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Abstract. While the symmetric-key cryptography community has now a
good experience on how to build a secure and efficient fixed permutation,
it remains an open problem how to design a key-schedule for block ciphers,
as shown by the numerous candidates broken in the related-key model or
in a hash function setting. Provable security against differential and linear
cryptanalysis in the related-key scenario is an important step towards a
better understanding of its construction.
Using a structural analysis, we show that the full AES-128 cannot be
proven secure unless the exact coefficients of the MDS matrix and the
S-Box differential properties are taken into account since its structure is
vulnerable to a related-key differential attack. We then exhibit a chosen-
key distinguisher for AES-128 reduced to 9 rounds, which solves an
open problem of the symmetric community. We obtain these results by
revisiting algorithmic theory and graph-based ideas to compute all the
best differential characteristics in SPN ciphers, with a special focus on
AES-like ciphers subject to related-keys. We use a variant of Dijkstra’s
algorithm to efficiently find the most efficient related-key attacks on SPN
ciphers with an algorithm linear in the number of rounds.
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1 Introduction
Block ciphers and hash functions are among the most important primitives in
cryptography and while their respective goals are different, they are related in
many ways. For example, most compression functions, which can in turn be
used to define a hash function, are built upon an internal block cipher thanks to
classical constructions [19, 28] such as Davies-Meyer (DM), Matyas-Meyer-Oseas
(MMO) or Miyaguchi-Preneel (MP). One of the main differences between the two
primitives is that in the case of the block cipher, the key input is unknown and
uncontrolled by the attacker, whereas for the compression function, the attacker
has full control over the key schedule (generally called message expansion in
that context). Yet, the so-called related-key attack scenario [3,5] is interesting
for both cases. This model allows the attacker to incorporate differences not
only in the plaintext or ciphertext input, but also in the key input. While less
relevant in practice than the classical single-key model, it is important to analyze



block ciphers in the light of related-key attacks since the secret keys are often
updated in security protocols or differences can be incorporated using fault
attacks. Moreover, related-key attacks are also very important when the block
cipher is used as inner primitive of a hash function, and in that setting one can
even consider the known-key [22] or chosen-key models [8] where the attacker is
given knowledge or complete control of the key and his goal is to exhibit some
non-ideal property of the primitive.

Avoiding high-probability related-key differential characteristics is one of the
goal of the key schedule, and so far various directions have been investigated to
construct this component. Resisting to attacks in this setting has for example
been taken into account in the conception of the Whirlpool hash function [1],
by using the same AES-like permutation for both the internal permutation and
the message expansion part, leading to a strong key schedule in terms of number
of Sbox calls, but quite slow as it represents about half of the total amount of
computations. As a complete opposite, the designers of the LED block cipher [17]
chose to use no key schedule at all, at the expense that an important number of
rounds is required. These two functions can both provide provable security with
regard to related-key differential attacks, but they also both suffer from efficiency
issues. In general (see for example AES or PRESENT [11]), key schedules are built
by using an ad-hoc and relatively light function that is quite different from the
main permutation, in a hope that this will avoid any correlation between the two
components and enforce low-probability related-key differential characteristics.
However, because of the heuristic design process and the difficulty of the task, no
real security argument is given and this can eventually lead to security issues [7,9].
To help designers and cryptanalysts, many automated differential analyses have
already been applied to various primitives [9, 12,13,20,29].

The AES block cipher [14] is currently the most interesting candidate to
scrutinize with regard to related-key, chosen-key attacks or when used as a black-
box in cryptosystems: during the NIST SHA-3 hash function competition, many
candidates [2,4,15] reused some components from the AES and related-key attacks
on the AES-192 and AES-256 [7, 8] have been discovered. While differential
and linear attacks against the AES in the single-key scenario seem to be mastered
since the design of the cipher focuses in particular to resist to those class of
attacks, provable security against related-key attacks remains more complex to
tackle.

Graph traversal algorithms. In [24], Matsui proposes an algorithm to find
the best differential characteristics for DES. The strategy to find the best one
on n rounds first starts by computing the best ones on 1 to n− 1 rounds. The
algorithm works by induction and can be seen as a tree traversal in a depth-first
manner, where the tree represents all the possible differential characteristics in
the cipher layered by round. The nodes represent the actual differences and the
edges the possible transitions between them, and are labeled by their probabilities.
One differential characteristic is a path in this tree, and its probability equals
the product of all traversed edges. We are looking for the path with the highest
probability in this tree. The knowledge of the previous best characteristics, i.e.



up to some depth in the tree, allows pruning during the procedure like the A∗
heuristic [18]: the target value being known (the exhaustive search bound), we
can reduce the possibilities for each one-round transition. Using such algorithm,
the complexity is exponential in the number of nodes in the tree, and therefore
in the block-size and the number of rounds, except if the pruning is very efficient.

In modern byte-oriented ciphers, designers ensure there is a fast diffusion
and that all actual differential transitions occur with the same probability: all
differences become equivalent. Consequently, Matsui’s search algorithm becomes
less efficient since there is no dominant characteristic. Biryukov and Nikolić
propose in [9] to restrict the search to truncated differences to decrease the
number of edges in the tree. They also introduce a nice representation of truncated
differences to consider the branching (combinatorial explosion of differences) in
the key schedule.

In this article, we change the tree representation from the previous works
into a graph: the nodes and edges have the same signification as before, but we
merge all the nodes representing the same differences into a single one. Matsui’s
tree encodes all the paths of our graph. This merging allows to view the path
search as a Markov process: round i is independent of the paths in rounds 0
to i − 1. Consequently, the numbers of nodes and edges become linear in the
number of rounds. Finding the best differential characteristics is reduced to a
shortest path problem: we want all the shortest paths in this graph to get all
the differential characteristics with the highest probabilities. We use a variant
of Dijkstra algorithm combined with the A∗ heuristic to explore a kind of graph
product in a breadth-first manner. Our algorithm uses a dynamic programming
method, which was considered too costly in terms of memory in [9]. This approach
solves the problem of finding the best related-key characteristics using graph
algorithms in polynomial time in the number of rounds and exponential in
the state, whereas the previous best known methods were exponential in both
parameters using Matsui’s algorithm variants (the search in [9] was made possible
thanks to an extreme pruning in the AES tree).

