
Linearly Homomorphic Structure-Preserving
Signatures and Their Applications
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Abstract. Structure-preserving signatures (SPS) are signature schemes
where messages, signatures and public keys all consist of elements of a
group over which a bilinear map is efficiently computable. This property
makes them useful in cryptographic protocols as they nicely compose
with other algebraic tools (like the celebrated Groth-Sahai proof sys-
tems). In this paper, we consider SPS systems with homomorphic prop-
erties and suggest applications that have not been provided before (in
particular, not by employing ordinary SPS). We build linearly homomor-
phic structure-preserving signatures under simple assumptions and show
that the primitive makes it possible to verify the calculations performed
by a server on outsourced encrypted data (i.e., combining secure compu-
tation and authenticated computation to allow reliable and secure cloud
storage and computation, while freeing the client from retaining cleart-
ext storage). Then, we give a generic construction of non-malleable (and
actually simulation-sound) commitment from any linearly homomorphic
SPS. This notably provides the first constant-size non-malleable com-
mitment to group elements.

Keywords: Structure-preserving cryptography, signatures, homomor-
phism, commitment schemes, non-malleability.

1 Introduction

Composability is an important cryptographic design notion for building systems
and protocols. Inside protocols, cryptographic tools need to compose well with
each other in order to be used in combination. Structure-preserving cryptography
[3], in turn, is a recent paradigm that takes care of composing algebraic tools, and
primarily within groups supporting bilinear maps to allow smooth composition
with the Groth-Sahai proof systems [41]. The notion allows for modular and
simplified designs of various cryptographic protocols and primitives. In the last
three years, a large body of work has analyzed the feasibility and the efficiency
of structure-preserving signatures (SPS) [40, 25, 34, 1, 3, 4, 17, 26, 44, 5, 6], public-
key encryption [18] and commitments schemes [42, 2].

⋆ This author was supported by the CAMUS Walloon Region Project.



In this paper, we consider SPS schemes with linearly homomorphic properties
and argue that such primitives have many applications, even independently of
Groth-Sahai proofs. Let us next review our results and then review related work.

1.1 Our Contributions

Linearly Homomorphic Structure-Preserving Signatures. In this pa-
per, we put forth the notion of linearly homomorphic structure-preserving sig-
natures (homomorphic signatures and structure-preserving signatures have been
defined before, as we review in the sequel, but the combination of the earlier
notions is useful and non-trivial). These signature schemes function exactly like
ordinary homomorphic signatures with the additional restriction that signatures
and messages only consist of (vectors of) group elements whose discrete loga-
rithms may not be available. We describe three constructions and prove their
security under established complexity assumptions in symmetric bilinear groups.

Applications. As in all SPS systems, the structure-preserving property makes
it possible to efficiently prove knowledge of a homomorphic signature on a com-
mitted vector. However, as indicated above, we describe applications of linearly
homomorphic SPS beyond their compatibility with the Groth-Sahai techniques.

First, we show that the primitive enables verifiable computation mechanisms
on encrypted data.4 Specifically, it allows a client to store encrypted files on
an untrusted remote server. While the dataset is encrypted using an additively
homomorphic encryption scheme, the server is able to blindly compute linear
functions on the original data and provide the client with a short homomorphi-
cally derived signature vouching for the correctness of the computation. This
is achieved by having the client sign each ciphertext using a homomorphic SPS
scheme and handing the resulting signatures to the server at the beginning. After
this initial phase, the client only needs to store a short piece of information, no
matter how large the file is. Still, he remains able to authenticate linear functions
on his data and the whole process is fully non-interactive. The method extends
when datasets are encrypted using a CCA1-secure encryption schemes. Indeed,
we will observe that linearly homomorphic SPS schemes yield simple homomor-
phic IND-CCA1-secure cryptosystems with publicly verifiable ciphertexts.

As a second and perhaps more surprising application, we show that linearly
homomorphic SPS schemes generically yield non-malleable [31] trapdoor com-
mitments to group elements. We actually construct a simulation-sound trap-
door commitment [35] —a primitive known (by [35, 47]) to imply re-usable non-
malleable commitments with respect to opening [28]— from any linearly homo-
morphic SPS satisfying a relatively mild condition. To our knowledge, we thus
obtain the first constant-size trapdoor commitments to group elements provid-
ing re-usable non-malleability with respect to opening. Previous non-interactive

4 Our goals are very different from those of [37], where verifiable computation on
homomorphically encrypted data is also considered. We do not seek to outsource
computation but rather save the client from storing large datasets.
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commitments to group elements were either malleable [41, 42] or inherently
length-increasing [32]: if we disregard the trivial solution consisting of hash-
ing the message first (which is not an option when we want to allow for efficient
proofs of knowledge of an opening), no general technique has been known, to
date, for committing to many group elements at once using a short commitment.

In the structure-preserving case, our transformation is purely generic as it
applies to a template which any linearly homomorphic SPS necessarily satisfies
in symmetric bilinear groups. We also generalize the construction so as to build
simulation-sound trapdoor commitments to vectors from any pairing-based (non-
structure-preserving) linearly homomorphic signature. In this case, the conver-
sion is only semi-generic as it imposes conditions which are only met by pairing-
based systems for the time being: essentially, we need the underlying signature
scheme to operate over groups of finite, public order. While only partially generic,
this construction of non-malleable commitments from linearly homomorphic sig-
natures is somewhat unexpected considering that the terms “non-malleability”
and “homomorphism” are antagonistic, and may be considered incompatible.

Techniques and ideas. At first, the very name of our primitive may sound
almost self-contradictory when it comes to formally define its security. Indeed,
the security of a linearly homomorphic scheme [14] notably requires that it be
infeasible to publicly compute a signature on a vector outside the linear span
of originally signed vectors. The problem is that, when vector entries live in a
discrete-logarithm hard group, deciding whether several vectors are independent
or not is believed to be a hard problem. Yet, this will not prevent us from
applying new techniques and constructing schemes with security proofs under
simple assumptions and the reduction will be able to detect when the adversary
has won by simply solving the problem instance it received as input.

