research, One Microsoft Way, Redmond WA 98052
3 Microsoft Research India Private Limited, ”Scientia”, No:196/36,

2nd Main Road, Sadashivnagar, Bangalore – 560080, India
venkie@microsoft.com

Abstract. We show that the least significant bits (LSB) of the elliptic
curve Diffie–Hellman secret keys are hardcore. More precisely, we prove
that if one can efficiently predict the LSB with non-negligible advantage
on a polynomial fraction of all the curves defined over a given finite field
Fp, then with polynomial factor overhead, one can compute the entire
Diffie–Hellman secret on a polynomial fraction of all the curves over
the same finite field. Our approach is based on random self-reducibility
(assuming GRH) of the Diffie–Hellman problem among elliptic curves of
the same order. As a part of the argument, we prove a refinement of H.
W. Lenstra’s lower bounds on the sizes of the isogeny classes of elliptic
curves, which may be of independent interest.
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1 Introduction

The Diffie–Hellman protocol for key exchange [16] is based on the hardness of
computing the function DHg(gu, gv) = guv, where g is a fixed generator of the
multiplicative group of a finite field Fp, and 1 ≤ u, v ≤ p− 1 are integers. A nat-
ural question is whether one can compute some of the bits of guv given g, gu, gv.
It is unknown if predicting partial information with significant advantage over a
random guess will lead to a compromise of the Diffie–Hellman function. Boneh
and Venkatesan [2], [25] have shown that if one is able to compute (in time poly-
nomial in log p) the 5

√
log p most significant bits of guv for every input (gu, gv)

then one can compute (in polynomial time) the entire shared secret key guv.
For motivation, note that guv may be 1024 bits long, but one may want to use
the least significant 128 bits of guv as a block cipher key. Thus, it is impor-
tant to know that partial information is not computable or predictable with any
significant advantage over a random guess. Another motivation stems from the
fact that the methods used in [2] suggest attacks on cryptographic systems that
reveal some information about guv to the attacker [8], [10], [18], [19], [20], [24],
[26].
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The analogous problem for elliptic curves studies the bit security of the fol-
lowing function:

Diffie–Hellman function: Let E be an elliptic curve over Fp and let P ∈ E
be a point of prime order q. We define the Diffie–Hellman function as

DHE,P (uP, vP ) = uvP,

where 1 ≤ u, v ≤ q are integers. Moreover, we refer to the triple (P, uP, vP ) as
a Diffie–Hellman triple for E.

For simplicity, we restrict ourselves to short Weierstrass equations (models)
of E, i.e., models of the form y2 = x3+ax+b with a, b ∈ Fp and 4a3+27b2 6= 0. By
abuse of common terminology, an elliptic curve for us will be an Fp-isomorphism
class of short Weierstrass equations. It is not hard to see that the complexity of
the Diffie–Hellman function is independent of the choice of the short Weierstrass
equation for the elliptic curve E over Fp. Indeed, given two different models
W and W ′ for E over Fp and an explicit isomorphism ϕ : W → W ′ and its
inverse ϕ−1 : W ′ → W , a Diffie–Hellman triple (P, uP, vP ) on W is mapped
to a Diffie–Hellman triple (ϕ(P ), uϕ(P ), vϕ(P )) on W ′ and therefore, if one can
compute uvϕ(P ), one would know uvP . Yet, if one wants to formalize the notion
of security of single bits of the Diffie–Hellman function, one needs to choose a
short Weierstrass model (it is not necessarily true any more that if one knows
one bit of the Diffie–Hellman secret uvϕ(P ) on W ′ then one can compute the
corresponding bit of uvP on W ).

Boneh and Shparlinski [1] have reduced (in time polynomial in log p) the
Diffie–Hellman problem on an elliptic curve E to the problem of predicting the
LSB of the secret key uvP with non-negligible advantage over a random guess
on a polynomial fraction of all short Weierstrass models for E. Alternatively, if
one looks for a polynomial time reduction of the Diffie–Hellman problem to the
problem of predicting partial information on the same short Weierstrass model
W , some results have been established using Gröbner bases [12].

A more general and natural situation would be to consider an oracle A that
predicts the least significant bit of the Diffie–Hellman secret key for short Weier-
strass models W chosen from a non-negligible subset G (i.e., from a (log p)O(1)-
fraction) of all the short Weierstrass equations over Fp and arbitrary Diffie–
Hellman triples on these models. Here, one encounters extra challenges. First,
the set G may be distributed arbitrarily over all (exponentially many in log p)
isogeny classes of short Weierstrass models, where each isogeny class contains
exponentially many isomorphism classes of short Weierstrass models, with each
isomorphism class containing exponentially many short Weierstrass models. Sec-
ond, relating the difficulty of computing the Diffie–Hellman function within each
isogeny class is itself a nontrivial task: having an explicit (computable in time
polynomial in log p) isogeny from an elliptic curve E to another curve E′ in the
same class would achieve this task. By Tate’s isogeny theorem [28], such a map
exists if and only if E and E′ have the same number of points( E and E′ are
said to be isogenous). Yet, such an isogeny can have large degree and it can take
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superpolynomial number of steps to compute it. Typically, isogeny computations
are used in attacks such as the Weil descent attack [3], [7].