Structural evaluation. By structural evaluation, we mean the domain of cryp-
tography that analyzes a cryptosystem in terms of generic constructions using
black-box elements. We are interested in how the building blocks of the primi-
tives interact together, while "ignoring their semantic definitions as particular
functions" as in meet-in-the-middle attacks [10].

In this line of research, a major result is the conception of Rijndael, or how
to construct a block cipher provably resistant to differential attacks. Daemen
and Rijmen show in [14] a lower bound Br on the number of active Sboxes for
any differential characteristic on r rounds of Rijndael, when no difference is
introduced in the key. For an Sbox with maximal differential probability pmax,
this result allows to upper bound the probability of success of any differential
attack on r rounds by pBr

max. For k-bit keys block ciphers, the resistance to
differential cryptanalysis means p−Br

max > 2k, which gives a criteria on r and pmax
for the security of the cipher. In [10], Biryukov and Shamir analyze the SASAS
construction, alternating five layers of non-linear S and affine A functions. They



show that five such rounds are vulnerable to a very efficient structural attack,
even though the adversary does not know anything about the inner structure of
both S and A. Finally, we mention the work by Miles and Viola in [26], where
they prove the security of bounded-input-length pseudo-random functions based
on Substitution-Permutation Networks like the AES. In this article, we study
the structural analysis of generic Substitution-Permutation Networks in the
related-key model. Contrary to the single-key model, it seems impossible to prove
anything on the key schedule resistance in the same vein as [14, 26], so we build
a tool to study this problem.

Open-key model. The open-key model has been introduced so as to investigate
the security of block ciphers in relaxed versions of the standard model. In [22],
Knudsen and Rijmen studied what they called the known-key model where the
key is public and the goal of the adversary consists in distinguishing the cipher
from a random permutation. At Crypto 2009, Biryukov et al. introduced in [8]
a more relaxed version called chosen-key model where the adversary must exhibit
a nontrivial property of the cipher when he has the freedom of the key bytes
as extra parameters. They show how to find differential q-multicollisions for
AES-256 in time q · 267. For an ideal cipher, constructing q-multicollisions would
require at least O

(
q · 2 q−1

q+1 128
)
. At Fse 2010, Gilbert and Peyrin introduced

in [16] particular properties for the known-key model by using high-probability
differential characteristics on 8 rounds of the block cipher AES-128. Given
a key k, two known subspaces ∆IN and ∆OUT , they show how to find one
pair of inputs (m,m′) to the block cipher Ek such that m ⊕ m′ ∈ ∆IN and
Ek(m) ⊕ Ek(m′) ∈ ∆OUT more efficiently than a generic attack on a random
permutation, based on a restricted variant of the birthday paradox. In this
work, given δ, ∆IN and ∆OUT , we are interested in finding a pair of keys (k, k′)
and a pair of messages (m,m′) such that k ⊕ k′ = δ, m ⊕ m′ ∈ ∆IN and
Ek(m)⊕ Ek′(m′) ∈ ∆OUT .

Our contributions. The goal of this article is twofold. First, we describe an
efficient and generic tool that computes all the best differential characteristics for
general SPN ciphers, in particular for AES-like ciphers, and then we apply it to
the structure of the AES-128. While our algorithm also works in the single-key
setting and retrieves the tight proven bounds of the AES structure, we focus this
article on the related-key model where the classical XOR difference is the relation
in the keys. The search complexity for related-key differential is improved from
several days of computations in [9] with a depth-first algorithm to a few hours on
a single PC using our breadth-first approach. We also show that the theoretical
upper bound 2−6·17 = 2−102 mentioned in [9] for the best 5-round characteristic
cannot be reached, since the truncated characteristic can only be instantiated
with a probability at most 2−105.

As an application of our tool, we study AES-128 as a particular SPN cipher.
First, we perform a structural analysis where we consider the MDS property
of the diffusion layer, but we do not specify its coefficients. The results show
that in order to prove the security of 10 rounds of the cipher in the related-



key model, one needs to consider more than just its structure: one needs in
particular to consider the differential properties of the non-linear Sbox. Secondly,
we analyze the structure of AES-128 in the hash function setting, where the
key schedule and the message parts can be attacked somewhat independently by
the adversary. We also show that this setting cannot be proven secure against
differential cryptanalysis unless additionnal information about the instantiation
of the SPN cipher are provided (e.g., the Sbox and the linear layer). Finally, we
construct a chosen-key distinguisher for 9 rounds of AES-128 that requires 255
simple operations and 232 words of memory storage: this was considered an open
problem until now, e.g. [9]. Our distinguisher exhibits a non-random property in
the chosen-key setting and such a property for an ideal cipher would be detected
only after 268 encryptions queries.

Organization of the paper. In Section 2, we first introduce definitions re-
garding the ciphers studied and the types of differences we analyze. We then
describe our generic tool and give some improvements in the specific case of
AES-like ciphers in Section 3. Finally, we present the results of our structural
evaluation in Section 4.1, more specifically on AES-128 in Section 4.2, and we
precise the construction of the chosen-key distinguisher for 9 rounds of AES-128
in Section 4.3.

