
Security Analysis of NIST CTR-DRBG

Viet Tung Hoang1 and Yaobin Shen2

1 Department of Computer Science, Florida State University, Tallahassee, FL, USA
2 Department of Computer Science and Engineering, Shanghai Jiao Tong University,

Shanghai, China

Abstract. We study the security of CTR-DRBG, one of NIST’s recom-
mended Pseudorandom Number Generator (PRNG) designs. Recently,
Woodage and Shumow (Eurocrypt’ 19), and then Cohney et al. (S&P’ 20)
point out some potential vulnerabilities in both NIST specification and
common implementations of CTR-DRBG. While these researchers do sug-
gest counter-measures, the security of the patched CTR-DRBG is still
questionable. Our work fills this gap, proving that CTR-DRBG satisfies
the robustness notion of Dodis et al. (CCS’13), the standard security
goal for PRNGs.

Keywords: Provable security · Random number generator

1 Introduction

Cryptography ubiquitously relies on the assumption that high-quality random-
ness is available. Violation of this assumption would often lead to security disas-
ters [9,12,20], and thus a good Pseudorandom Number Generator (PRNG) is a
fundamental primitive in cryptography, in both theory and practice. In this work
we study the security of CTR-DRBG, the most popular standardized PRNG.1

A troubled history. CTR-DRBG is one of the recommended designs of NIST
standard SP 800-90A, which initially included the now infamous Dual-EC. While
the latter has received lots of scrutiny [8, 9], the former had attracted little
attention until Woodage and Shumow [31] point out vulnerabilities in a NIST-
compliant version. Even worse, very recently, Cohney et al. [12] discover that
many common implementations of CTR-DRBG still rely on table-based AES and
thus are susceptible to cache side-channel attacks [5, 18,24,25].

While the attacks above are catastrophic, they only show that (i) some insecure
options in the overly flexible specification of CTR-DRBG should be deprecated,
and (ii) developers of CTR-DRBG implementation should be mindful of mis-
uses such as leaky table-based AES, failure to refresh periodically, or using low-
entropy inputs. Following these counter-measures will thwart the known attacks,

1 A recent study by Cohney et al. [12] finds that CTR-DRBG is supported by 67.8%
of validated implementations in NIST’s Cryptographic Module Validation Program
(CMVP). The other recommended schemes in NISP SP 800-90A, Hash-DRBG and
HMAC-DRBG, are only supported by 36.3% and 37.0% of CMVP-certified uses, re-
spectively.

2 Hoang and Shen

but security of CTR-DRBG remains questionable. A full-fledged provable-security
treatment of CTR-DRBG is therefore highly desirable—Woodage and Shumow
consider it an important open problem [31].

Prior provable security. Most prior works [7,30] only consider a simplified
variant of CTR-DRBG that takes no random input, and assume that the initial
state is truly random. These analyses fail to capture scenarios where the PRNG’s
state is either compromised or updated with adversarial random inputs. Conse-
quently, their results are limited and cannot support security claims in NIST SP
800-90A.

A recent PhD thesis of Hutchinson [23] aims to do better, analyzing security of
CTR-DRBG via the robustness notion of Dodis et al. [15]. But upon examining
this work, we find numerous issues, effectively invalidating the results. A detailed
discussion of the problems in Hutchinson’s analysis can be found in Appendix A.

Contributions. In this work, we prove that the patched CTR-DRBG satis-
fies the robustness security of Dodis et al. [15]. Obtaining a good bound for
CTR-DRBG requires surmounting several theoretical obstacles, which we will
elaborate below.

An important stepping stone in proving robustness of CTR-DRBG is to analyze
the security of the underlying randomness extractor that we name Condense-
then-Encrypt (CtE); see Fig. 2 for the code and an illustration of CtE. The
conventional approach [15, 29, 31] requires that the extracted outputs be pseu-
dorandom. However, CtE oddly applies CBCMAC multiple times on the same
random input (with different constant prefixes), foiling attempts to use existing
analysis of CBCMAC [14].

To address the issue above, we observe that under CTR-DRBG, the outputs of
CtE are used for deriving keys and IVs of the CTR mode. If we model the
underlying blockcipher of CTR as an ideal cipher then the extracted outputs
only need to be unpredictable. In other words, CtE only needs to be a good
randomness condenser [27]. In light of the Generalized Leftover Hash Lemma [1],
one thus needs to prove that CtE is a good almost-universal hash function, which
is justified by the prior CBCMAC analysis of Dodis et al. [14]. As an added plus,
aiming for just unpredictability allows us to reduce the min-entropy threshold
on random inputs from 280 bits to 216 bits.

Still, the analysis above relies on the CBCMAC result in [14], but the latter im-
plicitly assumes that each random input is sampled from a set of equal-length
strings. (Alternatively, one can view that each random input is sampled from a
general universe, but then its exact length is revealed to the adversary.) This
assumption may unnecessarily limit the choices of random sources for CtE or
squander entropy of random inputs, and thus removing it is desirable. Unfortu-
nately, one cannot simply replace the result of [14] by existing CBCMAC analysis
for variable-length inputs [4], as the resulting unpredictability bound for CtE
will be poor. Specifically, we would end up with an inferior term

√
q · p/264 in

bounding the unpredictability of p extracted outputs against q guesses.

