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Abstract. Most of the work in the analysis of cryptographic schemes
is concentrated in abstract adversarial models that do not capture side-
channel attacks. Such attacks exploit various forms of unintended infor-
mation leakage, which is inherent to almost all physical implementations.
Inspired by recent side-channel attacks, especially the “cold boot at-
tacks”, Akavia, Goldwasser and Vaikuntanathan (TCC ’09) formalized
a realistic framework for modeling the security of encryption schemes
against a wide class of side-channel attacks in which adversarially chosen
functions of the secret key are leaked. In the setting of public-key encryp-
tion, Akavia et al. showed that Regev’s lattice-based scheme (STOC ’05)
is resilient to any leakage of L/polylog(L) bits, where L is the length of
the secret key.
In this paper we revisit the above-mentioned framework and our main
results are as follows:
– We present a generic construction of a public-key encryption scheme

that is resilient to key leakage from any universal hash proof system.
The construction does not rely on additional computational assump-
tions, and the resulting scheme is as efficient as the underlying proof
system. Existing constructions of such proof systems imply that our
construction can be based on a variety of number-theoretic assump-
tions, including the decisional Diffie-Hellman assumption (and its
progressively weaker d-Linear variants), the quadratic residuosity
assumption, and Paillier’s composite residuosity assumption.

– We construct a new hash proof system based on the decisional Diffie-
Hellman assumption (and its d-Linear variants), and show that the
resulting scheme is resilient to any leakage of L(1−o(1)) bits. In ad-
dition, we prove that the recent scheme of Boneh et al. (CRYPTO
’08), constructed to be a “circular-secure” encryption scheme, is re-
silient to any leakage of L(1−o(1)) bits. These two proposed schemes
complement each other in terms of efficiency.

– We extend the framework of key leakage to the setting of chosen-
ciphertext attacks. On the theoretical side, we prove that the Naor-
Yung paradigm is applicable in this setting as well, and obtain as a
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corollary encryption schemes that are CCA2-secure with any leakage
of L(1 − o(1)) bits. On the practical side, we prove that variants
of the Cramer-Shoup cryptosystem (along the lines of our generic
construction) are CCA1-secure with any leakage of L/4 bits, and
CCA2-secure with any leakage of L/6 bits.

1 Introduction

Proving the security of a cryptographic scheme consists of two main ingredi-
ents: (1) an adversarial model that specifies the adversarial access to the system
and the adversary’s computational capabilities, and (2) a notion of security that
specifies what it means to “break” the security of the scheme. Whereas notions
of security have significantly evolved over the years (following the seminal work
of Goldwasser and Micali [15]), the vast majority of cryptographic schemes are
analyzed in abstract adversarial models that do not capture side-channel at-
tacks. Such attacks exploit unintended leakage of information which is inherent
to almost all physical implementations. Over the years side-channel attacks ex-
posed crucial vulnerabilities of systems that are considered secure in standard
adversarial models (see, for example, [3, 4, 23, 24]).

Countermeasures for protecting against side-channel attacks are taken on
two complementing levels: the hardware level and the software level. Prevent-
ing unintended leakage on the hardware level is typically rather inefficient and
expensive, and is even impossible in some cases. It is thus highly desirable to
protect, as much as possible, against side-channel attacks on the software level
by modeling such attacks using abstract notions of computation.
Physically observable cryptography. In their pioneering work, Micali and
Reyzin [27] put forward a powerful and comprehensive framework for modeling
security against side-channel attacks. Their framework captures any such attack
in which leakage of information occurs as a result of computation. The frame-
work relies on the basic assumption that computation and only computation leaks
information, that is, there is no leakage of information in the absence of com-
putation. This assumption has led to the construction of various cryptographic
primitives that are robust to “computational” leakage (see, for example, [14, 16,
27, 30, 31]).
Memory-leakage attacks. Recently, Halderman et al. [18] presented a suite
of attacks that violate the basic assumption underlying the framework of Micali
and Reyzin. Halderman et al. showed that, contrary to popular assumptions, a
computer’s memory is not erased when it loses power. They demonstrated that
ordinary DRAMs typically lose their contents gradually over a period of seconds,
and that residual data can be recovered using simple, non-destructive techniques
that require only momentary physical access to the machine. Halderman et al.
presented attacks that exploit DRAM remanence effects to recover cryptographic
keys held in memory. Specifically, their “cold boot” attacks showed that a sig-
nificant fraction of the bits of a cryptographic key can be recovered if the key
is ever stored in memory. Halderman et al. managed to completely compromise
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the security of several popular disk encryption systems (including BitLocker,
TrueCrypt, and FileVault), and to reconstruct DES, AES, and RSA keys (see
also the improved RSA key reconstruction by Heninger and Shacham [19]).

Inspired by the cold boot attacks, Akavia, Goldwasser and Vaikuntanathan
[2] formalized a general framework for modeling “memory attacks” in which
adversarially chosen functions of the secret key are leaked in an adaptive fashion,
with the only restriction that the total amount of leakage is bounded. Akavia et
al. showed that the lattice-based public-key encryption scheme of Regev [32] is
resilient to such key leakage (to an extent that depends on the amount of leakage)
by slightly strengthening the computational assumption that is required by the
original scheme.