2 Definitions

2.1 SPN and AES-like ciphers description

To keep our reasoning as general as possible, we give in this subsection a generic
description of Substitution-Permutation Network (SPN) ciphers, and we identify
the subgroup of the AES-like ciphers. We refer to the corresponding specifications
for a detailed description of the AES [14, 27]. We consider that the block ciphers
studied here take as input a plaintext or ciphertext of size n bits, and a key
of size k bits. The cipher is composed of R successive applications of a round
function, and we denote respectively si and ki the successive internal states
of the block cipher and the key schedule after the i-th round. The state s0 is
initialized with the input plaintext and k0 with the input key. One round i is
itself composed of three layers: a key extraction and incorporation layer (AK)
where a n-bit round-key rki−1 is extracted from ki−1 and xored to si−1, a block
cipher permutation layer BC that updates the n-bit current state of the block
cipher after addition of the subkey, i.e. si = BC(si−1⊕ rki−1), and a key schedule
transformation layer KS that updates the k-bit current state of the key schedule,
i.e. ki = KS(ki−1). The final ciphertext is then defined as sR ⊕ rkR.

Definition 1. (SPN cipher) Let a block cipher E whose internal state is viewed
as a tBC-cell vector (where tBC = n

b ), each cell representing a b-bit word, and the
key schedule as a tKS-cell vector (where tKS = k

b ). The block cipher E is called an
SPN cipher when its round function BC is made of a linear function P and a
non-linear permutation S, with BC = P ◦ S, the latter applying one or distinct
b-bit S-Boxes to every cell.



In the even more particular case of AES-like ciphers, the internal state of
BC can be viewed as a square matrix of b-bit cells with d rows and d columns
(n = d2 · b). A cell of si is denoted by sx,yi , where x is its row position and y
its column position in the square matrix, starting the counting from 0. Then,
the linear layer is itself composed of the ShiftRows transformation (ShR), that
moves each cell by x positions to the left in its own row, and the MixColumns
transformation (MC), that linearly mixes all the columns of the matrix separately.
Overall, for AES-like ciphers we have BC = P ◦ S = MC ◦ ShR ◦ S (Figure 1).
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Figure 1: One round of the generic SPN and AES-like ciphers.

2.2 Truncated and actual differences

In this article, we are interested in differential attacks [6]. Usually, in this scenario
the attacker looks for the bitwise difference between two state values. However,
here we also consider truncated differential attacks [21].

Definition 2. Let A = [Ax,y] and B = [Bx,y] two states. We denote their
truncated difference by ∆ = [∆x,y] with ∆x,y = 1 if and only if Ax,y 6= Bx,y

(active cell), and ∆x,y = 0 otherwise (inactive cell). We denote their actual
difference by δ = [δx,y] with δx,y = Ax,y ⊕Bx,y.

First, we need analyze the effect of the cipher transformations on the truncated
and actual differences.

The substitution layer. One can easily check that the substitution layer S
has no effect on the truncated difference of a cell: a cell remains in the same
active/inactive situation after application of the transformation. However, S has
an effect on the actual difference of every active cells. This effect can be visualized
by the differential distribution table (DDT) of the S-Boxes. More precisely, for
each possible pair (δin, δout) of actual difference on the input/output of the S-Box
S, the table gives the number DDT(δin, δout) = x of values X that validate
this differential transition, i.e. S(X) ⊕ S(X ⊕ δin) = δout. Alternatively, x/2b
represents the differential probability of the transition. An important criteria
that can be derived from this table is the maximal differential probability pmax,
which is the highest possible differential probability when δin 6= 0 and δout 6= 0.

In order to measure the quality of a truncated differential characteristic, we
use the classical counting of the number of active S-Boxes appearing in the
characteristic, and we denote it | · |.



Definition 3. Let v = [∆i] be a vector of truncated differences. The weight of v
is the number of active differences in v:

∑
∆i 6=0 1. We denote it |v| and generalize

the notion to any matrix v.

The permutation layer for AES-like ciphers. Since the ShR layer only moves
the cells around, it only changes the active/inactive cells positions in the internal
state, but not their number. The same reasoning applies to the actual differences.
The MC transformation being linear, the effect on the values and the actual
differences is the same and therefore for each column of the internal state, the
output actual differences are simply deduced by the application of the MC linear
matrix. Concerning the truncated differences, the effect depends on the branching
number BMC of the MC matrix. The branching number is the minimum amount
of active cells one can get on both the input and the output of the matrix,
excluding the case when there are both null. This measure of the diffusion is
crucial for the security of many cryptography primitives and, in general, the
MC matrix is Maximum Distance Separable (MDS), that is BMC = d + 1 is
maximal. A valid truncated differential transition forcing i cells to be inactive on
the output happens with probability 2−b·i.

2.3 Structural evaluation

Considering only truncated differences enables the cipher designers to get an
estimation on the quality of the structure of their primitive in regard to provable
security. As an example, the designers of the AES can easily derive the minimal
number of active S-Boxes in any number of rounds of the cipher in the single-key
model [14], by ignoring the instantiation of the matrix of the diffusion layer. This
means that the same reasoning applies for any diffusion matrix. In this paper,
we are also interested in a generalization of this notion for the related-key model.

More formally, we denote by ES,P a block cipher that uses a substitution layer
instantiated by S, and a permutation layer instantiated by P . On the one hand, if
E represents the AES family of permutations, we can either plug the AES S-Box
SAES (S ← SAES), or a random bijection S (S $← S2b) selected uniformly at
random in the set S2b of the permutations on b bits. In the latter setting, we loose
the information pmax = 2−(b−2) as we can only get 2−(b−1) ≤ pmax ≤ 1, but we
are interested in how the structure of the AES resists to differential cryptanalysis
when we relax the strong information on pmax. We perform the same abstraction
for the P layer, where the matrix is selected uniformly at random in the set of
all the d× d matrices with coefficients in GF(2b).

3 Generic related-key differential characteristic search
tool for SPN ciphers

In this section, we explain the inner workings of our generic related-key differential
characteristic search tool for SPN ciphers. As a first step, we model the problem
by assuming that the cipher round function is a Markov process in regard to
the truncated differential characteristic search (Section 3.1). This allows us to
reduce the problem to a shortest path search in a special (r + 1)-equipartite



directed acyclic graph, for which we provide a simple yet powerful algorithm. The
precomputation phase of the process is devoted to building the graphs on which
we work on (Section 3.2), while the online phase looks for the shortest paths
(Section 3.3). We note that we can tweak the Markov assumption to find not only
the best truncated differential characteristics, but also the actual difference ones.

