
Cryptanalysis of the GOST Hash Function

Florian Mendel1, Norbert Pramstaller1, Christian Rechberger1,
Marcin Kontak2, and Janusz Szmidt2

1 Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

Florian.Mendel@iaik.tugraz.at
2 Institute of Mathematics and Cryptology, Faculty of Cybernetics,

Military University of Technology, ul. Kaliskiego 2, 00-908 Warsaw, Poland

Abstract. In this article, we analyze the security of the GOST hash
function. The GOST hash function, defined in the Russian standard
GOST 34.11-94, is an iterated hash function producing a 256-bit hash
value. As opposed to most commonly used hash functions such as MD5
and SHA-1, the GOST hash function defines, in addition to the common
iterative structure, a checksum computed over all input message blocks.
This checksum is then part of the final hash value computation.
As a result of our security analysis of the GOST hash function, we present
the first collision attack with a complexity of about 2105 evaluations of
the compression function. Furthermore, we are able to significantly im-
prove upon the results of Mendel et al. with respect to preimage and
second preimage attacks. Our improved attacks have a complexity of
about 2192 evaluations of the compression function.

Keywords: cryptanalysis, hash function, collision attack, second preim-
age attack, preimage attack

1 Introduction

A cryptographic hash function H maps a message M of arbitrary length to a
fixed-length hash value h. Informally, a cryptographic hash function has to fulfill
the following security requirements:

– Collision resistance: it is practically infeasible to find two messages M and
M∗, with M∗ 6= M , such that H(M) = H(M∗).

– Second preimage resistance: for a given messageM , it is practically infeasible
to find a second message M∗ 6= M such that H(M) = H(M∗).

– Preimage resistance: for a given hash value h, it is practically infeasible to
find a message M such that H(M) = h.

The resistance of a hash function to collision and (second) preimage attacks
depends in the first place on the length n of the hash value. Regardless of how a
hash function is designed, an adversary will always be able to find preimages or
second preimages after trying out about 2n different messages. Finding collisions



requires a much smaller number of trials: about 2n/2 due to the birthday paradox.
If the internal structure of a particular hash function allows collisions or (second)
preimages to be found more efficiently than what could be expected based on its
hash length, then the function is considered to be broken. For a formal treatment
of the security properties of cryptographic hash functions we refer to [18, 22].

Recent cryptanalytic results on hash functions mainly focus on collision at-
tacks. Collisions have been shown for many commonly used hash functions (see
for instance [5, 6, 16, 24–26]), but we are not aware of any published collision
attack on the GOST hash function. In this article, we will present a security
analysis of the GOST hash function with respect to both collision and (second)
preimage resistance. The GOST hash function is widely used in Russia and is
specified in the Russian national standard GOST 34.11-94 [3]. This standard has
been developed by GUBS of Federal Agency Government Communication and
Information and All-Russian Scientific and Research Institute of Standardiza-
tion. The GOST hash function is the only hash function that can be used in the
Russian digital signature algorithm GOST 34.10-94 [2]. Therefore, it is also used
in several RFCs and implemented in various cryptographic applications (as for
instance openSSL).

The GOST hash function is an iterated hash function producing a 256-bit
hash value. As opposed to most commonly used hash functions such as MD5 and
SHA-1, the GOST hash function defines, in addition to the common iterative
structure, a checksum computed over all input message blocks. This checksum is
then part of the final hash value computation. The GOST standard also specifies
the GOST block cipher [1], which is the main building block of the hash function.
Therefore, it can be considered as a block-cipher-based hash function. While
there have been published several cryptanalytic results regarding the block cipher
(see for instance [4, 11, 14, 19, 20]), only a few results regarding the hash function
have been published to date. Note that for the remainder of this article we refer
to the GOST hash function simply as GOST.

Related Work. In [7], Gauravaram and Kelsey show that the generic attacks on
hash functions based on the Merkle-Damg̊ard design principle can be extended
to hash functions with linear/modular checksums independent of the underlying
compression function. Hence, second preimages can be found for long messages
(consisting of 2t message blocks) for GOST with a complexity of 2n−t evaluations
of the compression function.

At FSE 2008, Mendel et al. have presented the first attack on GOST ex-
ploiting the internal structure of the compression function. The authors exploit
weaknesses in the internal structure of GOST to construct pseudo-preimages for
the compression function of GOST with a complexity of about 2192 compression
function evaluations. Furthermore, they show how the attack on the compression
function of GOST can be extended to a (second) preimage attack on the hash
function. The attack has a complexity of about 2225 evaluations of the compres-
sion function of GOST. Both attacks are structural attacks in the sense that
they are independent of the underlying block cipher.



