
Collusion-Free Multiparty Computation in the
Mediated Model

Joël Alwen1, Jonathan Katz2, Yehuda Lindell3, Giuseppe Persiano4, abhi
shelat5, and Ivan Visconti4 ?

1 New York University, USA, jalwen@cs.nyu.edu
2 The University of Maryland, USA, jkatz@cs.umd.edu
3 Bar-Ilan University, ISRAEL, lindell@cs.biu.ac.il

4 University of Salerno, ITALY, {giuper,visconti}@dia.unisa.it
5 University of Virginia, USA, shelat@virginia.edu

Abstract. Collusion-free protocols prevent subliminal communication
(i.e., covert channels) between parties running the protocol. In the stan-
dard communication model, if one-way functions exist, then protocols
satisfying any reasonable degree of privacy cannot be collusion-free. To
circumvent this impossibility, Alwen, shelat and Visconti (CRYPTO 2008)
recently suggested the mediated model where all communication passes
through a mediator. The goal is to design protocols where collusion-
freeness is guaranteed as long as the mediator is honest, while standard
security guarantees hold if the mediator is dishonest. In this model, they
gave constructions of collusion-free protocols for commitments and zero-
knowledge proofs in the two-party setting.
We strengthen the definition of Alwen et al., and resolve the main open
questions in this area by showing a collusion-free protocol (in the medi-
ated model) for computing any multi-party functionality.

1 Introduction

It is well known that two or more parties running some protocol can poten-
tially embed “disallowed” communication in the protocol messages themselves;
i.e., the parties can use the messages of the protocol as a covert channel to
communicate in a subliminal (a.k.a., steganographic) fashion. As introduced by
Lepinski, Micali, and shelat, a collusion-free protocol [13] rules out such covert
communication. Unfortunately, in the standard communication model, if one
way functions exist, then it is impossible for any protocol whose messages have
any entropy to be collusion-free [9]. This seems to rule out collusion-free proto-
cols in the standard communication model that realize any “interesting” level of
privacy [13].
? The research of the second and third authors was supported by US-Israel Binational

Science Foundation grant #2004240. The research of the fifth and sixth authors
has been supported in part by the European Commission through the ICT program
under Contract ICT-2007-216646 ECRYPT II and through the FP6 program under
contract FP6-1596 AEOLUS. Author shelat is supported by NSF grant 0845811.



2 J. Alwen et al.

Although there has been some work addressing the issue of subliminal chan-
nels in certain limited contexts (mainly signature schemes [17, 7, 4, 19, 3]), the
problem has, until recently, been largely ignored by the cryptographic commu-
nity. Presumably this is because protocol designers generally assume a “worst-
case” adversarial model, where if two parties are dishonest then they are assumed
to be coordinating their actions and communicating out of band anyway. Recent
attention focused on applying cryptographic protocols in game-theoretic set-
tings [13, 11, 10] (see also [12]), however, has re-invigorated interest in designing
collusion-free protocols. Preventing subliminal communication is also important
in other settings. For example, in a large-scale, distributed system where parties
are chosen randomly (from a large pool of players) to run some protocol, the set
of parties running a given instance of the protocol may not have had any chance
to coordinate their actions in advance, and may have no way to communicate out
of band; in this case, the protocol itself introduces a new vulnerability if it can be
used as a means for players to initiate collusion, or to transfer information. The
problem of subliminal communication is not just of theoretical interest: efforts
to collude using covert channels have been observed in high-profile spectrum
auctions [6].

One approach for constructing collusion-free protocols is to rely on the no-
tion of verifiable determinism as introduced by Lepinski et al. [12, 13]. Roughly
speaking, verifiable determinism ensures that at every point in the protocol there
is only a single “valid” message that a player can send; if that player sends any-
thing else, all other parties detect this and raise an alarm. This suffices to prevent
covert communication. Unfortunately, all existing constructions of verifiably de-
terministic protocols for general secure computation [13, 11, 10] rely on strong
physical assumptions such as secure envelopes and ballot boxes.

A completely different approach to the problem was recently suggested by
Alwen, shelat and Visconti [1]. They proposed a model in which each party is
able to communicate only with a mediator. (I.e., the communication network is
a star graph with the mediator at the center.) Rather than remove randomness
from protocol messages, as when using verifiable determinism, this approach has
the mediator add randomness to (i.e., re-randomize) the messages of the protocol
in order to eliminate any subliminal communication. This, of course, assumes the
mediator is honest; when the mediator is dishonest then corrupted parties can
communicate freely using the mediator as a channel. In this case, the protocol
is required to satisfy standard security guarantees.

The mediated model can be realized in many real settings. As an example,
recently in Israel the Maccabi Health Fund (a large HMO) ran an auction with
several insurance companies as bidders. In this auction, the bidders came to
the offices of the HMO and were seated in separate rooms, with no way to
communicate with the outside world (participants were searched for cellphones
and other wireless devices). The auction proceeded in stages with an auctioneer
going from room to room, informing the participants about the results of the
previous round and taking their next bid. It would have been possible in this case



Collusion-Free Multiparty Computation in the Mediated Model 3

to replace the auctioneer with a server mediating the communication between
all parties.

1.1 Our Contributions

In addition to introducing a definition of collusion-freeness in the mediated
model, Alwen et al. also gave the first constructions of collusion-free protocols
in this setting. They showed protocols for commitment and zero-knowledge in
the two-party case, but left open the questions of general secure computation as
well as dealing with more than two parties. In this paper we solve these open
questions, and show the first multi-party protocol for collusion-free computation
of arbitrary functionalities in the mediated model. Feasibility is not trivial in
this setting, in part because we aim to satisfy a stronger definition of security
than that put forth by Alwen et al.; see below. (We view this strengthened defi-
nition as an additional contribution of our work.) Finally, we prove composition
theorems in the mediated setting that may be useful in future work.

