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Abstract. The best existing pairing-based traitor tracing schemes have
O(

√
N)-sized parameters, which has stood since 2006. This intuitively

seems to be consistent with the fact that pairings allow for degree-2
computations, yielding a quadratic compression.
In this work, we show that this intuition is false by building a traitor
tracing scheme from pairings with O( 3√N)-sized parameters. We addi-
tionally give schemes with a variety of parameter size trade-offs, including
a scheme with constant-size ciphertexts and public keys (but linear-sized
secret keys). We obtain our schemes by developing a number of new traitor
tracing techniques, giving the first significant parameter improvements in
pairings-based traitor tracing in over a decade.

1 Introduction

Traitor tracing [CFN94] allows a content distributor to trace the source of a
pirate decoder. Every user is given a unique secret key that allows for decrypting
ciphertexts. A “traitor” might distribute their key to un-authorized users, or even
hide their key inside a pirate decoder capable of decrypting. A tracing algorithm
can be run on the decoder that will identify the traitor. In a collusion-resistant
scheme, even if several traitors collude, the tracing algorithm will be able to
identify at least one of them1, without ever falsely identifying an honest user.
Much of the traitor tracing literature considers fully collusion-resistant schemes,
where the coalition of traitors can be arbitrarily large. In this work, we will only
consider fully collusion-resistant schemes.

The main goal of traitor tracing is to build schemes with short parameters,
in particular short ciphertexts that depend minimally on the number N of
users. Boneh, Sahai, and Waters [BSW06] demonstrated the first collusion-
resistant scheme with O(

√
N)-sized parameters using pairings2. Shortly after their

work, Boneh and Waters [BW06] augmented the construction with a broadcast
functionality, achieving a so-called broadcast and trace scheme also with O(

√
N)-

sized parameters. These works remain the state-of-the-art in pairings-based
collusion-resistant traitor tracing. Using other tools such as obfuscation or LWE,
better parameters are possible [GGH+13, BZ14, GKW18].
1 A traitor could be completely passive, so it is impossible to identify all traitors.
2 Following convention, the Big-Oh notation throughout this paper will hide constants
that depend on the security parameter, and focus on the dependence on N .



1.1 Some Existing Approaches to Traitor Tracing
Fingerprinting Codes. One of the earliest approaches to collusion-resistant tracing
was shown by Boneh and Naor [BN08]3, who construct traitor tracing using an
object called fingerprinting codes [BS95]. Their scheme is combinatorial, relying
simply on generic public key encryption, and ciphertexts have optimal O(1) size.

The Boneh-Naor scheme, however, is generally not considered to resolve
the traitor tracing problem. Curiously, different authors seem to have different
interpretations of why. Some works (e.g. [BZ14, GKSW10, TZ17]) note that
Boneh-Naor requires very large secret keys — namely quadratic in the number
of users — which is inherent to fingerprinting codes [Tar03]. The main limitation
according to these works appears to be simultaneously achieving small ciphertext
and small secret/public keys. Other works more or less ignore the secret key size
limitation (e.g. [GKW18, KW19, GQWW19]4), suggesting the main limitation
of Boneh-Naor is that it is a threshold scheme: it can only trace decoders whose
decryption probability exceeds some a priori threshold. These works appear to
consider it an open problem, for example, to construct non-threshold traitor
tracing with constant-sized ciphertexts (and any secret or public key size) from
anything implied by pairings.

Private Linear Broadcast Encryption (PLBE). A Private Linear Broadcast
Encryption (PLBE) scheme is a limited type of functional encryption that
allows for encrypting to ranges of user identities, and is known to imply traitor
tracing [BSW06]. Algebraic constructions of PLBE achieve simultaneously smaller
parameters, and are not subject to the threshold restriction. PLBE is by far
the most popular approach to traitor tracing today, being taken by the current
best pairings-based constructions [BSW06, BW06], as well as the obfuscation
and LWE-based constructions [GGH+13, BZ14, GKW18]. In fact, in the last
five years (2014-2019) of traitor tracing papers, we could identify ten papers
appearing at EUROCRYPT, CRYPTO, ASIACRYPT, TCC, STOC, and FOCS
giving positive results for traitor tracing. With perhaps one exception (discussed
below) every single one can be seen as following the PLBE or closely related
approaches [BZ14, LPSS14, NWZ16, KMUZ16, GKRW18, KMUW18, CVW+18,
GKW18, GQWW19, GKW19].

Risky Traitor Tracing. Recently, Goyal et al. [GKRW18] define a relaxed notion
of “risky traitor tracing” where the pirate decoder is only guaranteed to be traced
with some non-zero probability, say α for some α� 1. Their approach follows
the PLBE framework, but actually strengthens PLBE. Essentially, their scheme
constructs PLBE for αN users, but then since α < 1, it must assign multiple
users to the same identity. In order to get tracing to work, however, it must
be that users cannot tell what identity they were assigned to. This requires
strengthening PLBE, as in standard PLBE every user knows their identity.
3 The work originated from 2002, but was not published until 2008.
4 Example: Goyal, Koppula, and Waters [GKW18] make the central claim of achieving
a “secure traitor tracing with [constant]-sized ciphertexts from standard assumptions,”
without discussing the secret key size of their construction at all.



1.2 This work: New Techniques for Traitor Tracing

In this work, we explore the use of different structures to build traitor tracing,
giving rich set of traitor tracing techniques beyond the usual approaches. We
then use these techniques to build several new schemes from pairings and weaker
primitives that offer new trade-offs that were not possible before. Below we
describe our results, with a summary given in Table 1.

In the following, we will say a traitor tracing system has size (P,K,C) if
its public key, secret keys, and ciphertexts have sizes at most O(P ), O(K), and
O(C), respectively, where constants hidden in the Big Oh notation are allowed
to depend on the security parameter5. We abbreviate size (A,A,A) as simply A.

– The first scheme of size (N2, N2, 1) without the threshold limitation from
the minimal assumption of general public key encryption6. Thus, we remove
the threshold limitation of fingerprinting code-based tracing schemes. The
main limitation of these schemes is then the large public and secret key sizes.
We note that we easily can compress the public keys to get a scheme of size
(1, N2, 1) , relying on the stronger assumption of identity-based encryption.

– The first pairings-based scheme of size (1, N, 1), or generally (1, N1−a, Na)
for any constant a ∈ [0, 1]. For all constants a < 1, this gives a new parameter
trade-off that was not possible before from pairings.

– An (N1−a, N1−a, Na)-sized scheme from pairings, attaining the stronger
notion of broadcast and trace [BW06], which augments traitor tracing with
a broadcast functionality. For a = 0, this gives the first broadcast and
trace scheme with constant-size ciphertexts from pairings. This improves on
the recent work of [GQWW19] which attained arbitrarily-small polynomial
ciphertext size, while also requiring lattices in addition to pairings.

– A new model for traitor tracing, which we call the shared randomness model
(SRM), where encryption, decryption, and the decoder have access to a large
source of randomness that is not included in the communication costs. While
we define the model as a stepping stone toward a full tracing algorithm in
the plain model, our shared randomness model may be useful in its own right.
For example, the shared randomness could be derived from some publicly
available data, such as stock market fluctuations or blockchains.

– A broadcast and trace scheme of size (N, 1, 1), or more generally (N1−a, 1, Na)
for any constant a ∈ [N ], in the shared randomness model from pairings.
The size of the shared randomness is N1−a; thus, for a ≥ 1/2, the shared
randomness can simply be included in the ciphertext, in which case we get
a scheme in the plain model. We note that for a = 1/2, we get the first
broadcast and trace scheme of size (N1/2, 1, N1/2) from pairings, improving
on the (N1/2, N1/2, N1/2)-sized scheme of [BW06].

– Putting it all together: a traitor tracing (non-broadcast) scheme of size 3
√
N .

5 We will also suppress logN terms. This is without loss of generality since it is always
the case that logN < λ, and the Big-Oh already hides poly(λ) terms.

6 Our definition of traitor tracing has public encryption, which in particular implies
public key encryption.



Our results are obtained by a number of new techniques that may have applica-
tions beyond the immediate scope of this work:

– A generic procedure to increase the number of users by expanding the cipher-
text size, but in many cases keeping the other parameters fixed (Theorem 1).

– A generic procedure to convert any threshold scheme into a non-threshold
scheme without affecting the dependence on N (Theorem 2).

– A generic procedure to convert a risky scheme into a non-risky scheme,
without asymptotically affecting ciphertext size (Theorem 3).

– A conversion from a certain broadcast functionality into a traitor tracing
scheme, with shared randomness (Theorem 4).

– New instantiations of broadcast encryption from pairings (Theorem 5).

Scheme |pk| |sk| |ct| Broadcast & Trace? Tool Limitations

Trivial
N 1 N

3
PKE

1 1 N IBE

[BN08]
N2 N2 1

7
PKE

Threshold
1 N2 1 IBE

[BSW06]
√
N 1

√
N 7

Pairing
[BW06]

√
N

√
N

√
N 3

Cor 1
N2−a N2−2a Na

7

PKE
1 N2−2a Na IBE

Cor 2 1 N1−a Na

Pairing
Cor 3 N1−a N1−a Na

3
Cor 4 N

1/2−a/2 1 N
1/2+a/2

Cor 5 3√N 3√N 3√N 7

Table 1: Comparing parameters sizes of our schemes to some existing protocols.
This table only includes schemes based on pairings or weaker assumptions implied
by pairings. N is the number of users. All sizes hide multiplicative constants
dependent on the security parameter (but not N). a ∈ [0, 1] is any constant.

2 Technical Overview

In order to abstract and modularize the discussion, the central object we will con-
sider is a generalization of a traitor tracing system, which we call a “multi-scheme,”
which can roughly be seen as a scaled-down version of “identity-based traitor
tracing” as defined in [ADM+07]. Intuitively, a multi-scheme is M essentially
independent tracing systems running in parallel, each with distinct secret keys
and ciphertexts. All N users within a single instance can decrypt ciphertexts to



that instance, but not to other instances. Tracing also works within an instance:
any pirate decoder that decrypts for an instance can be traced to traitors within
that instance. A plain traitor tracing scheme implies a multi-scheme by simply
setting up M separate instances of the scheme. The point of a multi-scheme,
however, is that the M schemes are allowed share a common public key, which
may be smaller than M copies of a single public key. See Definition 1.