Our Contribution. We improve upon the state of the art as follows. First, we
show that for plaintexts of a specific structure, we can construct fixed-points in
the GOST block cipher efficiently. Second, based on this property in the GOST
block cipher we then show how to construct collisions in the compression func-
tion of GOST with a complexity of 296 compression function evaluations. This
collision attack on the compression function is then extended to a collision attack
on the GOST hash function. The extension is possible by combining a multicolli-
sion attack and a generalized birthday attack on the checksum. The attack has a
complexity of about 2105 evaluations of the compression function of GOST. Fur-
thermore, we show that due to the generic nature of our attack we can construct
meaningful collisions, i.e. collisions in the chosen-prefix setting with the same
complexity. Note that in most cases constructing meaningful collisions is more
complicated than constructing (random) collisions (see for instance MD5 [21]).
Third, we show how the (second) preimage attack of Mendel et al. can be im-
proved by additionally exploiting weaknesses in the GOST block cipher. The
new improved (second) preimage attack has a complexity of 2192 evaluations of
the compression function of GOST.

Table 1. Comparison of results for the GOST hash function.

source attack complexity attack

Gauravaram and Kelsey second preimages for long
CT-RSA 2008 [7] 2256−t messages (2t blocks)

Mendel et al. preimages and
FSE 2008 [15] 2225 second preimages

2105 collisions
meaningful collisions

this work 2105 (chosen-prefix)
preimages and

2192 second preimages

The remainder of this article is structured as follows. In Section 2, we give
a short description of the GOST hash function. In Section 3, we describe the
GOST block cipher and show how to construct fixed-points efficiently. We use
this in the collision attack on the hash function in Section 4. In Section 5, we
show a new improved (second) preimage attack for the hash function. Finally,
we present conclusions in Section 6.

2 The Hash Function GOST

GOST is an iterated hash function that processes message blocks of 256 bits and
produces a 256-bit hash value. If the message length is not a multiple of 256,



tm

258257256

f f f f

1

256
f

256 257

256

256

1

STEP 1 STEP 2STEP 3

f f f f

1

256
f

2 t

256

256

STEP 4

Fig. 1. Structure of the GOST hash function.

an unambiguous padding method is applied. For the description of the padding
method we refer to [3]. Let M = M1‖M2‖ · · · ‖Mt be a t-block message (after
padding). The hash value h = H(M) is computed as follows (see Fig. 1):

H0 = IV (1)
Hi = f(Hi−1,Mi) for 0 < i ≤ t (2)

Ht+1 = f(Ht, |M |) (3)
Ht+2 = f(ht+1, Σ) = h , (4)

where Σ = M1 �M2 � · · · �Mt, and � denotes addition modulo 2256. IV is a
predefined initial value and |M | represents the bit-length of the entire message
prior to padding. As can be seen in (4), GOST specifies a checksum (Σ) con-
sisting of the modular addition of all message blocks, which is then input to the
final application of the compression function. Computing this checksum is not
part of most commonly used hash functions such as MD5 and SHA-1.

The compression function f of GOST basically consist of three parts (see
also Fig. 2): the state update transformation, the key generation, and the output
transformation. In the following, we will describe these parts in more detail.

2.1 State Update Transformation

The state update transformation of GOST consists of 4 parallel instances of the
GOST block cipher, denoted by E. The intermediate hash value Hi−1 is split
into four 64-bit words h3‖h2‖h1‖h0. Each 64-bit word is used in one stream of
the state update transformation to construct the 256-bit value S = s3‖s2‖s1‖s0
in the following way:

s0 = E(k0, h0) (5)
s1 = E(k1, h1) (6)
s2 = E(k2, h2) (7)
s3 = E(k3, h3) (8)

where E(K,P ) denotes the encryption of the 64-bit plaintext P under the 256-
bit key K. We refer to Section 3, for a detailed description of the GOST block
cipher.



i-1
256

3 2 1 0

646464 64

3 2 1 0

0

1

2

3

256

1024 256
i

256

256

256

256

256

i

Fig. 2. The compression function of GOST

2.2 Key Generation

The key generation of GOST takes as input the intermediate hash value Hi−1

and the message block Mi to compute a 1024-bit key K. This key is split into
four 256-bit keys ki, i.e. K = k3‖ · · · ‖k0, where each key ki is used in one stream
as the key for the GOST block cipher E in the state update transformation. The
four keys k0, k1, k2, and k3 are computed in the following way:

k0 = P (Hi−1 ⊕Mi) (9)
k1 = P (A(Hi−1)⊕A2(Mi)) (10)
k2 = P (A2(Hi−1)⊕ Const⊕A4(Mi)) (11)
k3 = P (A(A2(Hi−1)⊕ Const)⊕A6(Mi)) (12)

where A and P are linear transformations and Const is a constant. Note that
A2(x) = A(A(x)). For the definition of the linear transformation A and P as well
as the value of Const, we refer to [3], since we do not need it for our analysis.

2.3 Output Transformation

The output transformation of GOST combines the intermediate hash valueHi−1,
the message block Mi, and the output of the state update transformation S to



compute the output value Hi of the compression function. It is defined as follows.

Hi = ψ61(Hi−1 ⊕ ψ(Mi ⊕ ψ12(S))) (13)

The linear transformation ψ : {0, 1}256 → {0, 1}256 is given by:

ψ(Γ ) = (γ0 ⊕ γ1 ⊕ γ2 ⊕ γ3 ⊕ γ12 ⊕ γ15)‖γ15‖γ14‖ · · · ‖γ1 (14)

where Γ is split into sixteen 16-bit words, i.e. Γ = γ15‖γ14‖ · · · ‖γ0.