We show that such an oracleA is unlikely to exist by proving that its existence
would imply the existence of a set S of polynomial (in log p) fraction of all elliptic
curves over Fp so that one can solve the Diffie–Hellman problem for every E ∈ S
and every Diffie–Hellman triple (P, uP, vP ) for E. This is based on random
self-reducibility among elliptic curves, which was first studied in[13]; by Tate’s
theorem achieving this via algebraic maps (isogenies) is possible only among
those curves that have the same order (or trace). Thus our focus here is to
identify the values of the trace for which the self-reducibility is applicable. This
allows us to use Boneh-Shparlinski hard core bit result on isomorphism classes
and enlarge the set of curves where it is applicable. For example, if on a specific
isomorphism class their oracle algorithm does not apply, our random walk can
(with a good probability) link it to another class where it applies. To show the
hard core bit theorem for all the curves, one may consider the analysis based
only on isomorphism classes, but the associated hardness assumption is clear and
natural when restricted isogeny classes (in view of Tate’s theorem). It will be
interesting to see if one can develop new attacks, similar to the ones mentioned
earlier for the finite field case. We remark that hard core bit theorems for finite
field Diffie-Hellman function remain open and the best in this case is computing
one bit (without error) is hard, if the generator is small [2].

2 Notation and preliminaries

Throughout, p ≥ 5 will be a prime number and ε̃ > 0 will be a fixed real
number. We will be considering the Diffie–Hellman problem for elliptic curves E
over Fp and triples (P, uP, vP ), where P is a point of prime order q > (log p)2+ε̃

and 1 ≤ u, v ≤ q are integers. We make this assumption because an isogeny
φ : E → E′ of prime degree ` ≤ (log p)2+ε̃ will preserve the order of P and this
assumption will be necessary for what follows.

We say that an oracle B computes the Diffie–Hellman function for E if for
any point P of prime order q > (log p)2+ε̃,

B(P, uP, vP ) = uvP

holds with probability at least 1 − 1/p (here, the probability is taken over all
possible choices of u and v).

Moreover, if z is a non-negative integer then LSB(z) will denote the least
significant bit of z. To define the least significant bit of an element x ∈ Fp, we
first look at the identity map ι : Fp → Z/pZ. If 0 ≤ z ≤ p − 1 is the unique
integer whose image is ι(x), we define LSB(x) = LSB(z). Also, if Q ∈ E(Fp)
then x(Q) and y(Q) denote the x- and y-coordinates of Q, respectively.

Finally, let H = {t ∈ Z : |t| ≤ 2
√
p} be the Hasse interval. For t ∈ H one can

write t2− 4p uniquely as dtc2t , where dt < 0 is square-free and ct > 0. We call ct
the conductor of t.



4 Dimitar Jetchev and Ramarathnam Venkatesan

Advantage: Let A be an algorithm that, given a short Weierstrass equation W
over Fp, a point P ∈W (Fp) of prime order q > (log p)2+ε̃ and two multiples uP
and vP with 1 ≤ u, v ≤ q − 1, outputs a single bit. We define the advantage
AdvW,P (A) of A as

AdvW,P (A) := |Pr
u,v

[A(P, uP, vP ) = LSB(x(uvP ))]− 1
2
|.

We say that A has an advantage ε on W if AdvW,P (A) > ε holds for any point
P ∈W (Fp) of prime order q > (log p)2+ε̃.

3 The main result

For each prime p, let

Γp = {Wa,b : (a, b) ∈ Fp × Fp, 4a3 + 27b2 6= 0}

be the set of all short Weierstrass equations and let Ωp be the set of all elliptic
curves over Fp (i.e., Ωp = Γp/∼=Fp

). Let Ω(t)
p and Γp

(t) denote the restriction to
those curves with trace t.

Theorem 3.1. Assume the Generalized Riemann Hypothesis (GRH) and let c >
0 be a fixed real. (a) For almost every t in the Hasse interval,the Diffie-Hellman
problem is random self reducible among the set of elliptic curves with trace t.
(b) Given a subset G ⊂ Γp, such that |G| = δ|Γp| for some 0 < δ ≤ 1 with
1/δ = O((log p)c), assume that there exists ε > 0 and an algorithm A running
in time t that takes as input a short Weierstrass model W and a Diffie–Hellman
triple (P, uP, vP ) and outputs a single bit. Assume that A satisfies the following
property: for any W ∈ G and any point P of prime order q > (log p)2+ε̃ on W ,
AdvW,P (A) > ε. Then there exists a subset S ⊆ Ωp satisfying

|Ωp|
|S|

= Oc

(
(log p)

3(c+1)
2 (log log p)4

)
,

and an algorithm B running in time (ε−1 log p)O(1), such that B computes the
entire Diffie–Hellman secret DHE,P (uP, vP ) for any E ∈ S and any Diffie–
Hellman triple (P, uP, vP ) for E (Note that in the above displayed formula, the
implied constant depends only on c). Moreover, these statements hold true with
Ωp and Γp replaced by Ω(t)

p and Γp(t) for almost every value of the trace t.