1.1 Our Contributions

In this work we revisit the framework of key-leakage attacks introduced by
Akavia et al. in the setting of public-key encryption. We present a generic con-
struction of a public-key encryption scheme that is resilient to key leakage, and
show that the construction can be based on a variety of number-theoretic as-
sumptions (see below). Moreover, we demonstrate that our approach leads to
encryption schemes that are both resilient to significantly large amounts of leak-
age, and that are very efficient and can be used in practice (see, in particular,
the instantiation in Section 4 that is based on the decisional Diffie-Hellman as-
sumption). In addition, we extend the framework of key-leakage attacks to the
setting of chosen-ciphertext attacks. We present both a generic transformation
from chosen-plaintext security to chosen-ciphertext security in the context of
key-leakage attacks, and efficient schemes that are based on specific number-
theoretic assumptions.

In what follows we present a more elaborated exposition of our results, but
first, we briefly describe the framework of Akavia et al. and their results. Infor-
mally, an encryption scheme is resilient to key-leakage attacks if it is semanti-
cally secure even when the adversary obtains sensitive leakage information. This
is modeled by providing the adversary with access to a leakage oracle: the ad-
versary can submit any function f and receive f(sk), where sk is the secret key
(we note that the leakage functions can be chosen depending on the public key,
which is known to the adversary). The adversary can query the leakage oracle
adaptively, with only one restriction: the sum of output lengths of all the leakage
functions has to be bounded by a predetermined parameter λ (clearly, λ has to
be less than the length of the secret key)1. A formal definition is provided in
Section 3. Akavia et al. showed that Regev’s public-key encryption scheme is
resilient to any key leakage of L/polylog(L) bits, where L is the length of the
secret key (see improvements to the allowed amount of leakage in the full version
of their paper). We are now ready to state our results more clearly:

1 Akavia et al. refer to such attacks as adaptive memory attacks. They also define the
notion of non-adaptive memory attacks which we discuss later on.
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A generic construction. We present a generic construction of a public-key
encryption scheme that is resilient to key leakage from any universal hash proof
system, a very useful primitive introduced by Cramer and Shoup [7]. The con-
struction does not rely on additional computational assumptions, and the result-
ing scheme is as efficient as the underlying proof system. Existing constructions
of such proof systems [7, 22, 34] imply that our construction can be based on a
variety of number-theoretic assumptions, including the decisional Diffie-Hellman
(DDH) assumption and its progressively weaker d-Linear variants, the quadratic
residuosity assumption, and Paillier’s composite residuosity assumption. The
natural approach for achieving security against partial key leakage is to add re-
dundancy to the private key, so that every (short) function of it will still keep
many possibilities for the “real secret”. Hash proof systems yield a convenient
method for doing just that.

We then emphasize a specific instantiation with a simple and efficient DDH-
based hash proof system. The resulting encryption scheme is resilient to any
leakage of L(1/2− o(1)) bits, where L is the length of the secret key. Although
one can instantiate our construction with any hash proof system, we find this
specific instantiation rather elegant.

The schemes that result from our generic construction satisfy in fact a more
general notion of leakage resilience: these schemes are secure even if the leakage
functions chosen by the adversary are applied to the random bits used by the
key generation algorithm. This clearly generalizes the framework of Akavia et al.
and guarantees security even in case that intermediate values from the process
of generating the secret and public keys are leaked2. In addition, we consider
several other generalizations of the framework of Akavia et al. that are satisfied
by our schemes. These include a scenario in which the adversary obtains a noisy
version of all of the memory (as in the attack of Halderman et al. [18]), a scenario
in which partial results of the decryption process are leaked, and more.

Improved key-leakage resilience. We propose two public-key encryption
schemes that are resilient to any key leakage of L(1 − o(1)) bits, where L is
the length of the secret key. Our proposals are based on the observation that
our generic construction from hash proof systems can in fact be based on hash
proof systems with a slightly weaker universality property. When viewing hash
proof systems as key-encapsulation mechanisms, relaxing the universality prop-
erty enables us to achieve essentially the best possible ratio between the length
of the secret key and the length of the encapsulated symmetric key. This ratio

2 We note that it is not clear that Regev’s scheme is resilient to leakage of intermediate
key-related values, or at least, the proof of security of Akavia et al. does not seem to
generalize to this setting. The main reason is that their proof of security involves an
indistinguishability argument over the public key, and an adversary that has access
to the randomness of the key generation algorithm (via leakage queries) can identify
that the public key was not sampled from its specified distribution.
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translates to the relative amount of key leakage to which the encryption schemes
are resilient3.

For our first proposal we construct a new hash proof system based on the de-
cisional Diffie-Hellman assumption (and more generally, on any of the d-Linear
assumptions) that satisfies this weaker universality property. The resulting en-
cryption scheme is then obtained by instantiating our generic construction with
this hash proof system. For our second proposal, we show the recent “circular-
secure” encryption scheme of Boneh et al. [5] fits into our generic approach using
a different hash proof system (that satisfies the same weaker universality prop-
erty). We then compare our two proposals both conceptually and practically,
indicating that they complement each other in terms of efficiency.
Chosen-ciphertext security. We extend the framework of key leakage to the
setting of chosen-ciphertext security. Technically, this is a very natural extension
by providing the adversary with access to both a leakage oracle and a decryption
oracle. On the theoretical side, we show that the Naor-Yung “double encryption”
paradigm [12, 29] can be used as a general transformation from chosen-plaintext
security to chosen-ciphertext security in the presence of key leakage. As an im-
mediate corollary of our above-mentioned results, we obtain a scheme that is
CCA2-secure with any leakage of L(1− o(1)) bits, where L is the length of the
secret key.