We will also consider broadcast and trace schemes [BW06], which augment
plain traitor tracing with a broadcast functionality. That is, the encrypter can
specify a subset S ⊆ [N ], and only users in S should be able to decrypt the
ciphertext. S is also incorporated into the tracing definition. See Section 4.1.

We will say that a scheme Π has size (P,K,C) for functions P = P (N,M),
K = K(N,M), and C = C(N,M), if there is a polynomial poly(λ) such that, for
all polynomials N = N(λ) and M = M(λ), we have |pk| ≤ P (N,M)× poly(λ),
|skj,i| ≤ K(N,M) × poly(λ), and |c| ≤ C(N,M) × poly(λ). For example, if
|pk| = |skj,i| = |c| = 2N1/2Mλ2 + λ5, we could set poly(λ) = 2λ5, which shows
that the protocol has size (N1/2M,N1/2M,N1/2M).

2.1 User Expansion Compiler

Our first result shows how to expand the number of users by grouping different
instances together. That is, we compile a scheme with N/T users and MT
instances into a scheme with N users and M instances. Essentially, we just
partition the MT instances into M sets of size T . Within each set, there are
now N users (N/T for each instance, T instances). We then encrypt the message
separately to each of the T instances within the set, ensuring that all N users in
the set can decrypt. This conversion blows up the ciphertext size by a factor of
T , but hopefully results in smaller public/secret keys. Concretely, we prove:

Theorem 1 (User Expansion). Let P = P (N,M),K = K(N,M), C =
C(N,M), T = T (N,M) be polynomials such that T (N,M) ≤ N . Suppose there
exists a secure multi-scheme Π0 with size (P,K,C). Then there exists a secure
multi-scheme Π with size ( P (N/T,MT ) , K(N/T,MT ) , T × C(N/T,MT ) ).
If Π0 is a broadcast and trace scheme, then so is Π.

Our compiler can be seen as a generalization of the most basic traitor tracing
scheme, which simply gives each user a different secret key for a public key
encryption scheme and encrypts to each user separately. Abstracting the ideas
behind this scheme will lead to useful results later in this paper.

The tracing algorithm in our compiler essentially views the construction as an
instance of private linear broadcast encryption (PLBE), and then uses a tracing
algorithm analogous to [BSW06]. Given a decoder D for the compiled scheme,
we test the decoder on invalid ciphertexts where the first t components have been
modified to encrypt gibberish, and see if the decoder still decrypts. For a good
decoder, a simple hybrid argument shows that there will be some t where the
decoder decrypts t− 1 with probability noticeably higher than it decrypts t. This
will allow us to construct from the original decoder D a new decoder Dt for Π0,
targeting the t’th instance. We then run Π0’s tracing algorithm on Dt, which



will accuse a set A ⊆ [N/T ]. For each i ∈ A, we then accuse the user who was
assigned index i within instance t. See Section 5 for details.

2.2 Threshold Elimination Compiler

Our next compiler converts a threshold scheme — which can only trace decoders
that have constant decryption probability — into a full tracing scheme which
can trace decoders arbitrary-small inverse-polynomial decryption probability.

Theorem 2 (Threshold Elimination). Let P,K,C be polynomials in N,M .
If there exists a threshold secure multi-scheme ΠThresh with size (P,K,C), then
there exists a (non-threshold) secure multi-scheme Π with size (P,K,C). If ΠThresh
is a broadcast and trace scheme, then so is Π.

As an application, the Boneh-Naor traitor tracing scheme [BN08], when instanti-
ated with “robust” Tardos fingerprinting codes [Tar03, BKM10], yields a threshold
scheme of size (N2, N2, 1), or a multi-scheme of size (MN2, N2, 1). Applying
Theorem 2 gives a non-threshold scheme with the same size. We can also eliminate
the public key size by using identity-based encryption (IBE) instead of public
key encryption. Finally, applying Theorem 1 with T = Na gives:

Corollary 1. Assuming public key encryption, there exists a (non-threshold)
secure multi-scheme of size (MN2−a, N2−2a, Na). Assuming IBE, there exists a
secure (non-threshold) multi-scheme of size (1, N2−2a, Na).

Setting a = 2/3 and using IBE from the computational Diffie-Hellman (CDH)
assumption in plain groups [DG17] gives a (non-threshold) scheme of size
(1, N2/3, N2/3) from CDH, the first such scheme with sublinear size.

Proving Theorem 2. Our goal is to design Π such that any decoder D for the
scheme — even one with small but noticeable decryption probability — can be
converted into a decoder D′ that decrypts with high probability, for the original
scheme ΠThresh. Importantly, we cannot asymptotically expand the parameters.

To encrypt a message m, our basic idea is to choose random m1, . . . ,mn such
that m1⊕m2⊕· · ·⊕mn = m. We encrypt each of the mi separately using ΠThresh,
the final ciphertext for Π being the n encryptions of the mi. To decrypt, simply
decrypt each component to recover mi, and then reconstruct m.

Since the mi are an n-out-of-n secret sharing of m, a decoder needs to, in
some sense, be able to recover all of the mi in order to compute m. Supposing
the “decryptability” of the n individual ciphertexts were independent events,
then the decryptability of the individual ciphertexts must very high in order to
have noticeable chance at decrypting all n ciphertexts simultaneously.

To turn this intuition into a proof, we show how to extract the mi whenever
the individual ciphertext is decryptable, in order to build a decoder D′ for Π0
with high-enough decryption probability so that it can be traced using Π0. On
input a ciphertext c, D′ chooses a random i ∈ [n] and sets ci = c. It then fills
in a ciphertext tuple (c1, . . . , cn) where the cj , j 6= i are encryptions of random



messages mj . When D gives a guess m′ for m, D′ can compute a guess m′i for
mi using m′ and the mj , j 6= i. D′ decrypts with the same probability as D, and
by repeating the process many times on the same ciphertext c, the hope is to
amplify the decryption probability.

Unfortunately, there are a few issues. For a fixed ciphertext c, the various
trials share a common ciphertext, and therefore their success probabilities are not
independent. Also, there is no obvious way to tell which of the trials produced
the correct message. Finally, recent traitor tracing definitions [NWZ16, GKRW18,
GKW18] actually require tracing to hold in the stronger indistinguishability
setting, which means roughly that D does not have to actually produce the
message, but only needs to distinguish it from, say, a random message.

We resolve these issues in a couple steps. We use Goldreich-Levin [GL89] to
convert an indistinguishability decoder into a predicting decoder. We analyze the
decoder’s decryption probability on the correlated instances, and show that the
success probability over multiple trials amplifies as necessary, when n = poly(λ).
Finally, we leverage the indistinguishability security of ΠThresh — meaning D′
only needs to distinguish the correct message from random — which allows D′
to tell when a trial produces the correct output. Details are given in Section 6.

Putting everything together, if D distinguishes with non-negligible probability,
D′ will distinguish with probability 1 − o(1). Our compiler leaves public and
secret keys intact, and blows up the ciphertext by a factor independent of the
number of users N , as desired. See Section 6 for additional details.

2.3 Risk Mitigation Compiler

Next, we give a compiler that eliminates risk from risky traitor tracing schemes:
Theorem 3 (Risk Mitigation). Let P = P (N,M),K = K(N,M), C =
C(N,M) be polynomials. Let α = α(N) be a polynomial. If there exists an α-risky
multi-scheme ΠRisky with size (P,K,C), then there exists a secure (non-risky)
multi-scheme Π with size ( P (N,Mα−1) , α−1 ×K(N,Mα−1) , C(N,Mα−1) ).
If ΠRisky is a broadcast and trace scheme, then so is Π.
Thus, by multiplying M by O(α−1) and increasing the secret key size by a factor
of O(α−1), one can eliminate α-riskiness. In Section 7.2, we extend the risky
scheme from [GKRW18] into a 1/N -risky multi-scheme of size (1, 1, 1). Theorem 3
plus Theorem 1 with T = Na gives:
Corollary 2. For any a ∈ [0, 1], if Assumptions 1 and 2 from [GKRW18] hold,
there exists a secure multi-scheme of size (1, N1−a, Na).
Note that the computational assumptions are the same as in [GKRW18]. Also,
for any a < 1, such parameters were not known before from pairings.

We also demonstrate how to add a broadcast functionality to the risky scheme
of [GKRW18], at the cost of increasing the public key size and relying on the
generic group model for security. Running through our compilers gives:
Corollary 3. For any a ∈ [0, 1], there exists a broadcast and trace multi-scheme
of size (N1−a, N1−a, Na) from pairings, with security in the generic group model.



For a = 0, this gives the first broadcast and trace scheme with constant-sized
ciphertexts from standard tools, and improves on [GQWW19], which attained N ε

ciphertext size for any ε > 0, while also requiring lattices in addition to pairings7.

Proving Theorem 3. Let ΠRisky be an α-risky multi-scheme. Consider a new
protocol Π which runs ΠRisky with T = ω(log λ)/α instances. The secret key for
a user consists of the all the secret keys for that user across the T instances. To
encrypt, encrypt to a single random instance from ΠRisky. The overall ciphertext
is simply the label of the instance (a number in [T ]), and a ciphertext from ΠRisky.
Since each user has a secret key from each instance, each user can decrypt.

Thus, we expand the secret key by a factor of O(1/α), and add log T =
log λ+log(1/α) = O(log λ) bits to the ciphertext. We can easily extend the above
to yield a riskless multi-scheme for M instances, by increasing the number of
instances of ΠRisky to M × T and grouping them into sets of size T .

Analysis. Suppose a pirate decoder D for Π decrypts with certainty. Then it
must decrypt, no matter which instance of ΠRisky is chosen during encryption.
Thus, a perfect decoder for Π actually yields a decoder for each of the T instances
of ΠRisky. α-riskiness means that each of the T decoders has an α chance of being
traced to a traitor, and intuitively the probabilities should be independent. Over
all T instances, we expect the tracing probability to be 1− (1−α)T = 1−negl(λ).

Toward tracing imperfect decoders, suppose D instead only decrypts for a
single instance of Π0; D has non-negligible decryption probability 1/T , but will
only be traced with probability α. Thus, we cannot trace arbitrary decoders8.
We will instead aim for a threshold scheme; we can then apply Theorem 2 to get
a full tracing scheme.