The paragraphs that follow briefly describe the most important differences
between our definition and that of Alwen et al. [1]; formal definitions are in
Section 2. The next few paragraphs provide a high-level overview of our protocol
that emphasizes the technical difficulties that arise.

Aborts as a subliminal channel. The definition in [1] allows parties to com-
municate some (bounded) number of bits by aborting the protocol; specifically,
in an r-round protocol each party can communicate roughly log r bits to all other
parties. Alwen et al. conjecture that this is unavoidable. We show that this con-
jecture is false. In our definition we allow only a single bit to be communicated,
where this bit indicates whether some party aborted at some point in the pro-
tocol but does not reveal which parties aborted or in which rounds these aborts
occurred. Achieving this stronger notion introduces many of the complications
in designing our protocol.

Set-up assumptions. Alwen et al. assume no shared state between the parties,
and this allows the mediator to potentially “fork” the parties (in the sense of [2])
into disjoint subsets running independent computations. To prevent this, Alwen
et al. assume that even a dishonest mediator behaves honestly during a “set-up”
phase. (See further discussion in Section 2.)

In addition to this model, we also analyze a model where there is assumed
to be a trusted public-key infrastructure (PKI) such that all parties running the
protocol know each others’ public keys. These two set-up assumptions are in-
comparable: the first makes assumptions regarding the behavior of the mediator
but can achieve a stronger notion of collusion-freeness; the second may be more
realistic but requires the involvement of an external trusted party to set up the
public key infrastracture.



4 J. Alwen et al.

1.2 Overview of our Protocol

The discussion here omits certain details and is meant only to illustrate the
high-level structure of the protocol. A formal description of the protocol is given
in Section 3.

Let P1, . . . , Pn be a set of n parties, each communicating with a mediator
Pn+1, who wish to compute some (randomized) functionality F . Let π be a
protocol that securely computes F in the standard communication model with
broadcast. (In fact, we assume without loss of generality that all messages in π
are sent over the broadcast channel.) We compile π to obtain a collusion-free
protocol Π in the following way. For each message msg sent by some party Pi
in protocol π do:

1. Pi and the mediator run a protocol for secure two-party computation of a
functionality Fπcompute that outputs to the mediator the next message msg
that Pi would send in the underlying execution of π. (A secure computation
is needed since Pi will not actually know any of the messages sent by other
parties in previous rounds of π; see step 2.)
If the mediator does not obtain a valid msg (i.e., if Pi aborts or provides
incorrect input to Fπcompute), then the mediator sets msg to some default
value. (This step is essential if we wish to prevent parties from using aborts
as a covert channel.)

2. The mediator sends independent commitments of msg to each of the other
parties.

At the end of the protocol, the mediator runs a secure two-party computation
with each party Pi that allows Pi to learn their output, as specified by protocol π.

It is not too difficult to argue that the above protocol is collusion-free when
the mediator is honest. Intuitively, this is because each party sees only indepen-
dent commitments to messages rather than the messages themselves. However,
the following issues arise due to the need to preserve security when the mediator
is dishonest:
Authentication. The mediator should be prevented from modifying the mes-
sages of honest parties. To achieve this, we change Fπcompute to output (msg, σ),
where σ is a valid signature6 by Pi on msg, and require the mediator to send com-
mitments on both these values to the other parties. Furthermore, Fπcompute will
ensure that all previous commitments contain appropriately signed messages.
Preventing subliminal channels based on aborts. Signing each message
(as just described) prevents a dishonest mediator from modifying honest parties’
messages, but introduces a potential problem with collusion-freeness when the
mediator is honest: if a party aborts, the mediator has no way of generating a
(commitment to a) default message with an appropriate signature. We fix this
by allowing the mediator in this case to commit to a “dummy message” with
6 As discussed earlier, we consider two different set-up assumptions: public keys can

be established either during a preamble phase, or via an external PKI. See further
discussion in the following section.



Collusion-Free Multiparty Computation in the Mediated Model 5

no signature; we also change Fπcompute so that if it detects a dummy message the
mediator receives no output. The effect is that parties cannot detect whether
anyone has aborted until the end of the protocol, and never learn which (or how
many) parties aborted nor the round(s) in which an abort occurred.

Ensuring “broadcast”. Protocol π is secure under the assumption that par-
ties communicate over a broadcast channel. In our compiled protocol, where all
communication is routed through the mediator, we need a way to ensure that
a dishonest mediator sends (different commitments to) the same message to all
parties. We implement this “mediator broadcast” by, roughly speaking, having
the mediator (1) collect signatures from all parties on the committed messages;
(2) send independent commitments on these signatures to all parties; and then
(3) prove to each party independently that all parties have signed a commit-
ment to the same underlying message. As above, in case of an abort we allow
the mediator to send a “dummy commitment” to the parties.

Handling concurrency. When the mediator is honest, the protocols computing
Fπcompute, as well as the sub-protocols used to implement mediator broadcast, are
run sequentially. But when the mediator is dishonest, it may run concurrent
executions with the honest parties. We thus need all the two-party protocols
being run to be secure under (bounded) concurrent self composition.

2 Definitions

Standard cryptographic primitives. Let C be a perfectly binding commit-
ment scheme, where C(m; r) denotes a commitment to m using random coins r.
The decommitment of com = C(m; r) is dec = (m, r). We assume the length of
all commitments is a fixed function of the message length.