Intuitively, (a) implies that an efficient algorithm for computing the Diffie–
Hellman function in the average case would imply an efficient algorithm for the
same function in the worst case (see Section 6 for the precise technical definition).
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4 Counting elliptic curves

Let p ≥ 5 be a prime and let Γp = {Wa,b : (a, b) ∈ Fp × Fp, 4a3 + 27b2 6= 0} be
the set of all short Weierstrass equations over Fp. Explicitly, Wa,b is the short
Weierstrass equation y2 = x3 + ax + b. Then |Γp| = p(p − 1) since the number
of all pairs (a, b), such that 4a3 + 27b2 = 0 is equal to p. Indeed, any such pair
is parameterized by a = −3c2 and b = 2c3 for some c ∈ Fp and each such c is
uniquely determined from (a, b).

4.1 Isomorphism classes

Two short Weierstrass equations Wa,b and Wa′,b′ are isomorphic over Fp if there
exists an element u ∈ F×p , such that a′ = u4a and b′ = u6b. To count the elliptic
curves E over Fp, we observe that the number of short Weierstrass equations

W ∈ Γp for E is exactly
p− 1

# Aut(E)
. In particular, this gives us the formula

∑
E

1
# Aut(E)

= p,

where the sum is taken over all elliptic curves E over Fp.

4.2 Isogeny classes

Tate’s isogeny theorem states that two elliptic curves E1, E2 over Fp are isoge-
nous if and only if #E1(Fp) = #E2(Fp). For any elliptic curve E/Fp we have the
Hasse bound |p+ 1−#E(Fp)| ≤ 2

√
p. For an integer t ∈ H consider the isogeny

class of short Weierstrass equations

Ct = {Wa,b ∈ Γ : #Wa,b(Fp) = p+ 1− t}.

Our goal is to provide upper and lower bounds on the size of Ct for any t ∈ H.
We show how to do this in the next two sections. A useful definition for what
follows is the weighted cardinality :

Definition 4.1 (Weighted cardinality). Let U be any set of elliptic curves
over Fp. We define the weighted cardinality to be the sum

#′U =
∑
E∈U

1
# Aut(E)

.

4.3 Lenstra’s upper bound

Lemma 4.1. Let Σ be a set of integers t satisfying |t| ≤ 2
√
p. There exists an

effectively computable constant cu (independent of p), such that∑
t∈Σ
|Ct| ≤ cu|Σ|p3/2(log p)(log log p)2.
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Proof. By [15, Prop.1.9(a)], there exists an effective constant c, such that

#′{W ∈ Γp : 1 + p−#W (Fp) ∈ Σ}/∼=Fp
≤ c|Σ|p1/2(log p)(log log p)2.

Now, the lemma is a consequence of the fact that the weight of an elliptic curve
E is (# Aut(E))−1 (which is either 1/2, 1/3 or 1/6) and that the isomorphism

class corresponding to E contains
p− 1

# Aut(E)
short Weierstrass equations.

4.4 Refining Lenstra’s lower bound

We need a simple refinement of the lower bound established by Lenstra in [15,
Prop.1.9(b)] on the size of a collection of isogeny classes.

If |t| ≤ 2
√
p, the weighted number of elliptic curves over Fp whose trace of

Frobenius is t is equal to the Kronecker class number H(t2 − 4p) (see [4], [15,
pp.654-655]). For a fixed integer ∆ < 0, ∆ ≡ 0, 1 mod 4, the Kronecker class
number H(∆) is the weighted number of equivalence classes of binary quadratic
forms of discriminant ∆ (the weight of a quadratic form is defined to be inverse
of the number of automorphisms of the form). Let ∆0 be the fundamental dis-
criminant associated with ∆ and let χ0 be the quadratic character associated to
∆0. Using an analytic class number formula, one expresses H(∆) in terms of the
special value L(1, χ0) of the L-function of the character χ0 and the discriminant
∆. Thus, a lower bound for H(∆) would follow from a lower bound on the special
value of the above L-function. The following result is proved in [15, Prop.1.8]:

Lemma 4.2. (i) There exists an effectively computable positive constant c0,
such that for each z ∈ Z>0, there exists ∆∗ = ∆∗(z), such that

H(∆) ≥ c0
|∆|1/2

log z
,

for each ∆ which satisfies |∆| ≤ z, ∆ < 0, ∆ ≡ 0, 1 mod 4 and ∆0 6= ∆∗.
(ii) Assume the Generalized Riemann Hypothesis. There exists an effectively
computable constant c′0 > 0, such that for each z ∈ Z>0

H(∆) ≥ c′0
|∆|1/2

log log z
,

for each ∆ which satisfies |∆| ≤ z, ∆ < 0 and ∆ ≡ 0, 1 mod 4.

The following refinement of Lenstra’s Proposition 1.9(b) is necessary for our
argument:

Proposition 4.1. Let 0 < µ < 1 and let Σ be a set of integers t satisfying
|t| ≤ 2

√
p (1− µ). Let

wΣ = #′{E : E elliptic curve over Fp, 1 + p−#E(Fp) ∈ Σ}/∼=Fp ,
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be the weighted cardinality of the short Weierstrass equations whose traces of
Frobenius are in Σ.
(i) There exists an effectively computable constant c1 > 0, such that

wΣ ≥ c1(|Σ| − 2)
µ1/2p1/2

log p
.

(ii) Assume the Generalized Riemann Hypothesis. Then there exists an effectively
computable constant c′1 > 0, such that

wΣ ≥ c′1|Σ|
µ1/2p1/2

log log p
.