The schemes resulting from the Naor-Yung paradigm are rather inefficient
due to the usage of generic non-interactive zero-knowledge proofs. To comple-
ment this situation, on the practical side, we prove that variants of the Cramer-
Shoup cryptosystem [8] (along the lines of our generic transformation from hash
proof systems) are CCA1-secure with any leakage of L(1/4 − o(1)) bits, and
CCA2-secure with any leakage of L(1/6− o(1)) bits. It is left as an open prob-
lem to construct a practical CCA-secure scheme that is resilient to any leakage
of L(1− o(1)) bits (where a possible approach is to examine recent refinements
of the Cramer-Shoup cryptosystem [1, 22, 25]).
“Weak” key-leakage security. Akavia et al. also considered the following
weaker notion of key leakage (which they refer to as “non-adaptive” leakage):
a leakage function f with output length λ is chosen by the adversary ahead
of time (without any knowledge of the public key), and then the adversary is
given (pk, f(sk)). That is, in a “weak” key-leakage attack the leakage function
f is chosen independently of pk. Akavia et al. proved that Regev’s encryption
scheme is resilient to any weak key leakage of L(1− o(1)) bits.

Although this notion of key leakage seems rather limited, it still captures
many realistic attacks in which the leakage does not depend on the parameters
of the encryption scheme. Specifically, this notion captures the cold boot attack
of Halderman et al. [18], in which the leakage depends only on the properties of
the hardware devices that are used for storing the secret key.

For weak key-leakage attacks we present a generic construction that trans-
forms any encryption scheme to one that is resilient to any weak leakage of
3 We do not argue that such a relaxation is in fact necessary for achieving the optimal

ratio.



6 M. Naor, G. Segev

L(1 − o(1)) bits, where L is the length of the secret key. The resulting scheme
is essentially as efficient as the original one, and does not rely on additional
computational assumptions. Our approach crucially relies on the fact that the
leakage is independent of the public key. One may interpret our construction as
evidence to the deficiency of this weaker notion of key-leakage attacks.

1.2 Related Work

Extensive work has been devoted for protecting against side-channel attacks, and
for exploiting side-channels to compromise the security of cryptographic schemes.
It is far beyond the scope of this paper to present an exhaustive overview of this
ever-growing line of work. We focus here on the results that are most relevant
to our work. Already in 1985 Rivest and Shamir [33] introduced a model for
leakage attacks in the context of factoring. They considered a scenario in which
an adversary is interested in factoring an n-bit modulus N = PQ, and is allowed
to ask a certain number of arbitrary “Yes/No” questions. Rivest and Shamir
asked the following question: how many questions are needed in order to factor
N in polynomial time? Clearly, if the adversary is allowed to ask about n/2
questions, then the binary representation of P can be fully revealed. Rivest and
Shamir showed an attack that requires only n/3 questions. Specifically, in their
attack the adversary requests the top n/3 bits of P . This was later improved by
Maurer [26] who showed that εn questions are sufficient, for any constant ε > 0.

Canetti et al. [6] introduced the notion of exposure resilient cryptographic
primitives, which remain secure even if an adversary is able to learn almost all
of the secret key of the primitive. Most notably, they introduced the notion of
an exposure resilient function: a deterministic function whose output appears
random even if almost all the bits of the input are known (see also the work
of Dodis et al. [10] on adaptive security of such functions). Ishai et al. [20, 21]
considered the more general problem of protecting privacy in circuits, where
the adversary can access a bounded number of wires in the circuit. Ishai et al.
proposed several techniques for dealing with this type of attacks.

Dziembowski and Pietrzak [14] and Pietrzak [31] introduced a general frame-
work for leakage-resilient cryptography, following the assumption of Micali and
Reyzin that only computation leaks information. Their main contributions are
constructions of leakage-resilient stream-ciphers. Informally, their model consid-
ers cryptographic primitives that proceed in rounds, and update their internal
state after each round. In each round, the adversary can obtain bounded leakage
information from the portions of memory that were accessed during that round.

Dodis, Tauman Kalai, and Lovett [11] studied the security of symmetric-key
encryption schemes under key leakage attacks. They considered leakage of the
form f(sk), where sk is the secret key and f is any exponentially-hard one-way
function. On one hand they do not impose any restriction on the min-entropy
of the secret key given the leakage, but on the other hand, they require that the
leakage is a function that is extremely hard to invert. Dodis et al. introduced a
new computational assumption that is a generalization of learning parity with
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noise, and constructed symmetric-key encryption schemes that are resilient to
any key leakage that is exponentially hard to invert.

In a concurrent and independent work, Tauman Kalai and Vaikuntanathan
[35] considered leakage of hard-to-invert functions in the setting of public-key
encryption. Their main result is that the circular-secure encryption scheme of
Boneh et al. [5] is resilient to key leakage not only when the secret key has
sufficient min-entropy given the leakage function (as also shown in this paper in
Section 5.2 as a specific instantiation of our generic approach), but also when
the leakage function is exponentially hard to invert. In addition, they proved
that the Naor-Yung paradigm can be used to achieve chosen-ciphertext security
in the setting of key leakage, and their construction is essentially identical to our
construction (see [28, Section 6.1]).