3.1 Differential characteristic search as a graph modeling of a
Markov process

We describe here an algorithm that generates for any number of rounds all the
related-key truncated differential characteristics for SPN ciphers with minimal
number of active S-Boxes. This analyzes the structure of the cipher in regard
to the resistance against related-key attacks. We make a simple assumption: we
would like the search to be a Markov process. More precisely, we assume that
the possible differential transitions through a round from one truncated state to
another one does not depend on previous rounds transitions. If we stick to the real
definition of truncated differentials (i.e. without implicit conditions contained),
then this assumption is verified for SPN ciphers: knowing the truncated input
difference of one round represents all the information needed in order to deduce
the possible output ones.

Graph modeling. In order to find the best r-round related-key truncated
differential characteristics, we use a graph modeling of the problem. Let G be the
2-equipartite directed acyclic graph of all the possible one-round transitions. Then
all the best r-round related-key truncated differential characteristics correspond
to all the shortest paths in the (r + 1)-equipartite directed acyclic graph Gr
built by concatenating r copies of G. Namely, denoting G = (V0, V1 ; E0,1) the
2-equipartite graph linking with one cipher round a state in set V0 to a state
in set V1 using some edge in set E0,1, we build the graph Gr representing r
rounds of the cipher by Gr = (V0, . . . , Vr ; E) such that for all i, the subgraph
(Vi, Vi+1 ; Ei,i+1) is equal to G. Note that all edges are oriented from Vi to Vi+1,
and that |Vi| = |Vi+1|. The nodes of the graph stand for all the possible pairs
(∆KS, ∆BC) where ∆KS represents the truncated difference on the key schedule
state and ∆BC represents the truncated difference on the block cipher state. Since
we have 2tKS possible values ∆KS and 2tBC possible values ∆BC, all Vi in the graph
are composed of 2(k+n)/b nodes. The edges correspond to a possible one-round
related-key truncated differential characteristic from the input to the output
vertex and in the worst case where all differential transitions are possible, we
have 22(k+n)/b edges. A path in Gr is defined as a sequence of r + 1 nodes, one
in each of the Vi.

We note that the probability costs are not associated to the edges, but to the
output nodes. Indeed, the number of active cells in the output node represents
the number of active S-Boxes during this round4. We denote CBC (resp. CKS)
the total number of active S-Boxes in the internal permutation part of the block

4To be able to associate the number of active S-Boxes in the key schedule to the
output node as well, we make the weak assumption that one round of the key schedule
is composed of an S-Box and a linear layer at most.
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Figure 2: Examples of simplified versions of the two graphs G and G5. Variables si and
ki represent the current internal permutation/key state respectively, while rki stands
for the subkey generated during the round.

cipher (resp. in the key schedule part) in the whole characteristic. Depending
on the situation considered, one might want to minimize CBC + CKS for classical
scenarios, or instead max{CBC;CKS} for hash function settings, where the key
schedule and the block cipher parts can be attacked sequentially (first the key
schedule part, and then the block cipher one).

Theorem 1. (Search algorithm) Let E be a SPN cipher on n-bit blocks using
a k-bit internal state in the key schedule. Both states are viewed as vectors of
b-bit cells. There exists an algorithm A with a theoretical time complexity of
O(r · 2(2n+k)/b) that finds all the best characteristics on r rounds of E.

We emphasize that algorithm A will find all the shortest paths in Gr representing
the differential transitions of r rounds of E . Moreover, we note that the time
complexity of A can be greatly reduced with heuristics. We describe in the next
two sections our tool that searches for the best r-round related-key truncated
differential characteristics.

3.2 Precomputation phase

The precomputation phase builds the graphG. It can be built and stored efficiently
by observing its inner structure: the block cipher internal state output depends
only on the block cipher internal state input and the incoming subkey (deduced
by the extraction phase from the key schedule internal state input), while the
key schedule internal state output depends only on the key schedule internal
state input. Therefore, G can actually be described as a special product of two
smaller graphs GBC and GKS, such that an edge (si, kj)→ (si′ , kj′) exists in G if
and only if kj → kj′ exists in GKS and (si, kj)→ si′ exists in GBC. On the one
hand, GBC is a bipartite directed acyclic graph whose input nodes are all the
possible block cipher internal state and subkey pairs, and whose output nodes
are all the possible block cipher internal state. The edges represent input nodes



that can be mapped to output nodes through a valid differential transition. On
the other hand, GKS is a 2-equipartite directed acyclic graph, whose input and
output nodes are all the possible key schedule internal states. The edges represent
input nodes that can be mapped to output nodes through a valid differential.

This observation slightly reduces the amount of computation/memory to
build/store G: the number of vertices in GBC is vBC = 2tBC+tKS + 2tBC and the
number of vertices in GKS is vKS = 2× 2tKS . This has to be compared with the
2×2tBC+tKS nodes in G. For example, in the particular case of the AES-128, this
trick reduces the number of nodes from 233 in G to vBC = 232 + 216 in GBC and
216 in GKS and mainly allows to apply an early-abort approach to prune edges
in G in the online phase. More importantly, the total number of edges shrinks
considerably from eBC · eKS to eG = eBC + eKS, which equals to 233.6 + 222.15 in
the case of AES-128.

The graph GBC. It can be built by repeating the three following steps for all
the 2tBC possible truncated differences ∆in on the input and all the 2tBC possible
truncated differences ∆out on the output.

1. Compute all the possible truncated differences ∆x that can be obtained from
∆in through the P layer (on the backward direction, a truncated difference
∆out stays the same when inverting the S layer).

2. For every ∆x found, compute all the possible truncated differences ∆k on
the key state that can be obtained from AK−1(∆x ⊕∆out).