Proof. One can express

wΣ =
∑
t∈Σ

H(t2 − 4p).

i) We apply Lemma 4.2 with z = 4p to get that there exists a constant c0 > 0,

such that H(∆) ≥ c0
|∆|1/2

log p
unless ∆0 = ∆∗. As in the proof of Lenstra’s

Proposition 1.9(b), there are at most two values of t for which the fundamental
discriminant of t2 − 4p is equal to ∆∗. Hence, it remains to estimate |t2 − 4p|
from below to obtain a lower estimate on wΣ . But if t ∈ Σ then

|t2 − 4p| ≥ 4p− 4p(1− µ)2 = 8µp− 4µ2p > 8µp− 4µp = 4µp.

Thus, |t2 − 4p|1/2 ≥ 2µ1/2p1/2. Hence, if c1 = c0 then

wΣ ≥ c1(|Σ| − 2)
µ1/2p1/2

log p
.

ii) The second part follows similarly except that we use the lower bound under
the Generalized Riemann Hypothesis for the Kronecker class number H(∆) from
Lemma 4.2(ii).

5 Isogeny Graphs

We recall a construction for isogeny graphs for ordinary elliptic curves [13].
For an integer t ∈ H consider the isogeny class Ct ⊂ Γp of short Weierstrass
equations over Fp. Let St = Ct/ ∼ be the corresponding isogeny class of elliptic
curves (i.e., we identify two short Weierstrass equations Wa,b,Wa′,b′ ∈ Ct if they
are isomorphic over Fp).

Throughout the whole paper, an isogeny between two elliptic curves will
always mean an isogeny defined over Fp.



8 Dimitar Jetchev and Ramarathnam Venkatesan

5.1 Ordinary isogeny classes and isogeny volcanoes

1. Ordinary isogeny classes. Suppose that St is an isogeny class of ordinary
elliptic curves. To understand the structure of St one looks at the endomorphism
rings of the elliptic curves inside St. For any curve E ∈ St, the endomorphism
ring End(E) is an order in a quadratic imaginary field [27, §III.9]. Let π : E → E
be the Frobenius endomorphism. The characteristic polynomial of π is X2−tX+
p = 0, so we can regard π as an algebraic integer. It only depends on the class
St. The following theorem is proved in [14, §4.2] (see also [13, Thm.2.1])

Theorem 5.1 (Kohel). Let E and E′ be two elliptic curves over Fp that are
isogenous over Fp, let K be the quadratic imaginary field End(E) ⊗ Q and OK
be the maximal order of K.

1. We have Z[π] ⊆ End(E) ⊆ OK and Z[π] ⊆ End(E′) ⊆ OK .
2. The following are equivalent:

(a) End(E) = End(E′)
(b) There exist isogenies φ : E → E′ and ψ : E′ → E of relatively prime

degree.
(c) (OK : End(E)) = (OK : End(E′)).

3. Let φ : E → E′ be an isogeny from E to E′ of prime degree ` defined over
Fp. Then one of the three cases occurs: i) End(E) contains End(E′) with
index `; ii) End(E′) contains End(E) with index `; iii) End(E′) = End(E).

4. Let ` be a prime that divides exactly one of (OK : End(E)) and (OK :
End(E′)). Then every isogeny φ : E → E′ has degree a multiple of `.

2. Isogeny volcanoes. A convenient visualization of the elliptic curves in an
isogeny class in the ordinary case together with the isogenies between them
is given by isogeny volcanoes [5], [14]. The curves are represented in levels ac-
cording to their endomorphism rings. Two curves E1 and E2 are in the same
level if and only if End(E1) ∼= End(E2). Thus, every level corresponds to an
order O in a fixed quadratic imaginary field K. The level corresponding to an
order O is above the level corresponding to an order O′ if O ) O′.

Following [5], [6] and [14], we distinguish among three types of isogenies
φ : E → E′ of prime degree ` over Fp:

1. φ is horizontal if End(E) = End(E′);
2. φ is up if (End(E′) : End(E)) = `;
3. φ is down if (End(E) : End(E′)) = `.

One can compute the number of horizontal, up and down isogenies of a given
prime degree coming out of a particular ordinary elliptic curve E in terms of the
degree and the Legendre symbol. The result (see [5, §2.1], [6, Thm.4] and [14,
Ch.4, Prop.23]) is summarized in the following

Proposition 5.1. Let E be an ordinary elliptic curve over Fp, with endomor-
phism ring End(E) contained in the quadratic imaginary field K with fundamen-
tal discriminant −D < 0. Let ` be a prime different from p and let cπ = (OK :
Z[π]) and cE = (OK : End(E)). Then
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1. Assume ` - cE. Then there are exactly 1 +
(
−D
`

)
horizontal isogenies φ :

E → E′ of degree ` over Fp.

(a) If ` - cπ, there are no other isogenies E → E′ of degree ` over Fp.

(b) If ` | cπ, there are `−
(
−D
`

)
down isogenies of degree ` over Fp.

2. Assume ` | cE. Then there is one up isogeny E → E′ of degree ` over Fp.

(a) If ` -
cπ
cE

then there are no horizontal isogenies of degree ` over Fp.

(b) If ` | cπ
cE

then there are ` down isogenies of degree ` over Fp.