Our first scheme’s starting point is the one-time (regular) SPS scheme of
Abe et al. [1]. By removing certain public key components, we obtain the de-
sired linear homomorphism, and prove the security using information-theoretic
arguments as in [1]. The key observation here is that, as long as the adversary
does not output a signature on a linear combination of previously signed vectors,
it will be unable to sign its target vector in the same way as the reduction would,
because certain private key components will remain perfectly hidden.

Our initial scheme inherits the one-time restriction of the scheme in [1] in
that only one linear subspace can be safely signed with a given public key.
Nevertheless, we can extend it to build a full linearly homomorphic SPS system.
To this end, we suitably combine our first scheme with Waters signatures [51].
Here, Waters signatures are used as a resting ground for fresh random exponents
which are introduced in each signed vector and help us refresh the state of the
system and apply each time the same argument as in the one-time scheme. We
also present techniques to turn the scheme into a fully randomizable one, where
a derived signature has the same distribution as a directly signed message.

In our simulation-sound commitments to group elements, the commitment
generation technique appeals to the verification algorithm of the signature scheme,
and proceeds by evaluating the corresponding pairing-product equations on the
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message, but using random group elements instead of actual signatures. The
binding and simulation-binding properties, in turn, stem from the infeasibility
of forging signatures while the signature homomorphism allows equivocating fake
commitments when simulating the view of an adversary. It was already known
how to build simulation-sound and non-malleable commitments [35, 47, 28, 36,
21] from signature schemes with efficient Σ protocols. Our method is, in fact,
different and immediately yields length-reducing structure-preserving commit-
ments to vectors without using Σ protocols.

1.2 Related Work

Structure-Preserving Signatures. Signature schemes where messages only
consist of group elements appeared for the first time —without the “structure-
preserving” terminology— as ingredients of Groth’s construction [40] of group
signatures in the standard model. The scheme of [40] was mostly a proof of con-
cept, with signatures consisting of thousands of group elements. More efficient
realizations were given by Cathalo, Libert and Yung [25] and Fuchsbauer [34].
Abe, Haralambiev and Ohkubo [1, 3] subsequently showed how to sign messages
of n group elements at once using O(1)-size signatures. Lower bounds on the size
of structure-preserving signatures were given in [4] while Abe et al. [7] provided
evidence that optimally short SPS necessarily rely on interactive assumptions.
As an ingredient for their tightly secure cryptosystems, Hofheinz and Jager [44]
gave constructions based on the Decision Linear assumption [13] while similar
results were independently achieved in [17, 26]. Quite recently, Abe et al. [5,
6] obtained constant-size signatures without sacrificing the security guarantees
offered by security proofs under simple assumptions.

Regarding primitives beyond signature schemes, Camenisch et al. [18] showed
a structure-preserving variant of the Cramer-Shoup cryptosystem [27] and used
it to implement oblivious third parties [19]. Groth [42] described length-reducing
trapdoor commitments (i.e., where the commitment is shorter than the commit-
ted message) to group elements whereas [2] showed the impossibility of realizing
such commitments when the commitment string lives in the same group as the
message. Sakai et al. [49] recently suggested to use structure-preserving identity-
based encryption [50] systems to restrict the power of the opening authority in
group signatures.

Linearly Homomorphic Signatures. The concept of homomorphic signa-
tures can be traced back to Desmedt [30] while proper definitions remained lack-
ing until the work of Johnson et al. [46]. Since then, constructions have appeared
for various kinds of homomorphisms (see [8] and references therein).

Linearly homomorphic signatures are an important class of homomorphic sig-
natures for arithmetic functions, whose study was initiated by Boneh, Freeman,
Katz and Waters [14]. While initially motivated by applications to network cod-
ing [14], they are also useful in proofs of storage [9] or in verifiable computation
mechanisms, when it comes to authenticate servers’ computations on outsourced
data (see, e.g., [8]). The recent years, much attention was given to the notion
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and a variety of constructions [38, 10, 15, 16, 23, 24, 33, 11, 12] based on various
assumptions have been studied.

1.3 Organization

Section 2 first gives security definitions for linearly homomorphic SPS systems,
for which efficient constructions are provided in Section 3. Their applications
to verifiable computation on encrypted data are explained in Section 4 while
Section 5 shows how to build simulation-sound commitments to group elements.

2 Background

2.1 Definitions for Linearly Homomorphic Signatures

Let (G,GT ) be a configuration of (multiplicatively written) groups of prime order
p over which a bilinear map e : G×G→ GT is efficiently computable.

Following [1, 3], we say that a signature scheme is structure-preserving if
messages, signature components and public keys live in the group G.

We consider linearly homomorphic signatures for which the message space
M consists of pairsM := T ×Gn, for some n ∈ N, where T is a tag space. We
remark that, in the applications considered in this paper, tags do not need to be
group elements. We thus allow them to be arbitrary strings.

Definition 1. A linearly homomorphic structure-preserving signature scheme
over (G,GT ) is a set of efficient algorithms Σ = (Keygen, Sign,SignDerive,Verify)
for which the message space is M := T × Gn, for some n ∈ poly(λ) and some
set T , and with the following specifications.

Keygen(λ, n): is a randomized algorithm that takes in a security parameter
λ ∈ N and an integer n ∈ poly(λ) denoting the dimension of vectors to be
signed. It outputs a key pair (pk, sk) and the description of a tag (i.e., a file
identifier) space T .