1.3 Paper Organization

The remainder of the paper is organized as follows. In Section 2 we present
several notions and tools that are used in our constructions. In Section 3 we
formally describe the framework of key-leakage attacks. In Section 4 we present
our generic construction from hash proof systems, and provide a simple and
efficient instantiation. In Section 5 we present our two proposals that are resilient
to any key leakage of L(1− o(1)) bits, and provide a comparison between them.
In Section 6 we present several generalizations of the framework considered in
this paper that are satisfied by our schemes. Due to space limitations we refer
the reader to [28] for our results in the setting of chosen-ciphertext security and
weak key-leakage attacks.

2 Preliminaries and Tools

In this section we present some basic notions and tools that are used in our
constructions. Specifically, we present the notions of an average-case strong ex-
tractor and hash proof systems.

2.1 Randomness Extraction

The statistical distance between two random variables X and Y over a finite
domain Ω is SD(X, Y ) = 1

2

∑
ω∈Ω |Pr [X = ω] − Pr [Y = ω] |. We say that two

variables are ε-close if their statistical distance is at most ε. The min-entropy of
a random variable X is H∞ (X) = − log(maxx Pr [X = x]).

Dodis et al. [9] formalized the notion of average min-entropy that captures
the remaining unpredictability of a random variable X conditioned on the value
of a random variable Y , formally defined as follows:

H̃∞ (X|Y ) = − log
(
Ey←Y

[
2−H∞(X|Y =y)

])
.

The average min-entropy corresponds exactly to the optimal probability of guess-
ing X, given knowledge of Y . The following bound on average min-entropy was
proved in [9]:
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Lemma 2.1 ([9]). If Y has 2r possible values and Z is any random variable,
then H̃∞ (X|(Y,Z)) ≥ H∞ (X|Z)− r.

A main tool in our constructions in this paper is a strong randomness ex-
tractor. The following definition naturally generalizes the standard definition of
a strong extractor to the setting of average min-entropy:

Definition 2.2 ([9]). A function Ext : {0, 1}n×{0, 1}t → {0, 1}m is an average-
case (k, ε)-strong extractor if for all pairs of random variables (X, I) such that
X ∈ {0, 1}n and H̃∞ (X|I) ≥ k it holds that

SD ((Ext(X, S), S, I), (Um, S, I)) ≤ ε ,

where S is uniform over {0, 1}t.

Dodis et al. proved that any strong extractor is in fact an average-case strong
extractor, for an appropriate setting of the parameters. As a specific example,
they proved the following generalized variant of the leftover hash lemma, stating
that any family of pairwise independent hash functions is an average-case strong
extractor:

Lemma 2.3 ([9]). Let X, Y be random variables such that X ∈ {0, 1}n and
H̃∞ (X|Y ) ≥ k. Let H be a family of pairwise independent hash functions from
{0, 1}n to {0, 1}m. Then for h ← H and for any m ≤ k−2 log(1/ε), it holds that

SD ((Y, h, h(X)), (Y, h, Um)) ≤ ε.

2.2 Hash Proof Systems

We present the framework of hash proof systems, introduced by Cramer and
Shoup [7]. For simplicity we frame the description by viewing hash proof systems
as key-encapsulation mechanisms (using the notation of Kiltz et al. [22]), and
refer the reader to [7] for a more complete description.

A key-encapsulation mechanism is a public-key encryption scheme that is
used for encrypting random messages. Typically, these messages are used as en-
cryption keys for a symmetric-key encryption scheme, which in turn encrypts
the actual plaintext. In this setting, hash proof systems may be viewed as key-
encapsulation mechanisms in which ciphertexts can be generated in two modes.
Ciphertexts generated using the first mode are referred to as valid ciphertexts,
and are indeed encapsulations of symmetric keys. That is, given a public key and
a valid ciphertext, the encapsulated key is well defined, and can be decapsulated
using the secret key. In addition, the generation process of a valid ciphertext also
produces a “witness” to the fact that the ciphertext is indeed valid. Ciphertexts
generated using the second mode are referred to as invalid ciphertexts, and es-
sentially contain no information on the encapsulated key. That is, given a public
key and an invalid ciphertext, the distribution of the encapsulated key (as it
will be produced by the decryption process) is almost uniform. This is achieved
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by introducing redundancy into the secret key: each public key has many corre-
sponding secret keys. The only computational requirement is that the two modes
are computational indistinguishable: any efficient adversary that is given a pub-
lic key cannot distinguish with a noticeable advantage between valid ciphertexts
and invalid ciphertexts. We note that the secret and public keys are always gen-
erated using the same algorithm, and the indistinguishability requirement is only
over the ciphertexts.
Smooth projective hashing. Let SK, PK, and K be sets where we view
SK as the set of secret keys, PK as the set of public keys, and K as the set
of encapsulated symmetric keys. Let C and V ⊂ C be sets, where we view C
as the set of all ciphertexts, V as the set of all valid ciphertexts (i.e., those
generated appropriately with a corresponding witness). We assume that there
are efficient algorithms for sampling sk ∈ SK, C ∈ V together with a witness w,
and C ∈ C \ V.