Finally, we say that two isomorphism classes of elliptic curves E1 and E2 in
the same isogeny class belong to the same level of the isogeny volcano if and
only if cE1 = cE2 .

5.2 Expander graphs and a rapid mixing lemma

Let k be a positive integer and let I be an infinite set of positive integers. Con-
sider a sequence of graphs {Gh}h∈I , each of which is k-regular and connected,
such that Gh has h vertices. Let Ah be the adjacency matrix of Gh. Since Gh is
k-regular, the vector vh consisting of 1’s in each coordinate is an eigenvectors for
Ah with eigenvalue λtriv = k and any other eigenvalue λ of Ah satisfies |λ| ≤ k.
We refer to the eigenvalue λtriv as the trivial eigenvalue. Furthermore, since Gh
is connected, the eigenvalue k has multiplicity one.

Definition 5.1. The sequence {Gh}h∈I is called a sequence of expander graphs
if there exists a constant 0 < ν < 1, such that for any h and any eigenvalue
λ 6= λtriv of Ah, |λ| ≤ νλtriv.

The main application of expander graphs is to prove the rapid mixing of
random walks provided we have a good upper bound on the spectral gap ν. The
property is summarized in the following proposition which will be used in our
particular application (see [13, Prop.3.1] for a proof):

Proposition 5.2. Let G be a k-regular graph with h vertices. Assume that every
eigenvalue λ 6= λtriv of G satisfies the bound |λ| ≤ νλtriv for some 0 < ν < 1.
Let S be a set of vertices of G and let x be any vertex of G. Then a random

walk of length at least
log
(

2h
|S|1/2

)
log(ν−1)

starting at x will land in S with probability

at least
|S|
2h

.
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5.3 Isogeny graphs in the ordinary case

Fix an isogeny class Ct of short Weierstrass equations for some t ∈ H and the
corresponding set St of elliptic curves. Following [13, §2.1] we define an isogeny
graph to be a graph G whose vertices are all the elements of St that belong to a
fixed level of the isogeny volcano for St.

Let E1, E2 ∈ St. Two isogenies φ : E1 → E2 and φ′ : E1 → E2 are said to be
equivalent if there exists an automorphism α ∈ Aut(E2), such that φ′ = αφ (see
also [9, Prop.2.3]). The edges of the graph are equivalence classes of horizontal
isogenies that have prime degrees at most (log p)2+ε̃. The degree bound is chosen
in such a way that it is small enough to allow the isogenies to be computed and
large enough to allow the graph to be connected and to have rapid mixing
properties.

The graph G is known to be isomorphic to a graph H whose vertices are
elliptic curves C/a with complex multiplication by the order O corresponding
to the level for the graph G in the isogeny volcano (here, a ⊂ O is an ideal) and
whose edges are isogenies of the form C/a→ C/al−1, where l ⊂ O is an invertible
prime ideal satisfying N(l) ≤ (log p)2+ε̃ [6, §3], [7], [13, §2.1]. Equivalently, H
is the Cayley graph of the Picard group Pic(O) of the order O with respect to
the generators [l] ∈ Pic(O), where l ranges over the invertible prime ideals of O
whose norm is at most (log p)2+ε̃.

5.4 The spectral gap of an isogeny graph

For a particular isogeny graph G of ordinary elliptic curves, one can bound
the nontrivial eigenvalues via character sum estimates under the Generalized
Riemann Hypothesis. This is done via spectral analysis of the corresponding
Cayley graph H. For what follows, it will be convenient to view the eigenvectors
of the adjacency matrix of H as functions on the corresponding ideal classes of
the Picard group. The following proposition is proven in [13, §4]:

Proposition 5.3. Let m = (log p)2+ε̃ and let e = #O×.
(i) The graph H has eigenfunctions equal to the characters χ of Pic(O) with
corresponding eigenvalues the character sums

λχ =
∑
p≤m

∑
a⊂O,
Na=p

χ(a).

(ii) Let D < 0 and let O be an order of discriminant D. The trivial eigenvalue
λtriv is equal to the number of ideal classes of the form [l] where l invertible prime
ideal of O of norm at most m (note that λtriv is asymptotically equal to

m

e logm
where e = #O×). If χ is a nontrivial character of the Picard group Pic(O), then
under the Generalized Riemann Hypothesis,

λχ = O(m1/2 log |mD|).
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Remark 5.1. Propositions 5.2 and 5.3 show the following: suppose that S is a set
of elliptic curves belonging to the same level of the isogeny volcano, such that
|G|/|S| = (log p)O(1) and such that one can efficiently compute DHE,P (uP, vP )
for every E ∈ S and every Diffie–Hellman triple (P, uP, vP ) for E. Then there is
a random polynomial time reduction of the computation of the Diffie–Hellman
function on an arbitrary curve E ∈ V (G) to the Diffie–Hellman function on a
curve in S. Hence, one can compute the Diffie–Hellman secret on any curve E
in V (G) with high probability in time polynomial in log p.