Sign(sk, τ, M⃗): is a possibly probabilistic algorithm that takes as input a private

key sk, a file identifier τ ∈ T and a vector M⃗ ∈ Gn. It outputs a signature
σ ∈ Gns , for some ns ∈ poly(λ).

SignDerive(pk, τ, {(ωi, σ
(i))}ℓ

i=1): is a (possibly probabilistic) signature deriva-
tion algorithm. It takes as input a public key pk, a file identifier τ as well as
ℓ pairs (ωi, σ

(i)), each of which consists of a weight ωi ∈ Zp and a signature

σ(i) ∈ Gns . The output is a signature σ ∈ Gns on the vector M⃗ =
∏ℓ

i=1 M⃗
ωi

i ,

where σ(i) is a signature on M⃗i.
Verify(pk, τ, M⃗, σ): is a deterministic algorithm that takes in a public key pk,

a file identifier τ ∈ T , a signature σ and a vector M⃗ . It outputs 1 if σ is
deemed valid and 0 otherwise.

Correctness is expressed by imposing that, for all λ ∈ N, all integers n ∈ poly(λ)
and all triples (pk, sk, T )← Keygen(λ, n), the following holds:
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1. For all τ ∈ T and all n-vectors M⃗ , if σ = Sign(sk, τ, M⃗), then we have

Verify(pk, τ, M⃗ , σ) = 1.

2. For all τ ∈ T , ℓ > 0 and {(ωi, σ
(i), M⃗i)}ℓi=1, if Verify(pk, τ, M⃗i, σ

(i)) = 1 for

each i, then Verify
(
pk, τ,

∏ℓ
i=1 M⃗

ωi
i , SignDerive(pk, τ, {(ωi, σ

(i))}ℓi=1)
)
= 1.

Security. In linearly homomorphic signatures, we use the same definition of
unforgeability as in [11]. This definition implies security in the stronger model
used by Freeman [33] since the adversary can interleave signing queries for in-
dividual vectors belonging to distinct subspaces. Moreover, file identifiers can
be chosen by the adversary (which strengthens the definition of [14]) and are
not assumed to be uniformly distributed. As a result, a file identifier can be a
low-entropy, easy-to-remember string such as the name of the dataset’s owner.

Definition 2. A linearly homomorphic SPS scheme Σ = (Keygen, Sign,Verify)
is secure if no PPT adversary has non-negligible advantage in the game below:

1. The adversary A chooses an integer n ∈ N and sends it to the challenger
who runs Keygen(λ, n) and obtains (pk, sk) before sending pk to A.

2. On polynomially-many occasions, A can interleave the following kinds of
queries.
– Signing queries: A chooses a tag τ ∈ T and a vector M⃗ ∈ Gn. The

challenger picks a handle h and computes σ ← Sign(sk, τ, M⃗). It stores

(h, (τ, M⃗ , σ)) in a table T and returns h.

– Derivation queries: A chooses a vector of handles h⃗ = (h1, . . . , hk) and a

set of coefficients {ωi}ki=1. The challenger retrieves {(hi, (τ,M⃗i), σ
(i))}ki=1

from T and returns ⊥ if one of these does not exist or if there exists
i ∈ {1, . . . , k} such that τi ̸= τ . Otherwise, it computes M⃗ =

∏k
i=1 M⃗

ωi
i

and runs σ′ ← SignDerive
(
pk, τ, {(ωi, σ

(i))}ki=1

)
. It also chooses a handle

h′, stores (h′, (τ, M⃗), σ′) in T and returns h′ to A.
– Reveal queries: A chooses a handle h. If no tuple of the form (h, (τ, M⃗), σ′)

exists in T , the challenger returns ⊥. Otherwise, it returns σ′ to A and
adds ((τ, M⃗), σ′) to the set Q.

3. A outputs an identifier τ⋆, a signature σ⋆ and a vector M⃗⋆ ∈ Gn. The
adversary A wins if Verify(pk, τ⋆, M⃗⋆, σ⋆) = 1 and one of the conditions
below is satisfied:
◦ (Type I): τ⋆ ̸= τi for any entry (τ⃗i, .) in Q and M⃗⋆ ̸= (1G, . . . , 1G).

◦ (Type II): τ⋆ = τi for ki > 0 entries (τi, .) in Q and M⃗⋆ ̸∈ Vi, where

Vi denotes the subspace spanned by all vectors M⃗1, . . . , M⃗ki for which an

entry of the form (τ⋆, M⃗j), with j ∈ {1, . . . , ki}, appears in Q.

A’s advantage is its probability of success taken over all coin tosses.

In our first scheme, we will consider a weaker notion of one-time security. In this
notion, the adversary is limited to obtain signatures for only one linear subspace.
In this case, there is no need for file identifiers and we assume that all vectors
are assigned the identifier τ = ε.

In the following, the adversary will be said independent if
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– For any given tag τ , it is restricted to only query signatures on linearly
independent vectors.

– Each vector is only queried at most once.

Non-independent adversaries are not subject to the above restrictions. It will
be necessary to consider these adversaries in our construction of non-malleable
commitments. Nevertheless, security against independent adversaries suffices for
many applications — including encrypted cloud storage— since the signer can
always append unit vectors to each newly signed vector.

At first, one may wonder how Definition 2 can be satisfied at all given that
the challenger may not have an efficient way to check whether the adversary
is successful. Indeed, in cryptographically useful discrete-logarithm-hard groups
G, deciding whether vectors {M⃗i}i of Gn are linearly dependent is believed
to be difficult when n > 2. However, it may be possible using some trapdoor
information embedded in pk, especially if the adversary additionally outputs
signatures on {M⃗i}i.

2.2 Hardness Assumptions

We rely on the following hardness assumptions, the first of which implies the
second one.

