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Abstract. Computational indistinguishability amplification is the prob-
lem of strengthening cryptographic primitives whose security is defined
by bounding the distinguishing advantage of an efficient distinguisher.
Examples include pseudorandom generators (PRGs), pseudorandom func-
tions (PRFs), and pseudorandom permutations (PRPs).
The literature on computational indistinguishability amplification con-
sists only of few isolated results. Yao’s XOR-lemma implies, by a hy-
brid argument, that no efficient distinguisher has advantage better than
(roughly) n2m−1δm in distinguishing the XOR of m independent n-bit
PRG outputs S1, . . . , Sm from uniform randomness if no efficient distin-
guisher has advantage more than δ in distinguishing Si from a uniform
n-bit string. The factor 2m−1 allows for security amplification only if
δ < 1

2
: For the case of PRFs, a random-offset XOR-construction of My-

ers was the first result to achieve strong security amplification, i.e., also
for 1

2
≤ δ < 1.

This paper proposes a systematic treatment of computational indistin-
guishability amplification. We generalize and improve the above prod-
uct theorem for the XOR of PRGs along five axes. First, we prove the
tight information-theoretic bound 2m−1δm (without factor n) also for the
computational setting. Second, we prove results for interactive systems
(e.g. PRFs or PRPs). Third, we consider the general class of neutral-
izing combination constructions, not just XOR. As an application, this
yields the first indistinguishability amplification results for the cascade
of PRPs (i.e., block ciphers) converting a weak PRP into an arbitrarily
strong PRP, both for single-sided and two-sided queries. Fourth, strong
security amplification is achieved for a subclass of neutralizing construc-
tions which includes as a special case the construction of Myers. As an
application we obtain highly practical optimal security amplification for
block ciphers, simply by adding random offsets at the input and out-
put of the cascade. Fifth, we show strong security amplification also for
weakened assumptions like security against random-input (as opposed to
chosen-input) attacks.
A key technique is a generalization of Yao’s XOR-lemma to (interactive)
systems which is of independent interest.
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(SNF), project no. 200020-113700/1.



1 Introduction

1.1 Security Amplification

The security of all computationally secure cryptographic systems, even of those
called “provably secure” in the literature, relies on unproven assumptions about
the underlying cryptographic primitives. Typical assumptions are that a cer-
tain construction is a one-way function (OWF), a collision-resistant hash func-
tion, a pseudorandom generator (PRG), a pseudorandom function (PRF), a
pseudorandom permutation (PRP), etc. To weaken these assumptions is both a
fundamental challenge in the theory of cryptography and a major goal for the
cautious and prudent design of practical cryptographic systems. Many reduc-
tions of strong primitives to weak primitives are known. For example, one of the
outstanding results is the construction of a PRG from any OWF [13]. However,
this reduction, like many other reductions, is highly inefficient and, while of high
theoretical value, not of practical relevance.

A specific way to weaken an assumption is to require only that the security
property is mildly true. For instance, a δ-OWF can be efficiently inverted with
probability at most δ (rather than a negligible quantity for a regular OWF).
Similarly, for a δ-PRG no efficient distinguisher has an advantage more than δ
in distinguishing its output from a uniform random string. The corresponding
definitions of a δ-PRF, a δ-PRP, etc., are straight-forward. Such a weakened
assumption is more likely to be true. For example, it is more conservative to
only assume that AES is a 0.99-PRP rather than a fully secure PRP.

The natural question is whether several weak primitives can be efficiently
combined to obtain a stronger version of the primitive, ideally one with the full-
fledged security property.1 This is called security amplification, in some cases
hardness amplification. The classical result on security amplification due to
Yao [35] is that the parallel composition of m δ-OWFs results in a (δm + ν)-
OWF, where ν is some negligible quantity and for any δ < 1, δm can be made
negligible for large enough m. Security amplifications of a wide range of crypto-
graphic primitives has subsequently been considered, including for example regu-
lar OWFs and OWPs [9, 11], two-party protocols [1, 29, 30, 34, 12], key-agreement
and public-key encryption [7, 15, 16], collision-resistant hash functions [4], and
watermarking schemes [17].2

The term indistinguishability amplification refers to security amplification
when the relevant security quantity is the distinguishing advantage for the best
distinguisher from a certain class of distinguishers, typically the class of efficient
distinguishers.

1 Typically one considers several independent instantiations of the same weak primi-
tive, but most results actually hold for several different instantiations.

2 So-called combiners [14] are another method for relaxing security assumptions: They
guarantee that a construction involving several instantiations of a primitive is (fully)
secure if at least one (or several, but not all) of them are (fully) secure. However,
they do not amplify security of the underlying primitives.



1.2 The XOR-Lemma and Amplification for PRGs

Before we discuss the XOR-lemma, let us compare the prediction advantage and
the distinguishing advantage of a biased bit, in an information-theoretic setting,
i.e., allowing arbitrary computing power. A bit with bias ε takes on the two values
with probabilities 1

2 − ε and 1
2 + ε. When such a bit must be guessed, one would

choose the more likely value and be correct with probability 1
2 + ε. To calibrate

the guessing advantage, between 0 (when ε = 0) and 1 (when the bit is fixed,
i.e., ε = 1

2 ), one defines the advantage to be 2ε. In contrast, the distinguishing
advantage is defined as ε (with no factor 2) since it is naturally defined for general
random variables (not only bits) as the distance of the probability distribution
from the uniform one.

As an example, consider two independent bits with biases ε1 and ε2. It is
easy to see that the bias of the XOR is 2ε1ε2. For instance, the XOR of a 0.1-
biased bit (40/60) and a 0.2-biased bit (30/70) is a 0.04-biased bit (46/54), where
0.04 = 2 ·0.01 ·0.02. More generally, the bias of the XOR of m bits is 2m−1 times
the product of the biases. For the XOR of m bit-strings S1, . . . , Sm of length n,
where Si has distance δi from a uniform n-bit string, the distance from uniform
of the XOR of the strings, S1⊕S2⊕· · ·⊕Sm, is bounded by 2m−1

∏m
i=1 δi. This

bound is tight, as for example the case n = 1 discussed above illustrates.
Let us now move to the computational setting, i.e., to Yao’s XOR-lemma [35,

10], which is much more involved and is another seminal security amplification
result. One typically considers a predicate B(x) of the input of a OWF f which
is hard to guess when given the output f(x), for uniformly chosen x. But the
setting of the XOR-lemma is more general. It states3 that if for bits B1, . . . , Bm

the advantage in guessing Bi given some correlated information Xi is at most αi

for any algorithm with complexity t′, then no algorithm with complexity t has
advantage more than

∏m
i=1 αi+γ in guessing their XOR-sum, i.e., B1⊕· · ·⊕Bm,

given X1, . . . , Xm, where γ can be made arbitrarily small, at the cost of making
t smaller with respect to t′.4 In terms of distinguishing advantages δi, the bound
is 2m−1

∏m
i=1 δi + γ (for the reasons described above).

