
Leakage-Resilient Public-Key Cryptography
in the Bounded-Retrieval Model

Joël Alwen, Yevgeniy Dodis, and Daniel Wichs

Department of Computer Science, New York University.
{jalwen,dodis,wichs}@cs.nyu.edu

Abstract. We study the design of cryptographic primitives resilient to key-leakage
attacks, where an attacker can repeatedly and adaptively learn information about
the secret key, subject only to the constraint that the overall amount of such in-
formation is bounded by some parameter `. We construct a variety of leakage-
resilient public-key systems including the first known identification schemes (ID),
signature schemes and authenticated key agreement protocols (AKA). Our main
result is an efficient three-round AKA in the Random-Oracle Model, which is
resilient to key-leakage attacks that can occur prior-to and after a protocol exe-
cution. Our AKA protocol can be used as an interactive encryption scheme with
qualitatively stronger privacy guarantees than non-interactive encryption schemes
(constructed in prior and concurrent works), which are inherently insecure if the
adversary can perform leakage attacks after seing a ciphertext.
Moreover, our schemes can be flexibly extended to the Bounded-Retrieval Model,
allowing us to tolerate very large absolute amount of adversarial leakage ` (po-
tentially many gigabytes of information), only by increasing the size of the secret
key and without any other loss of efficiency in communication or computation.
Concretely, given any leakage parameter `, security parameter λ, and any desired
fraction 0 < δ ≤ 1, our schemes have the following properties:

– Secret key size is `(1 + δ) + O(λ).
– Public key size is O(λ), and independent of `.
– Communication complexity is O(λ/δ), and independent of `.
– Computation reads O(λ/δ2) locations of the secret key, independent of `.

Lastly, we show that our schemes allow for repeated “invisible updates” of the
secret key, allowing us to tolerate up to ` bits of leakage in between any two
updates, and an unlimited amount of leakage overall. These updates require that
the parties can securely store a short “master update key” (e.g. on a separate
secure device protected against leakage), which is only used for updates and not
during protocol execution. The updates are invisible in the sense that a party can
update its secret key at any point in time, without modifying the public key or
notifying the other users.

1 Introduction
Traditionally, cryptographic systems rely on complete privacy of cryptographic keys.
Unfortunately, this idealized assumption is often hard to satisfy in real systems. In many
situations, the attacker might get some partial information about secret keys through
means which were not anticipated by the designer of the system and, correspondingly,
not taken into account when arguing its security. Such attacks, referred to as key-leakage

attacks, come in a large variety. For example, this includes side-channel attacks [20, 21,
28], where an adversary observes some “physical output” of a computation (radiation,
power, temperature, running time etc.) in addition to the “logical output” of the compu-
tation. Alternatively, this also includes the “cold-boot” attack of Halderman et al. [15],
where an adversary can learn (imperfect) information about memory contents, even af-
ter a machine is powered down. Lastly, this can include various malware/virus/hacking
attacks where the adversary can download arbitrary information from an attacked com-
puter.

Given that one cannot hope to eliminate the problem of leakage attacks altogether,
it is natural to design leakage-resilient cryptographic schemes which remain (provably)
secure, even in the face of such attacks. To do so, we must first decide on an appropriate
model of what information the adversary can learn during a leakage attack. In this work,
we assume that the attacker can repeatedly and adaptively learn arbitrary functions of
the secret key sk, as long as the total number of bits leaked during the lifetime of the
system is bounded by some parameter `. Due to its generality, this model seems to
include a very large class of attacks mentioned above, and has recently attracted a lot of
attention from the research community. In particular, this model simultaneously covers
the following two typical scenarios, which seem to be treated differently in the existing
literature.

Relative Leakage. Here, the secret key is chosen to be of some particular length s,
which depends on the security parameter, and we assume that the leakage ` is bounded
by some shrinking function of s; e.g., the attacker’s leakage is less than half of the
key-size. This assumption seems to be natural for modeling attacks where, no matter
what the key-size is, the attacker gets some imperfect reading of the key. For example,
this naturally models “cold boot attacks” attacks [15] (where the attacker might get part
of the key stored in RAM) and “microwave” attacks (where the attacker manages to
extract a corrupted copy of the key from a smart-card), among others.

Bounded-Retrieval Model (BRM). Here we assume that there is an external natural
bound ` on the overall amount of information the attacker can learn throughout the life-
time of the system, particularly concentrating on the setting when ` can be extremely
large. For example, the attacker may be able to repeatedly perform many side-channel
attacks, each of which reveals a few bits of information about the key but, if the band-
width of such attacks is relatively small, it may be infeasible, too time consuming, or
simply not cost-affective for the adversary to learn “too much” information (say, more
than 10 megabytes) overall. Alternatively, if an attacker hacks into a remote system (or
infects it with some malware) it may again be infeasible/impractical for the attacker to
download “too much” data (say, more than 10 gigabytes). In these situations the leakage
bound ` is decided by external factors and one can only resist such attacks by making
the secret key intentionally large, to dominate `. Therefore, we want to be able to set
the key size flexibly depending on the security parameter and the leakage bound `.
By itself, having large secret-keys might not be a big problem for usability, given the
extremely cheap price of storage nowadays. Therefore, the main goal of this setting,
usually refereed to as the Bounded-Retrieval Model (BRM) [8, 12], is to ensure that the
necessary inefficiency in storage is essentially the only inefficiency that the users of
the system incur. In particular, honest users should only have to read a small portion

of the secret (this is called locality), and the public keys, communication and compu-
tation should not be much larger than in conventional cryptosystems. In particular, all
efficiency parameters other than the secret-key size should only be proportional to the
security parameter, and not the leakage bound `.

To summarize, both leakage models (relative and BRM) study essentially the same
technical question. However, the BRM setting additionally demands that: users can
increase their secret key size flexibly, so as to allow for an arbitrary large leakage
bounds `, but without degrading other efficiency parameters, such as computation,
communication and locality. This is the perspective we will take in this paper, treating
both settings together, while striving to allow for the flexibility of the BRM.
NOTIONS OF SECURITY. Security with respect to key leakage attacks can be defined
for nearly all cryptographic primitives (e.g. encryption, signatures, authenticated key
agreement . . .) However, for many of the above primitives, there are natural limitations
on the security notions that can be achieved in the presence of such attacks. For exam-
ple, encryption schemes lose all privacy if the adversary can perform leakage attacks
after seeing a ciphertext, since the leakage function can simply decrypt it and reveal
some information about plaintext. Similarly, one cannot achieve existential unforge-
ability for signature schemes if the leakage bound ` is larger than the size of a single
signature (as is the case in the BRM), since the adversary can simply leak the signature
of a message of her choosing. These limitations do not seem to apply when consider-
ing interactive primitives, and therefore we choose to concentrate on authenticated key
agreement (AKA), which in turn allows for interactive encryption and authentication,
and achieves qualitatively stronger security guarantees, even in the BRM.

