
Randomizable Proofs and
Delegatable Anonymous Credentials

Mira Belenkiy1, Jan Camenisch2, Melissa Chase3, Markulf Kohlweiss4,
Anna Lysyanskaya5, and Hovav Shacham6

1 Microsoft, mibelenk@microsoft.com
2 IBM Zurich Research Laboratory, jca@zurich.ibm.com

3 Microsoft Research, melissac@microsoft.com
4 K.U. Leuven, mkohlwei@esat.kuleuven.be

5 Brown University, anna@cs.brown.edu
6 UC San Diego, hovav@cs.ucsd.edu

Abstract. We construct an efficient delegatable anonymous credentials
system. Users can anonymously and unlinkably obtain credentials from
any authority, delegate their credentials to other users, and prove posses-
sion of a credential L levels away from a given authority. The size of the
proof (and time to compute it) is O(Lk), where k is the security param-
eter. The only other construction of delegatable anonymous credentials
(Chase and Lysyanskaya, Crypto 2006) relies on general non-interactive
proofs for NP-complete languages of size kΩ(2L). We revise the entire
approach to constructing anonymous credentials and identify random-
izable zero-knowledge proof of knowledge systems as the key building
block. We formally define the notion of randomizable non-interactive
zero-knowledge proofs, and give the first instance of controlled reran-
domization of non-interactive zero-knowledge proofs by a third-party.
Our construction uses Groth-Sahai proofs (Eurocrypt 2008).

1 Introduction

Access control is one of the most fundamental problems in security. We fre-
quently need to answer the question: does the person requesting access to a
resource possess the required credentials? A credential typically consists of a
certification chain rooted at some authority responsible for managing access to
the resource and ending at the public key of the user in question. The user
presents the credential and demonstrates that he knows the corresponding se-
cret key. Sometimes, the trusted authority issues certificates directly to each user
(so the length of each certification chain is 1). More often, the authority dele-
gates responsibility. A system administrator allows several webmasters to use
his server. A webmaster can create several forums, with different moderators
for each forum. Moderators approve some messages, reject others, and even give
favored users unlimited posting privileges. Imagine the burden on the system
administrator if he had to approve every single moderator and user for every
single forum.



We want cryptographic credentials to follow the same delegation model as
access control follows in the real world. The system administrator can use his
public key to sign a webmaster’s public key, creating a credential of length 1. In
general, a user with a level L credential can sign another user’s public key and
give him his credential chain, to create a level L+ 1 credential.

The design of an anonymous delegatable credential scheme in which par-
ticipants can obtain, delegate, and demonstrate possession of credential chains
without revealing any additional information about themselves is a natural and
desirable goal. Our main contribution is the first efficient delegatable anonymous
credential scheme. The only known construction of delegatable anonymous cre-
dentials, due to Chase and Lysyanskaya [CL06], needs kΩ(L) space to store a
certification chain of length L (for security parameter k), and therefore could
not tolerate non-constant L. Our solution is practical : all operations on chains
of length L need Θ(kL) time and space.

Pseudonymous systems. Prior work on anonymous credentials [CL02b,BCKL08]
created systems where each user has one secret key but multiple “public keys.”
Given a secret key skA, Alice can create a new public key by choosing a random
value open and publishing a commitment pkA = Commit(skA, open). Alice could
register pkA with Oliver and pk ′A with Olga.

Oliver can give Alice a credential by signing the statement that the value in
commitment pkA has some attribute. Alice can then show pk ′A to Olga and prove
that Oliver signed that the value in pk ′A had that attribute. This works because
pkA and pk ′A are commitments to the same value skA. The chief building block
of an anonymous credential scheme is a signature scheme that lends itself to the
design of efficient protocols for (1) obtaining a signature on a committed value;
and (2) proving that a committed value has been signed.

Why delegation is a challenging problem. There is no straightforward transforma-
tion of anonymous credential schemes [Cha85,Bra99,LRSW99,CL01,BCKL08] into
delegatable schemes. Suppose instead of giving Alice a direct credential, Oliver
delegates his own credential to Alice. If Oliver gives Alice a sig on Oliver’s se-
cret key, then Alice could learn who gave Oliver his credential. Generalizing this
approach would reveal to Alice the identity of every person in Oliver’s credential
chain.

Our approach. Instead of giving Alice his signature, Oliver gives Alice a non-
interactive proof-of-knowledge of the signature. We show how Alice can (1) del-
egate the credential by extending the proof and (2) rerandomize the proof every
time she shows (or extends it) to preserve her anonymity.

Let’s say Oliver is a credential authority and Alice wants to obtain the cre-
dential directly from Oliver (so her certification chain will be of length 1). Under
the old approach, they would run a secure two-party protocol as a result of which
Alice obtains a signature σpkO

(skA) on skA, while Oliver gets no output. Un-
der the new approach, Alice’s output is (CA, πA), where CA is a commitment
to her secret key skA, and πA is a proof of knowledge of Oliver authenticating
the contents of CA. Note that a symmetric authentication scheme is sufficient



because no one ever sees the authenticator ; all verification is done on the proof
of knowledge. The symmetric key skO is still known only to Oliver; we create a
“public” key CO that is simply a commitment to skO.

How can Alice use this credential anonymously? If the underlying proof sys-
tem is malleable in just the right way, then given (CA, πA) and the opening to
CA, Alice can compute (C ′A, π

′
A) such that C ′A is another commitment to her skA

that she can successfully open, while π′A is a proof of knowledge of Oliver au-
thenticating the contents of C ′A. Malleability is usually considered a bug rather
than a feature. However, in combination with the correct extraction properties,
we still manage to guarantee that these randomizable proofs give us a useful
building block for the construction.

How does Alice delegate her credential to Bob? Alice and Bob can run a
secure protocol as a result of which Bob obtains (CB , πB) where CB is a commit-
ment to Bob’s secret key skB and πB is a proof of knowledge of an authenticator
issued by the owner of C ′A on the contents of CB . Now, essentially, the set of
values (C ′A,CB , π

′
A, πB) together indicate that the owner of C ′A got a credential

from Oliver and delegated to the owner of CB , and so it constitutes a proof of
possession of a certification chain. Moreover, it hides the identity of the delegator
Alice! Now Bob can, in turn, use the randomization properties of the underlying
proof system to randomize this set of values so that it becomes unlinkable to his
original pseudonym CB ; he can also, in turn, delegate to Carol.