Moreover, a standard hybrid argument, to use the unpredictability of bits to
prove the indistinguishability of bit-strings, implies an indistinguishability ampli-
fication result for PRGs. Consider m independent PRG outputs, S1, . . . , Sm, each
an n-bit string. If no distinguisher with complexity t′ has advantage more than
δi in distinguishing Si from a uniform random n-bit string, then no distinguisher
with complexity (roughly) t has advantage more than n(2m−1

∏m
i=1 δi+γ) in dis-

3 In fact, one needs a “tight” version of the XOR-lemma for this statement to hold,
such as the one by Levin [20, 10], or one obtained from a tight hard-core lemma (e.g.
[15]) via the techniques of [18].

4 As usual in complexity-theoretic hardness amplification, we experience an unavoid-
able [31] trade-off between the choice of γ (the tightness of the bound) and the
complexity of the reduction.



tinguishing S1 ⊕ S2 ⊕ · · · ⊕ Sm from a uniform random n-bit string.5 The factor
n comes from the hybrid argument over the individual bits of the bit-string.

As explained, the factor 2m−1 is unavoidable, since it holds even in the
information-theoretic setting. Unfortunately, it means that an amplification can
be achieved only if the component constructions are better than 1

2 -secure, i.e.,
if δi < 1

2 .

1.3 Natural Questions and Previous Results

The above discussion suggests a number of natural questions. (1) Can the factor
n in the bound for the XOR of PRGs be eliminated, to obtain a tight bound,
namely the equivalent of the information-theoretic counterpart? (2) Can the
result be extended to the XOR of PRFs, i.e., primitives for which the security is
defined by an interactive game, not by the (static) indistinguishability of random
variables? (3) If the answer is “yes”, can such a result be extended to other
constructions, most importantly the cascade of PRPs? (4) Can the factor 2m−1

be eliminated so that security amplification from arbitrarily weak components
can be achieved? We will answer all these questions positively.

In the information-theoretic setting, questions 2 and 3 were answered by
Maurer, Pietrzak, and Renner [24], whose abstract approach we follow, and the
special case of permutations had previously been solved by Vaudenay [32, 33]. In
contrast, there are only a few isolated results on computational indistinguisha-
bility amplification, which we now discuss. Myers [27] was the first to consider
security amplification for PRFs. Interestingly, he did not solve question 2 above,
which remained open, but he actually solved part of question 4. More precisely,
he showed for the XOR of PRFs, with the modification that for each PRF a
random (secret) offset is XORed to the input, that the stronger bound (without
the factor 2m−1) can be achieved. However, his treatment is specific for his con-
struction and does not extend to other settings like the cascade of PRPs. Dodis
et al. [6] addressed question 2 and gave a positive answer using techniques origi-
nating from the setting of hardness amplification of weakly verifiable puzzles [3,
19]. However, their focus is on general interactive cryptographic primitives, in-
cluding for example message authentication codes (MACs), and the resulting
bound for the case of PRFs depends on the number of queries the distinguisher
is allowed to ask and is not optimal.

Little is known about the cascade of weak PRPs, which is perhaps the case of
highest practical interest as it addresses security amplification for block ciphers.6

5 It is not clear to us whether this fact has been published, or is unpublished but
well-known folklore, or not so well-known (see also [6] for a similar statement about
security amplification for the XOR of PRGs).

6 Cascades of block ciphers were considered by Even and Goldreich [8] and Maurer
and Massey [23], but those results only prove that the cascade is as secure as the
strongest component (with no amplification), i.e., that the cascade is a combiner for
encryption. Bellare and Rogaway [2] showed a certain security amplification (of a
different type) for cascade encryption in the ideal cipher model, which is a purely
information-theoretic consideration.



Luby and Rackoff [21] proved an amplification result for the cascade of two weak
PRPs. This result was extended by Myers [26] to the cascade of a small number
of PRPs, but he notes that this result falls short of constructing a (regular) PRP
from a weak PRP and states this as an open problem, which we solve.

1.4 Contributions of this Paper

In our attempt at solving the different open questions explained above, we take
a very general approach, not targeted at specific constructions. The goal is to
develop a deeper and more general understanding and to prove results of a
generality that can be useful for other applications.

A first result is a generalization of the XOR-lemma to interactive systems.
If a system (as opposed to a random variable for the standard XOR-lemma)
of a general type depends on a bit, and no efficient algorithm with access to
the system can predict the bit better than with a certain advantage, then the
advantage in predicting the XOR of several such bits is bounded by the product
of the individual advantages, even if the predictor has complete and arbitrary
independent access to all the involved systems.

The XOR of strings or (of the output) of systems, as well as the cascade of
systems implementing permutations, are both special cases of a more general
concept which was called neutralizing construction in [24]. Intuitively, a con-
struction involving several component systems is neutralizing if it is equivalent
to an ideal system whenever one component is ideal. For example, the XOR of
several PRFs is equivalent to a truly random function if (any) one of the PRFs
is replaced by a truly random function.

We prove two tight general product theorems. The first theorem relies on the
XOR-lemma and shows that for all neutralizing constructions the distinguishing
advantage of the combined system is 2m−1 times the product of the individual
advantages, which is optimal. The second theorem gets rid of the factor 2m−1 by
considering a special class of randomized neutralizing constructions. The appli-
cations mentioned in the abstract and the previous sections follow directly from
these general theorems.7 In particular, one application is a highly practical con-
struction for optimal security amplification for block ciphers, simply by adding
random offsets at the input and output of the cascade.

1.5 Notational Preliminaries

Throughout this paper, we use calligraphic letters X ,Y, . . . to denote sets, upper-
case letters X, Y, . . . to denote random variables, and lower-case letters x, y, . . .
denote the values they take. Moreover, P[A] denotes the probability of an event
A, while we use the shorthand PX(x) := P[X = x], and denote by PX the
probability distribution of X and by E[X] its expected value.

7 For each application of the second theorem, one also needs an information-theoretic
indistinguishability proof based on the conditional equivalence of two systems, con-
ditioned on an event that must be proved to be unlikely to occur.