1.1 Our Results

Our main result is the construction of a leakage-resilient public-key authenticated key
agreement (AKA) protocol with the flexibility required by the BRM. We assume a
public-key infrastructure where users have short public-keys and flexibly sized (poten-
tially huge) secret keys. In a leakage-resilient AKA protocol, pairs of users agree on
shared session-keys which are private and authentic, even if: (a) the attacker learns at
most ` bits of information about the secret keys of both users prior to the protocol exe-
cution; (b) the attacker may learn the secret keys entirely after the protocol execution.
In particular, condition (a) ensures that the adversary cannot impersonate an honest
user, even after learning ` bits of leakage about that user’s secret key. Since the shared
session-keys can safely be used for encryption/authentication, a public-key AKA nat-
urally yields interactive public-key encryption and authentication schemes which are
secure under assumptions (a) and (b), and do not suffer from the inherent limitations of
their non-interactive counterparts.
ROADMAP OF AKA CONSTRUCTION. Our construction of AKA is based on sim-
pler primitives and, in particular, we also construct identification schemes (ID) and
(non-interactive) signature schemes, which are of interest in their own right. The main
technical portion of our paper will be the construction of ID schemes secure against
leakage attacks. We then apply the Fiat-Shamir heuristic to obtain efficient leakage-
resilient signature schemes in the random oracle (RO) model. Of course, our signature
schemes cannot provide existential unforgeability, if the allowed leakage exceeds the

size of even a single signature (which is usually the case in the BRM). Interestingly, we
show how to achieve existential unforgeability under this necessary constraint, which
resolves an open problem mentioned in [1]. For the BRM setting, which is our main
point of interest, we must settle for a weaker, but still very useful security notion, that
we call entropic unforgeability. Although an attacker may be able to forge signatures
for a few messages after she performs a key-leakage attack, she should be unable to
forge the signature of a random message sampled from any distribution of high enough
min-entropy.

Finally, we use a standard construction of AKA based on Diffie-Hellman key ex-
change, in which the parties bind the protocol execution to a particular session and to
their identities using signatures. We plug our entropically secure signature scheme into
this construction to get leakage-resilient AKA. Intuitively, the usage of entropically se-
cure signature will suffice, since each party only signs messages which are partially
controlled by the other party, and happen to have entropy. We note that our construc-
tions of authenticated key agreement from entropic signatures, and our constructions of
such signatures from ID schemes, are extremely efficient and essentially preserve (1)
the long-term public/secret key size, (2) the communication complexity, (3) the locality,
and (4) the allowed leakage. Therefore, we apply most of our efforts to the construction
of optimized, leakage-resilient ID schemes.
ID SCHEME CONSTRUCTIONS. We present three ID scheme constructions, which
build on top of one another. First we notice that a generalization of the discrete-log
based Okamoto ID scheme [25] using m generators, denoted Okamotoλ

m, is secure
against leakage attacks where the allowed leakage is ` ≈ (1 − 1

m)|sk|, and can be set
arbitrarily close to the size of the secret key. Our argument relies on the following three
simple properties of the scheme:

(1) Any adversarial prover that impersonates some identity must know a corresponding
secret key for the identity’s public key.

(2) For any Okamoto public key, there are (exponentially) many corresponding se-
cret keys. Moreover, the actual secret key of the scheme maintains a high level of
information-theoretic entropy, even when given: (a) the public key, (b) protocol ex-
ecutions between adversarial verifier and honest prover, and (c) ` bits of secret-key
leakage.

(3) It is computationally infeasible to come up with an Okamoto public key and two
different corresponding secret keys.

By property (1), an adversarial prover that successfully mounts impersonation attacks
knows some secret key for the honest user’s public key and, by property (2), this secret
key is (information theoretically) unlikely to match the one possessed by the honest
user, even if the adversary got ` bits leakage. Therefore, the adversarial prover together
with the honest user can generate two different secret keys for a single Okamoto public
key, contradicting property (3) and hence proving security. We note that several other
identification schemes (e.g. an alternate construction by Okamoto [25] based on RSA,
and the Ong-Schnorr [26] scheme based on factoring) also have the three mentioned
properties and are therefore leakage-resilient as well.

While the (generalized) Okamoto scheme already provides an adequate solution
for relative leakage, it cannot achieve large absolute leakage, without a proportional

increase in communication complexity and locality. Therefore, we present two exten-
sions of the Okamoto scheme which are suitable to the BRM setting. The first exten-
sion, denoted DirProdλ

n,m,t, is based on the idea of taking a “direct-product” of n basic
Okamoto schemes, where the verifier will selects a small random subset of t ¿ n
of these schemes, and executes the basic protocol for them in parallel. One can think
of this as a simple form of “leakage amplification”, where we amplify the amount
of allowed absolute leakage. Lastly, we improve the communication complexity of this
second scheme still further (in the Random Oracle model), by showing how to use ideas
from coding-theory and the special structure of the Okamoto scheme, to “securely com-
press” the t chosen Okamoto public keys into a single public key, and then running a
single ID protocol for this key. Therefore, and quite remarkably, our third scheme, de-
noted CompDirProdλ

n,m,t, has essentially the same communication complexity as the
basic (non-BRM) Okamoto scheme even though the allowed leakage ` can be made
arbitrarily large.

Scheme pub. params pk sk help Comm. Loc. Leakage ` (in bits)

Okamotoλ
m m 1 m 0 m + O(1) m

(1− δ)|sk|
δ ≈ 1

m

DirProdλ
n,m,t m 1 nm n O(tm) tm

(1− δ)|sk|
δ ≈ (

1
m

+ O
(

λ
t

))

CompDirProdλ
n,m,t m 1 nm n m + O(1) tm

(1− δ)|sk|
δ ≈ (

1
m

+ O
(

λ
t

))
Table 1. Efficiency vs. Leakage Trafeoffs For Our ID, Sig, AKA schemes

OVERVIEW OF ACHIEVED PARAMETERS. We summarize the main parameters of the
three ID scheme constructions (which translate into essentially the same parameters
for the corresponding signatures and AKA protocols) in Table 1. The columns indicate
the sizes of: the public parameters shared by all users, the public key, the secret key, a
helper key (which is stored locally by each user, but does not have to be kept secret), the
communication complexity per party (or signature size), the locality, and the allowed
leakage `. For simplicity, only the leakage parameter ` is measured in bits, and all other
quantities are measures in group elements. The parameters m,n, t offer flexibility to
meet the various desired settings of of absolute leakage ` and relative leakage (1 − δ).
In particular:

– For the first scheme (Okamotoλ
m), the only flexibility is in the number of generators

m. Essentially to allow for relative leakage (1−δ) we can set m ≈ 1/δ which gives
us very practical schemes for reasonable settings of the relative leakage (e.g. δ =
1
2). However, to allow for a large absolute leakage `, we must increase m still further
(and proportionally with `), which increases the communication, computation and
size of public parameters to unreasonable levels.