Definition 3 ([13]). In a group G of prime order p, the Decision Linear Prob-
lem (DLIN), consists in distinguishing the distributions (ga, gb, gac, gbd, gc+d)

and (ga, gb, gac, gbd, gz), with a, b, c, d
R← Z∗

p, z
R← Z∗

p. The Decision Linear As-
sumption is the intractability of DLIN for any PPT distinguisher D.

Definition 4. The Simultaneous Double Pairing problem (SDP) in (G,GT )
is, given a tuple of elements (gz, gr, hz, hu) ∈R G4, to find a non-trivial triple
(z, r, u) ∈ G3\{(1G, 1G, 1G)} satisfying the equalities e(gz, z) · e(gr, r) = 1GT

and
e(hz, z) · e(hu, u) = 1GT .

3 Constructions of Linearly Homomorphic
Structure-Preserving Signatures

As a warm-up, we begin by describing a one-time homomorphic signature, where
a given public key allows signing only one linear subspace.

3.1 A One-Time Linearly Homomorphic Construction

In the description hereunder, since only one linear subspace can be signed for
each public key, no file identifier τ is used. We thus set τ to be the empty string
ε in all algorithms.
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Keygen(λ, n): given a security parameter λ and the dimension n ∈ N of the
subspace to be signed, choose bilinear group (G,GT ) of prime order p > 2λ.

Then, choose generators h, gz, gr, hz
R← G. Pick χi, γi, δi

R← Zp, for i = 1
to n. Then, for each i ∈ {1, . . . , n}, compute gi = gχi

z gγi
r , hi = hχi

z hδi . The
private key is sk = {χi, γi, δi}ni=1 while the public key is defined to be

pk =
(
gz, hr, hz, h, {gi, hi}ni=1

)
∈ G2n+4.

Sign(sk, τ, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn associated
with the identifier τ = ε using sk = {χi, γi, δi}ni=1, compute the signature
consists of σ = (z, r, u) ∈ G3, where

z =

n∏
i=1

M−χi

i , r =

n∏
i=1

M−γi

i , u =

n∏
i=1

M−δi
i .

SignDerive(pk, τ, {(ωi, σ
(i))}ℓ

i=1): given a file identifier τ = ε, the public key
pk and ℓ tuples (ωi, σ

(i)), parse each σ(i) as σ(i) =
(
zi, ri, ui

)
∈ G3 for i = 1

to ℓ. Compute and return σ = (z, r, u) =
(∏ℓ

i=1 z
ωi
i ,

∏ℓ
i=1 r

ωi
i ,

∏ℓ
i=1 u

ωi
i

)
.

Verify(pk, σ, τ, (M1, . . . ,Mn)): given a signature σ = (z, r, u) ∈ G3, a vector
(M1, . . . ,Mn) and a file identifier τ = ε, return 1 if and only if it holds that
(M1, . . . ,Mn) ̸= (1G, . . . , 1G) and (z, r, u) satisfy

1GT
= e(gz, z) · e(gr, r) ·

n∏
i=1

e(gi,Mi), 1GT
= e(hz, z) · e(h, u) ·

n∏
i=1

e(hi,Mi).

The security proof relies on the fact that, while the signing algorithm is
deterministic, signatures are not unique. However, the reduction will be able to
compute exactly one signature for each vector. At the same time, an adversary
has no information about which signature the legitimate signer would compute
on a vector outside the span of already signed vectors. Moreover, by obtaining
two distinct signatures on a given vector, the reduction can solve a given SDP
instance. The following theorem is proved in the full version of the paper.

Theorem 1. The scheme is unforgeable if the SDP assumption holds in (G,GT ).

3.2 A Full-Fledged Linearly Homomorphic SPS Scheme

We upgrade our one-time construction so as to sign an arbitrary number of linear
subspaces. Here, each file identifier τ is a L-bit string. The construction builds
on the observation that, in the scheme of Section 3.1, signatures (z, r, u) could

be re-randomized by computing (z · gθr , r · g−θ
z , u · h− logh(gr)·θ

z ), with θ
R← Zp, if

h
− logh(gr)
z were available. Since publicizing h

− logh(gr)
z would render the scheme

insecure, our idea is to use Waters signatures as a support for introducing extra
randomizers in the exponent.

In the construction, the u component of each signature can be seen as an
aggregation of the one-time signature of Section 3.1 with a Waters signature

(h
logh(gr)
z ·HG(τ)

−ρ, hρ) [51] on the tag τ .
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Keygen(λ, n): given a security parameter λ and the dimension n ∈ N of the
subspace to be signed, choose bilinear group (G,GT ) of prime order p > 2λ.

1. Choose h
R← G, αz, αr, βz

R← Zp. Define gz = hαz , gr = hαr , hz = hβz .

2. For i = 1 to n, pick χi, γi, δi
R← Zp and compute gi = gχi

z gγi
r , hi = hχi

z hδi .

3. Choose a random vector w = (w0, w1, . . . , wL)
R← GL+1. The latter

defines a hash function HG : {0, 1}L → G which maps any L-bit string

τ = τ [1] . . . τ [L] ∈ {0, 1}L to HG(τ) = w0 ·
∏L

k=1 w
τ [k]
k .

The private key is sk =
(
hαr
z , {χi, γi, δi}ni=1

)
while the public key consists of

pk =
(
gz, gr, hz, h, {gi, hi}ni=1, w

)
∈ G2n+4 ×GL+1.