We consider interactive randomized stateful algorithms in some a-priori fixed
(but otherwise unspecified) RAM model of computation. In particular, such
an algorithm keeps a state (consisting say of the memory space it uses), and
answers each query depending on the input of this query, some coin flips, the
current state (which is possibly updated), and (possibly) one or more queries
to an underlying system. It is also convenient to denote by A[σ] the algorithm
obtained by setting the state of A to σ (provided σ is a compatible state),
and then behaving according to A’s description. Additionally, we say that the
algorithm A has time complexity tA (where tA is a function N × N → N) if the
sum of the length of the description of A and the total number of steps of A is
at most tA(q, s) for all sequences of q queries, all compatible initial states with
size s, and all compatible interactions with an underlying system. We use the
shorthand tA(q) := tA(q, 0).

This paper adopts a concrete approach, i.e. we do not use asymptotics and
statements are inherently non-uniform. Still, all results can be extended to the
uniform setting by using standard techniques. We comment on the necessary
changes in the full version of this paper.

2 Discrete Systems and Constructions

Discrete Systems, Constructions, and Distinguishers. This paper deals
with the general notion of a (single-interface) discrete system F taking inputs
X1, X2, . . . and returning outputs Y1, Y2, . . ., where the i-th output Yi depends
(probabilistically) on the first i inputs Xi = [X1, . . . , Xi] as well as on all pre-
vious i − 1 outputs Y i−1 = [Y1, . . . , Yi−1]. (If all inputs and outputs are in sets
X and Y, respectively, we call F an (X ,Y)-system.) Its input-output behavior
is minimally described (see e.g. [22]) by the (infinite) sequence of conditional
probability distributions pF

Yi|XiY i−1 (for all i ≥ 1). In general, we use the name
“system” (as well as F) interchangeably to denote both the input-output behav-
ior determined by conditional probability distributions and an actual discrete
system realizing this behavior. It thus makes sense to say that two systems F,G
are equivalent (denoted F ≡ G) if they have the same input-output behavior.
A random variable X is the simplest type of system, which answers each query
with the same value X.

With C(·) we denote a construction invoking one or more underlying com-
patible subsystems, whereas C(F), C(F,G), etc denote the systems obtained
when C is instantiated with F (and G). The shorthand C(F, ·) indicates the
construction that behaves as C(F,G) given access to the subsystem G. (All
notations extend naturally to constructions with more than two subsystems.)
A distinguisher D is a system interacting with another system F giving inputs
X1, X2, . . . and obtaining outputs Y1, Y2, . . ., outputting a decision bit after a
certain number q of queries depending on the transcript (Xq, Y q): In particular,
we denote as P[D(F) = 1] the probability that it outputs 1.

We say that an interactive algorithm A implements a system F or a construc-
tion C(·) if it has the same input-output behavior as F and C(·), respectively.



In particular, we use A (rather than F) whenever we want to stress that we use
the particular implementation A of F.

Distinguishing Advantages. The distinguishing advantage of a distinguisher
D in distinguishing two systems F and G is the quantity

∆D(F,G) := |P[D(F) = 1]− P[D(G) = 1]| .

We denote as ∆t(F,G), ∆q(F,G), and ∆t,q(F,G) the best distinguishing ad-
vantages ∆D(F,G) taken over all distinguishers with time complexity at most t,
issuing at most q queries, or both, respectively.

System Composition. Given m systems F1, . . . ,Fm, we use the shorthand
F1‖ . . . ‖Fm to denote their parallel composition, i.e., the system allowing par-
allel concurrent interaction with the (independent) m systems.8 Moreover, for
(X ,Y)-systems F and G, and a random bit B (with distribution PB), the system
〈F,G〉B acts as F if B = 0, and as G otherwise. Additionally, for any quasi-
group operation9 ? on Y the (X ,Y)-system F ? G on input x invokes both F,G
with input x, obtaining y, y′, and returns y ? y′.10 Also, for an (X ,Y)-system P
and a (Y,Z)-system Q we denote with P B Q the cascade of P and Q, i.e., the
system which on input x first invokes P on this input, and the resulting output
is fed into Q to obtain the final output.

Stateless Systems. We say that a system F is stateless if there exists a
conditional probability distribution pF

Y |X such that pF
Yi|XiY i−1(yi, x

i, yi−1) =
pF

Y |X(yi, xi) for all yi, x
i = [x1, . . . , xi], and yi−1 = [y1, . . . , yi−1]. Moreover, the

system F is convex-combination stateless (cc-stateless, for short) if there exists a
random variable S and a construction F(·) (we abuse notation by recycling the
letter F) such that F(S) ≡ F, and F(s) is stateless for all values s taken by S.
Depending on the context, S may be e.g. a seed, a key, or an internal function
table. A non-trivial example of a cc-stateless system is a randomized encryption
scheme, which takes a secret key and encrypts each message with independent
randomness. Note that 〈F,G〉B is cc-stateless if both F,G are cc-stateless.

Random Functions. A random function F : X → Y is an (X ,Y)-system which
answers consistently, i.e. Xi = Xj implies Yi = Yj . It is called a random permu-
tation if additionally Yi = Yj implies Xi = Xj . A cc-stateless random function
F : X → Y is in particular such that F ≡ F(S) where F(·) is deterministic and
F(s) is a function X → Y for all s. (This is sometimes called a keyed function
family, but we also consider the case where s is huge and is hence not a key.)
Special cases are a uniform random function (URF) R : X → Y and a uniform

8 The systems do not interact with each other, and each query to the parallel compo-
sition is addressed to one of the systems.

9 That is, given a, c ∈ Y (or b, c ∈ Y) there exists a unique b (a) such that a?b = c. An
example is bit-wise XOR ⊕ for Y = {0, 1}n, but any group operation is a quasi-group
operation as well.

10 We denote as F1 ? · · · ? Fm the system (· · · ((F1 ? F2) ? F3) · · · ) ? Fm.



random permutation (URP) P : X → X that realize a uniformly chosen func-
tion X → Y and permutation X → X , respectively. We denote as F(s, x) the
evaluation of F with key s and input x.

Informally, in an asymptotic setting, it is convenient to say that an efficient
F(·) is a δ-pseudorandom function (PRF) if ∆t,q(F(S),R) ≤ δ+negl for a (short)
key S, a URF R, all polynomial t and q, and some negligible11 function negl.
Analogously, if an efficient Q(·) implements a permutation for all keys, it is called
a δ-pseudorandom permutation (PRP) if ∆t,q(Q(S),P) ≤ δ + negl for a URP P
and for all polynomial t and q.