Even in the threshold setting, however, difficulties arise. The decoder may
only decrypt, say, half of the instances, which we will call “good” instances.
The good instances are chosen adaptively, after the adversary interacts with
the many instances of the scheme. This means that the tracing probabilities for
the various good instances will not be independent. Nevertheless, we show by a
careful argument that, for the right definition of security for a multi-scheme, the
tracing probabilities cannot be too correlated, which is sufficient to get our proof
to go through. More details are given in Section 7.

2.4 Traitor Tracing from Threshold Broadcast Encryption

We next turn to constructing traitor tracing from a certain type of attribute-
based encryption which we call threshold broadcast encryption (this notion of
“threshold” not to be confused with the notion of “threshold” for traitor tracing).

7 The size of the broadcast and secret keys are never explicitly calculated in [GQWW19].
From personal communication with the authors of [GQWW19], we understand that
the public key has size Ω(N) and the secret keys have size Ω(N2). Thus, our scheme
also improves on the secret key size from their work.

8 This is similar to the reason behind why Boneh-Naor [BN08] is a threshold scheme.



A (plain) broadcast encryption scheme allows for broadcasting a ciphertext to
arbitrary subsets of users with a single constant-sized ciphertext. Broadcast
encryption with constant sized secret keys and ciphertexts (but linear-sized
public keys) is possible using pairings, as first shown by Boneh, Gentry, and
Waters [BGW05].

Describing an arbitrary subset of recipients takes linear space; therefore,
broadcast schemes obtain sub-linear ciphertexts by assuming S is public and
not counted in the ciphertext. On the other hand, traitor tracing typically
requires a “private” broadcast, where the recipient set is at least partially hidden.
For example, private linear broadcast encryption (PLBE) [BSW06] allows for
encrypting to sets [i], and only user i can distinguish between [i− 1] and [i].

Our goal is to show how to use broadcast functionalities — with public
recipient sets — to enable a private broadcast structure that allows for tracing.

Our Idea. To trace N users, we will instantiate a broadcast scheme with NT
users, for some parameter T . We will think of the NT identities as being pairs
(i, x) ∈ [N ]× [T ]. For each user i ∈ [N ], we will choose a random xi ∈ [T ], and
give that user the secret key for broadcast identity (i, xi). Only user i knows xi.
To encrypt, we will simply broadcast to a random subset S ⊆ [N ]× [T ].

For tracing, consider choosing S uniformly at random conditioned on (i, xi) /∈
S; doing so “turns off” user i, preventing them from decrypting. If i is honest,
the adversary does not know xi and hopefully cannot distinguish between this
distribution and a truly uniform S. If turning off a user causes a change in
decryption probability, we then accuse that user.

The description so far has several issues. First, in regular execution of the
above scheme, any (i, xi) will only be in the recipient set with probability 1/2,
meaning honest users can only decrypt half the time. Second, an attacker may
guess xi with non-negligible probability 1/T , and create a decoder that fails if
(i, xi) /∈ S, thus fooling the tracing algorithm into accusing an honest user with
non-negligible probability. Finally, encoding an arbitrary subset S takes NT bits,
meaning we have (at least) linear-sized ciphertexts.

Threshold Broadcast. To rectify the first two issues, we will rely on a stronger
version of broadcast encryption, which we call threshold broadcast encryption9.
Here, every secret key is associated with a set U ; this key can decrypt a ciphertext
to set S if and only if |U ∩ S| ≥ t for some threshold t.

We now give users the secret key for disjoint sets U of identities. The size
of S ∩ U for a random set S will concentrate around |U |/2; by setting t slightly
smaller than |U |/2, users will be able to decrypt with overwhelming probability.
For tracing, the attacker can only guess a small fraction of an honest user’s
identities. We turn off the identities the attacker does not guess, which will drop
|S ∩ U | below t, thereby turning off the user while keeping the decoder on.

In slightly more detail, we set T = 2λ. We interpret the N × 2λ identities as
triples (i, j, b) ∈ [N ]× [λ]× [2]. For each user, we will choose a random vector
9 The prior literature on this topic such as [AHL+12] uses the terminology of “threshold
attribute based encryption”



xi ∈ {0, 1}λ, and give the user the secret key for set Ui = {(i, j, xij)}j∈[λ]. When
we trace, for each user i, we will iterate over all j ∈ [λ], trying to turn off
identity (i, j, xij) by removing that element from S. If removing that element
causes too-large a decrease in the decoder’s decryption probability, we keep it
in S; otherwise we remove it. We demonstrate that, if the user is outside the
adversary’s control (meaning in particular the adversary does not know xi), that
with high probability we can remove enough of the elements to completely turn
off that user. A diagram illustrating our idea is given in Figure 1.

Interestingly, our tracing algorithm makes adaptive queries to the decoder:
which elements are in the set S depends on the results of previous queries to the
decoder. This is unlike the vast majority of tracing techniques (including both
fingerprinting codes and PLBE), where all queries can be made in parallel.

Fig. 1: An illustration in the case λ = 5, N = 4, t = 2. Here, the ith pair of
columns corresponds to the identities (i, j, b), j ∈ [λ], b ∈ {0, 1}. Ui is the set of
boxes with the number i in them. Gray boxes are those contained in S. Left:
Normal usage. In this case, if t = 2, all users would be able to decrypt. Right: An
example tracing attempt. An “X” represents an element that has been explicitly
removed from S. Here, removing (1, 2, 1) (1st pair of columns, 2nd row) failed,
and so (1, 2, 1) was left in S. Tracing succeeds in fully turning off users 1 and 2.

The Shared Randomness Model. For now, we side-step the need to communicate
S by considering a new model for traitor tracing, which we call the shared
randomness model. Here, every ciphertext is encrypted using a large public source
of randomness (in addition to private random coins). This public randomness is
also available for decryption, but we will not count it as part of the ciphertext.
In this model, we simply have S be derived from the shared randomness.

We update our size notation, to include a fourth term R which bounds the size
of the shared randomness; C now only bounds the ciphertext component excluding
the shared randomness. For example, a scheme of size (P,K,C,R) = (N,N, 1, N)
would have linear-sized public and secret keys, constant-sized ciphertexts, and
linear-sized shared randomness. We prove the following in Section 8:
Theorem 4 (Informal). If there exists a secure threshold broadcast scheme
of size (P,K,C), then there exists a secure broadcast and trace scheme of size
(P,K,C,N) in the shared randomness model.

Instantiation. We now turn to constructing a threshold broadcast scheme. Exist-
ing pairing-based constructions such as [AHL+12] have size (N,N, 1), allowing us



to match Corollary 3 with entirely different techniques, but in the weaker shared
randomness model. We observe, however, that we do not need a full threshold
broadcast scheme. Prior works required security to hold, even if multiple users
had overlapping sets Ui. In our case, all users have disjoint Ui. This turns out to
let us strip away much of the secret key material, arriving at smaller secret keys.

In slightly more detail, the secret key for a set U consists of terms roughly of
the form g

β
∏

i∈U
(γ−i)−1

where β, γ are hidden. The problem with overlapping
U is that one can combine different secret keys to generate new keys for other
subsets. For example, one can combine sk12 = gβ(γ−1)−1(γ−2)−1 and sk13 =
gβ(γ−1)−1(γ−3)−1 into sk23 = sk−1

12 ×sk2
13 = gβ(γ−2)−1(γ−3)−1 without knowing β, γ,

invalidating security. Therefore, existing schemes add additional randomization
to the secret key to prevent combinations; each user then needs a personalized
version of the public key in order to strip away this extra randomization during
decryption. This expands the secret keys to size O(N).

Our main observation is that no such randomization is necessary if the U ’s
are disjoint; we describe our scheme in Section 8. We justify the security of our
scheme (for disjoint U) in the generic group model for pairings:

Theorem 5 (Informal). There exists a threshold broadcast scheme with size
(N, 1, 1) from pairings with security for disjoint U in the generic group model.

User Expansion in the Shared Randomness Model. Interestingly, in the shared
randomness model, user expansion (Theorem 1) increases the ciphertext size, but
not shared randomness size. Concretely, Theorem 1 becomes:

Theorem 1. Let P = P (N,M),K = K(N,M), C = C(N,M), R = R(N,M)
and T = T (N,M) be polynomials such that T (N,M) ≤ N . If there exists a secure
multi-scheme Π0 with size (P,K,C,R) in the shared randomness model, then there
exists a secure multi-scheme Π with size ( P (N/T,MT ) , K(N/T,MT ) , T ×
C(N/T,MT ) , R(N/T,MT ) ) in the shared randomness model. If Π0 is a
broadcast and trace scheme, then so is Π.

Next, note that if R ≤ C, we can include the shared randomness in the ciphertext,
giving a scheme with the same ciphertext size without shared randomness.
Combining Theorems 4 and 5, and then applying our updated Theorem 1 gives:

Corollary 4. For any constant a ∈ [0, 1], there exists a broadcast and trace
scheme of size (N1−a, 1, Na, N1−a) from pairings in the shared randomness
model, whose security is justified in the generic group model. For a ∈ [1/2, 1], the
scheme has size (N1−a, 1, Na) in the plain model.

Setting a = 1/2 gives the first pairing-based broadcast and trace scheme with
size (N1/2, 1, N1/2), improving on (N1/2, N1/2, N1/2) from [BW06].

2.5 Putting it All Together: Our 3√
N Construction

Finally, we combine all of the ideas above to yield a traitor tracing scheme where
all parameters have size 3

√
N . At a high level, we take our shared randomness



scheme of size (N, 1, 1, N) for N users, augment the construction with ideas
from [GKRW18] to expand it to N2 users while hopefully keeping the size
(N, 1, 1, N), at the expense of only achieving 1/N -riskiness. If this worked, scaling
down N2 7→ N would give 1/

√
N -risky scheme of size (

√
N, 1, 1,

√
N) for N users.

Then we apply Theorem 3 to eliminate the risk, then Theorem 1 with T = 3
√
N

to balance the number of users, and finally including the shared randomness in
the ciphertext, achieving size 3

√
N in the plain model.