Security Analysis of NIST CTR-DRBG 3

To circumvent the obstacle above, we uncover a neat idea behind the seemingly
cumbersome design of CtE. In particular, given a random input I, CtE first
condenses it to a key K ← CBCMAC(0 ‖ I) and an initialization vector IV ←
CBCMAC(1‖ I), and then uses CBC mode to encrypt a constant string under K
and IV. To predict the CBC ciphertext, an adversary must guess both K and IV
simultaneously. Apparently, the designers of CtE intend to use the iteration of
CBCMAC to undo the square-root effect in the Leftover Hash Lemma [14,19] that
has plagued existing CBCMAC analysis [14]. Still, giving a good unpredictability
bound for (K, IV) is nontrivial, as (i) they are derived from the same random
input I, and (ii) prior results [4], relying on analysis of ordinary collision on
CBCMAC, can only be used to bound the marginal unpredictability of either K
or IV. We instead analyze a multi-collision property for CBCMAC, and thus can
obtain a tighter bound on the unpredictability of (K, IV). Concretely, we can
improve the term

√
q · p/264 above to

√
qL · σ/2128, where L is the maximum

block length of the random inputs, and σ is their total block length.2

Even with the good security of CtE, obtaining a strong robustness bound for
CTR-DRBG is still challenging. The typical approach [15,17,31] is to decompose
the complex robustness notion into simpler ones, preserving and recovering. But
this simplicity comes with a cost: if we can bound the recovering and preserving
advantage by ǫ and ǫ′ respectively, then we only obtain a loose bound p(ǫ + ǫ′)
in the robustness advantage, where p is the number of random inputs. In our
context, the blowup factor p will lead to a rather poor bound.

Even worse, as pointed out by Dodis et al. [15], there is an adaptivity issue
in proving recovering security of PRNGs that are built on top of a universal
hash H. In particular, here an adversary, given a uniform hash key K, needs
to pick an index i ∈ {1, . . . , p} to indicate which random input Ii that it wants
to attack, and then predicts the output of HK(Ii) via q guesses. The subtlety
here is that the adversary can adaptively pick the index i that depends on the
key K, creating a situation similar to selective-opening attacks [3, 16]. Dodis et
al. [15] give a simple solution for this issue, but their treatment leads to another
blowup factor p in the security bound. In Section 6.1 we explore this problem
further, showing that the blowup factor p is inherent via a counter-example. Our
example is based on a contrived universal hash function, so it does not imply
that CTR-DRBG has inferior recovering security per se. Still, it shows that if one
wants to prove a good recovering bound for CTR-DRBG, one must go beyond
treating CtE as a universal hash function.

Given the situation above, instead of using the decomposition approach, we give
a direct proof for the robustness security via the H-coefficient technique [10,26].

2 For a simple comparison of the two bounds, assume that σ / 218 · p, meaning that a
random input is at most 4MB on average, which seems to be a realistic assumption
for typical applications. The standard NIST SP 800-90A dictates that L ≤ 228. Then
our bound

√
qL · σ/2128 is around

√
q · p/296. If we instead consider the worst case

where σ ≈ Lp, then our bound is around
√

q · p/286.

4 Hoang and Shen

We carefully exercise the union bound to sidestep pesky adaptivity pitfalls and
obtain a tight bound.3

Limitations. In this work, we assume that each random input has sufficient min
entropy. This restriction is admittedly limited, failing to show that CTR-DRBG

can slowly accumulate entropy in multiple low-entropy inputs, which is an impor-
tant property in the robustness notion. Achieving full robustness for CTR-DRBG

is an important future direction. Still, our setting is meaningful, comparable to
the notion of Barak and Halevi [2]. This is also the setting that the standard
NIST SP 800-90A assumes. We note that Woodage and Shumow [31] use the
same setting for analyzing HMAC-DRBG, and Hutchinson [23] for CTR-DRBG.

Seed-dependent inputs. Our work makes a standard assumption that the
random inputs are independent of the seed of the randomness extractor.4 This
assumption seems unavoidable as deterministic extraction from a general source
is impossible [11]. In a recent work, Coretti et al. [13] challenge the conventional
wisdom with meaningful notions for seedless extractors and PRNGs, and show
that CBCMAC is insecure in their model. In Section 7, we extend their ideas to
attack CTR-DRBG. We note that this is just a theoretical attack with a contrived
sampler of random inputs, and does not directly translate into an exploit of real-
world CTR-DRBG implementations.

Ruhault [28] also considers attacking CTR-DRBG with a seed-dependent sampler.
But his attack, as noted by Woodage and Shumow [31], only applies to a variant
of CTR-DRBG that does not comply with NIST standard. It is unclear how to
use his ideas to break the actual CTR-DRBG.