The inverse Q−1 of a cc-stateless random permutation Q is well-defined, and
〈Q〉 is the system accepting forward queries (x,+) (answered by Q(s, x) on key
s) and backward queries (y,−) (answered as Q−1(s, y)). In particular 〈Q〉B 〈Q′〉
stands for the system 〈QBQ′〉. An efficient Q(·) is called a δ-two-sided PRP12 if
∆t,q(〈Q(S)〉, 〈P〉) ≤ ε + negl for all polynomial q and t. (Of course, one assumes
that backward queries can be computed efficiently given s.)

Neutralizing Constructions. A construction C(·) is neutralizing [24] for
systems F1, . . . ,Fm and ideal systems I1, . . . , Im, if for Si ∈ {Fi, Ii} (i =
1, . . . ,m) we have C(S1, . . . ,Sm) ≡ C(I1, . . . , Im) whenever there exists some i
with Si = Ii.13

Every quasi-group operation ? on a set Y induces a construction C(·) such
that C(F,G) := F?G which is neutralizing for random functions F,G : X → Y
and ideal systems I,J being independent URFs. In particular, I?J is also a URF.
As a special case, this result holds for random variables X, Y over Y, the ideal
systems being uniform random elements of Y. Moreover, the cascade operator B
induces a construction C′(·) with C′(Q1,Q2) := Q1 B Q2 which is neutralizing
for any two cc-stateless random permutations Q1,Q2 : X → X (in fact Q1 can
possibly be stateful) with ideal systems I,J both URPs X → X . In particular,
I B J is also a URP. If Q1 is cc-stateless, then the same result holds even in the
two-sided case for 〈Q1〉 and 〈Q2〉 (with ideal system 〈P〉 for a URP P). Both
constructions extend naturally to an arbitrary number of subsystems.

3 A General Product Theorem for Neutralizing
Constructions

This section presents a very general product theorem showing computational
indistinguishability for every neutralizing construction. This result relies on a

11 Recall that a function ν : N → R≥0 is negligible if it vanishes faster than the inverse
of any polynomial.

12 In the literature the name strong PRP is commonly used, but this term is slightly
confusing in the context of this paper.

13 Neutralizing constructions capture the notion of a combiner [14] for computational
indistinguishability properties: Whenever at least one system Si is computationally
indistinguishable from Ii, then C(S1, . . . ,Sm) is computationally indistinguishable
from C(I1, . . . , Im).



generalization of Yao’s XOR-Lemma to discrete interactive systems, which is
presented first, and is of independent interest.

3.1 The Generalized XOR-Lemma

System-Bit Pairs. A system-bit pair is a system of the form (F, B), where
B ∈ {0, 1} is a bit value, which is (generally) correlated with the system F.
This can formally be described by the distribution PB of B and the two systems
F0 and F1 conditioned on the value taken by B, i.e. (F, B) = (〈F0,F1〉B , B).
A possible system-bit pair is a URF R : {0, 1}m → {0, 1} and the parity of
its function table. The following quantity characterizes the performance of an
adversary14 A in guessing the bit B when given access to F only.

Definition 1. The guessing advantage of an adversary A in guessing B for
a system-bit pair (F, B) is the quantity ΓA(F, B) := 2 · P[A(F) = B] − 1.
Additionally, we denote as Γt,q(F, B) the maximal guessing advantage ΓA(F, B)
taken over all q-query adversaries A with complexity at most t.

Note that ΓA(F, B) ∈ [−1, 1], where 1 means that A is able to perfectly predict
B by interacting with F, while −1 means that A is never correct.15 The following
connection between the guessing and the distinguishing advantages is well known
(cf. e.g. [24]).

Lemma 1. For all F, G, and D, we have ∆D(F,G) =
∣∣ΓD(〈F,G〉B , B)

∣∣ for a
uniform bit B ∈ {0, 1}.

The XOR-Lemma. Given m system-bit pairs (G1, B1), . . . , (Gm, Bm), we are
interested in the advantage Γt,q1,...,qm(G1‖ · · · ‖Gm, B1⊕· · ·⊕Bm) of guessing the
bit B1⊕· · ·⊕Bm given parallel access to the systems G1, . . . ,Gm, where at most
qi queries to each system Gi are allowed. That is, we consider the most general
attack where the adversary can query each subsystem Gi individually at most
qi times, adaptively depending on the answers of queries to other subsystems.
We show that the advantage is upper bounded by the product of the individual
advantages Γt′,q′(Gi, Bi) for i = 1, . . . ,m (for appropriate t′, q′), with an extra
additive term γ > 0 which can be made arbitrarily small (but influences the
efficiency of the reduction). The result holds provided that all but one of the
system-bit pairs are cc-stateless. (Note that the fact that (Gi, Bi) is cc-stateless
implies that Gi is cc-stateless, but the converse is not always true.) Our result
generalizes the original XOR-lemma by Yao [35, 10], which considered the special
case of system-bit pairs (Xi, Bi), where Xi is a random variable.

We stress that our result only requires the ability to efficiently implement the
cc-stateless system-bit pairs (Gi, Bi) = (Gi(S), Bi(S)). This may be possible,

14 We stress that distinguishers and adversaries are objects of the same type. The
name adversary is used to stress the fact that we are not exclusively considering a
distinguishing scenario.

15 In particular, flipping the output bit of such a A yields one which is always correct.



for instance by using a stateful algorithm, even if G(·) and B(·) themselves are
not efficiently computable: In fact, S may even be exponentially large. As an
example, the aforementioned system-bit pair (R, B), where R : {0, 1}n → {0, 1}
is a URF, and B is the parity of its function table, is clearly cc-stateless, and can
efficiently be implemented by first sampling a random B, and then answering
queries to R with independent random bits, with the exception of the last one,
which is answered so that the parity equals B.

In the following, we define the quantity ϕ := 2
(

24m
γ

)2

· ln
(

7m
γ

)
for under-

stood m and γ. Also, tGi and sGi are the time and space16 complexities of some
implementation Gi of the system Gi, whereas t(Gi,Bi) is the time-complexity of
an implementation of the pair (Gi, Bi). (Note that an efficient implementation
of the latter implies one for the former, but we allow for this distinction.) For all
i, we denote li := sGi(qi · ϕ) and l<i :=

∑i−1
j=1 lj (for understood q1, . . . , qm−1).

Theorem 1 (XOR-Lemma). Let (G1, B1), . . . , (Gm−1, Bm−1) be cc-stateless
system-bit pairs, and let (Gm, Bm) be an arbitrary system-bit pair. For all t,
q1, . . . , qm, γ > 0,

Γt,q1,...,qm(G1‖ . . . ‖Gm, B1 ⊕ · · · ⊕Bm) ≤
m∏

i=1

Γt′i,q
′
i
(Gi, Bi) + γ,

where t′i := l<i + ϕ ·
[
t +O

(∑i−1
j=1 tGj

(qj , lj) +
∑m

j=i+1 t(Gj ,Bj)(qj)
)]

and q′i :=

ϕ · qi for i = 1, . . . ,m − 1, whereas tm := l<m + t + O
(∑m−1

j=1 tGj
(qj , lj)

)
and

q′m := qm.