3 The GOST Block Cipher

The GOST block cipher is specified by the Russian government standard GOST
28147-89 [1]. Several cryptanalytic results have been published for the block
cipher (see for instance [4, 11, 14, 19, 20]). However, if the block cipher is used
in a hash function then we are facing a different attack scenario: the attacker
has full control over the key. First results considering this fact for the security
analysis of hash functions have been presented for instance in [13]. We will exploit
having full control over the key for constructing fixed-points for the GOST block
cipher.

3.1 Description of the block cipher

The GOST block cipher is a 32 round Feistel network with a block size of 64
bits and a key length of 256 bits. The round function of the GOST block cipher
consists of a key addition, eight different 4 × 4 S-boxes Sj (0 ≤ j < 8) and
a cyclic rotation (see also Figure 3). For the definition of the S-boxes we refer
to [3], since we do not need them for our analysis.

<<<       11

ski

Li Ri

Li+1 Ri+1

S6

S7

S0

3232

Fig. 3. One round of the GOST block cipher.

The key schedule of the GOST block cipher defines the subkeys ski derived from
the 256-bit K = k7‖k6‖ · · · ‖k0 as follows

ski =

{
ki mod 8, i = 0, . . . , 23,
k7−(i mod 8), i = 24, . . . , 31.

(15)



3.2 Constructing a Fixed-Point

In the following, we will show how to efficiently construct fixed-points in the
GOST block cipher. It is based on the following observation. Note that a similar
observation was used by Kara in [10] for a chosen plaintext attack on the GOST
block cipher.

Observation 1 Assume we are given a plaintext P = L0‖R0 with L0 = R0.
Then we can construct a fixed-point for the block cipher by constructing a fixed-
point in the first 8 rounds.

In the following, we refer to a plaintext P = L0‖R0 with L0 = R0 as a symmetric
plaintext (or for short as symmetric). Note that by using the block cipher for
constructing a hash function, an attacker has full control over the key. Further-
more, each word of the key is only used once in the first 8 rounds of the block
cipher. Hence, constructing a fixed-point in the first 8 rounds can be done effi-
ciently. First, we choose random values for the first 6 words of the key (subkeys
sk0, . . . , sk5) and compute L6 and R6. Next, we choose the last 2 words of the
key (subkeys sk6 and sk7) such that L8 = L0 and R8 = R0. With this method
we can construct a fixed-point in the first 8 rounds of the block cipher with a
computational cost of 8 round computations.

It is easy to see that if we have a fixed-point in the first 8 rounds, then this
is also a fixed-point for rounds 9-16 and 17-24 since the same subkeys are used
in these rounds. In the last 8 rounds the subkey is put in the opposite order,
see (15). However, since the GOST block cipher is a Feistel network, we have
here (rounds 25-32) a decryption if L24 = R24. This implies that we have a fixed-
point for the GOST block cipher (for all 32 rounds) if the plaintext is symmetric.
Hence, for symmetric plaintexts we can efficiently construct fixed-points for the
GOST block cipher.

4 Collision Attack on GOST

In this section, we present a collision attack on the GOST hash function with
a complexity of about 2105 evaluations of the compression function. First, we
will show how to construct collisions for the compression function of GOST, and
based on this attack we then describe the collision attack for the hash function.
For the remainder of this article we follow the notation of [15].

4.1 Constructing a Collision in the Compression Function

In the following, we show how to construct a collision in the compression func-
tion of GOST. The attack is based on structural weaknesses of the compression
function. These weaknesses have been used in [15] to construct pseudo-collisions
and pseudo-preimages for the compression function of GOST with a complexity
of 296 and 2192, respectively.



Now we show a collisions attack on the compression function by additionally
exploiting weaknesses in the underlying GOST block cipher. Since the transfor-
mation ψ is linear, (13) can be written as:

Hi = ψ61(Hi−1)⊕ ψ62(Mi)⊕ ψ74(S) (16)

Furthermore, ψ is invertible and hence (16) can be written as:

ψ−74(Hi)︸ ︷︷ ︸
X

= ψ−13(Hi−1)︸ ︷︷ ︸
Y

⊕ψ−12(Mi)︸ ︷︷ ︸
Z

⊕S (17)

Note that Y depends linearly on Hi−1 and Z depends linearly on Mi. As opposed
to Y and Z, S depends on both Hi−1 and Mi processed by the block cipher E.
For the following discussion, we split the 256-bit words X,Y, Z defined in (17)
into 64-bit words:

X = x3‖x2‖x1‖x0 Y = y3‖y2‖y1‖y0 Z = z3‖z2‖z1‖z0

Now, (17) can be written as:

x0 = y0 ⊕ z0 ⊕ s0 (18)
x1 = y1 ⊕ z1 ⊕ s1 (19)
x2 = y2 ⊕ z2 ⊕ s2 (20)
x3 = y3 ⊕ z3 ⊕ s3 (21)