2 Preliminaries

Notation. Let ε denote the empty string. For an integer i, we let [i]t denote
a t-bit representation of i. For a finite set S, we let x←$ S denote the uniform
sampling from S and assigning the value to x. Let |x| denote the length of the
string x, and for 1 ≤ i < j ≤ |x|, let x[i : j] denote the substring from the i-th
bit to the j-th bit (inclusive) of x. If A is an algorithm, we let y ← A(x1, . . . ; r)
denote running A with randomness r on inputs x1, . . . and assigning the output
to y. We let y←$ A(x1, . . .) be the result of picking r at random and letting
y ← A(x1, . . . ; r).

Conditional Min-entropy and Statistical Distance. For two random
variables X and Y , the (average-case) conditional min-entropy of X given Y is

H∞(X | Y) = − log
(

∑

y

Pr[Y = y] ·max
x

Pr[X = x | Y = y]
)

.

3 Using the same treatment for recovering security still ends up with the blowup
factor p, as it is inherent.

4 In the context of CtE, the seed is the encoding of the ideal cipher. In other words,
we assume that the sampler of the random inputs has no access to the ideal cipher.

Security Analysis of NIST CTR-DRBG 5

The statistical distance between X and Y is

SD(X, Y) =
1

2

∑

z

∣

∣Pr[X = z]− Pr[Y = z]
∣

∣ .

The statistical distance SD(X, Y) is the best possible advantage of an (even
computationally unbounded) adversary in distinguishing X and Y .

Systems and Transcripts. Following the notation from [22], it is conve-
nient to consider interactions of a distinguisher A with an abstract system S
which answers A’s queries. The resulting interaction then generates a transcript
τ = ((X1, Y1), . . . , (Xq, Yq)) of query-answer pairs. It is known that S is entirely
described by the probabilities pS(τ) that correspond to the system S responding
with answers as indicated by τ when the queries in τ are made.

We will generally describe systems informally, or more formally in terms of a
set of oracles they provide, and only use the fact that they define corresponding
probabilities pS(τ) without explicitly giving these probabilities. We say that a
transcript τ is valid for system S if pS(τ) > 0.

The H-coefficient technique. We now describe the H-coefficient technique
of Patarin [10,26]. Generically, it considers a deterministic distinguisher A that
tries to distinguish a “real” system S1 from an “ideal” system S0. The adversary’s
interactions with those systems define transcripts X1 and X0, respectively, and
a bound on the distinguishing advantage of A is given by the statistical distance
SD(X1, X0).

Lemma 1. [10,26] Suppose we can partition the set of valid transcripts for the
ideal system into good and bad ones. Further, suppose that there exists ǫ ≥ 0

such that 1− pS1
(τ)

pS0
(τ) ≤ ǫ for every good transcript τ . Then,

SD(X1, X0) ≤ ǫ + Pr[X0 is bad] .

3 Modeling Security of PRNGs

In this section we recall the syntax and security notion of Pseudorandom Number
Generator (PRNG) from Dodis et al. [15].

Syntax. A PRNG with state space State and seed space Seed is a tuple of deter-
ministic algorithms G = (setup, refresh, next). Under the syntax of [15], setup is
instead probabilistic: it takes no input, and returns seed←$ Seed and S←$ State.
However, as pointed out by Shrimpton and Terashima [29], this fails to capture
real-world PRNGs, where the state may include, for example, counters. More-
over, real-world setup typically gets its coins from an entropy source, and thus
the coins may be non-uniform. Therefore, following [29, 31], we instead require
that the algorithm setup(seed, I) take as input a seed seed ∈ Seed and a string I,

6 Hoang and Shen

and then output an initial state S ∈ State; there is no explicit requirement on
the distribution of S.

Next, algorithm refresh(seed, S, I) takes as input a seed seed, a state S, and a
string I, and then outputs a new state. Finally algorithm next(seed, S, ℓ) takes
as input a seed seed, a state S, and a number ℓ ∈ N, and then outputs a new
state and an ℓ-bit output string. Here we follow the recent work of Woodage and
Shumow [31] to allow variable output length.

Distribution samplers. A distribution sampler D is a stateful, probabilistic
algorithm. Given the current state s, it will output a tuple (s′, I, γ, z) in which
s′ is the updated state, I is the next randomness input for the PRNG G, γ ≥ 0
is a real number, and z is some side information of I given to an adversary
attacking G. Let p be an upper bound of the number of calls to D in our security
games. Let s0 be the empty string, and let (si, Ii, γi, zi)←$D(si−1) for every
i ∈ {1, . . . , p}. For each i ≤ p, let

Ip,i = (I1, . . . , Ii−1, Ii+1, . . . , Ip, γ1, . . . , γp, z1, . . . , zp) .

We say that sampler D is legitimate if H∞(Ii | Ip,i) ≥ γi for every i ∈ {1, . . . , p}.
A legitimate sampler is λ-simple if γi ≥ λ for every i.