Let (Gen,Sign,Vrfy) be a signature scheme that is existentially unforgeable
under adaptive chosen-message attacks. Range(Gen) denotes the set of outputs
of Gen, and we assume (without loss of generality) that one can efficiently decide
whether a given (sk, pk) lies in Range(Gen). We assume the length of all valid
signatures is some known, fixed function of the message length.

Security in the mediated model – preliminaries. We use the real/ideal
paradigm for defining security, but our real and ideal worlds differ from the usual
ones and collusion-freeness requires a new definition. Our real world is essentially
standard except that all communication is between parties P1, . . . , Pn and the
mediator Pn+1. We define two different ideal worlds depending on whether the
mediator is honest (and collusion-freeness is the goal) or dishonest (in which case
we default to the standard notion of security). In each ideal world we consider two
possible set-up assumptions; see below. Collusion-freeness is defined by requiring
the existence of independent simulators, one for each malicious party, such that
their joint output in the ideal world is indistinguishable from the joint output
of the malicious parties in the real world.

Let F = (f1, . . . , fn+1) denote the functionality the parties wish to compute,
where each fi maps n + 1 inputs to a single output. (We allow the mediator



6 J. Alwen et al.

to provide input and receive output, something not done in [1].) We implicitly
assume that any protocol under discussion for computing F is correct : i.e., if
parties P1, . . . , Pn+1 have inputs x1, . . . , xn+1 and run the protocol honestly,
then each Pi receives output fi(x1, . . . , xn+1), distributed appropriately in case
F is randomized.

Set-up assumptions. Alwen et al. [1] observe that if no setup is assumed,
then—because all parties communicate only with the mediator—a dishonest
mediator can “fork” the parties into disjoint groups, each running a separate
computation (much as in [2]). To prevent this, parties must be able to “authen-
ticate” to each other. (It is as an interesting open question to assume no setup
and treat “forking” attacks directly, but this is not the focus of our work.)

Here, we study two set-up assumptions under which such authentication can
be implemented. The first, termed trusted-PKI, assumes a PKI in the usual sense,
with each party knowing the public keys of all the other parties running the
protocol. We stress that we do not assume honestly generated keys, or require
parties to prove knowledge of their keys; all we require is consistency.

While this approach is appealing, it loses something in the “spirit” of collusion-
freeness since parties are now potentially able to follow strategies based on each
others’ identities. Nevertheless, we believe the trusted-PKI model is meaningful
in the context of collusion-freeness. For one, public keys can be generated be-
fore inputs are given to the parties (and before the function being computed
is agreed upon!), and so the use of any subliminal communication will be lim-
ited. Furthermore, parties who are not aware of each other before execution of
the protocol will necessarily generate their public keys independently, whereas
parties who are aware of each other before executing the protocol cannot be
prevented anyway from communicating arbitrary information in advance.

We also consider the mediated-PKI model that provides stronger guarantees
of collusion-freeness under a different assumption. Specifically, here we follow
Alwen et al. [1] and assume that even a dishonest mediator follows the protocol
during a “preamble” phase where a “pseudo-PKI” is established. Instead of
viewing this as an assumption, one can also interpret this as a claim that if the
mediator acts in a particular way then certain guarantees hold.

2.1 Execution in the Real World (with an Honest Mediator)

We first consider the real world (i.e., the mediated model) in which an (n+ 1)-
party protocol Π is executed. Channels are available only between the mediator
Pn+1 and Pi (for all i). For simplicity the channels to/from Pn+1 are assumed
to be private and authenticated.

In this section we assume the mediator is honest; we consider the case of a
dishonest mediator in Section 2.4. Let I ⊆ [n] denote the set of corrupt parties7

and denote by H = [n] \ I the set of uncorrupted parties (not including the

7 In contrast to the usual case, here a meaningful definition is obtained even when
I = [n].



Collusion-Free Multiparty Computation in the Mediated Model 7

mediator). A real world execution begins with a “PKI establishment” stage for
which we define two variants:

– trusted-PKI: For i ∈ H, party Pi honestly generates a signature key pair
(pki, ski). Each corrupted party Pi may generate an arbitrary public key
pki. Once all keys have been generated, each Pi is given the vector KeyVeci :=
(pk1, . . . , pkn) of public keys, and the mediator is given KeyVecin+1 := KeyVeci
for all i ∈ [n]. (The notation is chosen to be consistent with the mediated-PKI
setting below.) We say that KeyVeci matches KeyVecin+1 if they are equal.

– mediated-PKI: For i ∈ H, party Pi honestly generates a signature key pair
(pki, ski). Each corrupted party Pi may generate an arbitrary public key pki.
All parties send pki to the mediator. (If a party fails to send anything, the
mediator uses a default public key.) The mediator chooses independent coins
{rji }i,j∈[n], computes cji = C(pki; r

j
i ), and sends KeyVeci := (ci1, . . . , c

i
n) to

party Pi. The mediator keeps the vectors of decommitments KeyVecin+1 :=
((pk1, r

i
1), . . . , (pkn, rin)). We say that KeyVeci matches KeyVecin+1 if for all

j ∈ [n] the jth component of KeyVecin+1 is a valid decommitment to the jth
component of KeyVeci.

The remainder of the real-world execution is identical in both settings.

Input determination and protocol execution: Each party Pi (for i ∈ [n+
1]) is given input xi. Party Pi is also given auxiliary input auxi (which honest
players ignore) as well as independent random coins ri. The parties then run
the protocol, with honest parties (including the mediator) acting as directed
by Π, and corrupted parties behaving arbitrarily.