Indeed, a random walk of length polynomial in log p will connect E to a curve
in S with high probability (high probability means 1−O(p−r) for some r > 0).
Since any step in this random walk is an isogeny that is computable in time
polynomial in log p, the resulting composition of isogenies and their duals are
computable in time polynomial in log p (even if the degree of the composition
is large). Finally, if (P, uP, vP ) is a Diffie–Hellman triple for E and φ : E → E′

is an isogeny to an elliptic curve E′ ∈ S, one can consider the Diffie–Hellman
triple (φ(P ), uφ(P ), vφ(P )) on E′ and compute the Diffie–Hellman function for
that triple to obtain uvφ(P ). After applying the dual isogeny, we obtain the
point duvP , where d is the degree of the composition (note that the degree is
polynomial in log p). Finally, since we are in a prime-order subgroup, we compute
e, such that de is congruent to 1 modulo the group order. The point ed(uvP ) =
uvP is then the desired point.

Remark 5.2. There exist isogeny graphs for supersingular elliptic curves as well.
These supersingular graphs were first considered in [11] and [17]. Their expan-
sion properties were shown much later by Pizer [21], [22]. Given a prime p, the
supersingular elliptic curves are always defined over Fp2 . According to [17], all
isomorphism classes of supersingular elliptic curves belong to the same isogeny
class. In practice, we ignore supersingular curves in our argument for the main
theorem. Yet, the corresponding isogeny graph is still an expander graphs.

6 Random self-reducibility

We define random self-reducibility. Intuitively, we would like to prove that an
efficient algorithm for the Diffie–Hellman function in the average case would
imply an efficient algorithm in the worst case.

6.1 Smooth isogeny classes and random self-reducibility

Let R be a fixed polynomial. Consider the following properties of a set S of
elliptic curves over Fp:

1. There exists a subset S′ ⊆ S with |S′|/|S| ≥ R(log p)−1.
2. There exists an algorithm A, such that: i) A computes the Diffie–Hellman

function on any elliptic curve E ∈ S′; ii) A produces random output when-
ever one feeds in a Diffie–Hellman triple for an elliptic curve E /∈ S′.
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Definition 6.1. Let S be a set of elliptic curves that satisfies conditions 1. and
2. We call S random self-reducible with respect to R if given an elliptic curve
E ∈ S, one can compute the Diffie–Hellman function for any triple (Q, uQ, vQ)
on E with expected (log p)O(1) queries to A on elliptic curves E′ ∈ S that are
randomly distributed among all classes in S.

6.2 Random self-reducibility for single levels in the isogeny
volcanoes

We first show that horizontal levels in the isogeny volcanoes with sufficiently
many curves on which the Diffie–Hellman problem is solvable are random self-
reducible:

Lemma 6.1. Let G be the graph corresponding to a particular level of the isogeny
volcano for some isogeny class of elliptic curves. Assume that the set of vertices
V (G) of G satisfies 1. and 2. for some polynomial R. Then V (G) is random
self-reducible with respect to R.

Proof. Let E be any elliptic curve in V (G) and (P, uP, vP ) be any Diffie–Hellman
triple for E. We will show how to connect this input to the Diffie–Hellman
function to an input on a random elliptic curve E′ from V (G) via a sequence
of isogenies that are computable in polynomial time. Let S′ ⊂ V (G) be the
distinguished set from item 1 above. and let µ = |S′|/|V (G)|. Let E0 = E. We

will use the fact that G is an expander graph. Let τ =

 log
(

2|V (G)|
|S|1/2

)
log(ν−1)

+1, where

ν is the spectral gap for G. Using the upper bound for ν from Proposition 5.2,
we obtain that τ is polynomial in log p, i.e., τ = (log p)O(1).

We repeat the following procedure m ≥ 2
µ

log p times:

1. Consider a random walk E0, E1, . . . , Eτ on G of length τ . Let φ be the com-
position of the isogenies along the walk, φ̂ be the dual isogeny of φand d be
their degree. Compute e = d−1 modulo q (recall that q is the prime order of
the original point P ).

2. If E′ = Eτ , query the oracle on the elliptic curve E′ and the Diffie–Hellman
triple (φ(P ), uφ(P ), vφ(P )) under φ.

3. If the oracle returns the point Q on E′, compute and return eφ̂(Q) ∈ E(Fp).

Since the computation of a single isogeny of degree ` takes O(`4) time
(see [14]), each of the above steps runs in time O((log p)8+4ε̃τ) which is polyno-
mial in log p (as do all other steps below).

By Proposition 5.2, the probability that Eτ /∈ S′ is at most 1 − µ

2
. Thus, if

we repeat the above steps m times, the probability that none of the end points
of the random walk is in S′ is at most(

1− µ

2

)m
≤ e−

µm
2 ≤ e−

µ·2/µ log p
2 = O(p−1).
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Therefore, the above procedure will produce a list A = L(P, uP, vP ) of points
that contains the desired point uvP with high probability. To obtain the desired
solution, we compute the list B = L(P, (u+ r)P, vP ) for a random r ∈ [1, q− 1]
as in the method of Shoup [23]. We check if A and −rvP + B have a unique
common element, and if so, we output it. Otherwise, we report a failure. The
analysis of this last step is the same as in [23].

6.3 Random self-reducibility for multiple levels in the isogeny
volcanoes

Owing to space limitations we will only outline how one can apply the methods
of the single level case to solve the case of multiple levels in the isogeny volcano.
Outside of this section, we restrict our discussion to the case of a single level.