Randomizable proof systems. The key to our construction is a randomizable
proof system that lets the prover (1) randomize the proof without knowing the
witness, and (2) control the outcome of the randomization process. This is a
fundamentally new notion, and one we think will be of independent interest.
We give a formal definition and show that we can instantiate it by adding a
randomization procedure to the pairing-based proof system of Groth and Sahai
[GS08]. Our use of pairings is not merely a matter of efficiency – we do not know
of any proof system based on general assumptions that can be randomized.

In fact the Groth-Sahai proofs allow us to go beyond merely randomizing
the proof to actually change the statements we are proving. What do we mean
by this? Groth-Sahai proofs make statements about the values inside commit-
ments. Let C = Commit(x, open). A prover who knows (x, open) can choose
a new value open ′ so that in the rerandomized proof, C is transformed to
C ′ = Commit(x, open ′). Otherwise, the prover can choose whether to leave C
unchanged or randomize it to C ′ that uses a some random open ′ unknown to
the prover. This fine level of control together with the basic randomization prop-
erty gives a very useful building block, which is crucial in our application.

There has been prior work on some related notions: Burmester et al [BDI+99]
show a third party can help randomize proofs during the execution of an inter-
active protocol to prevent subliminal channels. De Santis and Yung [DSY90]
propose the notion of meta proofs, in which anyone who holds a proof for a
given statement can generate a proof that there exists a proof for the statement.
Neither of these approaches work for our scenario because we need to randomize



non-interactive proofs, and, unlike a meta-proof, the randomized proof must be
indistinguishable from the original.

Our delegatable credentials construction. We construct delegatable credentials
using randomizable proofs. By concatenating rerandomized credential chains,
we can create a credential chain of length L that takes O(L) space. Our strong
anonymity properties are an immediate consequence of rerandomization: each
showing of the credential is unlinkable and users do not learn the identities of
delegators in their own credential chain.

Our solution (1) prevents adversarial users from mixing and matching pieces
of different credential chains to create unauthorized credential chains and (2)
protects the user’s anonymity even when the adversary delegates to the user.
We solve the second problem by creating an authentication scheme (symmetric
signature scheme) that is secure even when the adversary gets a signature on
the user’s secret key.

Attributes. Our delegatable anonymous credentials system lets users add human-
readable attributes to each credential. Oliver can give Alice a level 1 credential
with attribute “webmaster of Crypto Forum”. Alice can then delegate her cre-
dential to Bob with attribute “moderator of Crypto Forum”. As a result, Bob
can log on to the server anonymously and prove that the “webmaster of Crypto
Forum” made him the “moderator of Crypto Forum”. Our construction lets
users add as many attributes as they want to each credential, allowing for the
expressibility that we see in modern (non-anonymous) access control systems.

Advanced abuse prevention mechanisms. Our construction shows how to effi-
ciently implement maximum anonymity at all levels and all roles in the dele-
gation chain—with the exception of the credential authority. Some applications
will not require this full anonymity. Indeed, a large number of abuse prevention
mechanisms for anonymous credentials (anonymity revocation [CL01], credential
revocation [CL02a], limited show [CHK+06]) aim at striking a balance between
privacy and accountability. Concerning our own scheme we make three simple ob-
servations: (i) global traceability can be achieved by providing a trusted tracing
authority with the extraction trapdoors for the common parameters of the Groth
Sahai (GS) proof system; (ii) at the last level of the delegation chain, we can
make use of all abuse prevention mechanisms known for traditional anonymous
credentials; (iii) many abuse prevention mechanisms known from the literature
can be adapted to our construction by replacing traditional sigma proofs [Dam02]
with GS proofs [GS08].

Other related work. At first glance, our delegatable credentials scenario might
resemble the HIBE or HIBS settings [GS02,BBG05], where a root delegator can
issue decryption or signing keys to recipients, who in turn can delegate sub-
keys to lower level participants. There are two key differences between such a
HIBE/HIBS scheme and anonymous credential schemes: (1) In HIBE/HIBS two
users with the same attributes are completely interchangeable while an anony-
mous credentials system gives them distinct sets of pseudonyms and (2) anony-



mous credentials allow a user to show that he has obtained valid credentials from
two independent authorities.

In a somewhat different direction, Barak [Bar01] presented a general (in-
efficient) construction for delegatable signatures. In that work, the goal was a
signature scheme which would allow the signer to delegate signing rights for a
restricted message space, such that signatures generated with the delegated key
are indistinguishable from the originals. In our setting, we want the opposite:
once we delegate a credential, the delegatee should be able to issue lower level
credentials to any users he chooses, however we require that credentials at dif-
ferent levels be clearly distinguishable. Finally, the definition in [Bar01] does not
consider anonymity between the delegator and the delegatee, while we do.

Our contribution and organization of the paper. We (1) define and construct a
randomizable NIZKPK (Section 2) and (2) define and construct an efficient dele-
gatable anonymous credential system (Section 3). We also create an appropriate
message authentication scheme and some other additional building blocks for
the delegatable credentials scheme. We show how these building blocks can be
instantiated under appropriate assumptions about groups with bilinear maps.

2 Randomizable NIZK proof systems

LetR(params, y, w) be any polynomial-time computable relation. A non-interactive
proof system for relation R allows the prover to convince a verifier that for
some instance y there exists a witness w such that R(params, y, w), where
params is a common (public) reference string. The prover generates a proof
π ← Prove(params, y, w), the verifier checks it via VerifyProof(params, y, π). A
trusted third party runs params ← Setup(1k) once to initialize the system.

Informally, zero-knowledge captures the notion that a verifier learns noth-
ing from the proof but the truth of the statement. Witness indistinguishability
merely guarantees that the verifier learns nothing about which witness was used
in the proof. Soundness means an adversary cannot convince an honest verifier
of a false statement. Completeness means all honest verifiers accept all correctly
computed proofs. See [GMR89,Gol00,BFM88,FLS99] for formal definitions.