– For the second and third scheme (DirProdλ
n,m,t, CompDirProdλ

n,m,t), we have
the additional flexibility offered by parameters n (the number of stored copies of
Okamoto key pairs) and t (the number of Okamoto keys used during a particular
protocol). We notice that, by setting m ≈ 1/δ, t ≈ O(λ/δ) we allow a relative leak-
age of (1 − δ) and still get practical schemes with small public parameters, public
key size, communication (especially in the third scheme), and locality. Moreover,
we can then flexibly accommodate any value of the absolute leakage ` only by
increasing n which only affects the size of the secret key.

INVISIBLE KEY UPDATES. Lastly, we mention a simple but powerful feature of our
schemes. We introduce a method for users to periodically update their secret keys, so
that the scheme remains secure as long as the adversary learns at most ` ≈ (1− δ)|sk|
bits of key leakage in between updates, but may learn leak significantly more than the
size of the secret key overall. Our updates are invisible to the outside world, in the
sense that the public keys remain unchanged and users do not need to know when or
how often the secret keys of other users are updated in order to run an AKA protocol.
For such updates, we require the use of a “master update key” which must be stored
securely on an external storage device that is not susceptible to leakage attacks.

1.2 Related Work
WEAK SECRETS, SIDE-CHANNEL ATTACKS AND BRM. The model of key leakage
attacks, as studied in this work, is very related to the study of cryptography with weak
secrets. A weak secret is one which comes from some arbitrary distribution that has a
sufficient level of (min-)entropy, and one can think of a secret key that has been partially
compromised by leakage attacks as coming from such a distribution. Most of the prior
work concerning weak secrets is specific to the symmetric key setting and much of this
work is information-theoretic in nature. For example, the study of privacy-amplification
[3, 22] shows how two users, who share a weak secret, can agree on a uniformly random
key in the presence of a passive attacker. Such information-theoretically secure schemes
can only be used once to convert a shared symmetric-key, which may have been partially
compromised by leakage attacks, into a single uniform session-key.

In the computational symmetric-key setting, users can agree on arbitrarily many
session-keys using Password Authenticated Key Agreement (PAKE) [2], where they
use their shared weak (or partially compromised) secret key as the password. However,
these solutions do not scale to the BRM, as they do not preserve low locality when
the secret is large. The Bounded-Retrieval Model (BRM), where users have a huge
secret key which is subject to large amounts of adversarial leakage, was introduced
by [8, 12]. In particular, Dziembowski [12] constructed a symmetric key authenticated-
key-agreement protocol for this setting in the Random-Oracle model. This was later
extended to the standard model by [7]. We also note that non-interactive symmetric-
key encryption schemes from weakly-secret keys were constructed implicitly in [27]
(based on weak PRFs) and explicitly in [9] based on “learning parity with noise”.

The only related prior work that considers leakage attacks in the public-key setting
is a recent work of Akavia et al. [1], which showed that Regev’s public-key encryp-
tion scheme [29] (based on lattices) is leakage-resilient. Several recent concurrent and
independent works [24, 18, 19] also study leakage-resilient public-key primitives. The
works of [24, 18] present several new constructions of of leakage-resilient public-key
encryption schemes for this setting, based on more general (and non-lattice) assump-
tions, tolerating more leakage, achieving CCA-2 security and allowing for stronger
“auxiliary-input” attacks (described subsequently). We note that all such non-interactive
encryption schemes inherently become insecure if the adversary can perform leakage
attacks after seeing a ciphertext. Existentially unforgeable leakage-resilient signatures
were studied in the concurrent work of Katz [19], who independently discovered our
Okamotoλ

m construction (described above) of signatures in the Random Oracle model,
as well as an alternative (albeit not practically efficient) instantiation of such signatures

in the standard model. None of the prior or concurrent works in the public-key setting
extend to the Bounded Retrieval Model.
OTHER MODELS OF ADVERSARIAL KEY COMPROMISE. It is worth describing several
related models for key compromise which differ from the one used in this work. One
possibility is to restrict the type of information that the adversary can learn about the
secret key. For example, a line of work called exposure resilient cryptography [5, 11]
studies a restricted class of adversarial leakage functions, where the adversary gets a
subset of the bits of the secret key. In this setting, one can secure keys against leakage
generically, by encoding them using an all-or-nothing transform (AONT). We note that
many natural side-channel attacks (e.g. learning the hamming weight of the key) and
most malware attacks are not captured by this model.

Another line of work, initiated by Micali and Reyzin [23] and studied further by
Dziembowski and Pietrzak [13, 27], designs various symmetric-key primitives under
the axiom that “only computation leaks information”. In these works, each stage of
computation is assumed to leak some arbitrary shrinking function of (only) the data
it accesses, but the adversary can observe computation continuously, and can learn an
unbounded amount of such information overall. In particular, this model can protect
against an adversary that continuously perform side-channel attacks (such as DPA at-
tacks), each of which leaks some partial information (only) about the “current” com-
putation. On the other hand, the axiom that “only computation leaks information” does
not seem to apply to many other natural attacks, such as the memory/microwave attacks
or virtually all malware/virus attacks. A related model, where the adversary can learn
the values on some subset of wires during the evaluation of a circuit, was studied by
Ishai et al. [17].

Lastly, the recent works [9, 18] study auxiliary input, where the adversary can learn
functions f(sk) of the secret key sk subject only to the constraint that such a function
is hard to invert. This is a strictly stronger model than the one considered in this work,
as such functions f can have output length larger than the size of the secret key and can
reveal all of the statistical entropy of the key.

2 Preliminaries
ENTROPY AND PREDICTABILITY. We review the information-theoretic definition for
entropy, along a new generalization useful for our paper.
Definition 1. The min-entropy of a r. v. X is H∞(X) def= − log(maxx Pr[X = x]).
We can rephrase the above definition in terms of predictors A. The min-entropy of a
random variable X measures how well X can be predicted by the best predictor A, i.e.
H∞(X) = − log(maxA Pr[A() = X]), where the max is taken over all predictors
without any requirement on efficiency. The work of [10], offered a natural generaliza-
tion of min-entropy, called the (average) conditional min-entropy of X conditioned on
Z, which can be defined as measuring the maximum predictability of X by a predictor
that is given the value Z. In this paper, we generalize the notion of conditional min-
entropy still further, to interactive predictors A, which participate in some randomized
experiment E . We model experiments as interactions betweenA and a challenger oracle
E(·) which can be randomized, stateful and interactive. We consider the predictability
of X by an arbitrary predictor AE(·).

Definition 2. The conditional min-entropy of a random variable X , conditioned on the
experiment E is H̃∞(X | E) def= − log(maxA Pr[AE(·)() = X]). In the special case that
E is a non-interactive experiment which simply outputs a random variable Z, we abuse
notation and write H̃∞(X | Z) to denote H̃∞(X | E).