Let Λsk : C → K be a hash function indexed with sk ∈ SK that maps
ciphertexts to symmetric keys. The hash function Λ(·) is projective if there exists
a projection µ : SK → PK such that µ(sk) ∈ PK defines the action of Λsk over
the subset V of valid ciphertexts. That is, for every valid ciphertext C ∈ V, the
value K = Λsk(C) is uniquely determined by pk = µ(sk) and C. In other words,
even though there are many different secret keys sk corresponding to the same
public key pk, the action of Λsk over the subset of valid ciphertexts in completely
determined by the public key pk. On the other hand, the action of Λsk over the
subset of invalid ciphertexts should be completely undetermined: A projective
hash function is ε-almost 1-universal if for all C ∈ C \ V,

SD ((pk, Λsk(C)) , (pk, K)) ≤ ε (1)

where sk ∈ SK and K ∈ K are sampled uniformly at random, and pk = µ(sk).
Hash proof systems. A hash proof system HPS = (Param,Pub,Priv) consists
of three polynomial-time algorithms. The algorithm Param(1n) generates pa-
rameterized instances of the form (group,K, C,V,SK,PK, Λ(·), µ), where group
may contain public parameters. The public evaluation algorithm Pub is used to
decapsulate valid ciphertexts C ∈ V given a “witness” w of the fact that C is
indeed valid (specifically, one can think of w as the random coins used to sample
C from the set V). The algorithm Pub receives as input a public key pk = µ(sk),
a valid ciphertext C ∈ V, and a witness w of the fact that C ∈ V, and outputs
the encapsulated key K = Λsk(C). The private evaluation algorithm Priv is used
to decapsulate valid ciphertexts without knowing a witness w, but by using the
secret key sk. That is, the algorithm Priv receives as input a secret key sk ∈ SK
and a valid ciphertext C ∈ V, and outputs the encapsulated key K = Λsk(C).
We assume that µ and Λ(·) are efficiently computable. We say that a hash proof
system is 1-universal if for all possible outcomes of Param(1n) the underlying
projective hash function is ε(n)-almost 1-universal for some negligible ε(n).
Subset membership problem. As a computational problem we require that
the subset membership problem is hard in HPS, which means that for random
valid ciphertext C0 ∈ V and random invalid ciphertext C1 ∈ C \ V, the two



10 M. Naor, G. Segev

ciphertexts C0 and C1 are computationally indistinguishable. This is formally
captured by defining the advantage function AdvSM

HPS,A(n) of an adversary A as

AdvSM
HPS,A(n) =

∣∣PrC0←V [A(C,V, C0) = 1]− PrC1←C\V [A(C,V, C1) = 1]
∣∣ ,

where C and V are generated using Param(1n).

3 Defining Key-Leakage Attacks

In this section we define the notion of a key-leakage attack, as introduced as
Akavia et al. [2]. Due to space limitations we refer the reader to the longer version
of our paper [28] for the extension to chosen-ciphertext attacks, the definition
of a weak key-leakage attack, and a discussion on several other generalizations
of this framework: noisy leakage, leakage of intermediate values from the key-
generation process, keys that are generated using weak random sources, and
leakage of intermediate values from the decryption process.

Informally, an encryption scheme is resilient to key-leakage attacks if it is
semantically secure even when the adversary obtains sensitive leakage informa-
tion. This is modeled by providing the adversary with access to a leakage oracle:
the adversary can submit any function f and receive f(SK), where SK is the
secret key. The adversary can query the leakage oracle adaptively, with only
one restriction: the sum of output lengths of all the leakage functions has to be
bounded by a predetermined parameter λ.

More formally, for a public-key encryption scheme (G, E ,D) we denote by
SKn and PKn the sets of secret keys and public keys that are produced by
G(1n). That is, G(1n) : {0, 1}∗ → SKn × PKn for every n ∈ N. The leakage
oracle, denoted Leakage(SK), takes as input a function f : SKn → {0, 1}∗ and
outputs f(SK). We say that an oracle machine A is a λ-key-leakage adversary
if the sum of output lengths of all the functions that A submits to the leakage
oracle is at most λ.

Definition 3.1 (key-leakage attacks). A public-key encryption scheme Π =
(G, E ,D) is semantically secure against λ(n)-key-leakage attacks if for any prob-
abilistic polynomial-time λ(n)-key-leakage adversary A = (A1,A2) it holds that

AdvLeakage
Π,A (n) def=

∣∣∣Pr
[
ExptLeakage

Π,A (0) = 1
]
− Pr

[
ExptLeakage

Π,A (1) = 1
]∣∣∣

is negligible in n, where ExptLeakage
Π,A (b) is defined as follows:

1. (SK, PK) ← G(1n).
2. (M0,M1, state) ← ALeakage(SK)

1 (PK) such that |M0| = |M1|.
3. C ← Epk(Mb).
4. b′ ← A2(C, state)
5. Output b′.
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Challenge-dependent key leakage. Note that the adversary is not allowed
to access the leakage oracle after the challenge phase. This restriction is neces-
sary: the adversary can clearly encode the decryption algorithm, the challenge
ciphertext, and the two messages M0 and M1 into a function that outputs the
bit b. It will be very interesting to find an appropriate definition that allows a
certain form of challenge-dependent leakage.
Adaptivity. As pointed out by Akavia et al. [2], Definition 3.1 is in fact equiv-
alent to a definition in which the adversary queries the leakage oracle only
once. Informally, the adversary can encode its adaptive behavior into a single
polynomial-size leakage function. It is not clear, however, that the same equiva-
lence holds when we extend the definition to consider chosen-ciphertext attacks.
Therefore, for consistency, we chose to present this adaptive definition.