We define randomizable proof systems, which have an additional algorithm
RandProof that takes as input a proof π for instance y in relation R, and produces
a new proof for the same statement y. The resulting proof must be indistinguish-
able from a new proof for y. We allow the adversary to choose the instance y,
the proof π that is used as input for RandProof, and the witness w that is used
to form a new proof of the same statement. Formally:

Definition 1. We say that Setup,Prove,VerifyProof,RandProof constitute a ran-
domizable proof system if the following property holds. For all ppt. (A1,A2) there
exists a negligible function ν such that:



Pr[params ← Setup(1k); (y, w, π, state)← A1(params);
π0 ← Prove(params, y, w);π1 ← RandProof(params, y, π);
b← {0, 1}; b′ ← A2(state, πb) :
RL(y, w) ∧ VerifyProof(params, y, π) = 1 ∧ b = b′] ≤ 1/2 + ν(k) .

2.1 Instantiating a randomizable proof system

Randomization is a fundamentally new property. It is not clear how one might
randomize proofs in any of the existing NIZK proof systems [BDMP91,KP98,FLS99]
without knowing the witness. The one exception is the recent proof system of
Groth and Sahai [GS08] ( an extension of [GOS06]), which gives witness indis-
tinghishable (and in some cases zero-knowledge) NIPKs. We will show how to
add a randomization procedure to Groth-Sahai proofs.

Summary of Groth-Sahai proofs. Let paramsBM = (p,G1, G2, GT , e, g, h) be the
setup for pairing groups of prime order p, with pairing e : G1 ×G2 → GT , and
g, h generators of G1, G2 respectively.7

The instance consists of the coefficients of a pairing product equation:
{aq}q=1...Q ∈ G1, {bq}q=1...Q ∈ G2, t ∈ GT , and {αq,m}q=1...Q,m=1...M ,
{βq,n}q=1...Q,n=1...N ∈ Zp. The prover knows {xm}Mm=1, {yn}Nn=1 that satisfy the
pairing product equation

∏Q
q=1 e(aq

∏M
m=1 x

αq,m
m , bq

∏N
n=1 y

βq,n
n ) = t.

The prover creates perfectly binding, computationally hiding commitments
{cm}m=1...M and {dn}n=1...N for all values xm, yn in G1 and G2 respectively.
The instance is the pairing product equation (e.g. its coefficients) and the above
commitments, while the witness, known only to the prover, is the values and
openings of these commitments.

We now describe how to construct the proof. Let M1, M2, and MT be R-
modules for some ring R, and let E : M1×M2 →MT be a bilinear map. Also let
µ1, µ2, µT be efficiently computable embeddings that map elements ofG1, G2, GT
into M1,M2,MT , respectively. The public parameters paramsPK contain ele-
ments u1, . . . , uI ∈M1, v1, . . . , vJ ∈M2 and values ηh,i,j , 1 ≤ i ≤ I, 1 ≤ j ≤ J ,
and 1 ≤ h ≤ H.

To create a Groth-Sahai commitment to x ∈ G1, choose random opening
open = (r1, . . . , rI) ← RI , and compute c = µ1(x) ·

∏I
i=1 u

ri
i . Elements y ∈ G2

are committed to in the same way using µ2 and v1, . . . , vJ ∈M2, and an opening
vector open ∈ RJ . For simplicity we assume that GSCommit(paramsPK ,m, open)
first determines whether m ∈ G1 or m ∈ G2 and then follows the appropriate
instructions.

Groth and Sahai [GS08] show how to efficiently compute proofs {πi}Ii=1,
{ψj}Jj=1 that prove that the openings of the cm and dn satisfy a pairing product
equation. The verifier computes, for all 1 ≤ q ≤ Q, ĉq ← µ1(aq) ·

∏M
m=1 c

αq,m
m

and d̂q ← µ2(bq) ·
∏N
n=1 d

βq,n
n . Then the verifier checks that

∏Q
q=1E(ĉq, d̂q) =

µT (t) ·
∏I
i=1E(ui, πi) ·

∏J
j=1E(ψj , vj).

7 For simplicity, we do not consider Groth-Sahai proofs for composite order groups.



Randomizing Groth-Sahai proofs. RandProof gets as input an instance with the
aq, bq, t, αq,m, βq,n values as well as the proof [(π1, . . . , πI , ψ1, . . . , ψJ), Π]. Π con-
tains the internal commitments c1, . . . , cM and d1, . . . , dN .

The algorithm first chooses randomization exponents (s1,1, . . . , sM,I) and
(z1,1, . . . , zN,J) at random from Zp. It then rerandomizes the commitments cm
and dn to c′m = cm ·

∏I
i=1 u

sm,i

i and d′n = dn ·
∏J
j=1 v

zn,j

j . Then it computes

ŝq,i =
∑M
m=1 sm,i · αq,m, ẑq,j =

∑N
n=1 zn,j · βq,n, and D′q ← µ2(bq) ·

∏N
n=1 d

′βq,n
n

and Cq ← µ1(aq) ·
∏M
m=1 c

αq,m
m . Next, the prover sets π′i ← πi ·

∏Q
q=1(D′q)

ŝq,i and
ψ′j ← ψj ·

∏Q
q=1(Cq)ẑq,j . These π′i and ψ′j will satisfy the verification equation

for the new commitments.
Now the prover must make a certain technical step to fully randomize the

proof. Intuitively, for every set of commitments, there are many proofs (π1, . . . , πI ,
ψ1, . . . , ψJ) that can satisfy the verification equation. Given one such proof,
we can randomly choose another: The prover chooses ti,j , th ← R, and multi-

plies each π′i := π′i ·
∏J
j=1 v

ti,j

j and each ψ′j := ψ′j ·
∏I
i=1 u

PH
h=1 thηh,i,j

i

∏I
i=1 u

ti,j

i .
See [GS08] for a detailed explanation.