We follow the above idea, but unfortunately there are some subtle issues with
the above approach which make the combination non-trivial. Concretely, when
adding riskiness to our shared randomness scheme, we multiply the number of
users by N . However, we cannot expand the set of recipients for the threshold
broadcast scheme, since doing so would require expanding the public key. Since
the recipient set is limited, the sets Ui for the various users will actually need to
overlap. As discussed above, overlapping Ui requires expanding the secret key
size, preventing us from achieving our goal.

While we are unable to achieve a 1/
√
N -risky scheme of size (

√
N, 1, 1,

√
N),

we build a scheme with large but redundant secret keys, so that the secret keys
resulting from Theorem 3 can then be compressed by eliminating the redundancy.
The result is the following, proved in Section 9:

Theorem 6. There exists a secure multi-scheme with size (
√
N,
√
N, 1,

√
N) in

the shared randomness model from pairings with security proved in the generic
group model.

Then, we apply the shared randomness version of Theorem 1 to obtain:

Corollary 5. There exists a secure multi-scheme with size 3
√
N from pairings

with security proved in the generic group model.

3 Discussion, Other Related Work, and Open Problems

3.1 Takeaways

Beyond PLBE and Fingerprinting Codes. PLBE has been the stalwart abstraction
in traitor tracing literature for some time, and PLBE and fingerprinting codes
make up the vast majority of the fully collusion-resistant tracing literature. Our
work demonstrates other useful approaches, and in doing so we hope motivate
the further study of alternative approaches to traitor tracing.
Mind your public and secret key sizes. As a result of our work, the threshold
limitation of fingerprinting code-based traitor tracing is eliminated. The only
remaining limitation is the size of the other parameters. What is important for
traitor tracing, therefore, is the trade-off between the various parameter sizes,
rather than any one parameter on its own.

With this view in mind, perhaps a sub-quadratic scheme from pairings could
have been anticipated. After all, the

√
N scheme of Boneh, Sahai, and Wa-

ters [BSW06] has some “slack”, in the sense that its secret keys are constant
sized. On the other hand, Boneh and Naor [BN08] show that ciphertexts can



potentially be compressed by expanding the secret key size. However, prior to our
work there was no clear way to actually leverage this slack to get a 3

√
N scheme.

|pk|× |sk|× |ct| = N for pairings?: Our pairing-based traitor tracing schemes, as
well as [BSW06], all have size (Na, N b, N c) where a+ b+ c = 1. We conjecture
that any setting of a, b, c ≥ 0 such that a + b + c = 1 should be possible from
pairings. While me make progress towards this conjecture, there are still a number
of gaps: for example, is a (

√
N,
√
N, 1) scheme possible?

For broadcast and trace, we conjecture that any setting where a+ c ≥ 1 is
satisfiable, matching what is known for plain broadcast from pairings. We achieve
this in the shared randomness model, and for c ≥ 1/2 in the plain model.

3.2 Limitations

Generic Groups. Some of our constructions, including our 3
√
N -size scheme, have

security proofs in the generic group model, as opposed to concrete assumptions
on pairings. We believe the results are nevertheless meaningful. Our schemes are
based on new attribute-based encryption-style primitives, and generic groups
have been used in many such cases [BSW07, AY20]. We hope that further work
will demonstrate a 3

√
N scheme based on concrete assumptions.

Concrete efficiency. While our schemes improve the dependence on N , they may
be worse in terms of the dependence on the security parameter. We therefore view
our schemes more as a proof-of-concept that improved asymptotics are possible,
and leave as an important open question achieving better concrete efficiency.
The same can be said of the prior LWE and obfuscation-based constructions,
which incur enormous overhead (much worse than ours) due to non-black box
techniques and other inefficiencies.
Private tracing. Our schemes all achieve only private traceability, meaning the
tracing key must be kept secret. Most schemes from the literature, including the
recent LWE schemes, also have private tracing. On the other hand, some schemes
have public tracing, allowing the tracing key to be public [BW06, GGH+13, BZ14].

3.3 Other Related Work

(1, 1, 1) traitor tracing. Recent developments have given the first traitor tracing
schemes where all parameters are independent of the number of users. These
schemes, however, require tools other than pairings, namely LWE [GKW18,
CVW+18] or obfuscation-related objects [GGH+13, BZ14, GVW19].
Embedded identities. Some tracing schemes [NWZ16, KW19, GKW19] allow for
information beyond an index to be embedded into an identity and extracted
during tracing. It is not obvious how to extend our scheme to handle embedded
identities, and we leave this as an open question.
Bounded collusions. In this work, we only consider the unbounded collusion
setting, where all users may conspire to build a pirate decoder that defeats
tracing. It is also possible to consider bounded collisions, which often result in
more efficient schemes [CFN94, BF99, KY02, ADM+07, LPSS14, ABP+17].



4 Traitor Tracing Definitions

In this section, we define traitor tracing, as well as some variants. The central
object we will study is actually a slight generalization of traitor tracing, which
we call a a “multi-scheme.” Here, there are many separate instances of the traitor
tracing scheme being run, but the public keys of the different instances are
aggregated into a single common public key. Yet, despite this aggregation, the
separate instances must behave as essentially independent traitor tracing schemes.
Multi-schemes similar to identity-based traitor tracing [ADM+07], except that
identity-based traitor tracing has an exponential number of instances.

In this work, we consider a key encapsulation variant of traitor tracing.
A traitor tracing multi-scheme is a tuple Π = (Gen,Enc,Dec,Trace) of PPT
algorithms with the following syntax:

– Gen(1N , 1M , 1λ) takes as input a security parameter, a number of users N ,
and a number of instances M . It outputs a public key pk, a (secret) tracing
key tk, and N ×M user secret keys {skj,i}i∈[N ],j∈[M ].

– Enc(pk, j) takes as input the public key bk and an instance number j, and
outputs a ciphertext c together with a key k.

– Dec(pk, skj,i, c) takes as input the public key pk, the secret key skj,i for user
i in instance j, and a ciphertext c; it outputs a message k.

– TraceD(tk, j, ε) takes as input the tracing key tk, and instance j, and an
advantage ε. It then makes queries to a decoder D. Finally, it outputs a set
A ⊆ [N ]. We require that the running time of Trace, when counting queries
as unit cost, is poly(λ,N,M, 1/ε).

We require that Dec recovers k: for any polynomials N = N(λ),M = M(λ),
there exists a negligible function negl such that for all i ∈ [N ], j ∈ [M ], λ > 0:

Pr
[
Dec(pk, skj,i, c) = k : (pk,tk,(skj′,i′ )i′∈[N],j′∈[M])←Gen(1N ,1M ,1λ)

(c,k)←Enc(pk,j)

]
≥ 1− negl(λ)

For security, we generalize [GKRW18] to the case of multi-schemes. Let A be an
adversary, and ε an inverse polynomial. Consider the following experiment:

– A receives the security parameter λ, written in unary.
– A sends numbers N,M (in unary) and commits to an instance j∗ ∈ [M ].

Run (pk, tk, {skj,i}i∈[N ],j∈[M ])← Gen(1N , 1M , 1λ) and send pk to A.
– A then makes two kinds of queries, in an arbitrary order.
• Secret key queries, on pairs (j, i) ∈ [M ] × [N ]. In response, it receives

skj,i. For j ∈ [M ], let Cj ⊆ [N ] be the set of queries (j, i) of this type.
• Tracing queries, on pairs (j,D);D is a poly-sized circuit and j ∈ [M ]\{j∗}.
All tracing queries must be on distinct j. Return Aj ← TraceD(tk, j, ε).

– A produces a decoder D, and the challenger outputs Aj∗ ← TraceD(tk, j∗, ε).

We define the following events. BadTr is the event Aj∗ * Cj∗ . Let GoodDec be
the event that Pr[D(c, kb) = b] ≥ 1/2 + ε(λ), where (c, k0)← Enc(pk, j∗), k1 is
chosen uniformly at random from the key space, and b← {0, 1}. In this case, we
call D a “good” decoder. Finally, let GoodTr be the event that |Aj∗ | > 0.



Definition 1. A traitor tracing multi-scheme Π is secure if, for all PPT adver-
saries A and all inverse-polynomials ε, there exists a negligible function negl such
that Pr[BadTr] ≤ negl(λ) and Pr[GoodTr] ≥ Pr[GoodDec]− negl(λ).10

4.1 Variations, Special Cases, and Extensions

Standard Traitor Tracing. A standard tracing scheme is obtained by settingM = 1
in the multi-scheme definition. By a straightforward hybrid argument, a standard
traitor tracing scheme also gives a multi-scheme by running independent instances
for each j ∈ [M ]. The result is that, if there exists a standard tracing scheme of
size (P,K,C), then there exists a secure multi-scheme of size (M × P,K,C).

Threshold Schemes. A threshold scheme [NP98] is one where a malicious user is
accused only for very good decoders that succeed a constant fraction of the time.

Definition 2. A multi-scheme Π is threshold secure if there exists a constant
ε ∈ (0, 1/2) such that, for all PPT adversaries A, there exists a negligible function
negl such that Pr[BadTr] ≤ negl(λ) and Pr[GoodTr] ≥ Pr[GoodDec]− negl(λ).

In the case of threshold secure schemes, the constant ε is hard-coded into the
algorithm Trace, and we omit ε as an input to Trace.

Risky Schemes. In a risky scheme [GKRW18], a traitor is only accused with some
small but noticeable probability. Let α = α(N,M, λ) be a polynomial.

Definition 3. A traitor tracing multi-scheme Π is α-risky if, for all PPT ad-
versaries A and all inverse-polynomials ε, there exists a negligible function negl
such that Pr[BadTr] ≤ negl(λ) and Pr[GoodTr] ≥ αPr[GoodDec]− negl(λ).

Broadcast and Trace. A broadcast and trace multi-scheme [BW06] is a multi-
scheme augmented with a broadcast functionality. Enc,Dec,Trace and the decoder
all take as input a subset S ⊆ [N ]. A additionally produces a set S at the
beginning (when it produces N,M, j∗). BadTr,GoodDec,GoodTr are all defined
relative to S, where BadTr happens when Aj∗ * S ∩ Cj∗ . The ciphertext size
does not include the description of S.