3. For every ∆k found, add an edge in GBC from input node (∆k, ∆in) to output
node ∆out if none exists.

The time complexity to build GBC depends on the average branching BP of the P
layer and on the average branching Bxor of the subkey XORing layer. It amounts
to 22tBC ·Bxor ·BP operations. The memory cost to store GBC corresponds to the
number of edges eBC of GBC and is upper bounded by 22tBC ·Bxor ·BP since one
operation on step 3 adds at most one edge. We denote succBC(s, k) the set of
successors of the state s in the graph GBC using the key k.

The graph GKS. It is built by simply going through all the 2tKS possible
key schedule internal state input truncated differences, checking which output
truncated differences can be obtained through the KS layer and adding edges in
GKS accordingly5. The time and memory complexities depend on the average
branching BKS of the KS layer and amounts to 2tKS ·BKS operations. The number
of edges eKS of GKS equals eKS = 2tKS ·BKS. In the sequel, we denote succKS(k)
the set of successors of the key k in graph GKS.

3.3 Online phase

The online phase finds all the shortest paths inGr with at most r·(vG2 ·log(vG2 )+eG)
computations and memory r · eG, thus linear in the number of rounds r. This is

5We assume that the key schedule is simple: given a truncated difference on the
input, one can find each reachable truncated output difference in constant time. This
assumption is weaker than the one from Footnote 4, and verified by most ciphers since
a very complex key schedule would make the whole primitive inefficient anyway.



Algorithm 1 – Search all shortest paths in Gr.
1: function Search(Gr)
2: Copy all nodes of Gr in a new graph G∗r
3: for all v ∈ V0, c(v)← |v|
4: for all v ∈ V1, . . . , Vr, c(v)←∞
5: SortList(V0)
6: for i = 1→ r do
7: for all v′ ∈ Vi, by increasing c(v′) do
8: for all v ∈ succ(v′) do
9: α← c(v′) + |v|
10: if c(v) =∞ then
11: c(v)← α
12: Add the edge v′ → v to G∗r
13: else if c(v) = α then
14: Add the edge v′ → v to G∗r
15: SortList(Vi)

16: return G∗r

possible because Gr is a vertex-weighted directed acyclic graph. Since the edges
have a constant weight (the number of active S-Boxes, i.e. the weights, are on
the nodes and not the edges), the function we want to minimize for each node
v ∈ Vi, i ∈ [1, r] is: |v|+minv′ ∈ pred(v) (c(v

′)), where pred(v) ⊆ Vi−1 is the set of
all predecessors of v and c(v′) represents the cost of the shortest path to v′. In
other words, if we know the shortest path costs to all the v′ ∈ Vi−1, we find the
shortest path to any v ∈ Vi by choosing the predecessor of v with the minimal
cost.

This can easily be done by creating a list containing all the nodes v′ ∈ Vi−1
sorted increasingly according to the cost of their shortest path c(v′). Then,
starting from the cheapest v′ and ending to the most expensive one, we set the
shortest path cost of all the successors v of v′ to |v| + c(v′) if and only if the
cost of v was not set yet (see Algorithm 1). This is an improvement over the
simple shortest path computation in a directed acyclic graph using a topological
order since we can take advantage of the vertex-weighted property. In practice,
we iteratively build a simpler vertex-weighted directed acyclic graph G∗r from Gr
(all the nodes are the same, but with less edges), for which each node v ∈ Vi has
a cost equal to the cost of the shortest path to v in Gr, and an edge leading to
v ∈ Vi represents one of the shortest paths to v (see Figure 3). At this point, in
the graph G∗r the costs assigned to all the nodes v in Vr represent the cost of
the shortest path to v in Gr. If vG represents the number of vertices and eG the
number of edges in the graph G, then the complexity of the shortest path search
is about r · ( vG2 · log(vG2 ) + eG) operations: the vG

2 · log( vG2 ) term comes from the
construction of the sorted list of the nodes at each round, and the eG term is
the number of edges visited during each round as we visit all of them. Note that
this is an upper bound on the complexity since we do not need to go through all
vG
2 nodes every rounds, but only a subset of them, and we may cut some edges
among all the eG ones. The term eG = eBC + eKS dominates the complexity, and



since eBC >> eKS, it can be approximated by the number eBC ≤ 2(n+k)/b × 2n/b

of edges in GBC. Hence, the total time complexity is O(r · 2(2n+k)/b) for r rounds.

V0 V1 V2 V3 V4 V5

(s, k)

light

node weights

heavy

Figure 3: The dashed edges form an example of a simplified G5. The thick edges
describe paths in the subgraph G∗5 that are shortest paths in G5 to node (s, k). All the
nodes in G∗5 are sorted according to their weight, the top being the cheapest ones.

In order to get all the shortest paths in Gr, we need to store at each node
v ∈ Vi not only the first shortest path found to v but all of them (lines 13 and
14 in Algorithm 1). In general, this number is very small and never exceeds the
total number of shortest paths anyway. In the worst case where all paths are the
shortest, it amounts to the total number of edges r · eG.

As explained previously, in practice we do not use the graph G directly, but
two separate graphs GBC and GKS. We can adapt the Algorithm 1 for this setting:
in order to build G∗r , we replace the for all loop of line 8 that iterates over all
nodes v′ = (si, ki) ∈ Vi by two for all loops that describe all ki+1 ∈ succKS(ki)
and all si+1 ∈ succBC(si, ki+1).