The algorithm outputs the new proof [(π′1, . . . , π
′
I , ψ
′
1, . . . , ψ

′
J), Π ′] where Π ′

contains the internal commitments c′1, . . . , c
′
M and d′1, . . . , d

′
N . See full version

[BCC+08] for details. A similar approach works for composite order groups.

Composable Proofs. Groth-Sahai proofs are composable witness indistinguish-
able, and in some cases composable zero-knowledge. To simplify our definitions
and proofs, we use a similar notion for randomizability.

In a composable (under the definition of Groth and Sahai [GS08]) non-
interactive proof system there exists an algorithm SimSetup that outputs params
together with a trapdoor sim, such that params output by SimSetup is indistin-
guishable from those output by Setup. Composable witness-indistinguishability
(or zero-knowledge) requires that, under these parameters, the witness-indistin-
guishability (resp. zero-knowledge) property holds even when the adversary is
given the trapdoor sim. Groth-Sahai commitments are perfectly hiding under the
simulated parameters. (Under the honest parameters they are perfectly binding.)
In the same spirit, we say the composable randomizability property must hold
even when the distinguisher is given the trapdoor sim.

2.2 Malleable proofs and randomizable commitments

For our application, randomizing proofs is not sufficient. We also need to ran-
domize (anonymize) the statement that we are proving. Consider a family of
transformations {Ys, Ps}s∈S that transform the instance and the proof respec-
tively (for us, S is the set of all possible commitment openings). We require that
∀(y, π),∀s ∈ S, if π is a valid proof for y, then Ps(π) is a valid proof for Ys(y).

Definition 2. We say that Setup, Prove, VerifyProof, RandProof, {Ys, Ps}s∈S,
constitute a Y -malleable randomizable proof system, if for all ppt. A there exists
a negligible ν such that:



Pr[params ← Setup(1k); (y, π, s)← A(params) :
VerifyProof(params, y, π) = 1 ∧ VerifyProof(params, Ys(y), Ps(π)) = 0] = ν(k) .

If we apply RandProof to Ps(π), then the result will be indistinguishable from a
random fresh proof for Ys(y).

Groth-Sahai proofs can be used to prove that the values in a given set of
commitments form a solution to a specific set of pairing product equations; the
commitments can be part of the proof or the instance y. In our application, we
will need to anonymize not only the proof, but also the commitments in the
instance.

Suppose a prover wants to show that some Condition holds for the values
inside commitments C1, . . . , Cn. Then the instance is y = (Condition, C1, . . . ,
Cn), and the witness is w = (x1, open1, . . . , xn, openn, z), where (xi, openi) is
the opening of commitment Ci, while z is some value that has nothing to
do with the commitments. We define the relation R = {(params, y, w)|C1 =
Commit(params, x1, open1) ∧ . . . ∧ Cn = Commit(params, xn, openn) ∧ Condition
(params, x1, . . . , xn, z)}. A proof system supports randomizable commitments if
there exist efficient algorithms Y and P , such that on input (s, y, π), where s =
(open ′1, . . . , open ′n) and π ← Prove(params, y, w), (1) Y (s, y) outputs instance
y′ = (Condition, C ′1, . . . , C

′
n), where C ′i = Commit(params, xi, openi + open ′i),

(2) P (s, π) outputs a proof π′ for instance y′, and (3) Y and P fulfill the mal-
leability requirements of Definition 2.

Lemma 1. The Groth-Sahai proof system is malleable with respect to the ran-
domness in the commitments. See full version [BCC+08] for details.

Remark 1. To simplify notation, RandProof will take s = (open ′1, . . . , open ′n)
as input, apply Ps, and then run the randomization algorithm. To leave Ci
unchanged, we set open ′i = 0.

2.3 Partially Extractable Non-interactive Proofs of Knowledge

A NIPK system is a non-interactive proof system that is extractable. We recall
the notion of f-extractability [BCKL08], which is an extension of the original
definition of extractability [SCP00]. In an extractable proof system, there ex-
ists a ppt. extractor (PKExtractSetup,PKExtract). PKExtractSetup(1k) outputs
(td , params) where params is distributed identically to the output of Setup(1k).
For all polynomial time adversaries A, the probability that A(1k, params) out-
puts (y, π) such that VerifyProof(params, y, π) = accept and PKExtract(td , y, π)
fails to extract a witness w such that R(params, y, w) = accept is negligible
in k. We have perfect extractability if this probability is 0. f -Extractability
means that the extractor PKExtract only has to output a w′ such that ∃w :
R(params, y, w) = accept ∧ w′ = f(params, w). If f(params, ·) is the identity
function, we get the usual notion of extractability.

Let C be an unconditionally binding commitment. By ‘x inC’ we mean
∃open : C = Commit(params, x, open). We use NIPK notation [CS97,BCKL08],



to denote an f -extractable NIPK for instance (C1, . . . , Cn,Condition) with wit-
ness (x1, open1, . . . , xn, openn, z):
π ← NIPK[x1 inC1, . . . , xn inCn]{( f(params, (x1, open1, . . . , xn, openn, z) ) ) :

Condition(params, x1, . . . , xn, z)}.

The f -extractability property ensures that if VerifyProof accepts then we can ex-
tract f(params, (x1, open1, . . . , xn, openn, z)) from π, such that xi is the content
of the commitment Ci, and Condition(params, x1, . . . , xn, z) is satisfied.

In our notation, π ∈ NIPK[. . . }means that VerifyProof accepts the proof π for
instance (C1, . . . , Cn,Condition). To further abbreviate notation, we omit params
and assume that Condition is clear from the context, and so the sole inputs to
VerifyProof are (C1, . . . , Cn) and π. If the proof is zero-knowledge instead of
merely witness indistinguishable, we will write NIZKPK.

The concatenation of two proofs π and π′ is a proof π ◦ π′ that combines
all the commitments and proves the AND of the two conditions. If a proof π
proves a condition about a set of commitments C, a projection π′ = π ◦S proves
a condition about the contents of the subset C \ S of commitments. A projected
proof π′ is obtained by removing the commitments in S from the instance and
appending them to the proof.