The asymmetry of our proof technique allows (Gm, Bm) to be fully stateful.17

Furthermore, both t′m and q′m are much smaller then the corresponding terms t′i
and q′i for i = 1, . . . ,m− 1. The following paragraph provides a proof sketch for
the case m = 2. The full proof is deferred to the full version of this paper.

Proof Idea for m = 2. The proof follows similar lines as Levin’s proof of the
XOR-lemma [20, 10], but with some major differences due to the peculiarities
of reactive systems. For simplicity, we let (F, B) = (G1, B1) and (G, C) =
(G2, B2). Let A be an adversary with ΓA(F‖G, B ⊕ C) > δ · ε + γ. We show
that either there exists an adversary A′ such that ΓA′

(F, B) > δ or there exists
an adversary A′′ such that ΓA′′

(G, C) > ε, contradicting the assumed hardness
of (F, B) and/or (G, C). The time complexities of A′ and A′′ are strictly related
to the one of A. Recall that the pair (F, B) = (F(S), B(S)) is cc-stateless, and
for all values s taken by the random variable S we define

α1(s) := ΓA(F(s)‖G, 1⊕ C) and α(s) := ΓA(F(s)‖G, B(s)⊕ C).
16 i.e. the maximal size of the state after the given number of queries
17 An orthogonal generalization of the XOR-lemma for stateful interactive systems

was proposed by Halevi and Rabin [12]. However, it relies on sequential (rather than
parallel) access to the systems G1, . . . ,Gm, which is not sufficient for the applications
of this paper.



By definition, E[α(S)] > δ · ε + γ. Moreover α(s) = α1(s) if B(s) = 1, and
α(s) = −α1(s) otherwise. This implies that α1(S) has good correlation with
B(S), as an adversary A′ outputting 1 with probability 1

2 + α1(s)
2 (when given

access to F(s)) has advantage at least δ · ε + γ. If |α1(s)| = |α(s)| ≤ ε holds for
all s, then the advantage can be amplified to be larger than δ by outputting 1
with probability 1

2 + α1(s)
2ε . Of course, A′ does not know α1(s), but a statistical

estimate can be obtained by repeated interaction with F(s), as it is stateless:
The term γ compensates the possible estimation error.

Note that the existence of a single value s with the property that |α1(s)| > ε
implies that there exists a bit b such that the adversary A′′ := A(F(s)‖·) ⊕ b
has advantage larger than ε in guessing C from G, i.e., A′′ is the adversary that
simulates the execution of A with the parallel composition of F(s) and the given
system G, and outputs A’s output XORed with b. But such adversary A′′ is not
necessarily efficient, because an efficient implementation of F(s) may not exist.
To overcome this issue, we show that for the above adversary A′ to succeed, it
is sufficient that the probability over the choice of S that |α1(S)| > ε + γ/4 is
smaller than γ/4. Furthermore, if this probability is at least γ/4, a probabilistic
argument yields a (sufficiently) small state σ for the (efficient) implementation
F of F and a (fixed) bit b such that the efficient adversary A′′ := A(F [σ]‖·)⊕ b
achieves advantage at least ε.

3.2 A Product Theorem from the XOR-Lemma

Throughout this section, let C(·) be a neutralizing construction for systems
F1, . . . ,Fm, I1, . . . , Im (of which all but Fm and Im have to be cc-stateless).
We provide a very general product theorem upper bounding the distinguishing
advantage ∆t,q(C(F1, . . . ,Fm),C(I1, . . . , Im)) in terms of the individual advan-
tages ∆t′i,q

′
i
(Fi, Ii) (for some related t′i, q

′
i). The theorem is a computational

version of the information-theoretic product theorem from [24]: In particular,
we inherit the same bounds, with an unavoidable additive term.

The theorem relies on the canonical implementation 〈Fi, Ii〉Bi of 〈Fi, Ii〉Bi

which chooses a random bit Bi ∈ {0, 1} and answers each query using the imple-
mentations Fi and Ii (with respective complexities tFi

and tIi
) of Fi or of Ii, re-

spectively, depending on the value of Bi. (Bi is in particular part of the state.) It
can be implemented with complexity t〈Fi,Bi〉Bi

(q, s) = max{tFi(q, s), tIi(q, s)}+
O(1). This also yields an implementation of (〈Fi, Ii〉Bi

, Bi) with the same com-
plexity (by additionally outputting the bit Bi). Finally, we let li and l<i as above
be defined with respect to 〈Fi, Ii〉Bi , and let tC be the time complexity of an
efficient implementation of C(·).

Theorem 2 (Product Theorem). Let C(·) be as above, and let q > 0 be such
that C(·) makes qi queries to its i-th subsystem when invoked q times. Then, for
all t, γ > 0, if ∆t′i,q

′
i
(Fi, Ii) ≤ 1

2 for all i = 1, . . . ,m− 1,

∆t,q(C(F1, . . . ,Fm),C(I1, . . . , Im)) ≤ 2m−1 ·
m∏

i=1

∆t′i,q
′
i
(Fi, Ii) + 2γ,



where t′i := l<i+ϕ·
[
t+tC(q)+O

(∑i−1
j=1 t〈Fj ,Ij〉Bj

(qj , lj)+
∑m

j=i+1 t〈Fj ,Ij〉Bj
(qj)

)]
and q′i := ϕ · qi for all i = 1, . . . ,m − 1, whereas t′m := l<m + t + tC(q) +
O

(∑m−1
j=1 t〈Fj ,Ij〉Bj

(qj , lj)
)

and q′m := qm.