In this work, we will consider only simple samplers for a sufficiently large min-
entropy threshold λ. In other words, we will assume that each random input
has sufficient min entropy. This setting is somewhat limited, as it fails to show
that the PRNG can slowly accumulate entropy in multiple low-entropy inputs.
However, it is still meaningful—this is actually the setting that the standard
NIST SP 800-90A assumes. We note that Woodage and Shumow [31] also analyze
the HMAC-DRBG construction under the same setting.

Robustness. Let λ > 0 be a real number, A be an adversary attacking G, and
D be a legitimate distribution sampler. Define

Advrob
G,λ(A,D) = 2 Pr

[

Grob
G,λ(A,D)

]

− 1 ,

where game Grob
G,λ(A,D) is defined in Fig. 1.

Informally, the game picks a challenge bit b←$ {0, 1} and maintains a counter c
of the current estimated amount of accumulated entropy that is initialized to 0.
It runs the distribution sampler D on an empty-string state to generate the first
randomness input I. It then calls the setup algorithm on a uniformly random
seed to generate the initial state S, and increments c to γ. The adversary A,
given the seed and the side information z and entropy estimation γ of I, has
access to the following:

(i) An oracle Ref() to update the state S via the algorithm refresh with the
next randomness input I. The adversary learns the corresponding side in-
formation z and the entropy estimation γ of I. The counter c is incremented
by γ.

Security Analysis of NIST CTR-DRBG 7

Game Grob
G,λ(A,D)

b←$ {0, 1}; s← ε; seed←$ Seed

c← 0; (s, I, γ, z)←$D(s);

S ← setup(seed, I); c← c + γ

b′←$ ARef,RoR,Get,Set(seed, γ, z)

return (b′ = b)

procedure Ref()

(s, I, γ, z)←$D(s)

S ← refresh(seed, S, I); c← c + γ

return (γ, z)

procedure RoR(1ℓ)

(R1, S)← next(seed, S, ℓ)

if (c < λ) then c← 0; return R1

R0←$ {0, 1}ℓ; return Rb

procedure Get()

c← 0

return S

procedure Set(S∗)

S ← S∗; c← 0

Fig. 1: Game defining robustness for a PRNG G = (setup, refresh, next) against

an adversary A and a distribution sampler D, with respect to an entropy

threshold λ.

(ii) An oracle Get() to obtain the current state S. The counter c is reset to 0.

(iii) An oracle Set() to set the current state to an adversarial value S∗. The
counter c is reset to 0.

(iv) An oracle RoR(1ℓ) to get the next ℓ-bit output. The game runs the next

algorithm on the current state S to update it and get an ℓ-bit output R1, and
also samples a uniformly random string R0←$ {0, 1}ℓ. If the accumulated
entropy is insufficient (meaning c < λ) then c is reset to 0 and R1 is returned
to the adversary. Otherwise, Rb is given to the adversary.

The goal of the adversary is to guess the challenge bit b, by outputting a bit b′.
The advantage Advrob

G,λ(A,D) measures the normalized probability that the ad-
versary’s guess is correct.

Extension for ideal models. In many cases, the PRNG is based on an ideal
primitive Π such as an ideal cipher or a random oracle. One then can imagine
that the PRNG uses a huge seed that encodes Π. In the robustness notion, the
adversary A would be given oracle access to Π but the distribution sampler D
is assumed to be independent of the seed, and thus has no access to Π. This
extension for ideal models is also used in prior work [6, 31].

Some PRNGs, such as CTR-DRBG or the Intel PRNG [29], use AES with a
constant key K0. For example, K0 ← AES(0128, 0127‖1) for the Intel PRNG, and
K0 ← 0x00010203 · · · for CTR-DRBG. An alternative treatment for ideal models
in this case is to let both D and A have access to the ideal primitive, but pretend
that K0 is truly random, independent of D. This approach does not work well in
our situation because (i) the constant key of CTR-DRBG does not look random
at all, and (ii) allowing D access to the ideal primitive substantially complicates
the robustness proof of CTR-DRBG. We therefore avoid this approach to keep
the proof simple.

8 Hoang and Shen

4 The Randomness Extractor of CTR-DRBG

A PRNG is often built on top of an internal (seeded) randomness extractor
Ext : Seed × {0, 1}∗ → {0, 1}s that takes as input a seed seed ∈ Seed and a
random input I ∈ {0, 1}∗ to deterministically output a string V ∈ {0, 1}s. For
example, the Intel PRNG [29] is built on top of CBCMAC, or HMAC-DRBG
on top of HMAC. In this section we will analyze the security of the randomness
extractor of CTR-DRBG, which we call Condense-then-Encrypt (CtE). We shall
assume that the underlying blockcipher is AES.5

4.1 The CtE Construction

The randomness extractor CtE is based on two standard components: CBCMAC
and CBC encryption. Below, we first recall the two components of CtE, and then
describe how to compose them in CtE.