4.2 New Notion: The Shared Randomness Model

We now give a new model for traitor tracing, which we call the shared randomness
model. In the shared randomness model, encryption has the form (c = (r, c′), k)←
Enc(bk, j ; r, s). That is, some of the random coins for Enc are public, and included
in the output of Enc. In this model, we will consider the “ciphertext length” to
exclude the public random coins, and just be the length of c′.
10 The definition given in [GKRW18] additionally introduces an inverse polynomial p,

but relaxes ε to be non-negligible, with a more complicated condition for security.
The simpler definition we use is readily shown to be equivalent to their definition.



The shared randomness model captures a setting where the sender and receiver
have access to a common source of randomness, for example randomness beacons,
stock market fluctuations, etc. The sender can use this randomness as r during
encryption, but then does not actually need to send r to the receiver. Thus,
communication costs depend only on c′, rather than the entire length of (r, c′).

For our parameter size notation, we will explicitly consider the size of c′ and
r separately. That is, for a traitor tracing multi-scheme in the shared randomness
model, we say the scheme has parameter size (P, S,C,R) for functions P,K,C,R,
where C × poly(λ) is a bound on the size of c′ and R × poly(λ) is a bound on
the size of r. We note that any multi-scheme with parameter size (P,K,C,R) in
the shared randomness model is also a scheme with parameter size (P,K,C +R)
in the plain model, by having the encrypter choose r and send it as part of
the ciphertext. We also note that any plain-model scheme with parameter size
(P,K,C) is also a shared-randomness scheme with parameter size (P,K,C, 0).

5 User Expansion Compiler

We now prove Theorem 1, which offers a trade-off between ciphertext size and
number of users. For full generality, we give describe our compiler in the shared
randomness model. By setting the shared randomness to be empty, our compiler
immediately extends to the plain model.

Let Π0 = (Gen0,Enc0,Dec0,Trace0) be a traitor tracing multi-scheme in the
shared randomness model. We will assume without loss of generality that the
encapsulated key has length at most the size of the ciphertext.

Construction 1 (User Expansion Compiler) Let T = T (N,M) be a poly-
nomial. Let Π = (Gen,Enc,Dec,Trace) be the tuple of PPT algorithms:

– Gen(1N , 1M , 1λ): Run (pk′, tk′, (sk′j′,i′)i′∈[N ′],j′∈[M ′]) ← Gen0(1N ′ , 1M ′ , 1λ)
where N ′ = N/T and M ′ = M × T . Set pk = pk′, tk = tk′. Interpret [M ′] as
[M ]× [T ] and [N ] as [N ′]× [T ]. Then set skj,(i,t) = sk′(j,t),i

– Enc(pk, j, r): Here, r is the shared randomness, which is taken from the
same space of shared randomness as in Π0. For each t ∈ [T ], run (ct, kt)←
Enc0(pk, (j, t), r), again using our interpretation of [M ′] as [M ]× [T ]. Choose
a random key k from the key space. Output c = ( (ct)t∈[T ] , (kt ⊕ k)t∈[T ] ) as
the ciphertext and k as the key.

– Dec(pk, skj,i, c, r): Write i as (i′, t) and c = ( (ct)t∈[T ] , (ut)t∈[T ] ). Compute
k′t ← Dec0(pk, skj,i, ct, r). Output k′ = ut ⊕ k′t.

– TraceD(tk, j, ε): For each t ∈ [T ] run At ← Trace0
Dt(tk, (j, t), ε/4T ), and

output A = ∪t∈[T ]{(i, t) : i ∈ At}. Here, Dt be the following decoder for
instance (j, t) of Π0: on input (c, r), u, do the following:
• For t′ 6= t, compute (ct′ , kt′)← Enc0(pk, (j, t′), r). Set ct = c.
• Choose a random bit b← {0, 1}, and random keys k0, k1.
• For t′ < t, choose random ut′ . For t′ > t, ut′ = kt′ ⊕ k0. Set ut = u⊕ k0.
• Set c′ = ( (ct′)t′∈[T ] , (ut′)t′∈[T ] ). Output b ⊕D((c′, r), kb). (Note that
XORing with b turns a distinguisher into a predictor)



By the correctness of Π0, we will have that k′t = kt, and therefore k′ = ut ⊕ k′t =
ut ⊕ kt = k, so Π is correct. Since the encapsulated key in Π0 is at most the size
of the ciphertext, we see that the desired sizes hold.

5.1 Security of Our Compiler

Theorem 7. If Π0 is a secure multi-scheme, then so is Π.

Proof. Due to lack of space, we only sketch the proof, see the full version [Zha20]
for a complete proof. Fix an adversary A for Π and inverse-polynomial ε. Let
GoodTr,BadTr,GoodDec be the events as in Definition 1.

Pr[BadTr] ≤ negl follows by a straightforward argument, using the fact that
Trace0 only accuses honest users with negligible probability. We now sketch why
Pr[GoodTr] ≥ Pr[GoodDec]− negl. Our goal is to show that at least one of the
decoders Dt will be traced. We set up a sequence of hybrid distributions by
gradually replacing the ut by independent random strings. Before any changes, a
good decoder is correct with probability at least 1/2 + ε; after all the changes, the
view of the decoder is statistically independent of b, and therefore it is correct
with probability exactly 1/2. Therefore, there is some t where changing ut to
random causes the decoder’s success probability to drop by at least ε/T . This
corresponds to the decoder Dt being a “good” decoder; by the security of Π0,
tracing this Dt will result in At being non-empty, as desired. ut

6 Threshold Elimination Compiler

We now prove Theorem 2, generically removing thresholds from tracing schemes.
For simplicity, we give our compiler for plain-model traitor tracing. Let ΠThresh =
(GenThresh,EncThresh,DecThresh,TraceThresh) be a multi-scheme.

Construction 2 (Threshold Elimination Compiler) Assume the encapsu-
lated key space of ΠThresh is K = {0, 1}`. Let t = t(λ) be any polynomial. Let
Π = (Gen,Enc,Dec,Trace) be the tuple of the following PPT algorithms:

– Gen(1N , 1M , 1λ) = GenThresh(1N , 1M , 1λ)
– Enc(pk, j): Let n = ω(log λ). For each u ∈ [n], v ∈ [t], run (cu,v, ku,v) ←

EncThresh(pk, j). Choose a random s ← K. For each v ∈ [t], let kv = k1,v ⊕
· · · ⊕ kn,v and let bv = s · kv mod 2 be the bit-wise inner product of s and kv.
Let k = k1k2 · kt. Let c = (s, (cu,v)u∈[n],v∈[t] ). Output (c, k).

– Dec(pk, skj,i, c): Write c = (s, (cu,v)u∈[n],v∈[t] ). For each u ∈ [n], v ∈ [t], run
k′u,v ← DecThresh(pk, ski, cu,v). For each v ∈ [t], compute k′v = k′1,v⊕· · ·⊕k′n,v
and b′v = r · · · k′v mod 2. Output k′ = b′1b

′
2 · · · b′t.

– The algorithm TraceD(tk, ε) will be described below.

By the correctness of ΠThresh, we have with overwhelming probability that k′u,v =
ku,v for all u ∈ [n], v ∈ [t]. This implies k′v = kv and hence b′v = bv for all v ∈ [t],
meaning k′ = k. Thus Π is correct. We also see that Π has the desired parameter
size: only the ciphertext is increased by a factor of n× t ≤ poly(λ). We now give
our algorithm TraceD(tk, j, ε), which proceeds in several stages:



Target Single Bit: First, we define a decoder D1(s, (cu)u∈[n]), where s ∈ {0, 1}`,
cu are ciphertexts from ΠThresh. The goal of D1 is to predict the bit s · k where k
is the XOR of all the keys encapsulated in the cu. It does so by embedding its
challenge into a random position of an input for D:

– Choose a random v ∈ [t].
– Let cu,v = cu and choose (cu,v′ , ku,v′) ← EncThresh(pk, j) for u ∈ [n] and
v′ ∈ [t] \ {v}. Let c = (s, (cu,v)u∈[n],v∈[t] ).

– For each v′ ∈ [t] \ {v}, compute kv′ = k1,v′ ⊕ · · · ⊕ kn,v′ . For v′ ≤ v, choose
random bv′ ← {0, 1}, and for v′ > v, set bv′ = r ·k′u,v′ mod 2. Set k = b1 · · · bt.

– Output bv ⊕D(c, k) (XORing with bv turns a distinguisher into a predictor)

Apply Goldreich-Levin. Next, we will need the following theorem:

Theorem 8 ([GL89]). There exists a constant Γ and oracle algorithm GLD(`, ε′)
running in time poly(`, log(1/ε′)) and making poly(`, log(1/ε′)) queries to D,
such that the following holds. If there exists an x ∈ {0, 1}` such that Pr[D(r) =
x · r mod 2 : r ← {0, 1}`] ≥ 1/2 + ε′, then Pr[GLD(`, ε′) = x] ≥ Γ × (ε′)2.

Trace will define D2( (cu)u∈[n] ) := GLD1(·,(cu)u∈[n])(`, ε′ = ε/t); D2 is given
(cu)u∈[n] that encrypt k1, . . . , kn, and its goal is to compute k1 ⊕ · ⊕ kn.

Generate List of Potential Decryptions: Let D3(c, k) be the following, where c is
a ciphertext for ΠThresh and k ∈ {0, 1}`. For z = 1, . . . , ξ = (2nt3/Γε3)×ω(log λ):

– Choose a random u ∈ [n], and set cu = c.
– Then for each u′ ∈ [n] \ {u}, run (cu′ , ku′)← EncThresh(bk, j).
– Run k′ ← D′v,b( (cu)u∈[n]) ), and set k(z) = k′⊕k1⊕· · ·⊕ku−1⊕ku+1 · · ·⊕kn.

Next, if k = k(z) for any z ∈ [ξ], output 1. Otherwise, output 0.

Trace. Finally, run and output A← TraceThresh
D3(tk, j)

6.1 Security of Our Compiler

Theorem 9. Set n = ω(log λ), ε′ = ε/t, ξ = (2nt3/Γε3) × ω(log λ). Suppose
` = ω(log λ). If ΠThresh is a secure threshold multi-cheme, then Π is a secure
(non-threshold) multi-scheme.