In [24], Matsui introduces an argument equivalent to the A∗ optimization for
path-finding or graph traversal algorithms [18] that allows to prune the majority
of the edges of G and to avoid the evaluation of many sets of successors. If we
know the costs ck of all k-round characteristics, 1 ≤ k ≤ n− 1, and we target an
n-round characteristic of cost at least cn, then we can consider only the nodes
from V0 that have a cost at most cn − cn−1, and the ones in V1 that have a cost
at most cn − cn−2. Intuitively, after one round has been passed, we know that
we paid at least c1, and since there are n− 1 remaining rounds to pass, we will
need to pay at least cn−1. In terms of intervals of costs, for each of the Vi, we
only need to consider nodes that have costs in [ci, cn− cn−i], 0 ≤ i ≤ n assuming
c0 = 0. To take advantage of the A∗ heuristic, we sort the sets of successors in
both graphs, so that we can perform an extreme pruning of the edges whenever
the updated costs exceed the current interval, in an early-abort manner.

Due to space constraints, we cannot detail how to efficiently extend this
algorithm to the case of AES-like ciphers, so we continue directly with the
consequences of the search for this class of ciphers. However, the full details are
given in the extended version of our paper.



4 Applications to SPN and AES-128

4.1 Structural evaluation of SPN AES-like ciphers

We present here the results on the structural evaluation of the AES-like ciphers
in regard to the related-key model, which provides an estimation of the security
provided by their key schedule. Namely, we ignore the semantic definition of the
S-Box and the MDS matrix, and we are only interested in how they can interact
in the related-key settings. The results are measured in terms of number of active
S-Boxes as in [22], and presented in Table 1. Lines 2 and 3 of the table provide
the minimum number of active S-Boxes (line 2) for any number of rounds when
implementing an AES-like cipher, and the number of truncated characteristics
that reach that bound (line 3). In these two lines, we count the number of active
S-Boxes in both the state and the subkeys, whereas in lines 4 and 5 of Table 1,
we consider the case of the hash function setting where the block cipher and its
key schedule can be attacked somewhat independently.

Rounds 1 2 3 4 5 6 7 8 9 10
min(CKS + CBC) 0 1 3 9 11 13 15 21 23 25

Trunc. Char. (log2) – 4.52 6.58 10.46 5.00 13.26 16.17 21.34 14.90 21.38
min(max(CBC, CKS)) 0 1 3 6 7 9 11 14 15 17
Trunc. Char. (log2) – 4.00 10.00 11.73 10.00 18.92 23.64 >30 >30 >30

Table 1: For the AES-128 cipher on r rounds, this table shows: (1) the minimal
number CKS + CBC of active S-Boxes in both the key schedule CKS and in the block
cipher CBC achievable in truncated differential characteristics; and (2), the same figures
for the minimal number max(CBC, CKS) for the hash function setting. Lines 3 and 5
count the number of distinct truncated characteristics that reach that bound.

Theorem 2. It is impossible to prove the security of the full AES-128 against
related-key differential attacks without considering both the differential property of
the S-Box and the P layer when two keys verify a certain relation. It is impossible
to prove the security of the full AES-128 in the hash function setting without
considering both the differential property of the S-Box and the P layer.

Proof. First, in the case where we consider related-key differential attacks where
two keys are related if their difference verify a certain relation (line 2), we remark
that for 10 rounds there exists a truncated differential characteristic counting
only 25 S-Boxes. As we discussed before, this means that a differential analysis
would run in p−25max operations. Consequently, the structure of AES-128 on its
own is not enough to prove the resistance to related-key attacks for any ciphers
in this class, we at least need to add a criteria on the S-Box via pmax.

Secondly, with an S-Box on n bits (n = 8 in the AES), the minimal theoretical
pmax that can be obtained is 2−(n−1): consequently, the largest number of
rounds that our structural analysis could attack for AES-like ciphers is 7 rounds.
Indeed, for 7 rounds, the 15 active S-Boxes give a differential analysis requiring
p−15max ≥ 2105 computations, which might be smaller than 2128. We note that we
do not know how to construct an almost-perfect permutation on n bits acting



as an S-Box with pmax = 2−(n−1). The S-Box chosen in the AES implements
a composition of an affine transformation on the inverse mapping, and reach
pmax = 2−(n−2). Hence, the largest number of rounds that our structural analysis
could attack is 8 rounds. Indeed, for 8 rounds, the 21 active S-Boxes give a
differential analysis requiring p−21max ≥ 2126 computations, which might be smaller
than 2128. However, when we instantiate the P layer by the one of the AES-128,
we observe that none of the 216.17 characteristics found on 7 rounds by our search
algorithm nor the 221.34 ones for 8 rounds can be instantiated due to linear
constraints coming from the key schedule. This means that proving or disproving
the security of the AES-128 in the related-key setting needs to consider both
the differential properties of the S-Box and the linear equations of the P layer.
From an instantiated P layer, we can write a system Q of linear equations whose
solutions are the values of all the truncated differences of the characteristic.
Therefore, choosing P such that Q can be made inconsistent on a small number
of rounds brings more security than a random P. Our tool can be used to write
this system of linear equations for any truncated differential characteristic.

Finally, for 10 rounds in the hash function setting, there exists characteristics
with only 17 active S-Boxes. For the AES-128, in the best case, the differential
probability equals 2−6·17 = 2−102. In this setting, the adversary is supposed to
have full control over the input of both the key schedule and the block cipher,
that is why we considered max(CBC, CKS) as an objective function to minimize
in our search algorithm of Section 3. As the previous structural results, this also
means that one cannot prove the security of the full AES-128 against differential
cryptanalysis by only analyzing its structure. �

4.2 Differential Characteristics results for AES-128

Theorem 3. After 6 rounds, there is no related-key differential characteristic
for AES-128 with a probability higher than 2−128.

Proof. The related-key differential characteristics presented in the previous sec-
tion are valid only when one deals with truncated differences, and these charac-
teristics give an indication on the structural security provided by the AES-128
key schedule. However, due to the choice of the P layer in AES-128, it turns
out that none of them can be instantiated with actual differences, because of
inconsistencies in some linear constraints. To overcome this difficulty, and at
the cost of a bigger graph G to handle, we first add some more information
in the Markov process both on the representation of the key schedule state
and the internal permutation state, and we then filter the best characteristics
obtained and hope to find one that can be instantiated with actual differences.
Our algorithm performs a search fundamentally different from [9], but it finds
again and more efficiently the same results.