Proof Sketch. We present a proof sketch of the above theorem for the case
m = 2. For simplicity, let F1 = F, F2 = G, I1 = I, and I2 = J. The core of
the proof is a generic argument (i.e. it holds for all distinguishers, regardless of
their computing power) reducing the task of upper bounding the distinguishing
advantage for a neutralizing construction to the setting of the XOR-lemma.18 It
is easy to verify that (also cf. [24])

∆D(C(F,G),C(I,J)) = 2 ·∆D(〈C(F,G),C(I,J)〉B ,C(I,J))

=
∣∣ΓD(〈〈C(F,G),C(I,J)〉B ,C(I,J)〉B′ , B′)

∣∣ ,

where B and B′ are independent uniformly distributed random bits. Note that
conditioned on B′ = 0, the system 〈〈C(F,G),C(I,J)〉B ,C(I,J)〉B′ behaves as
C(F,G) with probability 1

2 , and as C(I,J) otherwise. On the other hand, con-
ditioned on B′ = 1 it always behaves as C(I,J). In particular, this implies that
(for independent uniform random bits B1, B2)(

〈〈C(F,G),C(I,J)〉B ,C(I,J)〉B′ , B′) ≡ (
C(〈F, I〉B1 , 〈G,J〉B2), B1 ⊕B2

)
,

because of the neutralizing property. We thus obtain

ΓD(〈〈C(F,G),C(I,J)〉B ,C(I,J)〉B′ , B′) = ΓD(C(〈F, I〉B1 , 〈G,J〉B2), B1 ⊕B2)

and we conclude the proof by “absorbing” the computation of C(·) into D,
clearly without modifying the advantage. Using the XOR-lemma (Theorem 1)
for m = 2 we obtain

∆t,q(C(F,G),C(I,J)) ≤ 2 · Γt+tC(q),q1,q2(〈F, I〉B1 , 〈G,J〉B2 , B1 ⊕B2)
≤ 2 · Γt′1,q′1

(〈F, I〉B1 , B1) · Γt′2,q′2
(〈G,J〉B2 , B2) + 2γ.

for appropriate t′1, q
′
1 and t′2, q

′
2. Extending the proof to arbitrary neutralizing

constructions for m > 2 requires some extra care. The details can be found in
the full version of this paper.

3.3 Applications of Theorem 2

Sums of PRFs. Let F1, . . . ,Fm : X → Y be cc-stateless random functions (in
fact, Fm can possibly be stateful), and let ? be a quasi-group operation on Y.
The operator ? is neutralizing, as discussed in Section 2, for F1, . . . ,Fm and ideal
systems I1 = · · · = Im = R, where R : X → Y is a URF. In order to simplify
the time complexity statements, we assume that there exist efficient algorithms
18 A similar argument was implicitly used in the information-theoretic product theorem

of [24].



implementing Fi(·) such that Fi(s, x) is computed in time tFi given s and x (this
holds in the interesting case where we apply the result to PRFs) and elements of
Y can be encoded using ` ≈ log |Y| bits. Note that the canonical implementation
of R keeps a linearly-growing state of size s = O(q · `) after q queries, and
answers each query in time O(log(s)). Therefore, with t〈Fi,R〉Bi

(q, s) = O(q ·
max{tFi

, log(s + q`)}) and l<i = O((i − 1)ϕq`), we apply Theorem 2 to obtain
the following result (we tacitly assume that all advantages are bounded by 1

2 ):

Corollary 1. For all t, q, γ > 0,

∆t,q(F1 ? · · · ? Fm,R) ≤ 2m−1 ·
m∏

i=1

∆t′i,q
′
i
(Fi,R) + 2γ.

A version of this result with weaker bounds was shown by Dodis et al. [6] for
? = ⊕. (Their bounds depend in particular on the number of queries.) We remark
that the analogous result for PRGs follows as a special case, since a PRG can
be seen as a one-input PRF.

In the asymptotic setting, if F(·) is a δ-PRF (for some δ < 1
2 ), it follows that

F(S1)? · · ·?F(Sm), for independent keys S1, . . . , Sm, is a 2m−1 ·δm-PRF: For t, q
polynomial (in n), we have ∆t,q(F(S1)?· · ·?F(Sm),R) ≤ 2m−1·δm+negl+1/p(n)
for all polynomials p, as both t′i and q′i are polynomial as well.

Cascade of PRPs. Let P : {0, 1}n → {0, 1}n be a URP and let Q1, . . . ,Qm :
{0, 1}n → {0, 1}n be cc-stateless random permutations. Recall that the B op-
erator is neutralizing for Q1, . . . ,Qm (all with ideal system P), as well as for
〈Q1〉, . . . , 〈Qm〉 (all with ideal system 〈P〉). As above, we assume that both
Qi(s, x) and Q−1

i (s, y) are computable in time tQi . Furthermore, simulating
the URP P (as well as the two-sided URP 〈P〉) requires the same complexity
as implementing a URF. Therefore, with t〈Qi,P 〉Bi

(q, s) = t〈〈Qi〉,〈P 〉〉Bi
(q, s) =

O(q · max{tQi
, log(s + qn)}) and l<i = O((i − 1)ϕqn), Theorem 2 yields the

following corollary:

Corollary 2. For all t, q, γ > 0,

∆t,q(Q1 B · · ·B Qm,P) ≤ 2m−1 ·
m∏

i=1

∆t′i,q
′
i
(Qi,P) + 2γ,

and

∆t,q(〈Q1〉B · · ·B 〈Qm〉, 〈P〉) ≤ 2m−1 ·
m∏

i=1

∆t′i,q
′
i
(〈Qi〉, 〈P〉) + 2γ.

We remark that this is the first result considering two-sided PRPs, and even in
the one-sided setting only the case m = 2 was considered by Luby and Rack-
off [21], and subsequently extended to m = O(log n) by Myers [26].

Furthermore, we note that Q1 is allowed to be stateful in the one-sided case,
as Theorem 2 allows one system to be stateful: In fact, B is not necessarily
neutralizing whenever at least two permutations are stateful.



4 A Strong Product Theorem for Randomized
Neutralizing Constructions

4.1 A Product Theorem from Self-Independence

Since Theorem 2 holds for arbitrary neutralizing constructions, one cannot avoid
the factor 2m−1 in the bound. This section shows that a subclass of neutralizing
constructions satisfying a simple information-theoretic property yield a strong
product theorem, i.e., the obtained upper bound is roughly the product of the
individual advantages.

Self-Independence. The notion of self-independence of an ideal system I
under a construction C(·) captures the fact that a computationally unbounded
distinguisher cannot tell apart the scenario where the same instance of I is
accessed through independent instances of C(·) from the setting where each
instance of C(·) accesses an independent instance of I.

Definition 2. The system I is η-self-independent under C(·) for a function η :
N× N → R≥0, if for all q, λ > 0, the best (information-theoretic) distinguishing
advantage when allowing q queries to each subsystem satisfies

∆q,...,q(C1(I)‖ . . . ‖Cλ(I),C1(I1)‖ . . . ‖Cλ(Iλ)) ≤ η(q, λ),

where C1(·), . . . ,Cλ(·) and I1, . . . , Iλ are independent copies of C(·) and I, re-
spectively.