Sign(sk, τ, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn w.r.t. the file

identifier τ using sk =
(
hαr
z , {χi, γi, δi}ni=1

)
, choose θ, ρ

R← Zp and output
σ = (z, r, u, v) ∈ G4, where

z = gθr ·
n∏

i=1

M−χi

i r = g−θ
z ·

n∏
i=1

M−γi

i

u = (hαr
z )−θ ·

n∏
i=1

M−δi
i ·HG(τ)

−ρ v = hρ

SignDerive(pk, τ, {(ωi, σ
(i))}ℓ

i=1): given pk, a file identifier τ and ℓ tuples
(ωi, σ

(i)), parse σ(i) as σ(i) =
(
zi, ri, ui, vi

)
∈ G4 for i = 1 to ℓ. Then, choose

ρ′
R← Zp and compute and return σ = (z, r, u, v), where z =

∏ℓ
i=1 z

ωi
i ,

r =
∏ℓ

i=1 r
ωi
i , u =

∏ℓ
i=1 u

ωi
i ·HG(τ)

−ρ′
and v =

∏ℓ
i=1 v

ωi
i · hρ′

.
Verify(pk, σ, τ, (M1, . . . ,Mn)): given a signature σ = (z, r, u, v) ∈ G4, a

file identifier τ and a vector (M1, . . . ,Mn) ∈ Gn, return 1 if and only if
(M1, . . . ,Mn) ̸= (1G, . . . , 1G) and (z, r, u, v) satisfy

1GT
= e(gz, z) · e(gr, r) ·

n∏
i=1

e(gi,Mi), (1)

1GT
= e(hz, z) · e(h, u) · e(HG(τ), v) ·

n∏
i=1

e(hi,Mi).

The security of the scheme against non-independent Type I adversaries is
proved under the SDP assumption. In the case of Type II forgeries, we need to
assume the adversary to be independent because, at some point, the simulator
is only able to compute a signature for a unique value5 of θ.

Theorem 2. The scheme is unforgeable against independent adversaries if the
SDP assumption holds in (G,GT ). Moreover, the scheme is secure against non-
independent Type I adversaries.

5 Note that this is not a problem since the signer can derive θ as a pseudorandom
function of τ and (M1, . . . ,Mn) to make sure that a given vector is always signed
using the same θ.
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The proof of Theorem 2 is available in the full verison of the paper. It uses
Waters signatures as a handle to randomize signatures. Whenever the reduction
is able to compute a Waters signatures (hαr

z · HG(τ)
−ρ, hρ) on the tag τ , it

can inject a fresh extra randomizer θ ∈ Zp in the exponent for each vector
associated with τ . By doing so, with non-negligible probability, the specific vector
(χ1, . . . , χn) used by the reduction will remain undetermined from A’s view.

Since the signature component u cannot be publicly randomized, the scheme
does not have fully randomizable signatures. In the full version of the paper, we
describe a fully randomizable variant. In applications like non-malleable com-
mitments to group elements, the above scheme is sufficient however.

4 Applications

4.1 Verifiable Computation for Encrypted Cloud Storage

Linearly homomorphic schemes are known (see, e.g., [8]) to provide verifiable
computation mechanisms for outsourced data. Suppose that a user has a dataset
consisting of n samples s1, . . . , sn ∈ Zp. The dataset can be encoded as vec-
tors v⃗i = (e⃗i|si) ∈ Zn+1

p , where e⃗i ∈ Zn
p denotes the i-th unit vector for each

i ∈ {1, . . . , n}. The user then assigns a file identifier τ to {v⃗i}ni=1, computes sig-
natures σi ← Sign(sk, τ, v⃗i) on the resulting vectors and stores {(v⃗i, σi)}ni=1 at
the server. When requested, the server can then evaluate a sum s =

∑n
i=1 si and

provide evidence that the latter computation is correct by deriving a signature
on the vector (1, 1, . . . , 1, s) ∈ Zn+1

p . Unless the server is able to forge a signature
for a vector outside the span of {v⃗i}ni=1, it is unable to fool the user. The above
method readily extends to authenticate weighted sums or Fourier transforms.

One disadvantage of the above method is that it requires the server to re-
tain the dataset {si}ni=1 in the clear. Using linearly homomorphic structure-
preserving signatures, the user can apply the above technique on encrypted
samples using the Boneh-Boyen-Shacham (BBS) cryptosystem [13].

The BBS cryptosystem involves a public key (g, g̃, f = gx, h = gy) ∈R G4,
where (x, y) ∈ Z2

p is the private key. The user (or anyone else knowing his pub-
lic key) can first encrypt his samples {si}ni=1 by computing BBS encryptions

(C1,i, C2,i, C3,i) = (fri , hti , g̃si · gri+ti), with ri, ti
R← Zp, for each i ∈ {1, . . . , n}.

If the user holds a linearly homomorphic structure preserving signature key
pair for vectors of dimension n + 3, he can generate n signatures on vectors
((C1,i, C2,i, C3,i)|E⃗i) ∈ Gn+3, where E⃗i = (1G, . . . , 1G, g, 1G, . . . , 1G) = ge⃗i for

each i ∈ {1, . . . , n}. The vectors {((C1,i, C2,i, C3,i)|E⃗i)}ni=1 are then archived in
the cloud with their signatures {(zi, ri, ui, vi)}ni=1 in such a way that the server
can publicly derive a signature on

(
f
∑

i ri , h
∑

i ti , g̃
∑

i si ·g
∑

i(ri+ti), g, g, . . . , g
)
∈

Gn+3 in order to convince the client that the encrypted sum was correctly com-
puted. Using his private key (x, y), the client can then retrieve the sum

∑
i si as

long as it remains in a sufficiently small range.
The interest of the above solution lies in that the client can dispense with the

need for storing the O(n)-size public key of his linearly homomorphic signature.
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Indeed, he can simply retain the random seed that was used to generate pk and
re-compute private key elements {(χi, γi, δi)}ni=1 whenever he wants to verify the
server’s response. In this case, the verification equations (1) become

1GT = e(gz, z ·
n∏

i=1

Mχi

i ) · e(gr, r ·
n∏

i=1

Mγi

i )

1GT
= e(hz, z ·

n∏
i=1

Mχi

i ) · e(h, u ·
n∏

i=1

Mδi
i ) · e(HG(τ), v),

so that the client only has to compute O(1) pairings. Moreover, the client does
not have to determine an upper bound on the size of his dataset when generating
his public key. Initially, he only needs to generate {(gj , hj)}3j=1. When the i-th
ciphertext (C1,i, C2,i, C3,i) has to be stored, the client derives (χi+3, γi+3, δi+3)
and (gi+3, hi+3) by applying a PRF to the index i. This will be sufficient to sign

vectors of the form ((C1,i, C2,i, C3,i)|E⃗i).