By a system resolution, we show that from a truncated differential character-
istic, we can decide whether it can be instantiated with actual differences, and
even find an associated differential characteristic with the greatest probability.
As an example, our tool found again the best 17-S-Box truncated differential
characteristic on 5 rounds of AES-128, and also found how to achieve the greatest



probability 2−105 by instantiating the differences. This has to be compared with
the upper bound of 2−6·17 = 2−102 given in [9] since in the best case, all the
AES active S-Boxes have maximal differential probability 2−6. Trying all the
possible differences that instantiate this truncated differential characteristic, we
show that we cannot reach that bound, but we can only set 15 out of 17 S-Boxes
to the maximal differential probability. The following Table 2 reports the best
related-key characteristics found by our tool on AES-128 up to 5 rounds, with
their respective highest achievable probabilities. Thus, from 6 rounds, there is
no related-key differential characteristic for AES-128 with a probability higher
than 2−128. �

Rounds 1 2 3 4 5

min(CKS + CBC) 0 1 5 13 17

max log2(p) 0 -6 -31 -81 -105

Appendix reference – B C D E
Table 2: After 6 rounds, there is no related-key differential characteristic for AES-128
with a probability higher than 2−128. Our tool retrieved the previous known results but
also provides the real differential characteristics with maximum probability.

4.3 Distinguishing 9 rounds of AES-128

As another application of our tool, we describe a 9-round distinguisher for
AES-128 in the chosen-key model requiring 255 computations and 232 memory.
For an ideal cipher, the same property would be detected after 268 encryption
queries. Here, the chosen-key model asks the adversary to find a pair of keys
(k, k′) satisfying k ⊕ k′ = δ with a known difference δ, and a pair of messages
conforming to a partially instantiated characteristic in the data part.

We achieve this result by considering the best 5-round related-ley differential
characteristic and propagating it backwards to reach 9 rounds. The 5 last rounds
hence count 6 active S-Boxes in the key schedule part and 11 in the data part
(rounds 5 to 9 in Figure 4 and Table 3). By the backward propagation in the key
schedule, we reach a total of 15 active S-Boxes for the key schedule differential
characteristic, whose probability equals 2−101. Since we have 2128 possible key
values, we expect 227 pairs of keys to conform to the differential characteristic
in the key schedule. In the block cipher part, we prepend three rounds that we
plan to control with an average cost of one computation using the Super-SBox
technique [14,16,23], and one more round at the very beginning that we make as
sparse as possible. The entire 9-round differential characteristic is depicted on
Figure 4 and in Table 3.

The distinguishing algorithm. Once this differential characteristic settled,
we find inputs that verify the whole characteristic. We start by finding a pair of
keys that conforms to the whole differential characteristic in the key schedule.
There are about 227 expected such pairs of keys, and we can generate them at
an average cost of one computation by picking random values satisfying all the
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Figure 4: Differential characteristic of 9-round AES-128 used in the distinguisher.
White bytes are inactive, gray bytes have known differences, and hatched bytes are
truncated differences.

Table 3: Differential characteristics used in the distinguisher of 9 rounds of AES-128.
The known differences are represented by their values from 0x00 to 0xFF, and truncated
differences as ??, since their values are unknown, but non-zero. The two lines for state
differences are respectively the input difference after key addition and the output
difference.

Round State differences Key differences
Plaintext B3??0000 0000??00 28F47A?? ????0000

1 00??0000 0000??00 000000?? ????0000 B3000000 00000000 A6F47A7A 008E0000

00000000 00000000 8EF47A7A ????????

2 00000000 00000000 28000000 ???????? 00000000 00000000 A6F47A7A A67A7A7A

???????? ???????? ???????? ????????

3 ???????? ???????? ???????? ???????? 8E7A7A7A 8E7A7A7A 288E0000 8EF47A7A

??0000?? ????7A7A 8E????7A 0000????

4 ??0000?? ????0000 00????00 0000???? 28000000 A67A7A7A 8EF47A7A 00000000

288E0000 8E7A7A7A 00000000 00000000

5 008E0000 00000000 008E0000 008E0000 28000000 8E7A7A7A 008E0000 008E0000

00000000 8EF47A7A 8EF47A7A 8EF47A7A

6 00000000 008E0000 00000000 008E0000 00000000 8E7A7A7A 8EF47A7A 8E7A7A7A

8EF47A7A 00000000 8EF47A7A 00000000

7 00000000 008E0000 008E0000 00000000 8EF47A7A 008E0000 8E7A7A7A 00000000

8EF47A7A 8EF47A7A 00000000 00000000

8 00000000 008E0000 00000000 00000000 8EF47A7A 8E7A7A7A 00000000 00000000

8EF47A7A 00000000 00000000 00000000

9 00000000 008E0000 008E0000 008E0000 8EF47A7A 008E0000 008E0000 008E0000

???????? ???????? ???????? 00000000

Ciphertext ???????? ???????? ???????? 787A7A7A 78F47A7A 787A7A7A 78F47A7A 787A7A7A

non-linear transitions and efficiently solve the linear system to retrieve all the
subkeys: our implementation of that part confirms about 227 are found. We note
that the difference k ⊕ k′ = δ is already verified at this stage.

For a pair of keys, we precompute the four arrays Ti containing the paired
values of the ith Super-SBox: those are four parallel 32-bit non-linear applica-
tions obtained by reordering the layers of two rounds of the cipher. To construct
the tables Ti, we iterate in parallel over the 232 input values from state Send



that corresponds to the ith Super-SBox and propagate the values backwards
until S′start. We note that the difference in Send is completely determined by our
differential characteristic. We store the pair in Ti indexed by its difference6, so
that this precomputation requires 232 simple operations, a memory complexity
of 232, and depends on the selected pair of keys.