4 A Generic Construction from Hash Proof Systems

In this section we present a generic construction of a public-key encryption
scheme that is resilient to key-leakage attacks. We then present an instantia-
tion of our generic construction with a simple and efficient hash proof system
based on the DDH assumption. The resulting encryption scheme is resilient to
any leakage of L(1/2 − o(1)) bits, where L is the length of the secret key. Al-
though one can instantiate our generic construction with any hash proof system,
we find this specific instantiation rather elegant.
The construction. Let HPS = (Param, Pub, Priv) be an ε1-almost 1-universal
hash proof system (see Section 2.2 for an overview of hash proof systems), where
Param(1n) generates parameterized instances of (group,K, C,V,SK,PK, Λ(·), µ)
which are used as the public parameters of the encryption scheme. Let λ = λ(n)
be a bound on the amount of leakage, and let Ext : K × {0, 1}t → {0, 1}m

be an average-case (log |K| − λ, ε2)-strong extractor. We assume that ε1 and ε2
are negligible in the security parameter. The following describes the encryption
scheme Π = (G, E ,D):

– Key generation: Choose a random sk ∈ SK and let pk = µ(sk) ∈ PK.
Output the pair (sk, pk).

– Encryption: On input a message M ∈ {0, 1}m, choose a random C ∈ V
together with a corresponding witness w, and a random seed s ∈ {0, 1}t. Let
Ψ = Ext (Pub(pk, C,w), s)⊕M , and output the ciphertext (C, s, Ψ).

– Decryption: On input a ciphertext (C, s, Ψ), output the message M =
Ψ ⊕ Ext (Λsk(C), s).

The correctness of the scheme follows from the property that Λsk(C) =
Pub(pk,C, w) for any C ∈ V with witness w. Thus, a decryption of an encrypted
plaintext is always the original plaintext. The security of the scheme (i.e., its
resilience to key leakage) follows from the universality of the proof system (see
Equation (1) in Section 2.2): for all C ∈ C \ V it holds that

SD ((pk, Λsk(C)) , (pk, K)) ≤ ε1 ,
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where sk ∈ SK and K ∈ K are sampled uniformly at random, and pk = µ(sk).
Therefore, even given pk and any leakage of λ bits, the distribution Λsk(C)
is ε1-close to a distribution with average min-entropy at least log |K| − λ. The
strong extractor is then applied to Λsk(C) using a fresh seed (chosen during the
challenge phase and thus independent of the leakage), and guarantees that the
plaintext is properly hidden. The following theorem establishes the security of
the scheme:

Theorem 4.1. Assuming that HPS is a 1-universal hash proof system, the en-
cryption scheme Π is semantically secure against λ(n)-key-leakage attacks for
any λ(n) ≤ log |K| − ω(log n) −m, where n is the security parameter and m is
the length of plaintexts.

Example: A DDH-based instantiation. Let G be a group of prime order q,
let λ = λ(n) be the leakage parameter, and let Ext : G × {0, 1}t → {0, 1}m be
an average-case (log q − λ, ε)-strong extractor for some negligible ε = ε(n).

– Key generation: Choose x1, x2 ∈ Zq and g1, g2 ∈ G uniformly at random.
Let h = gx1

1 gx2
2 , and output the keys

SK = (x1, x2) , PK = (g1, g2, h) .

– Encryption: On input a message M , choose r ∈ Zq and s ∈ {0, 1}t uni-
formly at random, and output the ciphertext

(gr
1, g

r
2, s, Ext(hr, s)⊕M) .

– Decryption: On input a ciphertext (u1, u2, s, e), output e⊕ Ext(ux1
1 ux2

2 , s).

The hash proof system underlying the above encryption scheme is a well-
known DDH-based 1-universal hash proof system [7], and as an immediate con-
sequence we obtain the following corollary of Theorem 4.1:

Corollary 4.2. Assuming the hardness of DDH, the above encryption scheme
is semantically-secure against (L/2 − ω(log n) − m)-key-leakage attacks, where
n denotes the security parameter, L = L(n) denotes the length of the secret key
and m = m(n) denotes the length of the plaintext.

5 Improved Resilience Based on DDH and d-Linear

In this section we propose two encryption schemes that are resilient to any
key leakage of L(1 − o(1)) bits, where L is the length of the secret key. These
proposals are based on the observation that our generic construction from hash
proof systems can in fact be based on hash proof systems with a slightly weaker
1-universality property. Specifically, the 1-universality property asks that for all
C ∈ C \ V it holds that

SD ((pk, Λsk(C)) , (pk, K)) ≤ ε
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where sk ∈ SK and K ∈ K are sampled uniformly at random, and pk = µ(sk). It
is rather straightforward that our generic construction only requires this property
to hold with overwhelming probability over the choice of C ∈ C \ V.

For our first proposal we construct a new hash proof system that is based on
the d-Linear assumption (for any d ≥ 1) and satisfies this weaker 1-universality
property4. The hash proof system is a generalization of the hash proof system
underlying the simple instantiation described in Section 4. The resulting encryp-
tion scheme is then obtained by instantiating our generic construction with this
hash proof system.