The CBCMAC Construction. Let π : {0, 1}n → {0, 1}n be a permutation.
For the sake of convenience, we will describe CBCMAC with a general IV; one
would set IV ← 0n in the standard CBCMAC algorithm. For an initialization
vector IV ∈ {0, 1}n and a message M = M1 · · ·Mt, with each |Mi| = n, we
recursively define

CBCMACIV[π](M1 · · ·Mt) = CBCMACR[π](M2 · · ·Mt)

where R ← π(IV ⊕M1), and in the base case of the empty-string message, let
CBCMACIV[π](ε) = IV. In the case that IV = 0n, we simply write CBCMAC[π](M)
instead of CBCMACIV[π](M).

The CBC Encryption Construction. In the context of CtE, the CBC en-
cryption is only used for full-block messages. Let E : {0, 1}k ×{0, 1}n → {0, 1}n

be a blockcipher. For a key K ∈ {0, 1}k, an initialization vector IV ∈ {0, 1}n,
and a message M = M1 · · ·Mt, with each |Mi| = n, let

CBCIV
K [E](M1 · · ·Mt) = C1 · · ·Ct ,

where C1, . . . , Ct are defined recursively via C0 ← IV and Ci ← EK(Ci−1⊕Mi)
for every 1 ≤ i ≤ t. In our context, since we do not need decryptability, the IV
is excluded in the output of CBC.

The CtE Construction. Let E : {0, 1}k ×{0, 1}n → {0, 1}n be a blockcipher,
such that k and n are divisible by 8, and n ≤ k ≤ 2n—this captures all choices
of AES key length. Let pad : {0, 1}∗ → ({0, 1}n)+ be the padding scheme that
first appends the byte 0x08, and then appends 0’s until the length is a multiple

5 While CTR-DRBG does support 3DES, the actual deployment is rare: among the
CMVP-certified implementations that support CTR-DRBG, only 1% of them use
3DES [12].

Security Analysis of NIST CTR-DRBG 9

procedure CtE[E, m](I)

X ← pad
(

[|I|/8]32 ‖ [(k + n)/8]32 ‖ I
)

for i← 0 to 2 do

IVi ← π([i]32 ‖ 0n−32); Ti ← CBCMACIV[π](X)

Y ← T1 ‖ T2 ‖ T3; K ← Y [1 : k]; IV← Y [k + 1 : k + n]

C ← CBCIV
K [E](03n); return C[1 : m]

|�|/8 �(�+�)/8

������IV0 ������IV1

���

0*

�

������IV2

�	

�

�

pad

Fig. 2: The CtE[E, m] construction, built on top of a blockcipher E : {0, 1}k ×
{0, 1}n → {0, 1}n. Here the random input I is a byte string. For an integer i, we let [i]t
denote a t-bit representation of i, and the permutation π is instantiated from E with
the k-bit constant key 0x00010203 · · · .

of n. Note that pad(X) 6= pad(Y) for any X 6= Y . For the sake of convenience,
we shall describe a more generalized construction CtE[E, m], with m ≤ 3n.
The code of this construction is shown in Fig. 2. The randomness extractor of
CTR-DRBG corresponds to CtE[E, k + n]; we also write CtE[E] for simplicity.

4.2 Security of CtE

Security Modeling. In modeling the security of a randomness extractor Ext,
prior work [14,29,31] usually requires that Ext(seed, I) be pseudorandom for an
adversary that is given the seed S, provided that (i) the random input I has
sufficiently high min entropy, and (ii) the seed S is uniformly random. In our
situation, following the conventional route would require each random input to
have at least 280 bits of min entropy for CTR-DRBG to achieve birthday-bound
security. However, for the way that CtE is used in CTR-DRBG, we only need the

10 Hoang and Shen

Game G
guess

Cond (A,S)

(I, z)←$ S; seed←$ Seed; V ← Cond(seed, I)

(Y1, . . . , Yq)←$ A(seed, z); return (V ∈ {Y1, . . . , Yq})

Fig. 3: Game defining security of a condenser Cond against an adversary A
and a source S.

n-bit prefix of the output to be unpredictable, allowing us to reduce the min-
entropy threshold to 216 bits. In other words, we only need CtE[E, n] to be a
good condenser [27].

We now recall the security notion for randomness condensers. Let Cond : Seed×
{0, 1}∗ → {0, 1}n be a deterministic algorithm. Let S be a λ-source, meaning a
stateless, probabilistic algorithm that outputs a random input I and some side
information z such that H∞(I | z) ≥ λ. For an adversary A, define

Adv
guess
Cond (A,S) = Pr[Gguess

Cond (A,S)]

as the guessing advantage of A against the condenser Cond on the source S,
where game Gguess

Cond (A,S) is defined in Fig. 3. Informally, the game measures the
chance that the adversary can guess the output Cond(seed, I) given the seed
seed←$ Seed and some side information z of the random input I.

When the condenser Cond is built on an ideal primitive Π such as a random
oracle or an ideal cipher, we only consider sources independent of Π. Follow-
ing [14], instead of giving A oracle access to Π, we will give the adversary A
the entire (huge) encoding of Π, which can only help the adversary. In other
words, we view the encoding of Π as the seed of Cond, and as defined in game
Gguess

Cond (A,S), the adversary A is given the seed.