Definition 6.2. Let B be a positive real number. An isogeny class St of elliptic
curves is called B-smooth if its conductor ct is B-smooth, i.e., if any prime
divisor of ct is at most B.

The next lemma proves reducibility of the Diffie–Hellman problem for a whole
isogeny class (not just a single level).

Lemma 6.2. Let r > 0 be any real constant and assume that St satisfies i)
and ii) for some polynomial R, and that St is (log p)r-smooth. Assuming the
Generalized Riemann Hypothesis, any instance of the Diffie–Hellman problem
on any elliptic curve E ∈ St can be computed in time polynomial in log p.

The next lemma guarantees that the conductor ct will have O(log log p) dis-
tinct prime factors for almost all traces t in the Hasse interval. Let m be a
positive integer such that log logm > 1 and let Nm be the number of traces
t ∈ H, such that ct has less than m distinct prime factors.

Lemma 6.3. There exists a constant C (independent of m and p) such that

Nm ≥ (1− e−Cm logm)|H|.

Proof omitted.

Remark 6.1. Suppose that c > 0 is fixed. By choosing k large enough (indepen-
dent of p) and applying the above lemma for m = k log log p, we can guarantee
that Nm = (1−O((log p)−c))|H|. This means that for most of the traces t ∈ H,
ct will have O(log log p) distinct prime divisors.

For the classes St for which the volcano has multiple levels, we may not be
able to exploit random self-reducibility in some of them. We can bound ct to be
small enough and having O(log log p) prime divisors, so that starting from an
arbitrary elliptic curve, we can reach the appropriate random self-reducible level
in time polynomial in log p by searching through the levels via vertical isogenies
and testing each level for random self-reducibility.
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7 Proof of Theorem 3.1

7.1 Notation

Let A be the oracle from Theorem 3.1 and ε be the corresponding advantage.
A short Weierstrass equation W is called LSB-predictable, if for any point P ∈
W (Fp) of prime order q > (log p)2+ε̃, AdvW,P (uP, vP ) > ε (in other words, A
predicts the least significant bit of the Diffie–Hellman function for W and the
generator P with advantage ε).

More generally, if T is any set of short Weierstrass equations over Fp and
0 < δ′ < 1 is a real number, we refer to T as δ′-predictable if at least δ′|T |
elliptic curves in T are LSB-predictable.

7.2 Most of the isogeny classes are smooth

Let B be an arbitrary integer. The following lemma shows that almost all of
the isogeny classes St of elliptic curves over Fp are B-smooth. The latter will be
useful in applying the tunneling argument and Lemma 6.2.

Lemma 7.1. The number of traces t ∈ H, such that the isogeny class St corre-

sponding to t is B-smooth is at least
(

1− 2
B

)
|H|.

Proof. Fix a prime `, such that B < ` <
√
p and consider the solutions of the

congruence
t2 ≡ 4p mod `2

for t ∈ H. First, the congruence t2 ≡ 4p mod ` has exactly 1 +
(

4p
`

)
solutions.

Each such solution t lifts uniquely to a solutions t̃ modulo `2 by Hensel’s lemma
since the derivative of f(x) = x2− 4p does not vanish modulo ` > 2 at any such
t. Thus,

Pr
t∈H

[ct is not B − smooth] ≤
∑

B<`<
√
p

1
`2

[
1 +

(
4p
`

)]
<

<
∑

B<`<
√
p

2
`2
<

∫ ∞
B

2
u2
du =

2
B
.

7.3 Lower bound on smooth, predictable isogeny classes

Here, we show that there is a polynomial fraction of traces t ∈ H such that St
is smooth and Ct contains sufficiently many LSB-predictable short Weierstrass
equations.

Lemma 7.2. Let δ and c be as in the statement of Theorem 3.1. There exists a
constant c1 (independent of p), such that the number of traces t ∈ H for which St

is (log p)c+2-smooth and Ct is δ/2-predictable is at least c1
|H|

(log p)c+1(log log p)2
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Proof. Let
Sδ/2 = {t ∈ H : Ct is δ/2-predictable}

and
U = {t ∈ H : St is (log p)c+2-smooth}.

By Lemma 7.1, |U | ≥
(

1− 2
(log p)c+2

)
|H|. We would like to estimate |U∩Sδ/2|.

First, we need an estimate on |Sδ/2|. For each t ∈ Sδ/2, Ct contains at most |Ct|
LSB-predictable curves. For each t /∈ Sδ/2, Ct contains at most (δ/2)|Ct| LSB-
predictable curves. Thus, we get the inequality∑

t∈Sδ/2

|Ct|+
∑
t/∈Sδ/2

δ

2
|Ct| ≥ |G| = δ|Γp|

We combine this with Lemma 4.1 to obtain

δ|Γp| ≤
∑
t∈Sδ/2

|Ct|+
∑
t/∈Sδ/2

δ

2
|Ct| =

∑
t

δ

2
|Ct|+

∑
t∈Sδ/2

(
1− δ

2

)
|Ct| ≤

≤ δ

2
|Γp|+

(
1− δ

2

)
cu|Sδ/2|p3/2(log p)(log log p)2.