Now assume, that we can find 296 message blocks M j
i , where Mk

i 6= M t
i with

k 6= t, such that all message blocks produce the same value x0. Then we know
that due to the birthday paradox two of these message blocks also lead to the
same values x1, x2, and x3. In other words, we have constructed a collision for
the compression function of GOST. The attack has a complexity of about 296

evaluations of the compression function of GOST.
Based on this short description, we will show now how to construct message

blocks M j
i , which all produce the same value x0. Assume, we want to keep the

value s0 in (18) constant. Since s0 = E(k0, h0) and k0 depends linearly on the
message block Mi, we have to find keys kj

0 and hence, message blocks M j
i , which

all produce the same value s0. This can be done by exploiting the fact that in
the GOST block cipher fixed-points can be constructed efficiently for symmetric
plaintexts (see Section 3.2). In other words, if h0 is symmetric then we can
construct 296 message blocks M j

i where s0 = h0, and (18) becomes

x0 = y0 ⊕ z0 ⊕ h0 . (22)

However, to find message blocks M j
i for which x0 has the same value, we still

have to ensure that also the term y0⊕z0 in (22) has the same value for all message
blocks. Therefore, we get the following equation (64 equations over GF (2))

y0 ⊕ z0 = c (23)



where c is an arbitrary 64-bit value. We know that y0 depends linearly on Hi−1

and z0 depends linearly on Mi, see (17). Therefore, the choice of the message
block Mi and accordingly, the choice of the key k0, is restricted by 64 equations
over GF (2). Hence, for constructing a fixed-point in the GOST block cipher we
have to consider these restrictions. For the following discussion let

A · k0 = d (24)

denote the set of 64 equations over GF (2) which restricts the choice of the key
k0, where A is a 64× 256 matrix over GF (2) and d is a 64-bit vector. It follows
from Observation 1 that for constructing a fixed-point in the GOST block cipher
(for symmetric plaintexts), it is sufficient to construct a fixed-point in the first
8 rounds. Hence, one method to construct an appropriate fixed-point would be
to construct many arbitrary fixed-points and then check if (24) holds. With
this method we find an appropriate fixed-point with a complexity of about 264.
Since we need 296 such fixed-points for the collision attack, this would lead to a
complexity of 2160 evaluations of the compression function of GOST. However,
we can improve this complexity by using a meet-in-the-middle approach (see
also Fig. 4).

sk0

sk3

sk1

sk2

sk4

sk7

sk5

sk6

L0 = R0

L8 = R8 = L0

sk0

sk3

sk1
sk2

A1 d1

sk4

sk7

sk5
sk6

A2 d2

d1 d2A1    A2

sk0

sk3

sk1
sk2

sk4

sk7

sk5
sk6

d

Fig. 4. Constructing a fixed-point in the GOST block cipher.

We split the first 8 rounds of the GOST block cipher into 2 parts P1 (rounds
1-4) and P2 (rounds 5-8). Since the subkey used in the first 8 rounds is restricted
by A · k0, we also split this system of 64 equations over GF (2) into two parts:

A1 ·


sk0

sk1

sk2

sk3

 = d1 A2 ·


sk4

sk5

sk6

sk7

 = d2 (25)



where A = [A1 A2] and d = d1 ⊕ d2. Now we can apply a meet-in-the-middle
attack to construct 264 appropriate fixed-points for the GOST block cipher with
a complexity of 264. It can be summarized as follows.

1. Choose a random value for d1. This determines also d2 = d⊕ d1.
2. For all 264 subkeys sk0, . . . , sk3 which fulfill (25) compute L4, R4 and save

the result in the list L.
3. For all 264 subkeys sk4, . . . , sk7 which fulfill (25) compute rounds 4-8 back-

ward to get L4, R4 and check for a matching entry in the list L. Note that
since there are 264 entries in the list L we expect to always find a matching
entry in the list L. Hence, we get 264 appropriate fixed-points for the GOST
block cipher with a complexity of about 264 and memory requirements of
264 · 40 ≈ 270 bytes.

By repeating this attack about 232 times for different choices of d1, we get 296

appropriate fixed-points. In other words, we found 296 keys kj
0 which all produce

the same value s0 = E(kj
0, h0) and additionally fulfill (24). Consequentially,

we have 296 message blocks M j
i which all result in the same value x0 with

X = ψ−74(Hi). By applying a birthday attack we will find two message blocks
Mk

i and M t
i with k 6= t where also x1, x2, and x3 are equal. In other words, we

can find a collision for the compression function of GOST with a complexity of
about 296 instead of 2128 evaluations of the compression function of GOST.

4.2 Constructing Collisions for the Hash Function

In this section, we show how the collision attack on the compression function
can be extended to the hash function. The attack has a complexity of about 2105

evaluations of the compression function of GOST. Note that the hash function
defines, in addition to the common iterative structure, a checksum computed
over all input message blocks which is then part of the final hash computation.
Therefore, to construct a collision in the hash function we have to construct
a collision in the iterative structure (i.e. chaining variables) as well as in the
checksum. To do this we use multicollisions.