REVIEW OF Σ-PROTOCOLS. Let R be a relation consisting of instance, witness pairs
(x,w) ∈ R and let LR = {x | ∃w, (x,w) ∈ R} be the language of R. A Σ-protocol
for R is a protocol between a PPT ITM prover P(x,w) and a PPT ITM verifier V(x),
which proceeds in three rounds with conversations (a, c, z) initiated by the prover. We
require that a Σ-protocol satisfies perfect completeness, special soundness, and Honest
Verifier Zero Knowledge. In the full version of the paper, we prove the following lemma.

Lemma 1. Let (P,V) be an HVZK protocol for the relationR, and let (X, W) be ran-
dom variables over R. Let E1 be an arbitrary experiment in which A is given X at the
start of the experiment, and let E2 be the same as E1, except that A is also given oracle
access to P(X, W) throughout the experiment. Then H̃∞(W |E2) = H̃∞(W |E1).

PRIME-ORDERED GROUPS. We use the notation G(1λ) to denote a group sampling
algorithm which, on input 1λ, outputs a tuple G = (p,G, g) where p is a prime, G
is a (description of a) group of order p, and g is a generator of G. We will rely on the
usual hardness assumptions: the discrete-logarithm (DL), computational Diffie-Hellman
assumption (CDH) and decisional Diffie-Hellman (DDH) assumptions. We will also
rely on the Gap Diffie-Hellman (GDH) assumption which state that for some groups, in
which the DDH problem can be solved efficiently (for example using a bilinear map),
the CDH problem is still hard.

3 Leakage Oracle

We model adversarial leakage attacks on a secret key sk, by giving the adversary access
to a leakage oracle, which the adversary can (periodically) query to gain information
about sk. This oracle is defined as follows.

Definition 3. A leakage oracle Oλ,`
sk (·) is parameterized by a secret key sk, a leakage

parameter ` and a security parameter λ. A query to the oracle consists of a (description
of) leakage function hi : {0, 1}∗ → {0, 1}αi . The oracle Oλ,`

sk (·) checks if the sum of
αi, over all queries received so far, exceeds the leakage parameter ` and ignores the
query if this is the case. Otherwise, the oracle computes the function hi(sk) for at most
poly(λ) steps. If the computation completes, the oracle responds with the output and,
otherwise, it responds with the dummy value 1αi .

Since the cumulative output of leakage-oracle queries can be guessed with probability at
least 2−`, the oracle can decrease the entropy of sk by at most ` bits in any experiment.

Lemma 2. For any random variable SK, any experiment E1, let E2 be the experiment
which is the same as E1, but also gives the predictor access to the leakage oracle
Oλ,`

SK (·). Then H̃∞(SK | E2) ≥ H̃∞(SK | E1)− `.

4 Identification Schemes
4.1 Definition
In an identification scheme, a prover attempts to prove its identity to a verifier. This
proof should be convincing and non-transferable. More formally, an identification scheme
consists of the four PPT algorithms (ParamGen, KeyGen,P,V):

params ← ParamGen(1λ): Outputs the public parameters of the scheme, which are
common to all users. These parameters are available as inputs to KeyGen,P,V ,
and we omit them from the descriptions.

(pk, help, sk) ← KeyGen(): Outputs the public key pk, a helper help and a secret key
sk. The value help is analyzed as a public key with respect to security (i.e. it need
not be kept secret and is given to the adversary) but is thought of as a secret key for
usability (i.e. it is not used by honest verifiers).1

P(pk, help, sk),V(pk): These are the prover and verifier ITMs respectively. The ver-
ifier V outputs a judgement from one of {Accept,Reject} at the conclusion of a
protocol execution.

We require that an ID scheme is complete, so that in an interaction {P(pk, sk) V(pk)}
between honest prover and honest verifier, the verifier always accepts the proof. We now
formally define what it means for an ID scheme to be leakage resilient. As discussed, we
will consider two separate security notions. The first notion, called pre-impersonation
leakage security, is modeled by the attack game IDPREλ

` (A) and only allows the ad-
versary to submit leakage queries prior to an impersonation attack, but not during one.
The second notion, called anytime leakage security, is modeled by the attack game
IDANYλ

` (A) where the adversary can perform leakage attacks adaptively at any point
in time, even during an impersonation attack. The two attack games are defined below
and only differ in the impersonation stage.

IDPREλ
` (A), IDANYλ

` (A)

1. Key Stage: Let params ← ParamGen(1λ), (pk, help, sk) ← KeyGen() and give
(params, pk, help) to A.

2. Test Stage: The adversary AOλ,`
sk

(·),P(pk,sk) gets access to the leakage oracle Oλ,`
sk (·) and

to an honest prover P(pk, sk), modeled as an oracle that runs (arbitrarily many) proofs
upon request.

3. Impersonation Stage: This stage is defined separately for the two games.
For IDPREλ

` (A): The adversary A loses access to the all oracles and runs a protocol
{A V(pk)} with as an honest verifier.

For IDANYλ
` (A): The adversary AOλ,`

sk
(·) maintains access to the leakage oracle

Oλ,`
sk (·), but not the prover oracle P , and runs a protocol {AOλ,`

sk
(·) V(pk)}

with an honest verifier.

The advantage of an adversary A in the games IDPREλ
` (A), IDANYλ

` (A) is the proba-
bility that the verifier V accepts in the impersonation stage.

1 In some of our constructions, when sk is made intentionally huge, the size of help will become
large as well, and thus it is important that this does not detract from the usability of the scheme
by also increasing the size of the public key.

Definition 4. Let (KeyGen,P,V) be an identification scheme with perfect complete-
ness, parameterized by security parameter λ. We say that the scheme is secure with
pre-impersonation leakage ` if the advantage of any PPT adversary A in the attack
game IDPREλ

` (A) is negligible in λ. We say that the scheme is secure with anytime
leakage ` if the above also holds for the attack game IDANYλ

` (A).

4.2 Construction 1: Generalized Okamoto Scheme

ParamGen(1λ) : Let (p, G, g) ← G(1λ), g1, . . . , gm ←R G.
Set params = (p, G, g1, . . . , gm).

KeyGen(): Let sk = (x1, . . . , xm) ←R (Zp)m, pk =
∏m

j=1{gj}xj . Output (pk,⊥, sk).
P,V: The machines P,V run the following protocol:

(1) P: Computes (a, y) ← A() and sends a to V .
A() : Let y = (y1, . . . , ym) ←R (Zp)m, a =

∏m
j=1 gj

yj . Output (a, y).
(2) V: Choose c ←R Zp and send c to P .
(3) P: Compute z ← Zsk(c, y) and send z to V .