Result of the experiment: At the conclusion of the protocol, let outi, for
i ∈ I, denote the entire view of the corrupted party Pi, and let outi, for
i ∈ H ∪ {n + 1}, denote the final output of Pi (as dictated by Π). Given a
set of adversarial strategies AI = {Ai}i∈I , define

realmediated
Π,AI(aux)(1

k,x) def= (out1, . . . ,outn+1)

to be the random variable consisting of the stated outputs following an ex-
ecution of Π where the parties are given inputs x = {x1, . . . , xn+1} and
auxiliary inputs aux = {aux1, . . . , auxn+1}.

2.2 Execution in the Ideal World (with an Honest Mediator)

We continue to assume the mediator is honest. In this ideal world, all parties
communicate only with a trusted party computing F . In particular, corrupted
parties are unable to communicate with each other and therefore cannot commu-
nicate information about their inputs or coordinate their actions (beyond what
they have agreed upon in advance). Let I ⊆ [n] be the set of corrupted parties,
and let H = [n] \ I be the set of honest parties (other than the mediator) as
before.



8 J. Alwen et al.

As in the previous section, we distinguish between two settings in the ideal
world. The trusted-PKI setting includes a “PKI establishment” step where a PKI
is established exactly as in the real world: for i ∈ H, party Pi honestly generates
signature keys (pki, ski). A corrupted Pi outputs any public key pki of its choice.
For i ∈ [n] party Pi is then given the vector KeyVeci := (pk1, . . . , pkn) of public
keys. The mediated-PKI setting has no PKI establishment step.

The remainder of the ideal-world execution is identical in both settings.

Input determination: Each party Pi (for i ∈ [n + 1]) is given their input xi
and auxiliary input auxi (which an honest player ignores).
An honest party sets x′i = xi and sends x′i to F . A corrupted Pi may send
any x′i of its choice. Unless otherwise specified, if any x′i =⊥ then all parties
get output ⊥ from F . Otherwise, F hands fi(x′1, . . . , x

′
n+1) to party Pi, for

i ∈ [n+ 1].
Note that a malicious party who “aborts” by sending ⊥ to F communicates
(at most) one additional bit to all other parties beyond what is directly im-
plied by F . Furthermore, this decision to abort must be made independently
of the output of F on the given inputs.

Result of the experiment: At the conclusion of the protocol, let outi, for i ∈
I, denote an arbitrary value output by Pi, and let outi, for i ∈ H∪{n+ 1},
denote the value given to Pi by F . Given a set of adversarial strategies
SI = {Si}i∈I , define

idealcf
F,SI(aux)(1

k,x) def= (out1, . . . ,outn+1)

to be the random variable consisting of the stated outputs following an ideal-
world execution where the parties are given inputs x and auxiliary inputs
aux as specified.

2.3 Collusion-Freeness

Having defined the ideal and real models, we can now define collusion-freeness.
If we followed the standard definitional paradigm, we would require that for all
I and any set of efficient real-world strategies AI = {Ai}i∈I , there should exist
a set of efficient ideal-world strategies SI = {Si}i∈I such that the corresponding
real- and ideal-world outcomes are computationally indistinguishable. A defi-
ciency of this approach is that it allows each Si to depend on I as well as all
the Aj (i.e., even for j 6= i), and thus this approach does not adequately model
collusion-freeness. Since we want each Si to depend only onAi, we instead require
the existence of a set of efficient transformations {Simi}i∈[n] such that setting
Si = Simi(1k,Ai) for i ∈ I makes the real and ideal worlds indistinguishable.

Definition 1. Let F be a functionality, and Π an (n + 1)-party protocol com-
puting F in the mediated model. Π is a collusion-free protocol computing F if
there is a set {Simi}i∈[n] of efficiently-computable transformations such that, for



Collusion-Free Multiparty Computation in the Mediated Model 9

all I ⊆ [n] and any ppt strategies {Ai}i∈I , setting Si = Simi(1k,Ai) for i ∈ I
implies that the following two distributions are computationally indistinguishable:{

idealcf
F,SI(aux)(1

k,x)
}

x,aux∈({0,1}∗)n+1, k∈N{
realmediated

Π,AI(aux)(1
k,x)

}
x,aux∈({0,1}∗)n+1, k∈N

2.4 Security (with a Dishonest Mediator)

The definition in the case of a dishonest mediator is essentially the standard
one for secure multi-party computation, with the exception being that honest
parties cannot communicate directly in the real world. (We also incorporate a
PKI establishment phase as in the prior sections.) Further details are given in
the full version. A protocol satisfying both Definition 1 and the definition for
the case of a dishonest mediator will be called a collusion-free protocol securely
computing F .

3 Collusion-Free Multiparty Computation in the
Mediated Model

We construct a collusion-free protocol Π for secure computation of an arbitrary
(poly-time) functionality F = (f1, . . . , fn+1). We first introduce the components
of our protocol, and describe the protocol in full detail in Section 3.4. High-level
intuition for the protocol was given in Section 1.2.

3.1 Building Blocks

Our protocol uses some cryptographic primitives and tools which we review here.
Two-party functionalities. We use ideal functionalities to model various sub-
protocols used in Π. Standard functionalities we use are the commitment func-
tionality Fcom, the coin-tossing functionality Fct, the zero-knowledge function-
ality Fzk, and the signature functionality FSign:

1. Fcom is defined by Fcom((m, r), λ) = (⊥, C(m; r)), where λ denotes the
empty string.

2. The coin-tossing functionality is defined by Fct(1`, λ) = ((r, s), C(r; s)),
where |r| = ` and both r and s are uniformly distributed.