A multicollision is a set of messages of equal length that all lead to the
same hash value. As shown in [9], constructing a 2t collision, i.e. 2t messages
consisting of t message blocks which all lead to the same hash value, can be
done with a complexity of about t · 2x for any iterated hash function, where 2x

is the cost of constructing a collision in the compression function. As shown in
Section 4.1, collisions for the compression function of GOST can be constructed
with a complexity of 296 if h0 is symmetric in Hi−1 = h3‖h2‖h1‖h0. Note that
by using an additional message block Mi−1 we find a chaining variable Hi−1 =
f(Hi−2,Mi−1), where h0 is symmetric with a complexity of 232 compression
function evaluations. Hence, we can construct a 2128 collision with a complexity
of about 128·(296+232) ≈ 2103 evaluations of the compression function of GOST.
With this method we get 2128 messages M∗ that all lead to the same value H256

as depicted in Figure 5.



H1

M2
2

f f

f f

M2
1

fH0

M1

H255f
H254

M255

H256

M256
2

M256
1

H2

232            +        296 232            +        296

H3

M4
2

f

f

M4
1

f

M3

H4

232            +        296

Fig. 5. Constructing a multicollision for GOST.

To construct a collision in the checksum of GOST we have to find 2 distinct
messages which produce the same value Σ = M1 � M j2

2 � · · · � M255 � M j256
256

with j2, j4, . . . j256 ∈ {1, 2}. By applying a birthday attack we can find these 2
messages with a complexity of about 2127 additions over GF (256) and memory
requirements of 2134 bytes. Due to the high complexity and memory requirements
of the birthday attack, one could see this part as the bottleneck of the attack.
However, the runtime and memory requirements can significantly be reduced by
applying a generalized birthday attack introduced by Wagner in [23]. Wagner
shows that if ` is a power of two then the memory requirements and the running
time for the generalized birthday problem is given by 2n/(1+lg `) and ` ·2n/(1+lg `),
respectively. Note that in the standard birthday attack we have ` = 21.

Let us now consider the case ` = 23. Then the birthday attack in the second
part of the attack has a complexity of 23 · 2256/4 = 267 and uses lists of size
2256/4 = 264. In detail, we need to construct 8 lists of size 264 in the first step
of the attack. Hence, we need to construct a 28·64 collision in the first part of
the attack to get 8 lists of the needed size. Constructing this multicollision has
a complexity of about 8 · 64 · (232 +296) = 2105 compression function evaluations
and memory requirements of 8 · 64 · (2 · 64) = 216 bytes. Hence, we can construct
a collision for the GOST hash function with a complexity of about 2105 and
memory requirements of 264 · 26 = 270 bytes by using a generalized birthday
attack with ` = 8 lists. Furthermore, the colliding message pair consists of 8 ·
(2 · 64) = 1024 message blocks. Note that ` = 8 is the best choice for the attack.
On one hand if we choose ` > 8 then the memory requirements of the attack
would decrease but the attack complexity would increase. Since we need about
270 bytes of memory for constructing fixed-points in the GOST block cipher,
this does not improve the attack. On the other hand if we choose ` < 8 then the
memory requirements of the attack would be significantly higher.

A Remark on the Length Extension Property. Once, we have found a
collision, i.e. collision in the iterative part (chaining variables) and the checksum,
we can construct many more collisions by appending an arbitrary message block.
Note that this is not necessarily the case for a straight-forward birthday attack.
By applying a birthday attack we construct a collision in the final hash value
(after the last iteration) and appending a message block is not possible. Hence,



we need a collision in the iterative part as well as in the checksum for the
extension property. Note that by combining the generic birthday attack and
multicollisions, one can construct collisions in both parts with a complexity of
about 128 · 2128 = 2135 while our attack has a complexity of 2105.

A Remark on Meaningful Collisions. In a chosen-prefix setting, an attacker
searches for a message pair (M,M∗) such that for a given hash function H

H(Mpre‖M) = H(M∗
pre‖M∗) (26)

for any pair (Mpre,M
∗
pre). In [21], Stevens et al. show that such a more powerful

attack exists for MD5. Furthermore, they describe an application of this attack
for colliding X.509 certificates. Note that their attack (in a chosen-prefix setting)
has a complexity of 250, while the currently best published collision attack for
MD5 has a complexity of about 230 evaluations of the compression function [12].

However, in the case of GOST the collision attack in the chosen-prefix setting
has the same complexity as the collision attack. Due to the generic nature of the
collision attack, differences in the chaining variables can be canceled efficiently.
Assume that the chosen prefix (Mpre,M

∗
pre) consists of t message blocks resulting

in the chaining variables Ht and H∗
t . Then the attack can be summarized as

follows.