Groth-Sahai proofs give us NIPK of the form:

NIPKGS[
{
xm in cm

}M
m=1

,
{
yn in dn

}N
n=1

]{(x1, . . . , xM , y1, . . . , yN ) :
Q∏
q=1

e(aq
M∏
m=1

xαq,m
m , bq

N∏
n=1

yβq,n
n ) = t}.

3 Delegatable Anonymous Credentials

An anonymous delegatable credential system has only one type of participant:
users. Each user has a single secret key and uses it to generate different pseudo-
nyms. User A with secret key skA can be known to user O as Nym(O)

A and to
user B as Nym(B)

A . Any user O can become an originator of a credential; all he
needs to do is publish one of his pseudonyms NymO as his public key. If au-
thority O issues user A a credential for Nym(O)

A , then user A can prove to user
B that Nym(B)

A has a credential from authority O. Credentials received directly
from the authority are level 1 credentials, credentials that have been delegated
once are level 2 credentials, etc. A delegatable credential system consists of the
following algorithms:

Setup(1k) outputs the trusted public parameters of the system, paramsDC .
Keygen(paramsDC ) creates the secret key of a party in the system.
Nymgen(paramsDC , sk). On each run, the algorithm outputs a new pseudonym

Nym with auxiliary info aux (Nym) for secret key sk .8

8 We do not address how to prove ownership of a pseudonym; in our constructions
this involves interactively proving knowledge of the opening of a commitment.



Issue(paramsDC ,NymO, sk I ,NymI , aux (NymI), cred ,NymU , L)
↔ Obtain(paramsDC ,NymO, skU ,NymU , aux (NymU ),NymI , L) are the in-
teractive algorithms that let a user I issue a level L+1 credential to a user U .
The pseudonym NymO is the authority’s public key, sk I is the issuer’s secret
key, NymI is the issuer’s pseudonym with auxiliary information aux (NymI),
cred is the issuer’s level L credential rooted at NymO, skU is the user’s
secret key, and NymU is the user’s pseudonym with auxiliary information
aux (NymU ). If L = 0 then cred = ε. The issuer gets no output, and the user
gets a credential credU .

CredProve(paramsDC ,NymO, cred , sk ,Nym, aux (Nym), L). Takes as input a level
L credential cred from authority NymO, outputs a value credproof .

CredVerify(paramsDC ,NymO, credproof ,Nym, L). Outputs accept if credproof is
a valid proof that the owner of pseudonym Nym possesses a level L credential
with root NymO and reject otherwise.

3.1 Security Definition of Delegatable Credentials

We formally define a secure delegatable credential system in the full version
[BCC+08]. Intuitively, the algorithms Setup,Keygen,Nymgen,VerifyAux, Issue,
Obtain,CredProve, and CredVerify constitute a secure anonymous delegatable cre-
dential scheme if the following properties hold:

Correctness. We say that a credential cred is a proper credential, if for all of the
user’s pseudonyms, CredProve always creates a proof that CredVerify accepts.The
delegatable credential system is correct if an honest user and an honest issuer
can run Obtain↔ Issue and the honest user gets a proper credential.

Anonymity. The adversary’s interactions with the honest parties in the real
game should be indistinguishable from some ideal game in which pseudonyms,
credentials and proofs are independent of the user’s identity and delegation chain.
The adversary should not even recognize a credential he delegated.

There must exist a simulator (SimSetup, SimProve, SimObtain, SimIssue).
SimSetup produces parameters indistinguishable from those output by Setup,
along with some simulation trapdoor sim. Under these parameters, we require
that the following properties hold when even the adversary is given sim:

– Nym is distributed independently of sk .
– No adversary can tell if it is interacting with Issue run by an honest party

with a proper credential, or with SimIssue which is not given the credential
and the issuer’s secret key, but only the name of the authority, the length of
the credential chain, and the pseudonyms of the issuer and user.

– No adversary can tell if it is interacting with Obtain run by an honest party
with secret sk , or with SimObtain that is only given the authority, the length
of the credential chain, and the pseudonyms of the issuer and user.

– The simulator SimProve can output a fake credproof that cannot be distin-
guished from a real credential, even when SimProve is only told the authority,
the length of the credential chain, and the pseudonym of the user.



Remark 2. Our definition implies the more complex but weaker definition in
which the adversary only controls the public inputs to the algorithm. Our def-
inition is easier to work with as we need only consider one protocol at a time,
and only a single execution of each protocol.

Unforgeability. Each credential defines a specific delegation chain. We cannot
monitor delegation between adversarial parties. However, we require that when-
ever the delegation chain shows that an honest player delegated a level L cre-
dential to some user, that delegation actually occurred.

In this game, all of the honest parties are controlled by a single oracle that
keeps track of all honestly issued credentials. An adversary given access to this
oracle should have only negligible probability of outputting a forged credential.

Let F be an efficiently computable bijection and a one-way function. There
exists a ppt. algorithms ExtSetup and Extract with five properties:

– ExtSetup and Setup output identically distributed params.
– Under these parameters, pseudonyms are perfectly binding for sk .
– Extract always extracts the correct chain of L identities from an honestly

generated level L credproof .
– Given an adversarially generated level L credential proof credproof from

authority NymO for the pseudonym Nym, Extract will always produce ei-
ther the special symbol ⊥ or f0, . . . fL such that NymO is a pseudonym for
F−1(f0) and Nym is a pseudonym for F−1(fL).

– No adversary can output a valid credential proof from which an unauthorized
chain of identities is extracted. More formally we require that for all ppt. A
there exists a negligible ν such that:

Pr[(paramsDC , td)← ExtSetup(1k);

(credproof ,Nym,NymO, L),← AO(paramsDC ,·,·)(paramsDC , td);
(f0, . . . , fL)← Extract(paramsDC , td , credproof ,Nym,NymO, L) :
CredVerify(paramsDC ,NymO, credproof ,Nym, L) = accept ∧
(∃i such that (f0, i, fi−1, fi) 6∈ ValidCredentialChains∧
fi−1 ∈ HonestUsers)] ≤ ν(k) ,

where O(paramsDC , command , input) describes all possible ways for the adver-
sary A to interact with the delegatable credentials system: A can ask the oracle
to add new honest users; the oracle generates sk ← Keygen(paramsDC ), stores
it in the list HonestUsers, and returns F (sk) as the handle. A can ask for new
pseudonyms for existing honest users, referenced by F (sk), and he can provide a
credential and ask an honest user to generate the corresponding proof. Finally,
he can run the Issue ↔ Obtain protocols on credentials of his choice, either be-
tween honest users, or with an adversarial issuer or obtainer. In this case, we
need to keep track of which credentials are being issued, so that we will be able
to identify a forgery. To do this, we use the Extract algorithm to extract the
chain of identities behind each credential being issued and store it on the list
ValidCredentialChains. For details, see full version [BCC+08].