We continue by picking random values for the 5-byte difference after the
second non-linear layer in Sstart, which linearly fixes all the differences in S′start.
Note that we can repeat this part about 28·5 = 240 times. From the precomputed
tables Ti, we find on average one pair of messages that verifies the middle rounds
from Sstart to Send. The remaining of the process is probabilistic: backwards, we
expect a fraction of 2−7 pairs to pass the unique specified S-Box transition in
the second round up to ∆IN . Forwards, we expect a fraction of 2−6×8 = 2−48

to verify the 5 last rounds up to ∆OUT (all 8 transitions have been chosen by
our tool to be 8 times the same one with maximal probability pmax = 2−6).
Finally, we expect a fraction 2−7−48 = 2−55 of the pairs generated in the middle
to propagate correctly forwards and backwards.

By repeating this process for all 240 differences in Sstart and for 215 distinct
pairs of keys, we expect to find a solution for the whole characteristic in 215 ·
(232 + 240) ≈ 255 operations. Note that the freedom degrees left allows to get up
to 212 solutions in 267 operations by exhausting the remaining 212 valid pairs of
keys.

Ideal case. For an ideal cipher, the adversary faces a family of random and
independent permutations

{
πi, i ∈ {0, 1}128

}
. His goal is to find a key k and a pair

of messages (m,m′) such that: m⊕m′ ∈ ∆IN and πk(m)⊕ πk⊕δ(m′) ∈ ∆OUT ,
where δ, ∆IN and ∆OUT are specified in Figure 4. Namely, δ is a completely
determined 128-bit difference, whereas ∆IN and ∆OUT are two sets of 128-bit
differences defined in Figure 4: colored and white bytes are fixed differences, while
hatched bytes can take several difference values. On the output, we constrained
each of the three independent active bytes after the last non-linear layer of the last
round to only 127 reachable difference values (since from a fixed input difference,
only 127 output differences can be reached through the AES S-Box), and the
MixColumns layer being linear we have |∆OUT | = 1273 ' 221. On the input, 4
bytes in ∆IN can take any difference value and 1 byte is constrained to only 127
reachable difference values, thus |∆IN | = 127 · (28 − 1)4 ≈ 239.

The best known method for the attacker to find (k,m,m′) verifying those
properties consists in applying the limited birthday algorithm [16]. The additional
freedom left in choosing the key bits does not help the attacker to find the actual
pair of messages that verifies the required property, since the permutations Fk and
Fk⊕δ have to be chosen beforehand. All in all, the attacker has access to 39 bits
of differences at the input and 21 bits in the output, for a pair of permutations
on n = 128 bits. The limited birthday distinguisher on these permutations finds

6To simplify, we assume the differences in S′start to be uniformly distributed so that
each 32-bit difference appears once. While this simplification is not true in practice,
the cost per solution remains one on average, thus it does not change the complexity
estimation.



a solution in time max{min(2IN/2, 2OUT/2), 2IN+OUT−n}, with IN = n − 39
and OUT = n− 21, which gives a time complexity equivalent to 268 encryption
queries.

5 Conclusion and future works
In this article, we have proposed a simple, efficient and generic algorithm that
searches for (truncated) differential characteristics in the single-key, related-key
or hash function setting for SPN ciphers. Thanks to this method, we were able to
obtain the first non-trivial distinguisher of 9-round AES-128 in the chosen-key
model, which has been a long-lasting open problem on this version of AES. We
also show that no security proof of AES-128 in the related-key model of the
hash function setting can be based only of its structure: one has to take into
consideration both the Sbox and the linear layer. We believe this tool will be
useful for designers that would like to easily test the security of their own key
schedule or message expansion. The research community has still a lot to learn on
the security of key schedules and there are many future works possible: extend the
9-round result on AES-128 to the full 10 rounds, find a single-key like security
proofs in the related-key model for AES-like ciphers (generic enough to work
for any dimension), provide a formal proof of security against differential/linear
cryptanalysis for AES in the related-key model, and build simpler, more efficient
and more secure key scheduling algorithms.
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A Best truncated differential characteristics for AES-128
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Figure 5: Best truncated differential characteristics for AES-128 when r = 5 rounds
with 11 active Sboxes.
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Figure 6: Best truncated differential characteristics for AES-128 when r = 10 rounds
with 25 active Sboxes.
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Figure 7: Best truncated differential characteristics for AES-128 when r = 8 rounds
with 21 active Sboxes.

B Differential characteristic for 2-round AES-128



5 1
2 2
2 2
3 3

AK1

1 1
2 2
2 2
3 3

KS

4
SB
SR

2

MC

1
2
2
3

AK2

1
2
2
3

KS

SB
SR MC AK3

1 1 1 1
2 2 2 2
2 2 2 2
3 3 3 3

1 1 1 1
2 2 2 2
2 2 2 2
3 3 3 3

Figure 8: The best differential characteristic on two rounds of AES-128, which has a
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C Differential characteristic for 3-round AES-128
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Figure 9: The best differential characteristic on three rounds of AES-128,
which has a probability p = 2−31. The vector of differences is
(1,...,d)=(0x1C,0x0E,0x12,0x01,0x1D,0x90,0x0D,0x0B,0xB3,0x58,
0x45,0xF7,0x4B).

D Differential characteristic for 4-round AES-128
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Figure 10: The first best differential characteristic on four rounds of AES-128, which
has a probability p = 2−81. Differences are: � = 0x7A,  = 0x8E and F = �⊕ =
0xF4.
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Figure 11: The second best differential characteristic on four rounds of AES-128,
which has a probability p = 2−81. Differences are: � = 0x7A,  = 0x8E and F =
�⊕ = 0xF4.

E Differential characteristic for 5-round AES-128
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Figure 12: The best differential characteristic on five rounds of AES-128, which has a
probability p = 2−105. Differences are: � = 0x7A,  = 0x8E and F = �⊕ = 0xF4.
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