In order to hide all partial information about the original dataset, the server
may want to re-randomize the derived signature and ciphertext before returning
them. This can be achieved by having the client include signatures on the vectors
(f, 1G, g, 1G, . . . , 1G), (1G, h, g, 1G, . . . , 1G) in the outsourced dataset. Note that,
in this case, the signature should be re-randomized as well. For this reason,
our randomizable scheme described in the full version of the paper should be
preferred.

Complete security models for “verifiable computation on encrypted data”
are beyond the scope of this paper. Here, they would naturally combine the
properties of secure homomorphic encryption and authenticated computing. It
should be intuitively clear that a malicious server cannot trick a client into
accepting an incorrect result (i.e., one which differs from the actual defined linear
function it is supposed to compute over the defined signed ciphertext inputs)
without defeating the security of the underlying homomorphic signature.

4.2 Extension to CCA1-Encrypted Data

In the application of Section 4.1, the underlying crypotosystem has to be ad-
ditively homomorphic, which prevents it from being secure against adaptive
chosen-ciphertext attacks. On the other hand, the method is compatible with
security against non-adaptive chosen ciphertext attacks. One possibility is to
apply the “lite” Cramer-Shoup technique (in its variant based on DLIN) as it
achieves CCA1-security while remaining homomorphic. Unfortunately, the valid-
ity of ciphertexts is not publicly verifiable, which may be annoying in applications
like cloud storage or universally verifiable e-voting systems. Indeed, servers may
be willing to have guarantees that they are actually storing encryptions of some
message instead of random group elements.

Consider the system where (C1, C2, C3, C4) = (fr, ht, gr+t, g̃m · Xr
1 · Xt

2) is
decrypted as m = logg̃(C4 · C−x1

1 C−x2
2 C−z

3 ), where X1 = fx1gz and X2 =
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hx2gz are part of the public key. In [45], such a system was made chosen-
ciphertext secure using a publicly verifiable one-time simulation-sound proof that
(f, h, g, C1, C2, C3) forms a DLIN tuple. In the security proof, if the reduction
is guaranteed not to leak C−x1

1 C−x2
2 C−z

3 for an invalid triple (C1, C2, C3) (i.e.,
as long as the adversary is unable to generate a fake proof for this), the private
key component z will remain perfectly hidden. Consequently, if the challenge
ciphertext is computed by choosing C⋆

3 ∈R G (so that (f, h, g, C⋆
1 , C

⋆
2 , C

⋆
3 ) is not

a DLIN tuple) and computing C⋆
4 = g̃m · C⋆

1
x1 · C⋆

2
x2 · C⋆

3
z, the plaintext m is

independent of A’s view. If we replace the one-time simulation-sound proofs by
standard proofs of membership in the scheme of [45], we obtain a CCA1 ho-
momorphic encryption scheme. Linearly homomorphic SPS schemes provide a
simple and efficient way to do that.

The idea is to include in the public key the verification key of a one-time
linearly homomorphic SPS —using the scheme of Section 3.1— for n = 3 as well
as signatures on the vectors (f, 1G, g), (1G, h, g) ∈ G3. This will allow the sender
to publicly derive a signature (z, r, u) on the vector (C1, C2, C3) = (fr, ht, gr+t).
Each ciphertext thus consists of (z, r, u, C1, C2, C3, C4). In the security proof,
at each pre-challenge decryption query, the signature (z, r, u) serves as publicly
verifiable evidence that (f, h, g, C1, C2, C3) is a DLIN tuple. In the challenge
phase, the reduction reveals another homomorphic signature (z⋆, r⋆, u⋆) for a
vector (C⋆

1 , C
⋆
2 , C

⋆
3 ) that may be outside the span of (f, 1G, g) and (1G, h, g) but

it does not matter since decryption queries are not allowed beyond this point.
We note that linearly homomorphic SPS can also be used to construct CCA1-

secure homomorphic encryption schemes based on the Naor-Yung paradigm [48].

5 Non-Malleable Trapdoor Commitments to
Group Elements from Linearly Homomorphic
Structure-Preserving Signatures

As noted in [42, 43], some applications require to commit to group elements
without knowing their discrete logarithms or destroying their algebraic struc-
ture by hashing them first. This section shows that, under a certain mild condi-
tion, linearly homomorphic SPS imply length-reducing non-malleable structure-
preserving commitments to vectors of group elements.

As a result, we obtain the first length-reducing non-malleable structure-
preserving trapdoor commitment. Our scheme is not strictly6 structure-preserving
(according to the terminology of [2]) because the commitment string lives in GT

rather than G. Still, openings only consist of elements in G, which makes it pos-
sible to generate efficient NIWI proofs that committed group elements satisfy
certain properties. To our knowledge, the only known non-malleable commit-
ment schemes whose openings only consist of group elements were described by

6 We recall that strictly structure-preserving commitments cannot be length-reducing,
as shown by Abe et al. [2], so that our scheme is essentially the best we can hope
for if we aim at short commitment stings.
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Fischlin et al. [32]. However, these constructions cannot be length-reducing as
they achieve universal composability [20, 22].