Zsk(c, y): Compute zj := yj + cxj for j = 1, . . . , m, output z := (z1, . . . , zm).
Verpk(a, c, z): Output Accept iff

∏m
j=1 g

zj

j

?
= a(pk)c.

Fig. 1. The Okamotoλ
m identification scheme.

We now show that the Okamoto identification scheme from [25] is secure against
key leakage attacks. The standard Okamoto scheme is defined with respect to two
generators. Here, we describe a generalized version of the Okamoto scheme with m
generators. Since we will re-use the basic components of the scheme as building-
blocks for our more complicated schemes, we abstract away most of the computa-
tion of the scheme into the algorithms (A,Z,Ver) which are used by P,V to run
the protocol as defined in Figure 1. To analyze the above scheme, we define the relation
R = {(pk, sk)|sk = (x1, . . . , xm), pk =

∏m
j=1 g

xj

j }. We will rely on only three prop-
erties of the relation R and the generalized Okamoto ID scheme, outlined in Lemma 3.

Lemma 3. The following three properties hold for the Okamotoλ
m ID scheme:

(1) The protocol (P,V) is a Σ-protocol for the relation R.
(2) Denoting key pairs as random variables, we get H̃∞(SK|PK) ≥ (m− 1) log(p).
(3) Under the discrete logarithm assumption, it is difficult to find a public key pk and

two different secret keys sk′ 6= sk for pk. In particular, for any PPT adversary A:

Pr
[
sk′ 6= sk and (pk, sk′), (pk, sk) ∈ R

∣∣∣∣
(pk, sk, sk′) ← A(params)

params ← ParamGen(1λ) ≤ negl(λ)

]
.

Using the properties in the above lemma, we show that the Okamoto ID scheme is
secure against key leakage attacks.

Theorem 1. Under the DL assumption, Okamotoλ
m is a secure ID-scheme for pre-

impersonation leakage of up to ` = (m− 1) log(p)− λ ≥ (1− 2
m)|sk| bits. It is secure

with anytime leakage of up to `′ = 1
2` bits.

Proof Sketch. Assume that there is an adversary A that has a non-negligible advantage
in the pre-impersonation leakage attack game IDPREλ

` (A). Then there is a reduction
which, for randomly chosen params, finds two distinct secret keys sk, sk′ for a single
public-key pk (contradicting part (3) of Lemma 3). In particular, the reduction chooses a
random (pk, sk) tuple and uses sk to simulate the leakage oracle, and the honest-prover
oracle for the attacker A during the “test stage”. Then, during the impersonation stage,
the reduction runs A twice, with two randomly chosen challenges c, c′ (using rewind-
ing). There is a non-negligible probability thatA produces two accepting conversations
(a, c, z), (a, c′, z′) with c 6= c′. Using the special soundness property of the Σ-protocol,
the reduction uses these two conversation to recover a secret key sk′.

We must now analyze the probability of sk = sk′. We think of the reduction as an
experiment E0 where A gets PK and access to the oracles Oλ,`

SK (·),P(PK, SK). Let E1

be the same experiment as E0, except that the predictor does not get access to Oλ,`
SK (·),

and E2 be the same as E1 except that the predictor doesn’t get access to P(PK, SK)
either (i.e. only gets PK). Then

H̃∞(SK | E0) ≥ H̃∞(SK | E1)− `

≥ H̃∞(SK | E2)− ` = H̃∞(SK | PK)− `

≥ (m− 1) log(p)− ` ≥ λ

where the first inequality follows by Lemma 2, the second one by Lemma 1, and the
last one by part (3) of Lemma 3. The probability of the reduction outputting sk′ =
sk is therefore upper bounded by 2−λ and hence, with non-negligible probability, the
reduction produces two distinct secret keys sk 6= sk′.

For anytime leakage, A can make calls to the leakage oracle for `′ bits even during
the impersonation stage. Since the reduction runs the impersonation stage twice on dif-
ferent challenges (by rewinding A), the reduction needs 2`′ bits of leakage. Therefore,
we can only handle `′ = 1

2` bits of anytime leakage. ¤

4.3 Construction 2: Adding Flexibility Through Direct-Products

We now propose a construction of a leakage-resilient ID scheme with pre-impersonation
security, that is suitable for the BRM setting. In particular, it is possible to increase
the allowed leakage ` arbitrarily without significantly affecting the communication and
computation complexity, or even the size of the public key and public parameters. As
we will see, some of the parameters in our construction are still sub-optimal, and we
will get further efficiency gains in Section 4.4. However, the construction we present
here is more natural and simpler to understand, and hence we present it first.

The main idea of our construction, is to run many copies of the Okamotoλ
m scheme

in parallel. In particular, the secret key will be a database sk = (sk[1], . . . , sk[n]) where
each sk[i] is a secret key for the underlying generalized Okamoto scheme, and defines
a corresponding public key pk[i]. During key generation, the prover also chooses a key
pair (verk, sigk) for a signature scheme and computes signatures σ[i] for each public
key pk[i] and sets the helper string to help = (σ[1], . . . , σ[n]) (after which point sigk
is never used again and deleted from memory). We could then define a four-round pro-
tocol, where the verifier begins by giving t random indices (r1, . . . , rt) ∈ [n]t to the

ParamGen(1λ): Let (p, G, g) ← G(1λ), g1, . . . , gm ←R G.
Set params = (p, G, g1, . . . , gm).

KeyGen(): Choose (verk, sigk) ← SigKeyGen(1λ) and set pk = verk.
For i = 1, . . . , n set: (sk[i], pk[i]) ← Gen(), σ[i] = Signsigk(i||pk[i]).
Set sk = (sk[1], . . . , sk[n]), help = (σ[1], . . . , σ[n]).
Output (pk, sk, help).†

P,V: The machines P,V run the following protocol:
(1) P: For i = 1, . . . , t: choose (ai, yi) ← A(). Send (a1, . . . , at) to V .
(2) V: Choose t indices (r1, . . . , rt) ←R [n]t, and c∗ ←R Zp.

Send the challenge c = (r1, . . . , rt, c
∗) to P .

(3) P: For i = 1, . . . , t: set pki = pk[ri], σi = σ[ri], zi = Zsk[ri](c
∗, yi) and send

(pki, σi, zi) to V .
V accepts iff, for i = 1, . . . , t:
(I) The conversation (ai, c

∗, zi) is accepting for pki. That is, Verpki
(ai, c

∗, zi)
?
=

Accept.
(II) The signatures σi for ri||pki verify under pk. That is SigVerpk(ri||pki, σi)

?
=

Accept.

† Note that the values pk[i] can be easily computed from sk[i] and thus need not be stored
separately.

Fig. 2. The DirProdλ
n,m,t identification scheme.

prover. Then the prover and verifier then execute t independent copies of Okamotoλ
m

(in parallel) for the public keys pk[r1], . . . , pk[rt], which the prover sends to the verifier
along with their signatures σ[ri]. Our actual construction is a three-round scheme where
the indices r1, . . . , rt are sent by the verifier with the challenge and we rely on the fact
that the first messages a of the generalized Okamoto scheme does not depend on the
public key pk.