As an example, consider the construction C(·) which generates a (secret) random
n-bit offset Z, and given access to a random function F : {0, 1}n → {0, 1}n, C(F)
returns F(x⊕Z) upon each query x. It is not hard to show, e.g. using the tools
from [22], that a URF R : {0, 1}n → {0, 1}n is η-self-independent under C(·)
for η(q, λ) ≤ q2λ2

2 · 2−n, i.e., the probability that for some distinct i 6= j the
instances Ci(·) and Cj(·) invoke R with the same input.

Restricted Attacks on Cryptographic Functions. Indistinguishability-
based security definitions can also be weakened by restricting the distinguisher’s
access to the given system. For instance, the standard PRF notion considering
an (adaptive) chosen-input attack can be weakened to non-adaptive chosen-input
attacks or even (known) random-input attacks. (Keyed functions which are secure
under the latter notion are usually called weak PRFs [28] in the literature.19)
This is conveniently modeled by letting the distinguisher access either of E(F)
and E(G), where the construction E(·) enforces a particular type of access, and
F and G are the systems to be distinguished. For a chosen-input attack, E would
just give full access to the underlying system (i.e. E(·) is the identity), and the
following are two additional examples:

19 The name is slightly misleading within the context of this paper, as it can been
used [27] to describe an ε-PRF for a non-negligible ε < 1.



– Random-input attacks against an (X ,Y)-system are modeled by K(·) that,
upon each invocation (with some dummy input), generates a fresh uniformly-
chosen element r ∈ X , makes a query with input r to the given subsystem,
obtaining y ∈ Y, and returns (r, y).

– For a quasi-group operation ∗ on X (usually ⊕), a random-offset attack is
modeled by a construction Z(·) which initially generates a random offset
Z ∈ X , and upon each invocation with input x ∈ X , makes a query to the
given subsystem with input x?Z, and outputs the returned value y. (To our
knowledge, this notion was not previously considered in the literature.)

A feature of the product theorem of this section is that it is easily applicable
also to the restricted-access case.

The Product Theorem. In the following, let C(·) be a neutralizing construc-
tion for systems F1, . . . ,Fm and ideal system I1, . . . , Im, all of which (with the
possible exception of Fm and Im) are cc-stateless. Furthermore, we assume that
Fi(·) is efficiently implementable for all i = 1, . . . ,m− 1,20 and the correspond-
ing (short) random variable Si is drawn from the set Si. Also, we let E(·) be
construction restricting access to Fi and Ii. Finally, for i = 1, . . . ,m, and for
s1 ∈ S1, . . . , si−1 ∈ Si−1 we define

C(i)
s1,...,si−1

(·) := C(F1(s1), . . . ,Fi−1(si−1), · ,Fi+1, . . . ,Fm)

and consider the following two properties:

(i) For all i = 1, . . . ,m − 1 (the property is not necessary for i = m) and all
s1 ∈ S1, . . . , si−1 ∈ Si−1, the ideal system Ii is η-self-independent under
the construction C(i)

s1,...,si−1(·) for some small function η.
(ii) For all i = 1, . . . ,m and s1 ∈ S1, . . . , si−1 ∈ Si−1, there exists a con-

struction T(i)
s1,...,si−1(·) with the property that for independent instances

T1(·), . . . ,Tλ(·) and C1(·), . . . ,Cλ(·) of T(i)
s1,...,si−1(·) and C(i)

s1,...,si−1(·), re-
spectively, and all compatible systems S,

T1(E(S))‖ · · · ‖Tλ(E(S)) ≡ C1(S)‖ · · · ‖Cλ(S).

We define tTi as the maximal complexity (taken over all s1, . . . , si−1) for
implementing the construction T(i)

s1,...,si−1(·).

In the following, we define λ :=
(

4m
γ

)2

· ln
(

4m
γ

)
, for understood m and γ.

Theorem 3 (Strong Product Theorem). Let q > 0 and C(·) be as above
satisfying conditions (i) and (ii), and assume that upon q queries, C(·) makes at
most qi queries to the i-th subsystem. Then, for all t, γ > 0,

∆t,q(C(F1, . . . ,Fm),C(I1, . . . , Im)) ≤
m∏

i=1

∆t′i,q
′
i
(E(Fi),E(Ii))+

m−1∑
i=1

η(qi, λ)+γ,

20 While the same techniques as in the proof of Theorem 1 could be used to address
general cc-stateless systems where F(·) is not necessarily efficient, this will not be
necessary for our applications.



where t′i := λ · (t +O(tTi(qi))) and q′i := λ · qi for all i = 1, . . . ,m − 1, whereas
t′m := t +O(tTm(q)) and q′m := qm.

The proof of Theorem 3 is deferred to the full version of this paper. It abstracts
and generalizes the proof technique used by Myers [27] (which was in turn based
on Levin’s proof of the XOR-lemma [20, 10]).

4.2 Applications of the Strong Product Theorem

We present a number of new results which follow as simple applications of Theo-
rem 3. Let Q1, . . . ,Qm : {0, 1}n → {0, 1}n be cc-stateless random permutations,
and let F1, . . . ,Fm : {0, 1}n → {0, 1}` be cc-stateless random functions. Fur-
thermore, let P : {0, 1}n → {0, 1}n and R : {0, 1}n → {0, 1}` be a URF and
URP, respectively. Assume that Qi(s, x) (and Q−1

i (s, y)) and Fi(s, x) can be
computed in time tQi and tFi , respectively, for all s, x, and y.

Randomized Cascade of PRPs. The perhaps most surprising application is a
strong product theorem for (two-sided) PRPs. We modify the (two-sided) cascade
〈Q1〉B · · ·B〈Qm〉 by choosing two independent random offsets that are added to
the inputs and the outputs, i.e., we consider 〈⊕Z1〉B 〈Q1〉B · · ·B 〈Qm〉B 〈⊕Z2〉
for two independent uniform n-bit strings Z1, Z2, where for some z ∈ {0, 1}n the
system 〈⊕z〉 is the bi-directional mapping which answers a forward query (x,+)
with x⊕ z and a backward query (y,−) with y⊕ z. The computational overhead
is minimal compared to the regular cascade, and requires only additional storage
for two n-bit strings (which are to be seen as part of the secret key).

Clearly the neutralizing property of the original cascade is preserved. Further-
more, using techniques from [22], we show in the full version that the construction
satisfies condition (i) above with η(q, λ) ≤ q2λ22−n. Therefore, Theorem 3 (with
E(·) being the identity) yields the following result.