Thus,

|Sδ/2| ≥
(

δ/2
1− δ/2

)
|Γp|

cup3/2(log p)(log log p)2
≥ c′1

|H|
(log p)c+1(log log p)2

,

for some constant c′1 > 0 (since δ = O((log p)c)). Hence,

|U ∩ Sδ/2| = |U |+ |Sδ/2| − |U ∪ Sδ/2| ≥
(

1− 2
(log p)c+2

)
|H|+

+ c′1
|H|

(log p)c+1(log log p)2
− |H| ≥ c1

|H|
(log p)c+1(log log p)2

,

for some constant c1 independent of p. This proves the lemma.

7.4 Predicting LSB within an isomorphism class

It was shown in [1] that within an isomorphism class of short Weierstrass equa-
tions, predicting the least significant bit on a non-negligible fraction of the short
Weierstrass equations is at least as hard as computing the entire Diffie–Hellman
secret key for the elliptic curve corresponding to this class.

For any short Weierstrass equation W : y2 = x3 + ax+ b and any λ ∈ F×p we
denote by Wλ the isomorphic curve y2 = x3 + aλ4x+ bλ6 and by φλ : W →Wλ

the isomorphism (x, y) 7→ (λ2x, λ3x). The result is summarized as follows:

Theorem 7.1 (Boneh-Shparlinski). Let 0 < ε, δ < 1. Let p be a prime and
W be a short Weierstrass equation over Fp. Let P ∈W (Fp) be a point of prime
order. Suppose that there is a τ -time algorithm A, such that AdvWλ,φλ(P )(A) > ε
for at least δ-fraction of all λ ∈ F×p . Then the Diffie–Hellman function for W with
respect to the generator P can be computed in expected time τ ·(ε−1δ−1 log p)O(1).



16 Dimitar Jetchev and Ramarathnam Venkatesan

7.5 Predictable isomorphism classes within a predictable isogeny
class

Lemma 7.3. Let 0 < β < 1, such that 1/β = O((log p)c), let t ∈ H be a trace,
such that Ct be a β-predictable isogeny class of short Weierstrass equations.
There exists a constant 0 < c2 < 1, such that the number of β/2-predictable

isomorphism classes of elliptic curve inside Ct is at least c2
|St|

(log p)c
.

Proof. Let Tβ/2 be the set of β/2-predictable isomorphism classes of short Weier-
strass models contained Ct. Each isomorphism class I ⊂ Ct, I ∈ Tβ/2 contains
at most |I| LSB-predictable elliptic curves and each isomorphism class I /∈ Tβ/2
contains at most

β

2
|I| LSB-predictable elliptic curves. Thus,

β|Ct| ≤
∑
I⊂Ct,
I∈Tβ/2

|I|+
∑
I⊂Ct,
I /∈Tβ/2

β

2
|I| =

∑
I⊂Ct

β

2
|I|+

∑
I⊂Ct,
I∈Tβ/2

(
1− β

2

)
|I| ≤

≤ β

2
|Ct|+

(2− β)p
4

|Tβ/2|.

Therefore,

|Tβ/2| ≥ 2
(

β

1− β/2

)
|Ct|
p

> c2
|S|

(log p)c
,

for some constant c2 > 0 independent of p (since 1/β = O((log p)c)).

7.6 Proof of Theorem 3.1

Proof (Proof of Theorem 3.1). According to Lemma 7.2, there exists a constant

c1 (independent of p), such that for at least c1
|H|

(log p)c+1(log log p)2
traces t ∈

H, St is (log p)c+2-smooth and Ct is δ/2-predictable. Let 0 < µ < 1 be the

real number defined by 2
√
pµ =

c1
4
· |H|

(log p)c+1(log log p)2
. We will apply our

refinement of Lenstra’s lemma with this particular µ. Indeed, let Σ be the set
of all traces t ∈ H which satisfy |t| ≤ 2

√
p(1− µ) and such that St is (log p)c+2-

smooth and Ct is δ/2-predictable. Then

|Σ| ≥
⌈
c1
2
· |H|

(log p)c+1(log log p)2

⌉
.

Since we have assumed the Generalized Riemann Hypothesis, Proposition 4.1(ii)
implies that

#′{W ∈ Ct : t ∈ Σ}/∼=Fp
≥ |Σ|µ

1/2p1/2

log log p
≥ c̃ p

(log p)
3
2 (c+1)(log log p)4

,
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for some constant c̃ independent of p. Let

S := {W ∈ Ct : t ∈ Σ}/∼=Fp

Since the weighted cardinality of each isogeny class is p/2, p/4 or p/6, we obtain
that there exists a constant c̃′ (independent of p), such that

|S| ≥ c̃′ |Ωp|
(log p)

3
2 (c+1)(log log p)4

.

We claim that S satisfies the properties of the theorem. Indeed, by Lemma 7.3
applied to β = δ/2 we obtain that for each t ∈ Σ, Ct contains a polynomial
fraction of δ/4-predictable isomorphism classes. The result of Boneh and Shpar-
linski then implies that one can compute the Diffie–Hellman function on each of
these isomorphism classes in time τ(log p)O(1) (since 1/δ is polynomial in log p).
Finally, applying Lemma 6.2 we obtain that one can solve the Diffie–Hellman
problem on any E ∈ S in time τ(log p)O(1). That completes the proof.

Acknowledgements: We thank Dan Boneh, David Jao, Steve Miller, Bjorn
Poonen and Ken Ribet for discussions.
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