To analyze the security of the scheme, we notice that, in a pre-impersonation at-
tack, the adversary’s queries to the leakage oracle must be independent of the indices
r1, . . . , rt. In the full version, we show that, if sk has a significant amount of entropy
at the beginning of the impersonation stage, then the random tuple (sk[r1], . . . , sk[rt])
will preserve some significant amount of this entropy as well. This analysis is based
on thinking of the tuples (sk[r1], . . . , sk[rt]) as positions in an (exponentially) long
direct-product encoding of sk. Such codes were defined and analyzed in [16], where it
is shown that they are “approximately-list decodable”. We show that this property im-
plies entropy preservation in our sense. Our security analysis then relies on the fact that,
if an adversarial prover can complete a proof on the challenge r1, . . . , rt, then it must
know the values (sk[r1], . . . , sk[rt]) in their entirety, which is unlikely by our entropy
argument.

We note that, although our discussion seems quite general, it is not clear that the
main idea of our construction (taking direct products) would imply a general a compiler
which converts an ID scheme with pre-impersonation leakage ` into one with “ampli-
fied” pre-impersonation leakage `′ À `. Indeed, our argument is (crucially) information
theoretic in the sense that we show that a random subset of secret keys still has (infor-
mation theoretic) entropy after the adversary gets some key leakage. To translate this

into a more general argument, we would need to somehow simulate an `′ bit leakage
oracle for the entire key sk by accessing (many) `-bit leakage oracles for the individual
keys sk[i], which does not seem possible.

We present our construction, called DirProdλ
n,m,t in Figure 2. The presentation is

based on the algorithms (Gen,A,Z,Ver) where Gen is the key generation algorithm
for the underlying Okamoto scheme, and (A,Z,Ver) are the algorithms used by the
prover and verifier as defined in Figure 1.

Theorem 2. Assuming that (SigKeyGen,Sign, SigVer) is an existentially secure sig-
nature scheme under chosen message attacks, and assuming the hardness of DL, the
construction DirProdλ

n,m,t is a secure ID-scheme for pre-impersonation leakage of up

to ` = (1− δ)nm log(p) = (1− δ)|sk| bits where δ = 1
m (1 + log(n)

λ + 4
n) + 2λ

t which
approaches 1

m + O(λ/t).

4.4 Construction 3: Saving Communication using Compressed Direct-Products

ParamGen(1λ): Choose (p, G, g) ← G(1λ), (g1, . . . , gm, u) ←R Gm+1.
Set params = (p, G, g1, . . . , gm, u).

KeyGen(): Choose s ←R Zp and set pk = v = us.
Choose (pk[i], sk[i]) ←R Gen() and set σ[i] = (H(i)pk[i])s for i ∈ {1, . . . , n}.†

Set sk = (sk[1], . . . , sk[n]), help = (σ[1], . . . , σ[n]). Output (pk, sk, help).
P,V: The machines P,V run the following protocol:

(1) P: Choose (a, y) ← A() and send a to V .
(2) V: Choose t indices (r1, . . . , rt) ←R [n]t, and (c∗, e) ←R (Zp)2.

Send the challenge c = (r1, . . . , rt, e, c
∗) to P . ‡

(3) P: Compute sk∗ = (x∗1, . . . , x
∗
m) where

{
x∗j =

∑t
i=1(xj [ri])e

i−1
}

j∈{1,...,t}.

Set pk∗ =
∏t

i=1 pk[ri](
ei−1), σ∗ =

∏t
i=1 σ[ri](

ei−1), z = Zsk∗(c
∗, y).

Send (pk∗, σ∗, z) to V .
V accepts iff:
(I) The conversation (a, c∗, z) is accepting for pk∗. That is, Verpk∗(a, c∗, z) = Accept.
(II) The value (u, v, (pk∗

∏t
i=1 H(ri)

ei−1
), σ∗) is a DDH tuple.

† Recall that we write sk[i] = (x1[i], . . . , xm[i]) ∈ Zm
p .

‡As stated, the challenge size is t log(n) which dominates the remaining communication.
In the Random Oracle model, we can compress the challenge to a λ bit value, which is
then expanded into the full challenge using the Random Oracle. This version matches the
parameters claimed in Table 1.

Fig. 3. The CompDirProdλ
n,m,t identification scheme.

As we saw, Construction 2 gives us flexibility, in the sense that we can increase
the parameter n to allow for arbitrarily large leakage `, without (significantly) affecting
the size of the public key, the computation or the communication complexity. Unfortu-
nately, even though these factors do not depend on n, the communication of the scheme
is fairly large since it uses t = O(λ) copies of the underlying Okamoto scheme. In fact,
just having the prover send t public keys pk[r1], . . . , pk[rt] to the verifier in construc-
tion 2 already takes the communication complexity to O(λ2), which may be prohibitive.
As we will see later, large communication complexity of the ID schemes will translate

into long Fiat-Shamir signatures and, therefore, large communication complexity in our
final authenticated key agreement protocols.

In this section, we show how to reduce the communication complexity of the ID
scheme significantly. As in Construction 2, the secret key sk = (sk[1], . . . , sk[n]) is a
(possibly huge) database of keys sk[i] for the underlying generalized Okamoto scheme,
and the verifier selects a random set of t indices which define a set of t secret keys
sk[r1], . . . , sk[rt] used by the protocol execution. However, instead of running parallel
versions of the Okamotoλ

m scheme for these keys individually, the prover now com-
presses them into a single secret key sk∗ and then runs a single copy of the Okamoto
scheme for the corresponding public key pk∗, which the prover sends to the verifier.
The two important properties of this compression are: (1) it must be entropy preserv-
ing, in the sense that sk∗ should be (information theoretically) unpredictable, assuming
that there is sufficient entropy spread-out over the entire database sk and (2) the public
key pk∗ for the secret key sk∗ can be computed from pk[r1], . . . , pk[rt] alone, so that
the values pk∗ do not decrease the entropy of the database sk.

Our compression function is based on the Reed-Solomon Error-Correcting Code. In
particular, the verifier chooses a random value e ∈ Zp, and the prover compresses the t
secret keys {sk[ri] = (x1[ri], . . . , xm[ri])}i∈{1,...,t} into a single key sk∗ = (x∗1, . . . , x

∗
m),

where x∗j =
∑t

i=1(xj [ri])e(i−1) is the e-th position in the Reed-Solomon encoding of
the value (xj [r1], . . . , xj [rt]). In the full version of this paper, we show that this com-
pression function is entropy preserving. The corresponding public key pk∗ for sk∗ is just
pk∗ =

∏t
i=1(pk[ri])(ei−1), which is easy to compute from the individual keys pk[ri].