To show that CtE[E, n] is a good condenser, we will first show that it is an
almost universal (AU) hash, and then apply a Generalized Leftover Hash Lemma
of Barak et al. [1]. Below, we will recall the notion of AU hash.

AU Hash. Let Cond : Seed × Dom → {0, 1}n be a (keyed) hash function.
For each string X, define its block length to be max{1, |X|/n}. For a function
δ : N→ [1,∞), we say that Cond is a δ-almost universal hash if for every distinct
strings X1, X2 whose block lengths are at most ℓ, we have

Pr
seed←$ Seed

[Cond(seed, X1) = Cond(seed, X2)] ≤ δ(ℓ)

2n
.

The following Generalized Leftover Hash Lemma of Barak et al. [1] shows that
an AU hash function is a good condenser.

Lemma 2 (Generalized Leftover Hash Lemma). [1] Let Cond : Seed ×
Dom→ {0, 1}n be a δ-AU hash function, and let λ > 0 be a real number. Let S

Security Analysis of NIST CTR-DRBG 11

be a λ-source whose random input I has at most ℓ blocks. For any adversary A
making at most q guesses,

Adv
guess
Cond (A,S) ≤ q

2n
+

√

q

2λ
+

q · (δ(ℓ)− 1)

2n
.

Discussion. A common way to analyze CBCMAC-based extractors is to use a
result by Dodis et al. [14]. However, this analysis is restricted to the situation
in which either (i) the length of the random input is fixed, or (ii) the side in-
formation reveals the exact length of the random input. On the one hand, while
the assumption (i) is true in Linux PRNG where the kernel entropy pool has
size 4,096 bits, it does not hold in, say Intel PRNG where the system keeps
collecting entropy and lengthening the random input. On the other hand, the
assumption (ii) may unnecessarily squander entropy of random inputs by inten-
tionally leaking their lengths. Given that CTR-DRBG is supposed to deal with
a generic source of potentially limited entropy, it is desirable to remove the
assumptions (i) and (ii) in the analysis.

At the first glance, one can deal with variable input length by using the following
analysis of Bellare et al. [4] of CBCMAC. Let Perm(n) be the set of permutations
on {0, 1}n. Then for any distinct, full-block messages X1 and X2 of at most
ℓ ≤ 2n/4 blocks, Bellare et al. show that

Pr
π←$ Perm(n)

[CBCMAC[π](X1) = CBCMAC[π](X2)] ≤ 2
√

ℓ

2n
+

64ℓ4

22n
. (1)

However, this bound is too weak for our purpose due to the square root in

Lemma 2. In particular, using this formula leads to an inferior term
√

q·p
2n/2 in

bounding the unpredictability of p extracted outputs against q guesses.

To improve the concrete bound, we observe that to guess the output of CtE[E, n],
the adversary has to guess both the key and IV of the CBC encryption simulta-
neously. Giving a good bound for this joint unpredictability is nontrivial, since
the key and the IV are derived from the same source of randomness (but with
different constant prefixes). This requires us to handle a multi-collision property
of CBCMAC.

Security Analysis of CtE. The following Lemma 3 gives a multi-collision
property of CBCMAC that CtE needs; see the full version [21] for the proof.

Lemma 3 (Multi-collision of CBCMAC). Let n ≥ 32 be an integer. Let
X1, . . . , X4 be distinct, non-empty, full-block messages such that

(i) X1 and X2 have the same first block, and X3 and X4 have the same first
block, but these two blocks are different, and

(ii) the block length of each message is at most ℓ, with 4 ≤ ℓ ≤ 2n/3−4.

12 Hoang and Shen

Then for a truly random permutation π←$ Perm(n), the probability that both
CBCMAC[π](X1) = CBCMAC[π](X2) and CBCMAC[π](X3) = CBCMAC[π](X4)
happen is at most 64ℓ3/22n.

Armed with the result above, we now can show in Lemma 4 below that CtE[E, n]
is a good AU hash. Had we used the naive bound in Equation (1), we would have

obtained an inferior bound 2
√

ℓ
2n + 64ℓ4

22n .

Lemma 4. Let n ≥ 32 and k ∈ {n, n + 1, . . . , 2n} be integers. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n that we model as an ideal cipher. Let CtE[E, n] be described
as above. Let I1, I2 be distinct strings of at most ℓ blocks, with ℓ + 2 ≤ 2n/3−4.
Then

Pr
[

CtE[E, n](I1) = CtE[E, n](I2)
]

≤ 1

2n
+

64(ℓ + 2)3

22n
,

where the randomness is taken over the choices of E.