3. Let R be an NP-relation. Functionality Fzk for the relation R is defined by

Fzk((x,w), x′) =
{

(⊥, R(x,w)) if x = x′

(⊥, 0) otherwise

4. The signature functionality is defined as:

FSign((sk, pk,m), (pk′,m′)) =

 (⊥,Signsk(m)) if (pk,m) = (pk′,m′) and
(sk, pk) ∈ Range(Gen)

(⊥,⊥) otherwise



10 J. Alwen et al.

A protocol π securely computing F (in the standard sense): Let π be
an (n+ 1)-party protocol that securely computes F in the usual sense [8], in the
standard communication model where all parties have access to a public (but
authenticated) broadcast channel. Precisely, π is secure-with-designated-abort
for any number t ≤ n+1 of corrupted parties, where the mediator Pn+1 is desig-
nated as the party who can prematurely abort the protocol. Roughly speaking,
this means that the protocol guarantees privacy and correctness regardless of
how many parties are corrupted, and guarantees output delivery and complete
fairness as long as the mediator is not corrupted. For technical reasons, we also
assume that π is proved secure using a black-box simulator.
By using standard techniques, we may assume without loss of generality that:

• All messages in π have the same, fixed length. In any given round only a single
party broadcasts, and the identity of the party who broadcasts depends on
the current round number only.

• Say π has r rounds. Then Pn+1 learns its output in round r − 1; party Pn+1

broadcasts in round r; and every other party learns its output in round r.

Dummy commitments: As described in Section 1.2, everything the mediator
sends to the parties will be “wrapped” inside a commitment. When all parties
behave honestly, these will all be commitments to legitimate messages of pro-
tocol π along with a digital signature. If some party Pi aborts (or otherwise
deviates from the protocol), however, an honest mediator will not be able to
generate a valid commitment of this sort (in particular, the mediator will be
unable to forge an appropriate signature). Nevertheless, we do not want some
other party to learn that Pi aborted the protocol Π. We achieve this by allowing
the mediator to send special “dummy commitments” to a distinguished value
dummy. (I.e., a dummy commitment takes the form C(dummy; r).) For the sake
of concreteness, dummy can be taken to be a string of 0s of the appropriate
length if we require that all legitimate messages be prefixed by a ‘1’.

3.2 Oblivious Computation of π

The general structure of protocol Π, as described in Section 1.2, has the mediator
send to each Pj commitments to all the protocol messages of π. Thus, Pj cannot
compute its π-messages directly (since it cannot directly observe the π-messages
of other parties), but must instead compute these messages by executing a two-
party protocol with the mediator. Specifically, we define a functionality Fπcompute

that computes the next π-message of Pj along with a signature of Pj on that
message, and a functionality Fπoutput that enables Pj to obtain its π-output. (The
actual functionalities we require are more complex because we must also check
for incorrect behavior on the part of the mediator.) These are defined formally
in Figures 1 and 2. Observe that only the mediator Pn+1 receives output from
Fπcompute, and only Pj receives output from Fπoutput.



Collusion-Free Multiparty Computation in the Mediated Model 11

Functionality Fπ
compute

Functionality Fπcompute runs with two parties Pj and Pn+1 and works as follows:

– Pj inputs a pair of commitments cominput and comrand; a vector of commitments
C; vector KeyVec; and a round number rid. In addition, Pj sends two strings
decinput and decrand, and its signing key skj .

– Pn+1 inputs a pair of commitments cominput
j and comrand

j ; a vector of commit-
ments Cj ; vector KeyVec′; and a round number rid′. In addition, Pn+1 sends
a vector decj .

– Upon receiving the above, Fπcompute does:
1. If KeyVec does not match KeyVec′ then send⊥ to Pn+1 and halt. Otherwise

extract the parties’ public keys (pk1, . . . , pkn) from KeyVec′.
2. If (cominput, comrand,C, rid) 6= (cominput

j , comrand
j ,Cj , rid

′) or if (skj , pkj) 6∈
Range(Gen), then send ⊥ to Pn+1 and halt.

3. If decinput is not a valid decommitment to cominput
j , or decrand is not a valid

decommitment to comrand
j , or decj does not contain valid decommitments

to all the commitments in Cj , then send ⊥ to Pn+1 and halt.
4. Let (msg1, σ1), . . . , (msg`, σ`) be the committed values in Cj . If any of

these are dummy values, send ⊥ to Pn+1 and halt. For 1 ≤ i ≤ `, let `i
denote the index of the party who is supposed to broadcast in round i of π.
If there exists an i such that (1) `i 6= n+1 and (2) Vrfypk`i

((msgi, 0i), σi) 6=
1, then send ⊥ to Pn+1 and halt.

5. Let xj and rj be the committed values in cominput
j and comrand

j respectively.
Compute the next message msg that party Pj would send in protocol π
when running with input xj , random tape rj , and after receiving messages
msg1, . . . ,msg`. In addition, compute σ = Signskj

(msg, rid). Send (msg, σ)
to Pn+1 and halt.

Fig. 1. The functionality computing the next message of π

3.3 Mediator Broadcast

Protocol π assumes that all parties communicate over a broadcast channel. When
the mediator is corrupt, we therefore must ensure that the mediator sends (com-
mitments to) the same message to all honest parties. Note that checking for
signatures on protocol messages, as done by Fπcompute and Fπoutput, only ensures
that this holds for the messages of honest parties; it does not prevent a dishon-
est mediator from sending different messages on behalf of corrupted parties (who
may collude with the mediator and sign multiple messages).