Proof. Due to lack of space, we only sketch the proof, see the full version [Zha20]
for a complete proof. Fix an adversary A for Π and inverse-polynomial ε. Let
GoodTr,BadTr,GoodDec be the events as in Definition 1. That Pr[BadTr] is
negligible follows readily from an analogous argument to the proof of Theorem 7.

To show that Pr[GoodTr] ≥ Pr[GoodDec]− negl, we assume GoodTr happens
(D guesses b with probability ≥ 1/2 + ε) and analyze the decoders D1, D2, D3. If
D is such a decoder, we can perform an analogous hybrid step as in Theorem 7;
for a randomly selected position, we obtain that D can distinguish the bit of the
key in that position from a random bit. Then, by a routine calculation, we can
convert D into a predictor for said bit; the result is exactly the predictor D1.



Claim. If GoodDec happens, then Pr[D1(s, (cu)u∈[n]) = s ·k mod 2] ≥ 1/2+2ε/t,
where s← {0, 1}`, (cu, ku)← EncThresh(bk, j) for u ∈ [n], and k = k1 ⊕ · · · ⊕ kn.

This claim is proved in the full version [Zha20]. Next, the following claim shows
that D2 actually guesses k, which follows from Goldreich-Levin (Theorem 8):

Claim. If GoodDec happens, then Pr[D2((du, ru)u∈[n]) = k] ≥ Γ × (ε′)3, where
(cu, ku)← EncThresh(bk, j, ru), ru is uniformly random, and k = k1 ⊕ · · · ⊕ kn.

Next, we need to show that D3 can decrypt with high probability. Let γ > 0. Very
roughly, we define Sγ to be the set of “good” ciphertexts, defined as: if we choose
a random u ∈ [n], a random cu from Sγ , and choose the remaining ciphertexts
from EncThresh(pk, j), then D2 outputs the correct key with probability at least γ.

Claim. Let η be the fraction of c ∈ Sγ . Then Γ × (ε′)3 ≤ ηn + n(1− η)γ.

The claim is proved in the full version [Zha20]; the intuition is that either (1)
all n of the ciphertexts were in Sγ , or (2) at least one of the ciphertexts is not
in Sγ . Case (1) happens with probability γn. For case (2), there are n possible
positions for the “bad” ciphertext; for each position, the probability of being bad
is (1− η), and conditioned on being bad, the decryption probability is at most γ.

We choose γ = Γ × (ε′)3/2n, giving ηn ≥ Γ × (ε′)3/2. Taking the nth root of
both sides and using n = ω(log λ) gives η ≥ 1− o(1), meaning most ciphertexts
are good. We then set the number of trials D3 runs to be high enough so that, on
a good ciphertext, with overwhelming probability at least one of the trials will
be correct. Thus, if D3 is given the correct key, it will find the key amongst its
trials with probably 1− o(1). If D3 is given a random key as input, it will almost
certainly not find the given key among its trials. Thus, D3 is a good decoder for
ΠThresh. By the security of ΠThresh, a user will be accused, as desired. ut

7 Risk Mitigation Compiler

We now prove Theorem 3 by giving our risk mitigation compiler, converting any
risky scheme into one that is not. For notational simplicity, we give our compiler
for plain-model traitor tracing; our compiler is readily adapted to work in the
shared randomness model as well. Let ΠRisky be an α(N)-risky multi-scheme. For
full generality, we will only assume that ΠRisky is a threshold scheme.

Construction 3 (Risk Mitigation Compiler) Let ΠThresh be a tuple of PPT
algorithms (GenThresh,EncThresh,DecThresh,TraceThresh) where:

– GenThresh(1N , 1M , 1λ): set T = (1/α)×ω(log λ), M ′ = M ×T . Interpret [M ′]
as [M ]× [T ]. Run (pk, tk, {sk(j,t),i}i∈[N ],j∈[M ],t∈[T ])← GenRisky(1N , 1M

′
, 1λ).

Output (pk, tk, (skj,i)i∈[N ],j∈[M ]), where skj,i = (sk(j,t),i)t∈[T ].
– EncThresh(pk, j): Run (c, k) ← EncRisky(pk, (j, t), r) for a random choice of
t ∈ [T ]. Output the ciphertext (t, c) and encapsulated key k.

– DecThresh(pk, skj,i, (j, c), r): Run and output k′ ← DecRisky(pk, sk(j,t),i, c).



– TraceThresh
D(tk, j): Let Dt be the decoder Dt(c, k) = D((t, c), k). For t ∈ [T ],

run At ← TraceRisky
Dt(tk, (j, t)). Output A = ∪tAt.

Correctness follows readily from the correctness of ΠRisky. We also see that the
desired parameter sizes hold.

7.1 Security of Our Compiler

Theorem 10. Assume T = (1/α) × ω(log λ). If ΠRisky is an α-risky threshold
multi-scheme, then ΠThresh is a secure threshold tracing scheme.

Note that Theorem 10 only gives a threshold scheme; applying Theorem 2 then
gives a non-threshold scheme of the same parameters, thus proving Theorem 3.

Proof. We say that t ∈ [T ] is “good” if Dt has a high chance of decrypting
ciphertexts for instance (j, t) of ΠRisky. D can only decrypt ciphertexts for t
where Dt is good; thus GoodDecThresh implies that the fraction of good t is large.
Since each t represents a different instance of the risky scheme, each of the
decoders Dt should have a 1/α chance of being traced to some user. As long as
the number of good t is larger than ω(log λ)/α, then we would expect that, with
overwhelming probability, at least one of the Dt traces. One challenge is that
the attacker can choose adaptively which of the t will good and hence traceable,
so the tracing probabilities are not independent events. Nonetheless, we show a
careful security proof — and also show that Pr[BadTrThresh] is negligible — in
the full version [Zha20] which demonstrates that the intuition indeed holds. ut

7.2 Instantiation

Our goal now is to prove the following, which suffices to prove Corollary 2:

Theorem 11. If Assumptions 1 and 2 of [GKRW18] on pairings hold, there
exists a 1/N -risky multi-scheme of size (1, 1, 1).

Due to lack of space, we only sketch the proof; see the full version [Zha20] for
details. As a starting point, [GKRW18] build a 1/N -risky traitor tracing tracing
scheme of size (1, 1, 1), based on pairing assumptions that they call Assumption 1
and 2. Their scheme is not a multi-scheme, but trivially gives a multi-scheme
of size (M, 1, 1) by running M instances in parallel. We show how to tweak the
construction to obtain a 1/N -risky multi-scheme of size (1, 1, 1).

In more detail, [GKRW18] build a primitive called mixed Bit Matching
Encryption (MBME). Here, ciphertexts and secret keys are associated to attribute
vectors in {0, 1}n. A secret key with attribute x can decrypt a ciphertext with
attribute y if and only if x · y = 0 (the inner product taken over the integers).
For security, a message encrypted to attribute x stays hidden to all secret keys
y that satisfy x · y > 0. Moreover, given a secret key x and ciphertext y, the
attacker learns whether or not x · y = 0, but learns nothing else about x,y.

[GKRW18] instantiate their scheme with n = 2. A random index i∗ ∈
[N ] is chosen. Users i < i∗, i = i∗, and i > i∗ are given a secret key with



attributes (0, 0), (1, 0), and (1, 1), respectively. A normal ciphertext is encrypted
with attribute y = (0, 0) so that all users can decrypt. To trace a decoder D,
D is tested on ciphertexts to attributes (0, 1), and (1, 1) to see whether it can
distinguish. If so, accuse user i∗; otherwise accuse no one. MBME security implies
that only user i∗ can distinguish between encryptions to (0, 1) and (1, 1), so we
only accuse i∗ if they are indeed a traitor. A careful hybrid argument then shows
that i∗ is indeed accused with probability negligibly-close to 1/N .

Adding Identities. Our idea is to add “identities” to get a multi-scheme, where
each instance of the multi-scheme is an “independent” copy of the above. We set
n = 2κ+ 2, where κ is the bit-length of integers in [M ]. Each j ∈ [M ] will give
rise to a separate instance, which we distinguish using the first 2κ positions. The
remaining 2 positions will be used as above to construct the risky scheme.

In slightly more detail, we group the first 2κ bit positions into κ pairs. For
each j ∈ [M ], write j as a bit-vector v ∈ {0, 1}κ. Let v0 ∈ {0, 1}2κ be vector
where the tth pair of positions is (1− vt, vt). Let v1 ∈ {0, 1}2κ be the opposite,
setting the tth pair to (vt, 1 − vt). Notice that v0 · v1 = 0, while for v 6= w,
v0 ·w1 > 0. For each j ∈ [M ], we set up the risky scheme as above, choosing a
random i∗j . To encrypt to the jth instance, we set the first 2κ positions of y to be
v0, and for a secret key, we set the first 2κ positions to be v1. This ensures that
only secret keys for the jth scheme can decrypt ciphertexts for the jth scheme,
thus fully separating the j instances. We then set the last two positions analogous
to the sketch above. By using essentially the same analysis as in [GKRW18],
we can show that each separate scheme is 1/N -risky, regardless of what secret
keys and ciphertexts the adversary possesses for the various other schemes. This
suffices to establish the 1/N -riskiness of the entire multi-scheme. Theorem 11
follows from the fact that n is bounded by O(logM), which can be absorbed into
poly(λ) terms. Then, applying Theorem 3 and then Theorem 1 gives Corollary 2.

7.3 A Broadcast and Trace Scheme

Our next result is the following, which suffices to prove Corollary 3:

Theorem 12. There exists a 1/N -risky broadcast and trace multi-scheme of size
(N, 1, 1) from pairings, with security proved in the generic group model.

We sketch the construction; see the full version [Zha20] for additional details. The
high-level idea is to add a mixed Bit Matching Encryption (MBME) functionality
on top of a broadcast scheme of size (N, 1, 1) (in particular, we use [Del07]), and
then use the MBME functionality to create a 1/N -risky tracing scheme.