Proof. Recall that in CtE[E, n](Ib), with b ∈ {1, 2}, we first iterate through
CBCMAC three times to derive a key Kb and an IV Jb, and then output E(Kb, Jb).
Let Yb and Zb be the first block and the second block of Kb ‖ Jb, respectively.
We consider the following cases:

Case 1: (Y1, Z1) 6= (Y2, Z2). Hence (K1, J1) 6= (K2, J2). If K1 = K2 then since
E is a blockcipher, E(K1, J1) 6= E(K2, J2). Suppose that K1 6= K2. Without loss
of generality, assume that K1 is not the constant key in CBCMAC. Since E is
modeled as an ideal cipher, E(K1, J1) is a uniformly random string, independent
of E(K2, J2), and thus the chance that E(K1, J1) = E(K2, J2) is 1/2n. Therefore,
in this case, the probability that CtE[E, n](I1) = CtE[E, n](I2) is at most 1/2n.

Case 2: (Y1, Z1) = (Y2, Z2). It suffices to show that this case happens with
probability at most 64(ℓ + 2)3/22n. For each a ∈ {0, 1}, let Pa ← [a]32 ‖ 0n−32 .
For b ∈ {1, 2}, let

Ub ← pad
(

[|Ib|/8]32 ‖ [(k + n)/8]32 ‖ Ib

)

.

Let π be the permutation in CBCMAC. Note that Yb ← CBCMAC[π](P0 ‖ Ub)
and Zb ← CBCMAC[π](P1 ‖ Ub) for every b ∈ {1, 2}. Applying Lemma 3 with
X1 = P0 ‖ U1, X2 = P0 ‖ U2, X3 = P1 ‖ U1, and X4 = P1 ‖ U2 (note that these
strings have block length at most ℓ + 2), the chance that Y1 = Y2 and Z1 = Z2

is at most 64(ℓ + 2)3/22n. ⊓⊔
Combining Lemma 2 and Lemma 4, we immediately obtain the following result,
establishing that CtE[E, n] is a good condenser.

Theorem 1. Let n ≥ 32 and k ∈ {n, n+1, . . . , 2n} be integers. Let E : {0, 1}k×
{0, 1}n → {0, 1}n that we model as an ideal cipher. Let CtE[E, n] be described as
above. Let S be a λ-source that is independent of E and outputs random inputs
of at most ℓ blocks. Then for any adversary A making at most q guesses,

Adv
guess
CtE[E,n](A,S) ≤ q

2n
+

√
q

2λ/2
+

8
√

q(ℓ + 2)3

2n
.

Security Analysis of NIST CTR-DRBG 13

procedure XP[E](I)

X ← pad
(

[|I|/8]32 ‖ [(k + n)/8]32 ‖ I
)

for i← 0 to 2 do

IVi ← π([i]32 ‖ 0n−32); Ti ← CBCMACIVi [π](X)

Y ← T1 ‖ T2 ‖ T3; K ← Y [1 : k]; IV← Y [k + 1 : k + n]

C ← E(K, IV) //Output of CtE[E, n](I)

return C ⊕K[1 : n]

Fig. 4: The XP[E] construction, built on top of a blockcipher E : {0, 1}k ×
{0, 1}n → {0, 1}n. Here the random input I is a byte string. For an integer i, we let [i]t
denote a t-bit representation of i, and the permutation π is instantiated from E with
the k-bit constant key 0x00010203 · · · .

Another requirement of CtE. In proving security of CTR-DRBG, one would
encounter the following situation. We first derive the key J ← CtE[E](I) on a
random input I, and let K be the key of CBC encryption in CtE[E](I). The
adversary then specifies a mask P . It wins if K = J ⊕ P ; that is, the adversary
wins if it can predict K⊕J . To bound the winning probability of the adversary,
our strategy is to show that even the n-bit prefix of K ⊕ J is hard to guess.
In particular, we consider a construction Xor-Prefix (XP) such that XP[E](I)
outputs the n-bit prefix of K⊕J , and then show that XP[E] is a good condenser.

The code of XP[E] is given in Fig. 4. Informally, XP[E](I) first runs CtE[E, n](I)
to obtain an n-bit string C, and then outputs C ⊕K[1 : n], where K is the key
of CBC encryption in CtE[E, n](I).

The following result shows that XP[E] is a good AU hash.

Lemma 5. Let n ≥ 32 and k ∈ {n, n + 1, . . . , 2n} be integers. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n that we model as an ideal cipher. Let XP[E] be described as
above. Let I1, I2 be distinct strings of at most ℓ blocks, with ℓ+2 ≤ 2n/3−4. Then

Pr
[

XP[E](I1) = XP[E](I2)
]

≤ 1

2n
+

64(ℓ + 2)3

22n
,

where the randomness is taken over the choices of E.

Proof. Recall that in XP[E](Ib), with b ∈ {1, 2}, we first iterate through CBCMAC

to derive a key Kb and an IV Jb, and then output E(Kb, Jb) ⊕ Kb[1 : n]. Let
Yb and Zb be the first block and the second block of Kb ‖ Jb, respectively. We
consider the following cases:

Case 1: (Y1, Z1) 6= (Y2, Z2). Hence (K1, J1) 6= (K2, J2). If K1 = K2 then since E
is a blockcipher, E(K1, J1) 6= E(K2, J2) and thus

E(K1, J1)⊕K1[1 : n] 6= E(K2, J2)⊕K2[1 : n] .