1. We have to find two message blocks Mt+1 and M∗
t+1 such that h0 = h∗0 = 0,

whereHt+1 = h3‖h2‖h1‖h0 andH∗
t+1 = h∗3‖h∗2‖h∗1‖h∗0. This has a complexity

of about 2 · 264 evaluations of the compression function of GOST.
2. Now we have to find two message blocks Mt+2 and M∗

t+2 such that Ht+2 =
H∗

t+2. This can be done similar as constructing a collision in the compression
function of GOST (see Section 4.1). First, we choose a random value for c
in (22) and construct 296 message blocks Mt+2, where x0 is equal. Second,
we construct 296 message blocks M∗

t+2, where x∗0 = x0. To guarantee that
x0 = x∗0 we have to adjust c∗ in (22) such that the following equation holds.

x0 = x∗0 = y∗0 ⊕ z∗0 ⊕ h∗0 = c∗ ⊕ h∗0

By applying a meet-in-the-middle attack we will find two message blocks
Mt+2 and M∗

t+2 which produce the same chaining variables (Ht+2 = H∗
t+2).

This step of the attack has a complexity of 2 · 296 evaluations of the com-
pression function of GOST.

3. Once we have constructed a collision in the iterative part (chaining vari-
ables), we have to construct a collision in the checksum as well. Therefore,
we proceed as described in Section 4.2. By generating a 2512 collision and ap-
plying a generalized birthday attack with ` = 8 we can construct a collision
in the checksum of GOST with a complexity of 2105 compression function
evaluations and memory requirements of 270 bytes.

Hence, we can construct meaningful collisions, i.e. collisions in the chosen-prefix
setting, for the GOST hash function with a complexity of about 2105 compression
function evaluations.



5 Improved Preimage Attack for the Hash Function

In a preimage attack, we want to find, for a given hash value h, a message
M such that H(M) = h. As we will show in the following, for GOST we can
construct preimages of h with a complexity of about 2192 evaluations of the
compression function of GOST. Before describing the attack, we will first show
how to construct preimages for the compression function of GOST. Based on
this attack we then present the preimage attack for the hash function.

5.1 A Preimage Attack for the Compression Function

In a similar way as we have constructed a collision in Section 4.1, we can con-
struct a preimage for the compression function of GOST. In the attack, we have
to find a message blockMi, such that f(Hi−1,Mi) = Hi for the given valuesHi−1

and Hi. Note that the value of Hi determines x3, . . . , x0, since X = ψ−74(Hi).
Furthermore, assume that h0 (in Hi−1 = h3‖ · · · ‖h0) is symmetric. Then the
attack can be summarized as follows.

1. Since we will construct fixed-points for the GOST block cipher such that
s0 = E(k0, h0) = h0, we have to adjust c in (22) such that

x0 = y0 ⊕ z0 ⊕ h0 = c⊕ h0

holds with X = ψ−74(Hi). Once c is fixed, this also determines d in (24).
2. Choose a random value for d1 (this also determines d2 = d⊕ d1) and apply

a meet-in-the-middle attack to obtain 264 message blocks M j
i for which x0

is correct. Note that this step of the attack has memory requirements of 270

bytes.
3. For each message block compute X and check if x3, x2, and x1 are correct.

This holds with a probability of 2−192. Thus, after testing all 264 message
blocks, we will find a correct message block with a probability of 2−192 ·264 =
2−128. Note that we can repeat the attack about 264 times for different
choices of d1.

Hence, we will find a preimage for the compression function of GOST with a
probability of about 2−64 and a complexity of about 2128 evaluations of the
compression function of GOST and memory requirements of 270 bytes.

5.2 Extending the Attack to the Hash Function

Now, we show how the preimage attack on the compression function can be
extended to the GOST hash function. The attack has a complexity of about
2192 evaluations of the compression function of GOST. Moreover, the preimage
consists of 257 message blocks, i.e. M = M1‖ · · · ‖M257. The preimage attack
consists of four steps as also shown in Figure 6.



tm

258257256

f f f f

1

256
f

256 257

256

256

1

STEP 1 STEP 3STEP 2

f f f f

1

256
f

2 t

256

256

STEP 4

Fig. 6. Preimage Attack on GOST.

STEP 1: Multicollisions for GOST. For the preimage attack on the hash
function, we construct a 2256 collision. This means, we have 2256 messages M∗ =
M j1

1 ‖M j2
2 ‖ · · · ‖M j256

256 for j1, j2, . . . , j256 ∈ {1, 2} consisting of 256 blocks that
all lead to the same hash value H256. This results in a complexity of about
256 ·2128 = 2136 evaluations of the compression function of GOST. Furthermore,
the memory requirement is about 2 ·256 message blocks, i.e. we need to store 214

bytes. With these multicollisions, we are able to construct the needed value of
Σm in STEP 4 of the attack (where the superscriptm stands for ‘multicollision’).

STEP 2: Constructing H258 Including the Length Encoding. In this
step, we have to find a message block M257 such that for the given H256 deter-
mined in STEP 1, and for |M | determined by our assumption that we want
to construct preimages consisting of 257 message blocks, we find a H258 =
h3‖ · · · ‖h0 where h0 is symmetric. Note that since we want to construct a mes-
sage that is a multiple of 256 bits, we choose M257 to be a full message block
and hence no padding is needed. We proceed as follows. Choose an arbitrary
message block M257 and compute H258 as follows:

H257 = f(H256,M257)
H258 = f(H257, |M |)

where |M | = (256 + 1) · 256. Then we check if h0 in the resulting value H258 is
symmetric. This has a probability of 2−32. Hence, this step of the attack requires
2 · 232 evaluations of the compression function of GOST.