We achieve the above using what we call “mediator broadcast.” The mediator
Pn+1 begins holding a message m, and at the end of the protocol each Pi obtains
an (independent) commitment comi to a message mi. The desired functionality
is, informally, as follows: If all parties are honest, then mi = m for all Pi. If Pn+1

is honest, then there is an m′ ∈ {m, dummy} such that mi = m′ for all honest
parties Pi. If Pn+1 is dishonest, then there is an m′ such that mi ∈ {m′, dummy}



12 J. Alwen et al.

Functionality Fπ
output

Functionality Fπoutput runs with two parties Pj and Pn+1 and works as follows:

– Pj inputs a pair of commitments cominput and comrand, vector KeyVec, and a
vector of r commitments C. In addition, Pj sends two strings decinput and
decrand.

– Pn+1 inputs a pair of commitments cominput
j and comrand

j , vector KeyVec′, and
a vector of r commitments Cj . In addition, Pn+1 sends a vector decj .

– Upon receiving the above, Fπoutput does:
1. If KeyVec does not match KeyVec′ then send ⊥ to Pj and halt. Otherwise

extract the parties’ public keys (pk1, . . . , pkn) from KeyVec′.
2. If (cominput, comrand,C) 6= (cominput

j , comrand
j ,Cj), then send ⊥ to Pj and

halt.
3. If decinput (resp., decrand) is not a valid decommitment to cominput

j (resp.,

comrand
j ), or decj does not contain valid decommitments to all the com-

mitments in Cj , then send ⊥ to Pj and halt.
4. Let (msg1, σ1), . . . , (msgr, σr) be the committed values in Cj . If any of

these are dummy values, send ⊥ to Pj and halt. For 1 ≤ i ≤ r, let `i denote
the index of the party who is supposed to broadcast in round i of π. If there
exists an i such that (1) `i 6= n + 1 and (2) Vrfypk`i

((msgi, 0i), σi) 6= 1,

then send ⊥ to Pj and halt.
5. Let xj and rj be the committed values in cominput

j and comrand
j . Com-

pute the value outj that party Pj would output in protocol π when run-
ning with input xj , random tape rj , and after receiving the messages
msg1, . . . ,msgr. Send outj to Pj and halt.

Fig. 2. The functionality computing the output of π

for all honest parties Pi. This is a weak form of broadcast, but suffices for our
application.

In Figure 3, we formally define a functionality F sid
bcast, parameterized by a

session id sid, implementing the above. (An honest mediator chooses r1, . . . , rn
uniformly at random, and sets H = [n]; an honest Pi sends bi = 1.) We stress
that the functionality always outputs a commitment for each party, even if some
(dishonest) party aborts. Our protocol Πsid

bcast realizing F sid
bcast proceeds, roughly

speaking in the following three stages:

1. Pn+1 sends comi = C(m; ri) to each party Pi.
2. Pi generates a signature σi on (comi, sid), and sends σi to Pn+1.
3. If any Pi fails to send a valid signature, then Pn+1 sends (independent)

dummy commitments to all parties. Otherwise, Pn+1 sends an independent
commitment to (com1, σ1, . . . , comn, σn) to all parties. In either case, Pn+1

then proves to each party in zero knowledge that the commitments it sent
takes one of these forms.



Collusion-Free Multiparty Computation in the Mediated Model 13

F sid
bcast

Functionality F sid
bcast runs with P1, . . . , Pn, Pn+1 as follows:

• For j ∈ [n], each Pj inputs a bit bj and KeyVecj .

• Pn+1 inputs a message m, {KeyVecjn+1}j∈[n], random coins r1, . . . , rn, and a set
H ⊆ [n].

• For all i ∈ [n], if KeyVeci and KeyVecin+1 do not match then set H := H \ {i}.
• Let b =

V
i bi.

• If b = 1, then:
• For i ∈ H send comi = C(m; ri) to Pi.

• For i ∈ [n] \ H, send comi = C(dummy; ri) to Pi.
If b = 0, then for i ∈ [n] send comi = C(dummy; ri) to Pi. In either case, send
b to Pn+1.

Fig. 3. “Mediator broadcast”

The actual protocol Πsid
bcast is slightly more complex. Furthermore, for technical

reasons we do not use commitments, signatures, or zero-knowledge proofs di-
rectly but instead work in the (Fcom, FSign, Fzk)-hybrid model. The complete
protocol and a proof of security are given in the full version of the paper.

3.4 A Protocol Π for Collusion-Free Secure Computation

We now describe a collusion-free protocol Π that securely computes F in the
(Fcom, Fct, Fπcompute, Fπoutput, F sid

bcast)-hybrid model. When these functionalities are
realized using protocols designed for the mediated model, we obtain a protocol
for the real mediated model.

Our protocol consists of three stages. In the first stage, the parties commit to
their inputs and random coins for a protocol π that securely computes F (in the
standard sense). In the second stage, the parties simulate π, round-by-round, as
follows. If it is Pj ’s turn to broadcast (for j ∈ [n]), then Pj runs Fπcompute with
the mediator; thus, the mediator obtains the next π-message msg along with
a signature of Pj on this message (and the current round number). If it is the
mediator’s turn to broadcast, the mediator simply computes the next π-message
msg on its own, and then runs “mediator broadcast” using msg. As long as
everyone behaves honestly, each party thus learns commitments to all messages
of the protocol. In the third stage, the mediator runs Fπoutput with each Pj to
enable Pj to learn its output. We now describe the protocol formally.

The protocol begins with each party Pi (i ∈ [n]) holding a vector KeyVeci,
and with the mediator holding {KeyVecin+1}i∈[n]. Party Pi also holds input xi
and, if i ∈ [n], its own secret key ski.

Stage 1 – input commitment and coin tossing:



14 J. Alwen et al.

1. Each Pj executes Fcom with Pn+1, where Pj chooses random sj and provides
input decinput

j = (xj , sj) to Fcom. Let cominput
j be the commitment received

by Pn+1 from Fcom.
2. Each Pj executes Fct with Pn+1, where the input length ` is the number of

coins needed to run π. We denote by decrand
j = (rj , s′j) the output of Pj and

by comrand
j the output of Pn+1.