Remark 3. We let the adversary track honest users’ credentials and pseudonyms
(but, of course, not their secret keys). Our definition is strictly stronger than one
that uses a general oracle that does not reveal the credentials of honest users to
the adversary. This approach results in a simpler definition and analysis.

3.2 Construction of Delegatable Credentials

We construct delegatable credentials using a randomizable NIZK proof system
with randomizable commitments (as described in Section 2) and a message au-
thentication scheme for a vector of messages m (in our basic scheme |m| =
2)in the common parameters model: AuthSetup(1k) outputs common parame-
ters paramsA, AuthKg(paramsA) outputs a secret key sk , Auth(paramsA, sk ,m)
outputs an authentication tag auth that authenticates a vector of messages m,
and VerifyAuth(paramsA, sk ,m, auth) accepts if auth is a proper authenticator
for m under key sk . (We will discuss the properties we will require from this
authentication scheme after we present our delegatable credentials construction.)

The parameters of the delegatable credentials system combine the parame-
ters paramsA from the authentication scheme and paramsPK from the compos-
able and randomizable NIZKPK system and its associated commitment scheme
Commit. We assume that all algorithms are aware of these parameters and omit
them when appropriate to simplify our notation.

Intuition behind our construction. The keyspace of the authenticator must be a
subset of the input space of the commitment scheme. Each user U has a secret key
skU ← AuthKg(paramsA), and forms his pseudonyms using Commit: NymU =
Commit(skU , openU ). U can create arbitrarily many different pseudonyms by
choosing new random values openU . A user can act as an authority (originator)
for credentials by making his pseudonym NymO publicly available.

The user’s secret credential cred is a NIZKPK of a statement about U ’s
specific secret pseudonym SU = Commit(skU , 0) (this specific pseudonym does
not in fact hide skU since it is formed as a deterministic function of skU ). To
show or delegate the credential, the user randomizes and mauls cred to obtain
credproof using the RandProof algorithm described in Section 2. The resulting
credproof is a proof about a proper pseudonym, NymU = Commit(skU , open) for
a randomly chosen open.

Suppose a user with secret key skU has a level L credential from some au-
thority O, and let (skO, sk1, . . . , skL−1, skU ) be the keys such that the owner
of sk i delegated the credential to sk i+1 (we let sk0 = skO and skL = skU ). A
certification chain is a list of authenticators auth1, . . . , authL, such that sk i was
used to generate authenticator authi+1 on message sk i+1.

To make sure that pieces of different certification chains cannot be mixed and
matched, we add a label ri to each authenticator. The labels have to be unique for
each authority and delegation level. Let H be a collision resistant hash function
with an appropriate range. For a credential chain rooted at NymO, we set ri =
H(NymO, i). Each authi is then an output of Auth(paramsA, sk i−1, (sk i, ri)). Let



F be an efficiently computable bijection. The user U ’s level L private credential
cred is a proof of the form

NIZKPK[sk0 in NymO; skL inSU ]{(F (sk0), . . . , F (skL), auth1, . . . , authL) :
VerifyAuth(sk0, (sk1, r1), auth1) ∧ . . . ∧ VerifyAuth(skL−1, (skL, rL), authL)}

Full construction. Let PKSetup,PKProve,PKVerify, and RandProof be a random-
izable NIPK system and let AuthSetup,AuthKg,Auth,VerifyAuth be an authen-
tication scheme, and let H : {0, 1}∗ → Zp be a hash function.

Setup(1k).Use AuthSetup(1k) to generate paramsA and PKSetup(1k) to generate
paramsPK ; choose the hash function H (as explained above); and output
paramsDC = (paramsA, paramsPK , H).

Keygen(paramsDC ).Run AuthKg(paramsA) and output the secret key sk .
Nymgen(paramsDC , sk).Choose random open, compute Nym = Commit(paramsPK ,

sk , open) and output pseudonym Nym and auxiliary information open.
CredProve(paramsDC ,NymO, cred , skU ,NymU , openU , L). If PKVerify(paramsPK ,

(NymO,Commit(skU , 0)), cred) rejects, or if NymU 6= Commit(skU , openU ),
abort. Return credproof ← RandProof((NymO,NymU ), (0, openU ), cred).

CredVerify(paramsDC ,NymO, credproof ,NymU , L) runs PKVerify.
Issue(paramsDC ,NymO, sk I ,NymI , openI , cred ,NymU , L)
↔ Obtain(paramsDC ,NymO, skU ,NymU , openU ,NymI , L). Abort if L = 0
and NymO 6= NymI . The issuer verifies cred using CredVerify and if it does
not verify or if NymI 6= Commit(sk I , openI) or NymU is not a valid pseudo-
nym, the issuer aborts. Else, the issuer and the user both compute rL+1 =
H(NymO, L + 1). The issuer and the user run a two-party protocol with the
following specifications: the public input is (NymI ,NymU , rL+1); the issuer’s
private input is (sk I , openI) and the user’s private input is (skU , openU ). The
output of the protocol is as follows: if (sk I , openI) and (skU , openU ) do not
appropriately correspond to NymI ,NymU , the protocol aborts; otherwise, the
issuer receives no output while the user receives as output the value π com-
puted as:

π ← NIZKPK[sk I in NymI ; skU in Commit(skU , 0)]{(F (sk I), F (skU ), auth) :
VerifyAuth(sk I , (skU , rL+1), auth)} .