The Delerablée Broadcast Scheme. We briefly recall Delerablée’s scheme [Del07].
Let G1,G2,G′ be groups of prime order p with pairing operation e : G1×G2 → G′.
Let g1, g2 be generators of G1,G2, respectively. The set of possible user identities
is Zp \ {0}. The public and secret keys are

pk = (e(g1, g2)β , gβγ1 , (gγ
i

2 )j∈[0,N ]) ski = g
β/(1−γ/i)
1



for random secrets β, γ ∈ Zp. The public key allows for computing J(P ) := g
P (γ)
2 ,

for any polynomial P of degree at ≤ N . The ciphertext to a set S is:

c1 = gαβγ1 , c2 = J

(∏
i∈S

(1− γ/i)
)α

= g
α
∏

i∈S
(1−γ/i)

2

where α ∈ Zp is random. The encapsulated key is k = e(g1, g2)αβ . Notice that
any user in Zp \ {0} (which has exponential size) can be a recipient, as long as
the number of recipients is at most N .

To decrypt, let Q(γ) =
∏
j∈S\{i}(1− γ/j) and P (γ) = (1−Q(γ))/γ. Notice

that 1−Q(0) = 0, meaning 1−Q(γ) is a polynomial of degree ≤ N − 1 with a 0
constant term; thus P (γ) is also a polynomial. Therefore, compute

e(c1, J(P )) · e(ski, c2) = e(g1, g2)αβγP (γ)+αβQ(γ) = e(g1, g2)αβ = k

The intuition for security is that, for any i /∈ S, pairing ski with c2 will leave a
pole in γ, which cannot be canceled; thus users outside of S cannot decrypt.

Our Construction. We now briefly explain how to augment Delerablée’s scheme
with a mixed Bit Matching functionality, in order to create a risky scheme. For a
(row) vector v ∈ Znp , we use the notation gv = (gv1 , . . . , gvn).

Let J·K be an arbitrary efficient injection from [M ]× [N ] into Zp \ {0}, which
we use to embed instance/identity pairs into Zp \ {0}. We choose a random
R ∈ Z4×4

q in addition to α, β. Our public key is:

pk =
(
e(g1, g2)β , g(βγ , 0 , 0 , 0)·R−1

1 ,
(
g

(γi , 0 , 0 , 0)·RT
2

)
j∈[0,N ]

)
The secret key for user i in instance j, with attribute (x0, x1), is computed as

skj,i = g
(β(1−γ/Jj,iK)−1 , x1u1 , x2u2 , u3)·R−1

1

Here, u1, u2, u3 are freshly chosen at random in Zp for each secret key. A ciphertext
to set S in instance j, with attribute (y0, y1) is set to

c1 = g
(αβγ , 0 , 0 , 0)·R−1

1 , c2 = g
(α
∏

i∈S
(1−γ/Jj,iK) , y1v1 , y2v2 , 0)·RT

2

where α, v1, v2 are freshly chosen at random in Zp for each ciphertext. The
encapsulated key is e(g1, g2)αβ . Let J(P ) := g

(P (γ) , 0 , 0 , 0)·RT
2 , which can be

computed from pk for any polynomial P of degree at most N . Notice if (y1, y2) =
(0, 0), then the ciphertext can thus be computed from pk. To decrypt, output
e(c1, J(P )) · e(skj,i, c2) as in Delerablée, where we use the notation e(g,h) =∏
i e(gi, hi), so that e(gv

1 , g
w
2 ) = e(g1, g2)v·wT . Correctness follows by essentially

the same calculation as in Delerablée, but working with vectors of group elements.
Notice that the construction has the desired size parameters, and readily

gives a tracing scheme analogous to Section 7.2. We prove security in the full
version [Zha20]. The rough intuition is that in the generic group model, we
can prove that the MBME functionality combines correctly with the broadcast
functionality, which allows us to trace as in [GKRW18].



8 Traitor Tracing from Threshold Broadcast

Here, we prove Corollary 4 by formalizing Theorems 4 and 5, showing how
to construct traitor tracing from threshold broadcast, and then giving a new
instantiation of threshold broadcast from pairings. A threshold broadcast scheme
is a tuple Π = (Gen,Enc,Extract,Dec) of PPT algorithms where:

– Gen(1u, 1v, 1t, 1λ) takes as input a security parameter, bounds u, v ≤ 2λ, and
a threshold t ≤ u, v. It outputs a public key pk and a master secret key msk.

– Enc(pk, S) takes as input the public key pk and a set of users S ⊆ [2λ] of size
at most v. It outputs a ciphertext c and key k.

– Extract(msk, U) takes as input the master secret key and a subset U ⊆ [2λ]
of size at most u. It outputs a secret key skU .

– Dec(pk, skU , S, c) takes as input the public key pk, the secret key skU for set
U , and a ciphertext c; it outputs a key k.

For correctness, we require that Dec correctly recovers k, provided |U ∩S| ≥ t: for
any polynomials v = v(λ), u = u(λ), there exists a negligible function negl such
that for all t ≤ u, v and all S,U ⊆ [2λ] where |U | ≤ u, |S| ≤ v and |U ∩ S| ≥ t:

Pr
[
Dec(pk, skU , c) = k : (pk,msk)←Gen(1u,1v,1t,1λ)

skU←Extract(msk,U),(c,k)←Enc(pk,S)

]
≥ 1− negl(λ)

We also use the same size notation as for traitor tracing schemes, except that
the size parameters depend on u, v instead of M,N . For security, let A be an
adversary, and consider the following experiment:

– A receives the security parameter λ, written in unary.
– A chooses numbers u, v, t, written in unary. It also chooses a set S ⊆

[2λ], |S| ≤ v, and a number of disjoint sets Ui ⊆ [2λ], |Ui| ≤ u such that
|Ui ∩ S| < t. Send u, v, t, (Ui)i∈[N ], S to the challenger.

– The challenger runs (pk,msk) ← Gen(1u, 1v, 1t, 1λ), and for each i runs
skUi ← Extract(msk, Ui). It chooses a random bit b, samples random k1, runs
(c, k0)← Enc(pk, S), and sends the adversary ( (skUi)i∈[N ] , c , k

b ).
– Finally, the adversary produces a guess b′ for b.

Definition 4. A threshold broadcast scheme is secure if, for all PPT adversaries
A, there exists a negligible negl such that Pr[b′ = b] ≤ 1/2 + negl(λ).

8.1 From Threshold Broadcast To Traitor Tracing

Here, we formalize and prove Theorem 4:

Theorem 4 (Formal Version). Suppose there exists a secure threshold broad-
cast scheme which, for u = λ has size (P = P (v), S = S(v), C = C(v)). Then
there exists a secure broadcast and trace multi-scheme in the shared randomness
model with size (P (N), S(N), C(N), N).

To prove the theorem, let Π0 = (Gen0,Enc0,Extract0,Dec0) be a threshold broad-
cast scheme satisfying the given size requirement.



Construction 4 Let Π = (Gen,Enc,Dec,Trace) be the tuple of the following
PPT algorithms:

– Gen(1N , 1M , 1λ): run (pk,msk) ← Gen0(1u, 1v, 1t, 1λ), where u = ω(log λ),
v = Nu, and t = (2/5)u. Let J·K be an arbitrary efficient injection from
[M ]× [N ]× [u]×{0, 1} into the identity space [2λ]. For each i ∈ [N ], j ∈ [M ],
choose a random xj,i ∈ {0, 1}u. Set Uj,i = {Jj, i, `, xi,j,`K}`∈[u] ⊆ [2λ] and run
skj,i ← Extract0(msk, Uj,i). Output pk as the public key, tk = (xj,i)i∈[N ],j∈[M ]
as the tracing key, and (skj,i)i∈[N ],j∈[M ] as the secret keys.

– Enc(pk, j, S, r): here, r ∈ {0, 1}N×u is the public randomness, which will
be interpreted as the list r = (ri,`)i∈[N ],`∈[u], ri` ∈ {0, 1}. Let Tj,S,r =
{Jj, i, `, ri,`K}i∈S,`∈[u]. Run and output (c, k)← Enc0(pk, Tj,S,r).

– Dec(pk, skj,i, S, r, c): Output k′ ← Dec0(pk, skj,i, Tj,S,r, c) for Tj,S,r as above.
– TraceD(tk, j, ε) will be described below.

Notice that |Uj,i| = u and |Tj,r| = Nu to that |Tj,S,r| ≤ Nu = v. Also, notice
that if we set u ≤ λ, Π will have the desired size parameter, since the factor of
u ≤ λ can be absorbed into the terms hidden by the notation. Next, notice that,
by the correctness of Π0, we must have that k′ = k, so Π is correct.

Trace. We now explain how to trace. Due to lack of space, we sketch the
tracing algorithm, assuming the ability to perfectly estimate the decoder’s success
probability on distributions of ciphertexts. In reality, such probabilities will need
to be estimated; it is straightforward but tedious to handle such estimates.

1. We will initialize a probability distribution Z over {0, 1}Nu, which is initially
uniform. Let pZ = Pr[D(c, r, kb) = b : r ← Z, (c, k0)← Enc0(pk, Tj,S,r), k1 ←
K, b ← {0, 1}] be the probability that D correctly distinguishes a random
ciphertext using the set Tj,S,r for r ← Z. Let p∗ be the initial value of pZ ,
the probability the decoder currectly guesses b uniform r.

2. Initialize an empty set A. Then, for each i ∈ S do the following:
(a) Initialize a counter ctri = 0.
(b) For ` = 1, . . . , u do the following:

i. Let Zb be the current Z, but conditioned on ri,` = b. Compute
probabilities p0 := pZ0 , p1 := pZ1 .

ii. If p1−xj,i,` ≥ p∗, update Z to Z1−xj,i,` and set ctri = ctri + 1. Other-
wise do not update Z.

(c) If ctri/u ≤ 2/5, add user i to A.
3. Output A.

The following theorem then establishes Theorem 4:

Theorem 13. Assuming Π0 is a secure threshold broadcast scheme and u =
ω(log λ), Construction 4 is a secure broadcast and trace multi-scheme.

Proof. Due to lack of space, we only sketch the proof. Trace always maintains the
invariant that pZ ≥ p∗. In Step 2(b)i, we thus have (p0 + p1)/2 ≥ p∗, meaning
at least one of p0 or p1 are at least p∗. If user i of instance j is honest, xj,i,` is



independent of the attacker’s view and therefore p1−xj,i,` ≥ p∗ with probability
≥ 1/2. For honest users, ctri will therefore concentrate around u/2, and be larger
than (2/5)u with overwhelming probability. Thus honest users are not accused.