Thus it satisfies the two properties we required.
Of course, there is one crucial problem we have not yet addressed: how does an

honest verifier check that the compressed public key pk∗ given by the prover is indeed
the right one (i.e. corresponds to the correct combination of pk[r1], . . . , pk[rt] using e
as requested)? We can no longer use signatures, as in construction 2, since the num-
ber of possibilities for pk∗ is exponential. Instead, we use a modification of the BLS
signature scheme ([4]) to compute “helper values” σ[i], which can be efficiently com-
bined into a short “authenticator” σ∗. The authenticator σ∗ essentially ensures that the
adversary sends the correct public key pk∗. We present our construction, in Figure 3.
The presentation is based on the algorithms (Gen,A,Z,Ver) for the underlying gen-
eralized Okamoto scheme (see Figure 1). In addition, our construction relies on a hash
function H modeled as a random oracle. The security of the scheme is formalized in
Theorem 3. The proof appears in the full version of this paper, and requires a careful
analysis, combining the authentication properties of the modified BLS signatures with
the rewinding strategy for the Okamoto scheme.

Theorem 3. Under the GDH assumption, the CompDirProdλ
n,m,t scheme is a secure

ID-scheme in the Random Oracle model, with pre-impersonation leakage of up to ` =
(1 − δ)nm log(p) = (1 − δ)|sk| bits where δ = 1

m (1 + log(n)
λ + 10

n) + 6λ
t which

approaches 1
m + O(λ/t).

5 Existentially and Entropically Unforgeable Signatures
We now look at leakage-resilient signatures, where the adversary can (periodically)
query a leakage oracle for up to ` bits of information about the secret key. Unfortu-

nately, if ` is larger than the size of a single signature, it is clear that we cannot achieve
the standard notion of existential unforgeability as the attacker can simply choose to
learn the a signature of some message m as its leakage function. Therefore, to construct
meaningful signature schemes in the BRM, we also define a new (weaker) security
notion called entropic unforgeability, where an attacker should be unable to forge mes-
sages which are chosen from some distribution of significant entropy and given to the
adversary only after the leakage attack. To further strengthen the attack game we let the
forger select this distribution. This notion is useful since, in many practical scenarios,
an attacker must be able to forge signatures for messages that are somehow beyond her
control, in order to damage the security of the system.

A signature scheme consists of four algorithms: (ParamGen, KeyGen,Sign, Verify).
To capture entropic unforgeability, we separate the attacker into two partsA = (A1,A2),
where A1 runs during the first stage of the attack, with access to a leakage oracle and
signing oracle. Once this stage is done, A1 can output an arbitrary hint for A2, who
then attempts to forge the signature of some message while having access only to the
signing oracle. The formal definition of the unforgeability attack game EUGλ

` appears
in Figure 4. We use Ssigk(·) to denote the signing oracle, which, on input m ∈ {0, 1}∗,
outputs σ = Signsigk,help(m). We define the advantage of forger A = (A1,A2) to be
the probability that Verifyverk(m, σ) = Accept and that the signing oracle was never
queried with m. For entropic security, we also require that the output message m is
chosen sufficiently randomly by A2, so that it could not have been predicted by A1.

EUGλ
`

Initialization: The challenger selects (verk, help, sigk) ← KeyGen(1λ) and gives verk to
the forger A1.

Signing & Leakage Queries: Adversary AO
λ,`
sk

(·),Ssigk(·)
1 is given access to the signing ora-

cle Ssigk(·) and leakage oracle Oλ,`
sk (·) and outputs an arbitrary hint v ∈ {0, 1}∗.

Post-Leakage: AdversaryASsigk(·)
2 is given the hint v and access to (only) the signing oracle

Ssigk(·). We parse the output of A2 as a message, signature pair (m, σ).

Fig. 4. Entropic/Existential Unforgeability Attack Game

Definition 5. For an adversary A = (A1,A2), let ViewA1 be a random variable de-
scribing the view of A1 including its random coins and signing-oracle/leakage-oracle
responses.2 Let MSGA2 be the random variable describing the message output byA2 in
EUGλ

` . We say that an adversary A = (A1,A2) is entropic if H̃∞(MSGA2 |ViewA1) ≥
λ for security parameter λ. We say that a signature scheme (KeyGen,Verify, Sign)
is existentially unforgeable with leakage ` if the advantage of any PPT adversary
A = (A1,A2) in the game EUGλ

` (A) is negligible in λ. We say that the signature
scheme is entropically unforgeable with leakage ` if the above only holds for entropic
adversaries.

We use the Fiat-Shamir heuristic [14] to construct entropically (resp. existentially)
unforgeable signature schemes secure against ` bits of key leakage, from ID schemes

2 In the Random Oracle Model, this also includes responses to Random Oracle queries.

secure against pre-impersonation (resp. anytime) leakage of ` bits. Recall that, for a
three round ID scheme with flows (a, c, z), the Fiat-Shamir signature scheme defines
a signature of a message m to be (a, z) such that the conversation (a, H(a||m), z) is
accepting. Here H(·) is hash function modeled as a Random Oracle.

Theorem 4. Let ID by a public coins ID scheme consisting of three rounds of interac-
tion and let Sig be the signature scheme produced by the Fiat-Shamir heuristic applied
to ID. (1) If ID allows pre-impersonation leakage `, then Sig is entropically unforgeable
with leakage `. (2) If ID allows anytime leakage `, then Sig is existentially unforgeable
with leakage `.

CONCRETE SCHEMES: Combining this theorem with the Okamotoλ
m identification

scheme, analyzed in Theorem 1, we obtain a (I) leakage-resilient existentially unforge-
able signature scheme where ` approaches up to half the size of the secret key (and
signature) and a (II) leakage-resilient entropically unforgeable signature scheme where
` approaches the size of the entire secret key (and signature). For the BRM setting, we
can instead use CompDirProdλ

n,m,t, analyzed in Theorem 3, and get a (III) entropically
unforgeable signatures, where ` approaches the size of the entire secret key, and can be
made arbitrarily large without negatively impacting the other parameters (and can be
much larger than the size of a signature).

6 Interactive Encryption, Authentication and AKA
Using leakage-resilient entropically unforgeable signatures, we can construct several
interactive leakage-resilient primitives including encryption, authentication and authen-
ticated key agreement. The security of these interactive primitives is preserved even if
the adversary gets up to ` bits of leakage prior to the start of protocol execution, and
the key is leaked entirely after the end of protocol execution.

For example consider the following simple two-round interactive authentication
protocol. The verifier sends a random challenge r to the signer, who returns the sig-
nature σ = Signsigk,help(m||r) for a message m. If no leakage occurs between the time
where the verifier sends r and receives σ then, since r is random, entropic-unforgeability
ensures that the adversary cannot forge the signature σ′ of m′||r for some m′ 6= m.