In Section 3.3 we give an efficient instantiation of such a 2PC protocol for the
specific authentication and NIZKPK schemes we use.
If L = 0, then the user outputs credU = π. Otherwise, the issuer obtains
credproof I ← CredProve(paramsDC ,NymO, cred , sk I ,NymI , openI , L) and sends
it to the user. Let SU = Commit(skU , 0). Intuitively, credproof I is a proof that
the owner of NymI has a level L credential under public key NymO, while π
is proof that the owner of NymI delegated to the owner of SU . The user con-
catenates credproof I and π to obtain credproof I ◦ π. To get credU , U needs
to project credproof I ◦ π into a proof about (NymO, SU ) instead of NymI .



Remark 4. We can attach public attributes to each level of the credential. We
compute r` = H(skO, `, attr1, . . . , attr`), where attri is the set of attributes added
by the ith delegator in the delegation chain. When the user shows or delegates
a credential, he must display all the attributes associated with each level.

Message authentication scheme. Just like a signature scheme, an authentica-
tion scheme must be complete and unforgeable. For our application we need
to strengthen the unforgeability property in two ways. First, we require F -
Unforgeability [BCKL08], which guarantees that for some well-defined bijection
F , no adversary can output (F (m), auth) without first getting an authentica-
tor on m. (We write F (m) = F (m1, . . . ,mn) to denote (F (m1), . . . , F (mn)).)
Second we require a new property which we call certification security ; the authen-
ticator is unforgeable even if the adversary learns a signature on the challenge
secret key. An authentication scheme is F -unforgeable and certification secure if
for all ppt. adversaries A there exists negligible ν such that:

Pr[paramsA ← AuthSetup(1k); sk ← AuthKg(paramsA);

(y, auth)← AOAuth(paramsA,sk ,.),OCertify(paramsA,.,(sk ,.,... ))(paramsA, F (sk)) :

VerifyAuth(paramsA, sk , F−1(y), auth) = 1 ∧ F−1(y) /∈ QAuth] ≤ ν(k) ,

where the oracleOAuth(paramsA, sk ,m) outputs Auth(paramsA, sk ,m) and stores
m on QAuth, and oracle OCertify(paramsA, sk∗, (sk ,m2, . . . ,mn)) outputs the sig-
nature Auth(paramsA, sk∗, (sk ,m2, . . . ,mn)).

Theorem 1. Let AuthSetup,AuthKg,Auth,VerifyAuth be an F-unforgeable certifi-
cation-secure authentication scheme, H be a collision resistant hash function,
and PKSetup,PKProve,PKVerify be a randomizable, partially extractable, com-
posable zero-knowledge non-interactive proof of knowledge system. Then the above
construction constitutes a secure anonymous delegatable credential scheme. See
full version [BCC+08] for proof.

We will construct our authentication scheme based the BB-CDH and BB-
HSDH assumptions (defined in Section 3.3). Groth-Sahai proofs require either
the SXDH assumption or the Decision Linear Assumption [GS08]. Our two party
protocol requires a homomorphic encryption scheme.

3.3 Building Block Instantiations

Bilinear Maps and Assumptions. We use standard notation for groups with a
computable bilinear map e : G1 × G2 → GT . See, e.g., [BLS04,GPS06]. The
security of our scheme is based on strengthened versions of the SDH [BB04] and
CDH assumptions. BB-CDH is implied by SDH; [Boy08] describes how to extend
Generalized Diffie Hellman [BBG05] to cover these two assumptions and prove
their generic group security.

Definition 3 (BB-HSDH). Let x, c1 . . . cq ← Zp. On input g, gx, u ∈ G1,
h, hx ∈ G2 and the tuple {g1/(x+c`), c`}`=1...q, it is computationally infeasible
to output a new tuple (g1/(x+c), hc, uc).



Definition 4 (BB-CDH). Let x, y, c1 . . . cq ← Zp. On input g, gx, gy ∈ G1,
h, hx ∈ G2 and the tuple {g1/(x+c`), c`}`=1...q, it is computationally infeasible to
output gxy.

F -Unforgeable Certification Secure Message Authentication Scheme. Our au-
thentication scheme is based on the Boneh-Boyen weak signature scheme [BB04],
where Signsk (m) = g1/(sk+m). Belenkiy et al. showed that the Boneh-Boyen sig-
nature scheme is F -unforgeable for the bijection F (m) = (gm, um) (under a
very strong assumption), and that the Groth-Sahai proof system can be used to
prove knowledge of such a signature. Boneh-Boyen signatures are not certifica-
tion secure because Signsk (m) = Signm(sk). We show how to achieve certification
security; we also authenticate a vector of messages and weaken the underlying se-
curity assumption. The construction is as follows: Auth(sk ,m1||m2) chooses ran-
dom keysK∗,K1,K2 and returns (Signsk (K∗),SignK∗(K1),SignK∗(K2),SignK1

(m1),
SignK2

(m2), F (K∗), F (K1), F (K2)). At a high level, this construction eliminates
any symmetries between Authsk (m) and Authm(sk). See full version [BCC+08]
for details.

Theorem 2. The message authentication scheme above is F -unforgeable and
certification secure for F (mi) = (hmi , umi) under the BB-HSDH and BB-CDH
assumptions. See full version [BCC+08] for proof. The signature scheme obtained
by setting pk = hsk may be of independent interest.

Commitment scheme. A commitment to x ∈ Zp consists of two GS commit-
ments GSCommit(hx, o1), GSCommit(ux, o2)) and a NIPKGS proof that these are
commitments to the same value x. This allows us to extract F (x) = (hx, ux).

Proof of knowledge of an authenticator. We need a NIZKPK of an authenticator
for messages m = (m1,m2), where the first value is hidden in commitment Cm1

and the second value m2 is publicly known. In our notation, this is:

NIZKPK[sk in Csk ;m1 in Cm1 ]{(F (sk), F (m1), auth) :
VerifyAuth(paramsA, sk , (m1,m2), auth) = 1}.

Since Boneh-Boyen signatures are verified using pairing product equations,
we can use Groth-Sahai proofs, see full version [BCC+08] for details.