On the other hand, consider a user i of instance j that is not accused. Consider
the set Tj,S,r ∩ {Jj, i, `, bK}`∈[u],b∈{0,1}. Once we have finished processing user i,
the distribution Z fixes at least (2/5)u of the entries within this set to be outside
of Uj,i, and the remaining ≤ (3/5)u of the entries are randomly chosen to be
either in the set or outside. Therefore, the size of the overlap with Uj,i will
concentrate around (3/10)u ≤ (2/5)u. Thus, any user that is not accused will,
with overwhelming probability, be unable to decrypt by the end. Since by the
end we know that some user can still decrypt (due to our invariant ≥ p∗), this
means some user must be accused. ut

8.2 Construction of Threshold Broadcast Encryption
We prove the following, which combined with Theorem 13 gives Corollary 4:
Theorem 5 (Formal Version). There exists a threshold broadcast scheme from
pairings which, for u = λ has size (v, 1, 1), with security proved in the generic
group model.
Proof. Here, we only sketch the construction; the proof in the generic group model
is given in the full version [Zha20]. The scheme is based on ideas from [Del07]
(see Section 7.3) and from [AHL+12]. For an upper bound v on |S|, the public
key is identical to Delerablée’s scheme:

pk = (e(g1, g2)β , gβγ1 , (gγ
j

2 )j∈[0,v])

Recalling J(P ) = g
P (γ)
2 , the ciphertext is also identical to Delerablée:

c1 = gαβγ1 , c2 = J

(∏
i∈S

(1− γ/i)
)α

= g
α
∏

i∈S
(1−γ/i)

2

with encapsulated key k = e(g1, g2)αβ . The secret key for a set U is

skU =
(
g
βγj
/∏

i∈U
(1−γ/i)

1

)
j=0,...,|U |−t

where t is the threshold. Notice the size of the secret key is O(|U |); in particular
for |U | = λ it is independent of v. Notice that, from skU , one can compute

g
βQ(γ)

/∏
i∈U

(1−γ/i)
1 for any polynomial Q of degree at most |U | − t.

To decrypt, notice that, since U ∩ S has size at least t,
∏
i∈U\S(1− γ/i) is a

polynomial of degree at most |U | − t. Therefore, using skU , compute

g
β
∏

i∈U\S
(1−γ/i)

/∏
i∈U

(1−γ/i)

1 = g
β
/∏

i∈U∩S
(1−γ/i)

1 ,

canceling out all poles in skU that are not in S. From here, decryption proceeds
analogously to Delerablée. Security — in the generic group model — follows a
similar argument as in Delerablée, see the full version [Zha20] for details. ut



9 Our 3√
N Scheme

We now briefly explain how to prove Theorem 6, establishing a pairing-based
multi-scheme of size (

√
N,
√
N, 1,

√
N) in the shared randomness model, with

security proved in the generic group model. Combined with Theorem 1 setting
T = N1/3 gives our 3

√
N -sized scheme.

Set u = ω(log λ) and t = (2/5)u. We interpret the user identity space [N ] as
[
√
N ]× [

√
N ]; we will alternatively treat each identity i as either a number in

[N ] or a pair (i0, i1) ∈ [
√
N ]2. Our public key is identical to our risky version of

Delerablée (Section 7.3), just for
√
N users:

pk =
(
e(g1, g2)β , g(βγ , 0 , 0 , 0)·R−1

1 ,
(
g

(γi , 0 , 0 , 0)·RT
2

)
j∈[0,

√
N ]

)
Let J·K be an arbitrarily efficient injection from [M ]× [

√
N ]× [u]× {0, 1} into

Zp \ {0}. Let X be a polynomial-sized set and f : [M ]× [N ]→ X be a function
to be specified later.

For each instance j, choose a random i∗j ∈ [
√
N ], and assign identity i = (i0, i1)

the attribute (x0, x1) = (0, 0), (1, 0), and (1, 1), for i0 < i∗j , i0 = i∗j , and i0 > i∗j
respectively. Additionally, for each θ ∈ X , choose a random scalar τθ ∈ Zp.

To generate secret key for user i of instance j, let θ = f(j, i). Let i = (i0, i1).
Choose a random xj,i ∈ {0, 1}u, and let Uj,i = {Jj, i1, `, xi,j,`K}`∈[u] ⊆ Zp \ {0}.
The secret key is very similar to our risky broadcast scheme, but modified to use
τθ instead of β:

skj,i =

g
(
τθγ

`

/∏
s∈Uj,i

(1−γ/s) , x1v1,` , x2v2,` , v3,`

)
·R−1

1


`=0,...,u−t

where the vx,` are chosen freshly for each secret key. Additionally, user i of
instance j is given a “helper key”:

hkθ =
(
hθ := g

(
β−τθ
βγ , 0 , 0 , 0

)
·RT

2 ,
(
g

(τθγi , 0 , 0 , 0)·RT
2

)
j∈[0,

√
N ]

)
The ciphertext for attribute (y1, y2) is

c1 = g
(αβγ , 0 , 0 , 0)·R−1

1 , c2 = g

(
α
∏

s∈Tj,r
(1−γ/s) , y1v1 , y2v2 , 0

)
·RT

2

where r ∈ {0, 1}u
√
N is the u

√
N = O(

√
N) bits of shared randomness, and

Tj,r = {Jj, i1, `, ri1,`K}i1∈[
√
N ],`∈[u]. The encapsulated key is e(g1, g2)αβ . A valid

ciphertext has attribute (0, 0), and can be computed from the public key.
Decryption starts off analogously to our threshold broadcast scheme, allowing

a user who is authorized to decrypt to compute H = e(g1, g2)ατθ , using the
components of hkθ in place of the public key. It remains to convert this into
e(g1, g2)αβ . This is accomplished by multiplying H by e(c1, hθ) = e(g1, g2)α(β−τθ).



(Risky) tracing works roughly as follows: first we perform a risky tracing,
analogous to [GKRW18], and then we trace using our threshold broadcast tech-
nique from Section 8. In more detail, we first test a decoder on ciphertexts with
attributes (0, 1), (1, 1). If the decoder cannot distinguish (0, 1) from (1, 1), we
abort and accuse no one. If the decoder can distinguish, then we accuse the “half
identity” i0 = i∗j . We are not done, since we need to fill in the second half identity
i1. Here, we trace as in Section 8, gradually attempting to “turn off” all the users
(i∗j , i1) for i1 = 1, . . . ,

√
N by trying to remove elements in Uj,(i∗

j
,i1) from Tj,r.

We accuse any user (i∗j , i1) where turning off that user fails.
Note that two users with the same i1 and j will have overlapping sets U .

Turning off both users would thus place incompatible constraints on the set Tj,r,
and hence both cannot be simultaneously turned off. Therefore, we can only
freely turn off users for distinct i1. This is why we trace i0 first, and then i1. Also
note that, when tracing i1, turning off an honest user (i0, i1) will succeed even if
the adversary controls a different user with the same i1 (but different i0), since
turning off users only required that the set Uj,i was unknown to the adversary.
This “independence” is crucial for this layered tracing approach to work11.

Choosing f . There are two requirements we need from f . First, for security, we
need that no two secret keys with overlapping U get mapped to the same θ, for
reasons similar to why our threshold broadcast scheme is insecure for overlapping
U . Therefore, we need that f(j, (i0, i1)) 6= f(j, (i′0, i1)) for any j, i1 and i0 6= i′0.
Once this requirement is met, the following is proved in the full version [Zha20]:
Lemma 1. The scheme above is 1/

√
N -risky in the generic group model.

Second, excluding the helper keys hkθ (which have size O(
√
N)), the secret keys

are constant-sized. Applying Theorem 3/Construction 3, the secret key will now
contain the secret keys and helper keys from O(

√
N) different instances. In

order to ensure that the overall secret key remains O(
√
N), we require all of the

constituent instances to have the same helper key. Thus, we need f(j0, i) = f(j1, i),
for all j0, j1 that get mapped to the same secret key when applying Construction 3.
Recall that Construction 3 interpreted [M ] as [M ′]× [T ], and instance j = (j′, t)
gets mapped to j′. Thus, setting X to be the set [M ′]×[N ] and f((j′, t), i) = (j′, i)
will satisfy both conditions, giving Theorem 6.

10 Running Times

Here, we briefly discuss the running times of our constructions; see the full
version [Zha20] for a more in-depth discussion.
11 A natural question is whether a similar layer of risky tracing can be added on top

of [BSW06], potentially giving a simpler path toward 3√N . Unfortunately, [BSW06]
in a sense “uses up” the pairing, preventing any risky layer from being independent of
the underlying PLBE-based tracing. Concretely, the obvious approach would yield a
scheme where it was not possible to turn off an honest user if the adversary controlled
a different user with the same i1. Our construction gets around this issue by having
the second layer tracing happen “outside” the pairing, in the shared randomness.



We will say that a traitor tracing scheme Π is asymptotically efficient if each of
Gen,Enc, and Dec have running times bounded by (|input|+ |output|)× poly(λ).

We note that all of our algebraic instantiations are asymptotically efficient,
and that our threshold elimination and risk mitigation compilers (Theorems 2
and 3) preserve asymptotic efficiency. However, if the running time of Enc is
longer than the ciphertext size (which is in particular possible when public keys
are larger than ciphertexts), our user expansion compiler (Theorem 7) does not
preserve asymptotic efficiency: the running time and ciphertext size get multiplied
by a factor of T , but the input to Enc (namely, the public key) stays the same.

This issue affects our (N1−a, 1, Na, N1−a) threshold broadcast-based con-
struction, as well as our 3

√
N scheme. For our other schemes, the public key is

smaller than the ciphertext, and hence this is not an issue.
In the full version, we explain how to remove the inefficiency from these two

constructions; thus all of our constructions can be made asymptotically efficient.
We carefully choose how the user identities are embedded in Zp. The result is
that generating the multiple ciphertext components for Theorem 7 reduces to
evaluating a polynomial at multiple points, except that the coefficients of the
polynomial and the resulting evaluations are in the exponent of the pairing. Thus,
we carry out fast multi-point polynomial evaluation methods “in the exponent”;
this incurs a polylog(N) overhead, which can be absorbed into the poly(λ) term.
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