Our schemes are obtained by first constructing simulation-sound trapdoor
commitments (SSTC) [35, 47] to group elements. SSTC schemes were first sug-
gested by Garay, MacKenzie and Yang [35] as a tool for constructing universally
composable zero-knowledge proofs [20]. MacKenzie and Yang subsequently gave
a simplified security definition which suffices to provide non-malleability with
respect to opening in the sense of the definition of re-usable non-malleable com-
mitments [28].

In a SSTC, each commitment is labeled with a tag. The definition of [47]
requires that, even if the adversary can see equivocations of commitments to
possibly distinct messages for several tags tag1, . . . , tagq, it will not be able to
break the binding property for a new tag tag ̸∈ {tag1, . . . , tagq}.

Definition 5 ([47]). A simulation-sound trapdoor commitment is a tuple of
algorithms (Setup,Com,FakeCom,FakeOpen, Verify) where (Setup,Com,Verify)
forms a commitment scheme and (FakeCom,FakeOpen) are PPT algorithms with
the following properties

Trapdoor: for any tag and any message Msg, the following distributions are
computationally indistinguishable:

Dfake := {(pk, tk)← Setup(λ); (c̃om, aux)← FakeCom(pk, tk, tag);

d̃ec← FakeOpen(aux, tk, c̃om,Msg) : (pk, tag,Msg, c̃om, d̃ec)}

Dreal := {(pk, tk)← Setup(λ); (com, dec)← Com(pk, tag,Msg) :

(pk, tag,Msg, com, dec)}

Simulation-sound binding: for any PPT adversary A, the following proba-
bility is negligible

Pr[ (pk, tk)← Setup(λ); (com, tag,Msg1,Msg2, dec1, dec2)← AOtk,pk(pk) :

Msg1 ̸= Msg2 ∧ Verify(pk, tag,Msg1, com, dec1) = 1

∧Verify(pk, tag,Msg2, com, dec2) = 1 ∧ tag ̸∈ Q],

where Otk,pk is an oracle that maintains an initially empty set Q and operates
as follows:
– On input (commit, tag), it runs (c̃om, aux)← FakeCom(pk, tk, tag), stores

(c̃om, tag, aux), returns c̃om and adds tag in Q.
– On input (decommit, c̃om,Msg): if a tuple (c̃om, tag, aux) was previously

stored, it computes d̃ec ← FakeOpen(aux, tk, tag, c̃om,Msg) and returns

d̃ec. Otherwise, Otk,pk returns ⊥.

While our SSTC to group elements will be proved secure in the above sense,
a non-adaptive flavor of simulation-sound binding security is sufficient for con-
structing non-malleable commitments. Indeed, Gennaro used [36] such a relaxed
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notion to achieve non-malleability from similar-looking multi-trapdoor commit-
ments. In the non-adaptive notion, the adversary has to choose the set of tags
tag1, . . . , tagℓ for which it wants to query Otk,pk before seeing the public key pk.

5.1 Template of Linearly Homomorphic SPS Scheme

We first remark that any constant-size linearly homomorphic structure-preserving
signature necessarily complies with the template below.

For simplicity, the template is described in terms of symmetric pairings but
generalizations to asymmetric configurations are possible.

Keygen(λ, n): given λ and the dimension n ∈ N of the vectors to be signed,
choose constants nz, nv,m. Among these, nz and nv will determine the sig-
nature length while m will be the number of verification equations. Then,
choose {Fj,µ}j∈{1,...,m},µ∈{1,...,nz}, {Gj,i}i∈{1,...,n}, j∈{j,...,m} in the group G.

The public key is pk =
(
{Fj,µ}j∈{1,...,m},µ∈{1,...,nz}, {Gj,i}i∈{1,...,n}, j∈{j,...,m}

)
while sk contains information about the representation of public elements
w.r.t. specific bases.

Sign(sk, τ, (M1, . . . ,Mn)): Outputs σ =
(
Z1, . . . , Znz , V1, . . . , Vnv

)
∈ Gnz+nv .

SignDerive(pk, τ, {(ωi, σ
(i))}ℓ

i=1): parses σ(i) as
(
Z

(i)
1 , . . . , Z

(i)
nz , V

(i)
1 , . . . , V

(i)
nv

)
for each i ∈ {1, . . . , ℓ} and computes

Zµ =
ℓ∏

i=1

Z(i)
µ

ωi
Vν =

ℓ∏
i=1

V (i)
ν

ωi
µ ∈ {1, . . . , nz}, ν ∈ {1, . . . , nv}.

After possible extra re-randomizations, it outputs
(
Z1, . . . , Znz , V1, . . . , Vnv

)
.

Verify(pk, σ, τ, (M1, . . . ,Mn)): given σ =
(
Z1, . . . , Znz , V1, . . . , Vnv

)
∈ Gnz+nv ,

a tag τ and (M1, . . . ,Mn), return 0 if (M1, . . . ,Mn) = (1G, . . . , 1G). Other-
wise, do the following.
1. For each j ∈ {1, . . . ,m} and ν ∈ {1, . . . , nv}, compute one-to-one7 en-

codings Tj,ν ∈ G of the tag τ as a group element.
2. Return 1 if and only if cj = 1GT

for j = 1 to m, where

cj =

nz∏
µ=1

e(Fj,µ, Zµ) ·
nv∏
ν=1

e(Tj,ν , Vν) ·
n∏

i=1

e(Gj,i,Mi) j ∈ {1, . . . ,m}. (2)

We say that a linearly homomorphic SPS is regular if, for each file identifier
τ , any non-trivial vector (M1, . . . ,Mn) ̸= (1G, . . . , 1G) has a valid signature.

5.2 Construction of Simulation-Sound Structure-Preserving
Trapdoor Commitments

Let ΠSPS = (Keygen, Sign, SignDerive,Verify) be a linearly homomorphic SPS.
We construct a simulation-sound trapdoor commitment as follows.