Our second proposal is a recent encryption scheme of Boneh et al. [5], that is
secure under key cycles (and more generally, under encryptions of linear functions
of the secret keys). This is the first and only known encryption scheme with this
property. We refer to this scheme as the BHHO scheme, and show that it fits
into our generic approach using an appropriate hash proof system (that satisfies
the same weaker universality property). As a corollary we derive that the BHHO
scheme is resilient to any leakage of L(1− o(1)) bits5.

We then provide a comparison between these two proposed schemes, indicat-
ing that the two schemes complement each other in terms of efficiency.

5.1 Proposal 1: A New Hash Proof System

We begin by presenting the encryption scheme, and then turn to describe the
underlying hash proof system and its properties.
Notation. Let G = (G, q, g) where G a group of order q that is generated by
g. For two vectors v = (g1, . . . , gk) ∈ Gk and u = (u1, . . . , uk) ∈ Zk

q we define
v ·uT =

∏k
i=1 gui

i , and note the notation naturally extends to matrix-vector and
matrix-matrix multiplications.
The encryption scheme. Let k = k(n) ≥ d+1 be any polynomial, let λ = λ(n)
be the leakage parameter, and let Ext : Gk−d×{0, 1}t → {0, 1}m be an average-
case ((k − d) log q − λ, ε)-strong extractor for some negligible ε = ε(n).

The following encryption scheme has a secret key of size essentially k log q
bits (k group elements), and is resilient to any leakage of λ ≤ (k − d) log q −
ω(log n) − m bits, where m is the length of plaintexts. That is, the scheme is
resilient to any leakage of essentially a (1 − d/k)-fraction of the length of the
secret key.

– Key generation: Choose x ∈ Zk
q and Φ ∈ Gd×k uniformly at random. Let

y = Φx ∈ Gd, and output the keys

SK = x, PK = (Φ, y) .

– Encryption: On input a message M , choose R ∈ Z(k−d)×d
q and s ∈ {0, 1}t

uniformly at random, and output the ciphertext

(RΦ, s, Ext (Ry, s)⊕M) .

4 Recall that the DDH is the 1-Linear assumption.
5 We note that not every circular-secure scheme is also resilient to key leakage.
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– Decryption: On input a ciphertext (Ψ, s, e) output e⊕ Ext (Ψx, s).

The following theorem establishes the security of the scheme:

Theorem 5.1. Assuming the hardness of d-Linear, for any polynomial k =
k(n) ≥ d + 1 the above encryption scheme is semantically-secure against a ((1−
d/k)L−ω(log n)−m)-key-leakage attack, where n denotes the security parameter,
L = L(n) denotes the length of the secret key and m = m(n) denotes the length
of the plaintext.

The hash proof system. Let k = k(n) ≥ d + 1 be any polynomial, and let
Ext : Gk−d × {0, 1}t → {0, 1}m be a ((k − d) log q, ε)-strong extractor for some
negligible ε = ε(n).

We define a hash proof system HPS = (Param, Pub, Priv) as follows. The
algorithm Param(1n) generates instances (group,K, C,V,SK,PK, Λ, µ), where:

– group = (G, Φ, s), where Φ ∈ Gd×k and s ∈ {0, 1}t are chosen uniformly at
random.

– C = G(k−d)×k, V =
{

RΦ : R ∈ Z(k−d)×d
q

}
, K = {0, 1}m.

– SK = Zk
q , PK = Gd.

– For sk = x ∈ SK we define µ(sk) = Φx ∈ PK.
– For C ∈ V with witness R ∈ Z(k−d)×d

q we define Pub(pk, C,R) = Ext(Ry, s).
– For C ∈ V we define Priv(sk, C) = Λsk(C) = Ext(Cx, s).

5.2 Proposal 2: The BHHO Scheme

We show that a simple setting of the parameters in the BHHO encryption scheme
[5] results in an encryption scheme that is resilient any key leakage of L(1−o(1))
bits, where L is the length of the secret key. Let G = (G, q, g) where G a group
of order q that is generated by g, and set ` = λ + 2 log q + 2 log(1/ε) for some
negligible ε = ε(n).

– Key generation: Choose s1, . . . , s` ∈ {0, 1} and g1, . . . , g` ∈ G uniformly
at random. Let h =

∏`
i=1 gsi

i , and output the keys

SK = (s1, . . . , s`), PK = (g1, . . . , g`, h) .

– Encryption: On input a message M ∈ G, choose r ∈ Zq uniformly at
random, and output the ciphertext

(gr
1, . . . , g

r
` , hr ·M) .

– Decryption: On input a ciphertext (u1, . . . , uk, e) output e ·
(∏`

i=1 usi
i

)−1

.

The encryption scheme can be viewed as based on a hash proof system with
the following subset membership problem (whose hardness follows from DDH):

C = {(gr1
1 , . . . , gr`

` ) : r1, . . . , r` ∈ Zq}
V = {(gr

1, . . . , g
r
` ) : r ∈ Zq} .
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The leftover hash lemma guarantees that with overwhelming probability over
the choice of C = (u1, . . . , u`) ∈ C \ V it holds that Λsk(C) =

∏`
i=1 usi

i is ε-close
to the uniform distribution over G, even given h =

∏`
i=1 gsi

i and any leakage of
length λ bits.