Alternatively, consider the following simple three-round interactive encryption. The
sender sends a random challenge r to the receiver, who in turn chooses a fresh tempo-
rary public/secret key pair (pk, sk) for a standard (non-leakage resilient) encryption
scheme and sends pk, σ = Signsigk,help(pk||r) to the sender. If the signature verifies,
the sender sends an encryption of the message m under pk to the receiver, who de-
crypts it with sk and deletes all temporary state (including sk) immediately afterwards.
This way, if no leakage occurs between the time that r is sent and sk is deleted, then
entropic-unforgeability ensures that sk was chosen by the honest receiver, and so pri-
vacy is preserved since the adversary can never learn anything about sk.

Defining the security of interactive encryption and authentication schemes is a te-
dious process. Therefore, in the full version of the paper, we concentrate on the single
primitive of Authenticated Key-Agreement (AKA), which allows for interactive encryp-
tion as well as authentication. We adapt the notion of SK-security with perfect forward
secrecy from Canetti and Krawczyk in [6], and update it to model key-leakage attacks.

We then analyze a simple AKA construction from [6], which essentially consists of the
Diffie-Hellman key-exchange protocol in which the parties sign the exchanged mes-
sages together with unique session information so as to bind the protocol execution to
a particular session. We show that, if we employ leakage-resilient entropically secure
signatures in this construction, then the resulting AKA is leakage-resilient as well.

7 Invisible Key Updates
Our schemes allow for efficient updates of the secret key, using an externally stored
“master update key”, so that the adversary is only limited to leaking ` bits between
updates, but can get unlimited leakage overall. Since this is technically simple, we only
give a high-level description of how this is done.

In particular, for our constructions DirProdλ
n,m,t and CompDirProdλ

n,m,t, there
is already a “master key” which is used to create a secret-key database of unbounded
size – namely, the “master signing key” for generic signatures in DirProdλ

n,m,t and
for modified BLS signatures in CompDirProdλ

n,m,t. In our original descriptions, this
master key is used once to create the secret-key database sk = (sk[1], . . . , sk[n]) and
the helper help = (help[1], . . . , help[n]), and is then deleted immediately afterwards.
However, we notice that the master key can really generate arbitrarily many secret keys
(sk[1], sk[2], . . .) and corresponding helper strings (help[1], help[2], . . .).

To perform updates, we can store this “mater update key” on a separate external
device, which is not susceptible to leakage, as a “mater update key”. To update the
secret-key database, we simply overwrite the current secret-keys and helper values with
the “next” n values so that sk := (sk[nk + 1], . . . , sk[n(k + 1)]), help = (help[nk +
1], . . . , help[n(k + 1)]) after the kth update. To run an ID scheme, the prover simply
sends the current index k to the verifier in the first flow of the protocol, and the verifier
chooses the challenge indices in the range [nk + 1, n(k + 1)]. Note that an adversarial
prover can send any index k′ of his choosing. However, if the adversary learns at most
` bits in between any two updates, then there is no index k′ for which the adversary can
successfully run an impersonation attack.

The above updates for ID schemes translate to similar updates for our signature
schemes and AKA protocols. Notice that these updates do not modify the public key,
and the user has a completely free choice of when or how often the secret key is updated.
However, it is important that the “master signing key” is stored securely and that the
adversary cannot get any leakage of this key.

References

1. A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryptog-
raphy against memory attacks. In TCC, pages 474–495, 2009.

2. S. M. Bellovin and M. Merritt. Augmented encrypted key exchange: A password-based pro-
tocol secure against dictionary attacks and password file compromise. In ACM Conference
on Computer and Communications Security, pages 244–250, 1993.

3. C. H. Bennett, G. Brassard, and J.-M. Robert. Privacy amplification by public discussion.
SIAM J. Comput., 17(2):210–229, 1988.

4. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In ASIACRYPT,
pages 514–532, 2001.

5. R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-resilient functions
and all-or-nothing transforms. In EUROCRYPT, pages 453–469, 2000.

6. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In EUROCRYPT, pages 453–474, 2001.

7. D. Cash, Y. Z. Ding, Y. Dodis, W. Lee, R. J. Lipton, and S. Walfish. Intrusion-resilient key
exchange in the bounded retrieval model. In TCC, pages 479–498, 2007.

8. G. D. Crescenzo, R. J. Lipton, and S. Walfish. Perfectly secure password protocols in the
bounded retrieval model. In TCC, pages 225–244, 2006.

9. Y. Dodis, Y. T. Kalai, and S. Lovett. On cryptography with auxiliary input. In STOC, 2009.
To Appear.

10. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97–139, 2008.

11. Y. Dodis, A. Sahai, and A. Smith. On perfect and adaptive security in exposure-resilient
cryptography. In EUROCRYPT, pages 301–324, 2001.

12. S. Dziembowski. Intrusion-resilience via the bounded-storage model. In TCC, pages 207–
224, 2006.

13. S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In FOCS, pages 293–302,
2008.

14. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In CRYPTO, pages 186–194, 1986.

15. J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J.
Feldman, J. Appelbaum, and E. W. Felten. Lest we remember: Cold boot attacks on encryp-
tion keys. In USENIX Security Symposium, pages 45–60, 2008.

16. R. Impagliazzo, R. Jaiswal, and V. Kabanets. Approximately list-decoding direct product
codes and uniform hardness amplification. In FOCS, pages 187–196, 2006.

17. Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing at-
tacks. In CRYPTO, pages 463–481, 2003.

18. Y. T. Kalai and V. Vaikuntanathan. Public-key encryption schemes with auxiliary inputs and
applications. 2009. Personal Communication.

19. J. Katz. Signature schemes with bounded leakage resilience. In Cryptology ePrint Archive,
Report 2009/220, 2009. http://eprint.iacr.org/2009/220.

20. P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other sys-
tems. In CRYPTO, pages 104–113, 1996.

21. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In CRYPTO, pages 388–397,
1999.

22. U. M. Maurer. Protocols for secret key agreement by public discussion based on common
information. In CRYPTO, pages 461–470, 1992.

23. S. Micali and L. Reyzin. Physically observable cryptography (extended abstract). In TCC,
pages 278–296, 2004.

24. M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO, 2009.
To Appear. Full version at http://eprint.iacr.org/2009/105.

25. T. Okamoto. Provably secure and practical identification schemes and corresponding signa-
ture schemes. In CRYPTO, pages 31–53, 1992.

26. H. Ong and C.-P. Schnorr. Fast signature generation with a fiat shamir-like scheme. In
EUROCRYPT, pages 432–440, 1990.

27. K. Pietrzak. A leakage-resilient mode of operation. In Eurocrypt 2009, Cologne, Germany,
2009.

28. J.-J. Quisquater and D. Samyde. Electromagnetic analysis (ema): Measures and counter-
measures for smart cards. In E-smart, pages 200–210, 2001.

29. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC,
pages 84–93, 2005.