Corollary 3. For all t, q, γ > 0, and independent uniform n-bit strings Z1, Z2,

∆t,q(〈⊕Z1〉B〈Q1〉B · · ·B〈Qm〉B〈⊕Z2〉, 〈P〉) ≤
m∏

i=1

∆t′i,q
′
i
(〈Qi〉, 〈P〉)+ mq2λ2

2n +γ,

where t′i := λ ·
(
t + O(q ·

∑
j 6=i tQj )

)
and q′i := λ · q for all i = 1, . . . ,m − 1,

whereas t′m := t +O(q ·
∑m−1

j=1 tQj ) and q′m := q.

The result can be used to obtain a δm-two-sided PRP from any δ-two-sided
PRP. (Note that the η-dependent term is negligible for polynomial t, q and any
γ which is the inverse of a polynomial.) It can be shown that the second random
offset Z2 is superfluous in the one-sided case.

Sum of Random-Input PRFs. The construction K(F1 ⊕ · · · ⊕ Fm) (i.e. the
XOR of the functions accessed in a random-input attack) is clearly neutraliz-
ing (the ideal system being K(R)). In the full version, we show that it also
satisfies condition (i) with η(q, λ) ≤ q2λ2

2 · 2−n. Moreover, for all i and keys



s1 ∈ S1, . . . , si−1 ∈ Si−1, the appropriate construction T(i)
s1,...,si−1(·) generates

random keys Si+1, . . . , Sm and whenever invoked, it issues a query to K(S),
obtaining (r, y), and outputs the pair

(
r,

i−1⊕
j=1

Fi(si, r)⊕ y ⊕
m⊕

j=i+1

Fj(Sj , r)
)
.

It is easy to see that these constructions satisfy property (ii), since K(·) evaluates
the given function at a fresh random input upon each invocation. Theorem 3
yields the following result.

Corollary 4. For all t, q, γ > 0,

∆t,q(K(F1 ⊕ · · · ⊕ Fm),K(R)) ≤
m∏

i=1

∆t′i,q
′
i
(K(Fi),K(R)) + (m−1)q2λ2

2n+1 + γ,

where t′i := λ
(
t+O(q ·

∑
j 6=i tFj )

)
and q′i := λ ·q for all i = 1, . . . ,m−1, whereas

t′m := t +O(q ·
∑m−1

j=1 tFj ) and q′m := q.

The result holds for any other quasi-group operation. It is remarkable that
XOR satisfies much stronger indistinguishability amplification properties un-
der random-input attacks than under chosen-input attacks. This is particularly
interesting, as a wide number of applications, such as secure symmetric message
encryption, can efficiently be based on this weaker PRF notion (cf. [5, 25]).

Randomized XOR of PRFs The first product theorem for PRFs, due to
Myers [27], considered the neutralizing composition Z1(F1)⊕ · · · ⊕Zm(Fm) for
independent instances of Z(·). This result is directly implied by Theorem 3,
which in fact also implies the same result for the construction Z(F1⊕ · · · ⊕Fm)
using the same offset for all invocations: As we show in the full version, both
compositions satisfy property (i) with η(q, λ) ≤ q2λ2

2 2−n.
However, a major advantage of Myers’ original construction (which was un-

observed so far) is that independent instances of the construction can be sim-
ulated even when only given access to Z(S) (with S ∈ {Fi,R}). The corre-
sponding construction T(i)

s1,...,si−1(·) chooses independent instances Fi+1, . . . ,Fm,
Z1(·), . . . ,Zi−1(·),Zi+1(·), . . . ,Zm(·), and a random n-bit string Z, and on input
x queries x⊕ Z to Z(S), obtaining y ∈ {0, 1}`, and outputs

y ⊕
i−1⊕
j=1

Zj(Fj(sj))(x)⊕
m⊕

j=i+1

Zj(Fj)(x),

where Zj(Fj)(x) is the result of invoking the system Zj(Fj) on input x.
Once again, condition (ii) is easily verified by the fact that access through

Z(·) can be re-randomized by simply adding a fresh random offset to all inputs.
Thus, Theorem 3 yields the following strengthened version of the main result
of [27].



Corollary 5. For all t, q, γ > 0, and for independent instances Z1(·), . . . ,Zm(·)
of Z(·),

∆t,q(Z1(F1)⊕ · · · ⊕ Zm(Fm),R) ≤
m∏

i=1

∆t′i,q
′
i
(Z(Fi),Z(R)) + (m−1)q2λ2

2n+1 + γ,

where t′i := λ
(
t+O(q ·

∑
j 6=i tFj )

)
and q′i := λ ·q for all i = 1, . . . ,m−1), whereas

t′m := t +O(q ·
∑m−1

j=1 tFj ) and q′m := q.

The best advantage under Z(·) can be significantly smaller than under direct
access: Consider e.g. a good PRF with the additional property of outputting the
zero string when evaluated at some fixed known input, regardless of the key.
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25. U. Maurer and J. Sjödin, “A fast and key-efficient reduction of chosen-ciphertext to
known-plaintext security,” in EUROCRYPT 2007, vol. 4515 of LNCS, pp. 498–516,
2007.

26. S. Myers, “On the development of block-ciphers and pseudo-random function gen-
erators using the composition and XOR operators.” Master’s thesis, University of
Toronto, 1999.

27. S. Myers, “Efficient amplification of the security of weak pseudo-random function
generators,” Journal of Cryptology, vol. 16, pp. 1–24, 2003.

28. M. Naor and O. Reingold, “Synthesizers and their application to the parallel con-
struction of pseudo-random functions,” Journal of Computer and System Sciences,
vol. 58, no. 2, pp. 336–375, 1999.

29. R. Pass and M. Venkitasubramaniam, “An efficient parallel repetition theorem for
Arthur-Merlin games,” in STOC ’07, pp. 420–429, 2007.

30. K. Pietrzak and D. Wikström, “Parallel repetition of computationally sound pro-
tocols revisited,” in TCC 2007, vol. 4392 of LNCS, pp. 86–102, 2007.

31. R. Shaltiel and E. Viola, “Hardness amplification proofs require majority,” in
STOC ’08, pp. 589–598, 2008.

32. S. Vaudenay, “Provable security for block ciphers by decorrelation,” in STACS ’98,
vol. 1373 of LNCS, pp. 249–275, 1998.

33. S. Vaudenay, “Adaptive-attack norm for decorrelation and super-
pseudorandomness,” in SAC ’99, vol. 1758 of LNCS, pp. 49–61, 1999.

34. J. Wullschleger, “Oblivious-transfer amplification,” in EUROCRYPT 2007,
vol. 4515 of LNCS, pp. 555–572, 2007.

35. A. C. Yao, “Theory and applications of trapdoor functions,” in FOCS ’82, pp. 80–
91, 1982.