Stage 2 – round-by-round emulation of π: The mediator Pn+1 initializes
abort = false. Then, for i = 1 to r − 1, the parties run the following:

1. (Pn+1 learns the round-i message of π.)
Case 1: Party Pj , for 1 ≤ j ≤ n, is supposed to broadcast in the ith round
of π.
– Let Cj = (comj

1, . . . , comj
i−1) be the commitments that Pj output in the

previous i− 1 rounds.
– Pj and Pn+1 run an instance of Fπcompute. Here, Pj sends Fπcompute its

commitments cominput
j and comrand

j , the vector of commitmentsCj , vector
KeyVecj , the round identifier rid = 0i, the decommitments decinput

j and
decrand

j , and its signing key skj .
Pn+1 sends Fπcompute the commitments cominput

j , comrand
j , and (comj

1, . . . ,
comj

i−1); vector KeyVecjn+1; the round identifier rid = 0i; and the decom-
mitments (decj1, . . . , decji−1).

– If Fπcompute returns ⊥ to Pn+1, then Pn+1 sets abort = true and mi =
dummy. Otherwise, if Fπcompute returns (msgi, σi) to Pn+1, then Pn+1 sets
mi = (msgi, σi).

Case 2: Pn+1 is supposed to broadcast in the ith round of π:
– If abort = true then Pn+1 sets mi = dummy. If abort = false then Pn+1

locally computes the message msgi as instructed by π (this is possible
since Pn+1 sees all π-messages “in the clear”), and sets mi = msgi.

2. (Pn+1 “broadcasts” the round-i message of π.) Let sid = 1i. Pn+1

chooses random r1, . . . , rn and runs F sid
bcast with the other parties, where

Pn+1 provides input (mi, r1, . . . , rn,H = [n], {KeyVecin+1}i∈[n]) and every
other party Pj provides input 1 and KeyVecj .
Each party Pj defines comj

i to be the commitment that it received from
F sid

bcast. Note that Pn+1, given its output from F sid
bcast, can compute the com-

mitments {comj
i}j∈[n], and knows the corresponding decommitments.

Stage 3 – output determination: (Note that this emulates the rth and final
round of π.)

1. If abort = true then Pn+1 sets msgr = dummy and sets outn+1 =⊥. If
abort = false then Pn+1 computes its π-output outn+1 and final mes-
sage msgr locally (it can do this since Pn+1 sees all π-messages “in the
clear”). In either case, the mediator then sets sid = 1r, chooses random
r1, . . . , rn, and runs F sid

bcast with all the other parties, where Pn+1 provides



Collusion-Free Multiparty Computation in the Mediated Model 15

input (msgr, r1, . . . , rn,H = [n], {KeyVecin+1}i∈[n]) and every other party Pi
provides input 1 and KeyVeci. The mediator outputs outn+1.
Each party Pj defines comj

r to be the commitment that it received from
F sid

bcast. Note that Pn+1 can compute the commitment, and knows the corre-
sponding decommitment.

2. The mediator Pn+1 runs Fπoutput with each Pj , where Pj provides input
cominput

j , comrand
j , KeyVecj , (comj

1, . . . , comj
r), decinput

j , and decrand
j , and Pn+1

sends cominput
j , comrand

j , KeyVecjn+1 the commitments (comj
1, . . . , comj

r), and
the decommitments (decj1, . . . , decji−1).
Each party Pj outputs the value it receives from Fπoutput in this step.

4 Proof of Security

All the results stated here apply to protocols run in either the trusted-PKI or
mediated-PKI settings.

We first prove that Π is a collusion-free protocol that securely computes F
in the (Fcom, Fct, F sid

bcast, Fπcompute, Fπoutput)-hybrid model. A proof of the following
appears in the full version of the paper.

Theorem 1. Let π be a protocol that securely computes F (as required in Sec-
tion 3.1); let C be a perfectly binding commitment scheme; and let (Gen,Sign,Vrfy)
be a secure signature scheme. Then protocol Π from the previous section is
a collusion-free protocol for securely computing F in the (Fcom, Fct, F sid

bcast,
Fπcompute, Fπoutput)-hybrid model.

We now show that when the ideal-world functionalities are instantiated using
protocols satisfying appropriate definitions of security, we obtain a collusion-free
protocol that securely computes F in the real mediated model. We obtain this
as a corollary of the following composition theorems.

Theorem 2. Let Π be a collusion-free protocol computing F in the G-hybrid
model, where Π contains polynomially many sequential calls to G, and let ρ
be a collusion-free protocol computing G. Then the composed protocol Πρ is a
collusion-free protocol computing F in the real mediated model.

A proof of Theorem 2 follows along the lines of [5] and is given in the full version
of the paper.

Theorem 3. Let G be a two-party functionality, and let Π be a multi-party
protocol that securely computes F in the G-hybrid model for concurrent self com-
position. Assume further that Π only makes calls to G (i.e., there are no other
messages in Π), and that Pn+1 plays the role of the second party in all calls
to G. Let m denote the overall number of calls to G in Π.

If ρ is a two-party protocol that securely computes G under m-bounded con-
current self-composition, then the composed protocol Πρ securely computes F in
the real mediated model.



16 J. Alwen et al.

Note that even if Π instructs the parties to make sequential calls to G, The-
orem 3 requires ρ to be secure under (bounded) concurrent self-composition
since a dishonest mediator may run concurrent executions with different hon-
est parties. Theorem 3 follows immediately from the definition of m-bounded
concurrent self composition; a proof is given in the full version of the paper.