STEP 3: Preimages for the Last Iteration. To construct a preimage for
the last iteration of GOST we proceed as described in Section 5.1. Since h0 in
H258 is symmetric, we will find a preimage for the last iteration of GOST with
a probability of 2−64 (and a complexity of about 2128). Therefore, we have to
repeat this step of the attack about 264 times for different values of H258 (where
h0 is symmetric) to find a preimage for the last iteration. Hence, finishing this
step of the attack has a complexity of about 264 ·(2·232+2128) ≈ 2192 evaluations
of the compression function of GOST. Once we have found a preimage for the
last iteration, also the value Σm is determined, since Σm = Σt �M257.



STEP 4: Constructing Σm. In STEP 1, we constructed a 2256 collision in the
first 256 iterations of the hash function. From this set of messages that all lead
to the same H256, we now have to find a message M∗ = M j1

1 ‖M j2
2 ‖ · · · ‖M j256

256

for j1, j2, . . . , j256 ∈ {1, 2} that leads to the value of Σm = Σt �M257. This can
be done by applying a meet-in-the-middle attack. First, we save all values for
Σ1 = M j1

1 � M j2
2 � · · · � M j128

128 in the list L. Note that we have in total 2128

values in L. Second, we compute Σ2 = M j129
129 �M j130

130 � · · · �M j256
256 and check

if Σm � Σ2 is in the list L. After testing all 2128 values, we expect to find a
matching entry in the list L and hence a message M∗ = M j1

1 ‖M j2
2 ‖ · · · ‖M j256

256

that leads to Σm = Σt � M257. This step of the attack has a complexity of
2128 and a memory requirement of 2128 · 25 = 2133 bytes. Once we have found
M∗, we found a preimage for GOST consisting of 256+1 message blocks, namely
M∗‖M257.

The Attack Complexity. The complexity of the preimage attack is deter-
mined by the computational effort of STEP 2 and STEP 3, i.e. a preimage of h
can be found in about 2192 evaluations of the compression function. The memory
requirements for the preimage attack are determined by finding M∗ in STEP 4,
since we need to store 2133 bytes for the meet-in-the-middle attack. Due to the
high memory requirements of STEP 4, one could see this part as the bottleneck
of the attack. However, the memory requirements of STEP 4 can significantly
be reduced by applying a memory-less variant of the meet-in-the-middle attack
introduced by Quisquater and Delescaille in [17]. Hence, a preimage can be con-
structed for the GOST hash function with a complexity of 2192 evaluations of
the compression function and memory requirements of about 270 bytes.

5.3 A Remark on Second Preimages

Note that the presented preimage attack on GOST also implies a second preim-
age attack. In this case, we are not given only the hash value h but also a message
M that results in this hash value. We can construct for any given message a sec-
ond preimage in the same way as we construct preimages. The difference is, that
the second preimage will always consist of at least 257 message blocks. Thus, we
can construct a second preimage for any message M (of arbitrary length) with
a complexity of about 2192 evaluations of the compression function of GOST.

6 Conclusion

In this article, we have presented a collision attack and a (second) preimage at-
tack on the GOST hash function. Both the collision and the (second) preimage
attack are based on weaknesses in the GOST block cipher, namely fixed-points
can be constructed efficiently for plaintexts of a specific structure. The internal
structure of the compression function allows to construct collisions with a com-
plexity of about 296 evaluations of the compression function. This alone would



not render the hash function insecure. The fact that we can construct multicol-
lisions for any iterated hash function including the GOST hash function and the
possibility of applying a (generalized) birthday attack to construct also a col-
lision in the checksum make the collision attack on the hash function possible.
The attack has a complexity of about 2105 compression function evaluations.
Furthermore, the generic nature of the attack allows us to construct meaningful
collisions, i.e. collisions in the chosen-prefix setting, with the same complexity.
In a similar way as we construct collisions for the hash function, we can con-
struct (second) preimages for the hash function with a complexity of about 2192

evaluations of the compression function. This improves the previous (second)
preimage attack of Mendel et al. by a factor of 233. Even though the complexi-
ties of our attacks are far beyond of being practical, they point out weaknesses
in the design principles of the hash function GOST.

Acknowledgements

The authors wish to thank Mario Lamberger, Vincent Rijmen, and the anony-
mous referees for useful comments and discussions.

The work in this paper has been supported in part by the Secure Information
Technology Center - Austria (A-SIT) and by the Austrian Science Fund (FWF),
project P19863.

References

1. GOST 28147-89, Systems of the Information Treatment. Cryptographic Security.
Algorithms of the Cryptographic Transformation, 1989. (In Russian).

2. GOST 34.10-94, Information Technology Cryptographic Data Security Produce
and Check Procedures of Electronic Digital Signature Based on Asymmetric Cryp-
tographic Algorithm, 1994. (In Russian).