Creating a NIZKPK of an authenticator. The issuer chooses K∗,K1,K2 and can
generate most of the proof. Then, the issuer and user need to jointly compute
a NIZKPK of a Boneh-Boyen signature on the user’s secret key. We outline the
protocol, see full version [BCC+08] for details.

Let Keygen,Enc,Dec be an additively homomorphic semantically secure en-
cryption scheme, let “⊕” denote the homomorphic operation on ciphertexts; for
e a ciphertext and r an integer, e⊗ r denotes “adding” e to itself r times. The
user with input m1, and the issuer with input K1 run the following protocol to
compute SignK1

(m1) = g1/(K1+m1):



1. The issuer generates (skhom , pkhom) ← Keygen(1k) in such a way that the
message space is of size at least 2kp2. He then computes e1 = Enc(pkhom ,K1)
and sends e1, pkhom to the user and engages with her in an interactive zero-
knowledge proof that e1 encrypts to a message in [0, p].

2. The user chooses r1 ← Zp and r2 ← {0, . . . , 2kp}, then computes e2 =
((e1 ⊕ Enc(pkhom ,m1))⊗ r1)⊕ Enc(pkhom , r2p) and sends e2 to the user.

3. The issuer and the user perform an interactive zero-knowledge proof in which
the user shows that e2 has been computed correctly using the message in
Cm1 , and that r1, r2 are in the appropriate ranges.

4. The issuer decrypts x = Dec(skhom , e2), sends the user σ∗ = g1/x.
5. The user computes σ = σ∗r1 and verifies that it is a correct weak BB signa-

ture on m1. The issuer obtains no information about m1.

Theorem 3. The above is a secure two-party computation for computing Boneh-
Boyen signatures. (See full version [BCC+08] for proof.)

Acknowledgements. Jan Camenisch was supported in part by the European Commis-

sion through the ICT and IST programmes under contract ICT-216483 PRIMELIFE.

Markulf Kohlweiss was supported in part by the Concerted Research Action (GOA)

Ambiorics 2005/11 of the Flemish Government, by the IAP Programme P6/26 BCRYPT

of the Belgian State (Belgian Science Policy), and in part by the European Commis-

sion through the ICT and IST programmes under the following contracts: ICT-216483

PRIMELIFE and ICT-216676 ECRYPT II. Hovav Shacham was supported by an

AFOSR MURI grant and, while at the Weizmann Institute of Science, by a Koshland

Scholars Program postdoctoral fellowship. Mira Belenkiy, Melissa Chase and Anna

Lysyanskaya acknowledge the support of NSF grants 0831293, 0627553 and 0347661.

The information in this document reflects only the authors’ views.

References

[Bar01] B. Barak. Delegatable signatures. Technical report, Weizmann Institute of
Science, 2001.

[BB04] D. Boneh and X. Boyen. Short signatures without random oracles. In
Eurocrypt ’04.

[BBG05] D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption
with constant size ciphertext. In Eurocrypt ’05.

[BCC+08] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and
H. Shacham. Randomizable proofs and delegatable anonymous credentials.
Cryptology ePrint Archive, Report 2008/428, 2008. http://eprint.iacr.

org/2008/428.
[BCKL08] M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. P-signatures

and noninteractive anonymous credentials. In TCC ’08.
[BDI+99] M. Burmester, Y. Desmedt, T. Itoh, K. Sakurai, and H. Shizuya. Divert-

ible and subliminal-free zero-knowledge proofs for languages. Journal of
Cryptology, 12(3):197–223, Nov 1999.

[BDMP91] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-
knowledge. SIAM Journal of Computing, 20(6):1084–1118, 1991.



[BFM88] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and
its applications. In STOC ’88.

[BLS04] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pair-
ing. J. Cryptology, 17(4):297–319, September 2004.

[Boy08] X. Boyen. The uber-assumption family. In Pairing ’08.
[Bra99] S. Brands. Rethinking Public Key Infrastructure and Digital Certificates—

Building in Privacy. PhD thesis, Eindhoven Inst. of Tech. The Netherlands,
1999.

[Cha85] D. Chaum. Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM, 28(10):1030–1044, October
1985.

[CHK+06] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and
M. Meyerovich. How to win the clonewars: efficient periodic n-times anony-
mous authentication. In CCS ’06.

[CL01] J. Camenisch and A. Lysyanskaya. Efficient non-transferable anonymous
multi-show credential system with optional anonymity revocation. In Eu-
rocrypt ’01.

[CL02a] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application
to efficient revocation of anonymous credentials. In Crypto ’02.

[CL02b] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient pro-
tocols. In SCN ’02.

[CL06] M. Chase and A. Lysyanskaya. On signatures of knowledge. In Crypto ’06.
[CS97] J. Camenisch and M. Stadler. Efficient group signature schemes for large

groups. In Crypto ’97.
[Dam02] I. Damg̊ard. On σ-protocols. Available at http://www.daimi.au.dk/

~ivan/Sigma.ps, 2002.
[DSY90] A. De Santis and M. Yung. Cryptographic applications of the non-

interactive metaproof and many-prover systems. In Crypto ’90.
[FLS99] U. Feige, D. Lapidot, and A. Shamir. Multiple noninteractive zero know-

ledge proofs under general assumptions. SIAM Journal on Computing,
29(1):1–28, 1999.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[Gol00] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge Uni-
versity Press, New York, NY, USA, 2000.

[GOS06] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero know-
ledge for np. In Eurocrypt ’06.

[GPS06] S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers. Cryp-
tology ePrint Archive, Report 2006/165, 2006. http://eprint.iacr.org/.

[GS02] C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In Asi-
acrypt ’02.

[GS08] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear
groups. In Eurocrypt ’08.

[KP98] J. Kilian and E. Petrank. An efficient non-interactive zero-knowledge proof
system for np with general assumptions. J. of Cryptology, 1998.

[LRSW99] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In
Selected Areas in Cryptography ’99.

[SCP00] A. De Santis, G. Di Crescenzo, and G. Persiano. Necessary and sufficient
assumptions for non-interactive zero-knowledge proofs of knowledge for all
NP relations. In ICALP ’00.