5.3 Comparison

The main difference between the two schemes proposed in this section is in their
method of extracting randomness from the secret key. In the first proposal an
invertible function is applied to the secret key (thus preserving its min-entropy),
and then a strong extractor is applied to the resulting value. In the second pro-
posal, the entropy of the secret key is extracted directly using the subset-product
hash functions. Although the second proposal uses a more direct method to ex-
tract the randomness of the secret key, it requires the subset-product functions
to operate on the individual bits of the secret key, since otherwise the subset-
product functions are not pairwise independent. In contrast, in the first proposal
the extractor operates on the secret key as group elements. This leads to signif-
icant differences in performance.

For any leakage parameter λ, the size of the secret keys in the two proposals
is essentially the same, whereas the size of the public key in the first proposal is
shorter by a factor of log q. When considering the length of the ciphertexts and
the number of exponentiations per ciphertext, the first proposal performs better
than the second proposal when roughly λ < L(1−1/ log q), where L is the length
of the secret key (note that such a λ is a considerable amount of leakage). For
example, by setting k = 2 in the first proposal one obtains the simple instan-
tiation described in Section 4 which is resilient to any leakage of L(1/2 − o(1))
bits, and requires only 3 exponentiations per ciphertext. For achieving the same
resilience in the second proposal more than log q exponentiations are required.
In Table 1 we present a comparison between the efficiency of the schemes. Since
the second proposal scheme is based on DDH and encrypts group elements, we
compare it to the first proposal using d = 1 (i.e., based on DDH), and m = log q
(i.e., log q-bit plaintexts). For simplicity we assume that λ is a multiple of log q,
and note that the table presents asymptotical estimates, and not exact numbers.

Proposal 1 (Section 5.1) Proposal 2 (Section 5.2)

Secret key (bits) λ + 2 log q + 2 log(1/ε) λ + 2 log q + 2 log(1/ε)

Public key (bits) λ + 2 log q + 2 log(1/ε) log q (λ + 2 log q + 2 log(1/ε))

Ciphertext (bits) (λ+2 log q+2 log(1/ε))2

log q
log q (λ + 2 log q + 2 log(1/ε))

Exponentiations
(

λ+2 log q+2 log(1/ε)
log q

)2

λ + 2 log q + 2 log(1/ε)

Table 1. Comparison between the two proposals.
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6 Generalized Forms of Key-Leakage Attacks

In this section we present several generalizations of the framework considered in
this paper that are satisfied by our schemes. Due to space limitations we describe
these generalizations very briefly and refer the reader to [28] for more details.

Noisy leakage. In the side-channel attack of Halderman et al. [18] the adversary
learns a noisy version of all of the memory. This is a more general scenario than
the scenario captured by Definition 3.1: The leakage is not of bounded length,
but it is guaranteed that the secret key is still somewhat unpredictable given
the leakage. In the information-theoretic setting, this generalization does not
necessarily strengthen the definition, since the leakage may be compressed to
essentially λ bits. However, in the computational setting (which is the setting
we consider in this work) we can conjecture that this notion is stronger.

Leakage of intermediate values from the key-generation process. Def-
inition 3.1 assumes that the adversary does not learn any of the intermediate
values that occur during the generation of the secret and public keys. In prac-
tice, however, this is not always a valid assumption. Specifically, in the attack
of Halderman et al. [18] the adversary learns a noisy version of all of the mem-
ory, and it is rather likely that intermediate values from the generation of the
keys are not always completely erased. This motivates a natural generalization
that allows the adversary to learn functions of the random bits that are used
by the key generation algorithm. Encryption schemes that satisfy this notion of
security are more robust to leakage in the sense that the key generation algo-
rithm does not have to make sure that all intermediate key-related values have
been deleted. In addition, this generalization is especially important to security
under composition of cryptographic primitives. For example, the key generation
algorithm may use random bits (or pseudorandom bits) that are the output of
another primitive (say, a pseudorandom generator) which may also suffer from
unintended leakage of sensitive information.

Keys generated using weak random sources. When considering leakage
of the random bits that are used by the key generation algorithm, then from
the adversary’s point of view these bits are uniformly distributed subject to
the leakage information. A natural generalization is to consider cases in which
the keys are generated using a weak source of random bits. This is relevant, in
particular, in light of crucial security vulnerabilities that were recently identified
in pseudorandom generators that are used by many systems [13, 17, 36].

Leakage of intermediate values from the decryption process. An addi-
tional generalization is to consider leakage that may occur during computation,
and not only leakage from the stored key. Specifically, an invocation of the de-
cryption algorithm may produce various intermediate values, whose leakage may
compromise the security of the scheme even if the scheme is robust against
leakage from the stored key. Such a notion of security is generically guaranteed
when considering leakage of bounded length. However, it is not always guaran-
teed when the adversary obtains all of the memory in a noisy fashion.
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Consider the seemingly contrived example of a decryption algorithm that first
encodes the secret key using a good error-correcting code, and then performs the
actual decryption. In this case, an adversary that obtains a noisy variant of the
memory can clearly recover the secret key. This example, however, is not so con-
trived, since as demonstrated by Halderman et al., encryption schemes typically
compute intermediate key-related values whose representation is rather redun-
dant, and this can be used to attack the scheme. Moreover, even if the encryption
scheme itself does not explicitly instructs to compute intermediate values, it may
be the case that such values are computed by a specific implementation of the
encryption scheme.
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