We can now prove our main result:

Corollary 1. Let F be a polynomial-time, multi-party functionality. Then as-
suming the existence of enhanced trapdoor permutations, there exists a collusion-
free protocol for securely computing F in the real mediated model, in either the
trusted-PKI or mediated-PKI settings.

Proof. Let Πcf denote the protocol of Section 3.4, where:

– C is a perfectly binding commitment scheme and (Gen,Sign,Vrfy) is a secure
signature scheme;

– π securely computes F (in the standard communication model) as specified
in Section 3.1;

– Fcom, Fct, Fπcompute, and Fπoutput are instantiated by a single protocol8 ρ that
is secure under m-bounded concurrent self-composition [14, 16] (m will be
specified in the proof below);

– F sid
bcast is instantiated using protocol Πsid

bcast (given in the full version of the
paper) where Fcom,FSign, and Fzk are realized by the same protocol ρ as
above.

Note that Πcf is defined in the real mediated model, and all the components
above can be constructed under the assumption that enhanced trapdoor per-
mutations exist. We now prove that Πcf is a collusion-free protocol securely
computing F .

In the case of an honest mediator, this follows directly from Theorems 1 and 2
using the fact that the “mediator broadcast” protocol of Section 3.3 is collusion-
free and the observation that any two-party protocol secure in the standard
sense is trivially collusion-free. (If ρ is secure under m-bounded concurrent self-
composition, it is also secure in the stand-alone sense.)

In the case of a dishonest mediator, the proof is slightly more involved since
the hybrid-world protocol Π, as specified, does not fulfill the requirements of
Theorem 3 (because Πsid

bcast is not a two-party protocol). Nevertheless, observe
that Πsid

bcast consists only of calls to the two-party functionalities Fcom, FSign,
and Fzk. Thus, if we define Π ′ to be the same as protocol Π but using Πsid

bcast

instead of F sid
bcast, it follows that Π ′ does fulfill the requirements of Theorem 3.

Observing that this changes the output distribution by at most a negligible
amount (by security of Πsid

bcast), we have that Π ′ securely computes F in the
(Fcom,Fct,FSign,Fzk,Fπcompute,Fπoutput)-hybrid model. Using an appropriate pro-
tocol ρ as required by Theorem 3, where m is the total number of ideal calls in
Π ′, we conclude that Πcf = Π ′

ρ securely computes F in the mediated model.
8 This means we simply “wrap” these functionalities in one larger functionality, and

have parties provide an additional input selecting which sub-functionality to run.



Collusion-Free Multiparty Computation in the Mediated Model 17

References

1. J. Alwen, A. Shelat, and I. Visconti. Collusion-Free Protocols in the Mediated
Model. Advances in Cryptology—Crypto 2008, p. 497–514, 2008.

2. B. Barak, R. Canetti, Y. Lindell, R. Pass, and T. Rabin. Secure Computation
without Authentication. Advances in Cryptology—Crypto 2005, p. 361–377, 2005.

3. J. M. Bohli and R. Steinwandt. On Subliminal Channels in Deterministic Signature
Schemes. Information Security and Cryptology—ICISC 2004, p. 182–194, 2005.

4. M. Burmester, Y. Desmedt, T. Itoh, K. Sakurai, H. Shizuya, and M. Yung.
A Progress Report on Subliminal-Free Channels. Information Hiding Workshop,
LNCS vol. 1174, p. 157–168, 1996.

5. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

6. P. Cramption and J. Schwartz. Collusive Bidding: Lessons from the FCC Spectrum
Auctions. Journal of Regulatory Economics 17(3): 229–252, 2000.

7. Y. Desmedt. Simmons’ Protocol is not Free of Subliminal Channels. IEEE Com-
puter Security Foundations Workshop, p. 170–175, 1996.

8. O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications. Cambridge
University Press, 2004.

9. N. Hopper, J. Langford, and L. von Ahn. Provably Secure Steganography. Advances
in Cryptology—Crypto 2002, p. 77–92, 2002.

10. S. Izmalkov, M. Lepinski, and S. Micali. Verifiably Secure Devices. Theory of Cryp-
tography Conference (TCC) 2008, p. 273–301, 2008.

11. S. Izmalkov, S. Micali, and M. Lepinski. Rational Secure Computation and Ideal
Mechanism Design. Foundations of Computer Science (FOCS) 2005, p. 585–595,
2005.

12. M. Lepinski, S. Micali, and A. Shelat. Fair Zero-Knowledge. Theory of Cryptogra-
phy Conference (TCC) 2005, p. 245–263, 2005.

13. M. Lepinski, S. Micali, and A. Shelat. Collusion-Free Protocols. Symposium on
Theory of Computing (STOC) 2005, p. 543–552, ACM, 2005.

14. Y. Lindell. Protocols for Bounded-Concurrent Secure Two-Party Computation in
the Plain Model. Chicago Journal of Theoretical Computer Science (1): 1–50, 2006.

15. Y. Lindell. Lower Bounds and Impossibility Results for Concurrent Self Composi-
tion. Journal of Cryptology 21(2): 200–249, 2008.

16. R. Pass. Bounded-Concurrent Secure Multi-Party Computation with a Dishonest
Majority. Symposium on Theory of Computing (STOC)’04, p. 232–241, 2004.

17. G. Simmons. The Prisoners’ Problem and the Subliminal Channel. Advances in
Cryptology—Crypto 1983, p. 51–67, 1983.

18. G. Simmons. Cryptanalysis and Protocol Failures. Comm. ACM 37(11): 56–65,
1994.

19. G. Simmons. The History of Subliminal Channels. Information Hiding Workshop,
p. 237–256, 1996.