7 This condition can be relaxed to have collision-resistant deterministic encodings.
Here, we assume injectivity for simplicity.
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SSTC.Setup(λ, n): given the desired dimension n ∈ N of vectors, choose pub-
lic parameters pp for the linearly homomorphic SPS scheme. Then, run
ΠSPS.Keygen(λ, n) to obtain a public key pk =

(
{Fj,µ}j∈{1,...,m},µ∈{1,...,nz},

{Gj,i}i∈{1,...,n}, j∈{j,...,m}
)
, for some constants nz, nv,m, and a sk. The com-

mitment key is pk = pk and the trapdoor tk consists of sk. Note that the
public key defines a signature space Gnz+nv , for constants nz and nv.

SSTC.Com(pk, tag, (M1, . . . ,Mn)): to commit to (M1, . . . ,Mn) ∈ Gn with

respect to the tag tag = τ , choose
(
Z1, . . . , Znz , V1, . . . , Vnv

) R← Gnz+nv

in the signature space. Then, run step 1 of the verification algorithm and
evaluate the right-hand-side member of (2). Namely, compute

cj =

nz∏
µ=1

e(Fj,µ, Zµ) ·
nv∏
ν=1

e(Tj,ν , Vν) ·
n∏

i=1

e(Gj,i,Mi) j ∈ {1, . . . ,m} (3)

where {Tj,ν}j,ν form an injective encoding of tag = τ as a set of group
elements. The commitment string is com = (c1, . . . , cm) whereas the decom-
mitment is dec =

(
Z1, . . . , Znz , V1, . . . , Vnv

)
.

SSTC.FakeCom(pk, tk, tag): proceeds like SSTC.Com with randomly chosen

(M̂1, . . . , M̂n)
R← Gn. If ( ˆcom, ˆdec) denotes the resulting pair, the algorithm

outputs c̃om = ˆcom and the auxiliary information aux, which consists of the
pair aux = ((M̂1, . . . , M̂n), ˆdec) for tag = τ .

SSTC.FakeOpen(aux, tk, tag, c̃om, (M1, . . . ,Mn)): parses c̃om as (c̃1, . . . , c̃m)
and aux as

(
(M̂1, . . . , M̂n), (Ẑ1, . . . , Ẑnz , V̂1, . . . , V̂nv )

)
. The algorithm first

generates a linearly homomorphic signature on (M1/M̂1, . . . ,Mn/M̂n) for
the tag tag = τ . Namely, using the trapdoor tk = sk, compute a signature
σ′ = (Z ′

1, . . . , Z
′
nz
, V ′

1 , . . . , V
′
nv
) ← ΠSPS.Sign

(
sk, τ, (M1/M̂n, . . . ,Mn/M̂n)

)
.

Since aux =
(
(M̂1, . . . , M̂n), (Ẑ1, . . . , Ẑnz , V̂1, . . . , V̂nv )

)
satisfies

c̃j =

nz∏
µ=1

e(Fj,µ, Ẑµ) ·
nv∏
ν=1

e(Tj,ν , V̂ν) ·
n∏

i=1

e(Gj,i, M̂i) j ∈ {1, . . . ,m}, (4)

FakeOpen runs (Z̃1, . . . , Z̃nz , Ṽ1, . . . , Ṽnv )← SignDerive(pk, τ, {(1, σ′), (1, σ̂)}),
where σ̂ = (Ẑ1, . . . , Ẑnz , V̂1, . . . , V̂nv ). It outputs a valid de-commitment

d̃ec = (Z̃1, . . . , Z̃nz , Ṽ1, . . . , Ṽnv ) to (M1, . . . ,Mn) with respect to tag = τ .
SSTC.Verify(pk, tag, (M1, . . . ,Mn), com, dec): parse com as (c1, . . . , cm) ∈

Gm
T and dec as

(
Z1, . . . , Znz , V1, . . . , Vnv

)
∈ Gnz+nv (if these values do not

parse properly, return 0). Then, compute a one-to-one encoding {Tj,ν}j,ν of
tag = τ . Return 1 if relations (3) hold and 0 otherwise.

In the full version of the paper, we extend this construction so as to build
simulation-sound trapdoor commitment to vectors from any linearly homomor-
phic signature that fits a certain template. As a result, we obtain a modular
construction of constant-size non-malleable commitment to vectors which pre-
serves the feasibility of efficiently proving properties about committed values.
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Theorem 3. Assuming that the underlying linearly homomorphic SPS is regular
and secure against non-independent Type I adversaries, the above construction is
a simulation-sound trapdoor commitment to group elements. (The proof is given
in the full version of the paper.

A standard technique (see [35, 36]) to construct a re-usable non-malleable
commitment from a SSTC scheme is as follows. To commit to Msg, the sender
generates a key-pair (VK, SK) for a one-time signature and generates (com, dec)←
SSTC.Commit(pk,VK,MSg) using VK as a tag. The non-malleable commitment
string is the pair (com,VK) and the opening is given by (dec, σ), where σ is a
one-time signature on com, so that the receiver additionally checks the validity
of σ. This construction is known to provide input independence [29] and thus
non-malleability with respect to opening, as proved in [29, 39].

In our setting, we cannot compute σ as a signature of com, as it consists
of GT elements. However, we can sign the pair (Msg, dec) —whose components
live in G— as long as it uniquely determines com. To this end, we can use the
one-time structure-preserving of [1, Appendix C.1] as it allows signing messages
of arbitrary length using a constant-size one-time public key. Like our scheme of
Section 3.2, it relies on the SDP assumption and yields a non-malleable commit-
ment based on this sole assumption. Alternatively, we can move σ in the commit-
ment string (which becomes (com,VK, σ)), in which case the one-time signature
does not need to be structure-preserving but it has to be strongly unforgeable
(as can be observed from the definition of independent commitments [29]) while
the standard notion of unforgeability suffices in the former case.
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