3. GOST 34.11-94, Information Technology Cryptographic Data Security Hashing
Function, 1994. (In Russian).

4. Alex Biryukov and David Wagner. Advanced Slide Attacks. In Bart Preneel,
editor, EUROCRYPT, volume 1807 of LNCS, pages 589–606. Springer, 2000.

5. Christophe De Cannière, Florian Mendel, and Christian Rechberger. Collisions for
70-Step SHA-1: On the Full Cost of Collision Search. In Carlisle M. Adams, Ali
Miri, and Michael J. Wiener, editors, Selected Areas in Cryptography, volume 4876
of LNCS, pages 56–73. Springer, 2007.

6. Christophe De Cannière and Christian Rechberger. Finding SHA-1 Characteris-
tics: General Results and Applications. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT, volume 4284 of LNCS, pages 1–20. Springer, 2006.

7. Praveen Gauravaram and John Kelsey. Linear-XOR and Additive Checksums
Don’t Protect Damg̊ard-Merkle Hashes from Generic Attacks. In Tal Malkin,
editor, CT-RSA, volume 4964 of LNCS, pages 36–51. Springer, 2008.

8. Daniel Joscák and Jiŕı Tuma. Multi-block Collisions in Hash Functions Based on
3C and 3C+ Enhancements of the Merkle-Damg̊ard Construction. In Min Surp
Rhee and Byoungcheon Lee, editors, ICISC, volume 4296 of LNCS, pages 257–266.
Springer, 2006.



9. Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions. In Matthew K. Franklin, editor, CRYPTO, volume 3152 of LNCS,
pages 306–316. Springer, 2004.

10. Orhun Kara. Reflection Attacks on Product Ciphers. Cryptology ePrint Archive,
Report 2007/043, 2007. http://eprint.iacr.org/.

11. John Kelsey, Bruce Schneier, and David Wagner. Key-Schedule Cryptoanaly-
sis of IDEA, G-DES, GOST, SAFER, and Triple-DES. In Neal Koblitz, editor,
CRYPTO, volume 1109 of LNCS, pages 237–251. Springer, 1996.

12. Vlastimil Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute.
Cryptology ePrint Archive, Report 2006/105, 2006. http://eprint.iacr.org/.

13. Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for Some Block
Ciphers. In Kaoru Kurosawa, editor, ASIACRYPT, volume 4833 of LNCS, pages
315–324. Springer, 2007.

14. Youngdai Ko, Seokhie Hong, Wonil Lee, Sangjin Lee, and Ju-Sung Kang. Related
Key Differential Attacks on 27 Rounds of XTEA and Full-Round GOST. In Bi-
mal K. Roy and Willi Meier, editors, FSE, volume 3017 of LNCS, pages 299–316.
Springer, 2004.

15. Florian Mendel, Norbert Pramstaller, and Christian Rechberger. A (Second)
Preimage Attack on the GOST Hash Function. In Kaisa Nyberg, editor, FSE,
volume 5086 of LNCS, pages 224–234. Springer, 2008.

16. Florian Mendel and Vincent Rijmen. Cryptanalysis of the Tiger Hash Function.
In Kaoru Kurosawa, editor, ASIACRYPT, volume 4833 of LNCS, pages 536–550.
Springer, 2007.

17. Jean-Jacques Quisquater and Jean-Paul Delescaille. How Easy is Collision Search.
New Results and Applications to DES. In Gilles Brassard, editor, CRYPTO, vol-
ume 435 of LNCS, pages 408–413. Springer, 1989.

18. Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-Function Ba-
sics: Definitions, Implications, and Separations for Preimage Resistance, Second-
Preimage Resistance, and Collision Resistance. In Bimal K. Roy and Willi Meier,
editors, FSE, volume 3017 of LNCS, pages 371–388. Springer, 2004.

19. Markku-Juhani O. Saarinen. A chosen key attack against the secret S-boxes of
GOST, 1998. unpublished manuscript.

20. Haruki Seki and Toshinobu Kaneko. Differential Cryptanalysis of Reduced Rounds
of GOST. In Douglas R. Stinson and Stafford E. Tavares, editors, Selected Areas
in Cryptography, volume 2012 of LNCS, pages 315–323. Springer, 2000.

21. Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-Prefix Collisions
for MD5 and Colliding X.509 Certificates for Different Identities. In Moni Naor,
editor, EUROCRYPT, volume 4515 of LNCS, pages 1–22. Springer, 2007.

22. Douglas R. Stinson. Some Observations on the Theory of Cryptographic Hash
Functions. Des. Codes Cryptography, 38(2):259–277, 2006.

23. David Wagner. A Generalized Birthday Problem. In Moti Yung, editor, CRYPTO,
volume 2442 of LNCS, pages 288–303. Springer, 2002.

24. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the Hash Functions MD4 and RIPEMD. In Ronald Cramer, editor,
EUROCRYPT, volume 3494 of LNCS, pages 1–18. Springer, 2005.

25. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Victor Shoup, editor, CRYPTO, volume 3621 of LNCS, pages 17–36.
Springer, 2005.

26. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
In Ronald Cramer, editor, EUROCRYPT, volume 3494 of LNCS, pages 19–35.
Springer, 2005.