Suppose that K1 6= K2. Without loss of generality, assume that K1 is not the
constant key in CBCMAC. Since E is modeled as an ideal cipher, the string

14 Hoang and Shen

E(K1, J1)⊕K1[1 : n] is uniformly random, independent of E(K2, J2)⊕K2[1 : n],
and thus the chance that these two strings are the same is 1/2n. Therefore, in
this case, the probability that XP[E](I1) = XP[E](I2) is at most 1/2n.

Case 2: (Y1, Z1) = (Y2, Z2). It suffices to show that this case happens with
probability at most 64(ℓ + 2)3/22n. For each a ∈ {0, 1}, let Pb ← [b]32 ‖ 0n−32.
For b ∈ {1, 2}, let

Ub ← pad
(

[|Ib|/8]32 ‖ [(k + n)/8]32 ‖ Ib

)

.

Let π be the permutation in CBCMAC. Note that Yb ← CBCMAC[π](P0 ‖ Ub)
and Zb ← CBCMAC[π](P1 ‖ Ub) for every b ∈ {1, 2}. Applying Lemma 3 with
X1 = P0 ‖ U1, X2 = P0 ‖ U2, X3 = P1 ‖ U1, and X4 = P1 ‖ U2 (note that these
strings have block length at most ℓ + 2), the chance that Y1 = Y2 and Z1 = Z2

is at most 64(ℓ + 2)3/22n. ⊓⊔
Combining Lemma 2 and Lemma 5, we immediately obtain the following result,
establishing that XP[E] is a good condenser.

Lemma 6. Let n ≥ 32 and k ∈ {n, n + 1, . . . , 2n} be integers. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n that we model as an ideal cipher. Let XP[E] be described as
above. Let S be a λ-source that is independent of E and outputs random inputs
of at most ℓ blocks. Then for any adversary A making at most q guesses,

Adv
guess
XP[E](A,S) ≤ q

2n
+

√
q

2λ/2
+

8
√

q(ℓ + 2)3

2n
.

5 The CTR-DRBG Construction

The CTR-DRBG construction is based on the randomness extractor CtE in Sec-
tion 4 and the Counter (CTR) mode of encryption. Below, we will first recall
the CTR mode before describing CTR-DRBG.

The Counter Mode. Let E : {0, 1}k×{0, 1}n → {0, 1}n be a blockcipher. For
a key K ∈ {0, 1}k, an IV ∈ {0, 1}n, and a message M , let r ← ⌈|M |/n⌉, and let

CTRIV
K [E](M) = M ⊕ Y [1 : |M |] ,

in which Y ← Y1 ‖ · · · ‖Yr and each Yi ← E(K, IV + i mod 2n). Since we do not
need decryptability, the IV is excluded in the output of CTR.

The CTR-DRBG Construction. The code of CTR-DRBG[E] is given in Fig. 5.
Recall that here we model E as an ideal cipher, and thus the algorithms of
CTR-DRBG are given oracle access to E instead of being given a seed.

Remarks. The specification of CTR-DRBG in NIST 800-90A is actually very
flexible, allowing a wide range of options that do not conform to the specification
in Fig. 5:

Security Analysis of NIST CTR-DRBG 15

procedure setupE(I)

X ← CtE[E](I)

K ← 0k; IV← 0n

S ← CTRIV
K [E](X)

return S

procedure refreshE(S, I)

X ← CtE[E](I)

K ← S[1 : k]

V ← S[k + 1 : k + n]

S ← CTRV
K [E](X)

return S

procedure nextE(S, ℓ)

K ← S[1 : k]; V ← S[k+1 : k+n]

r ← n · ⌈ℓ/n⌉
P ← CTRV

K [E](0r+k+n)

R← P [1 : ℓ]

S ← P [r + 1 : r + k + n]

return (R, S)

�

���

� �

���(0�,0�)

� �

���(�,�)

�

0*

�

!"#

$ %

&'(($,%)

Fig. 5: The CTR-DRBG construction. Each picture illustrates the algorithm right on
top of it. The state S consists of an n-bit string V and a k-bit string K.

– Bypassing randomness extraction: The use of CtE to extract random-
ness is actually optional, but if CtE is not used then the random inputs are
required to be uniformly random. In practice, it is unclear how to enforce
the full-entropy requirement. In fact, as Woodage and Shumow [31] point
out, OpenSSL implementation of CTR-DRBG allows one to turn off the use
of CtE, yet directly use raw random inputs. Bypassing CtE, coupled with
the negligence of properly sanitizing random inputs, may lead to security
vulnerabilities, as demonstrated via an attack of Woodage and Shumow. We
therefore suggest making the use of CtE mandatory.

– Use of nonces: Procedures setup and refresh may take an additional nonce
as input. This extension allows one to run multiple instances of CTR-DRBG

on the same source of randomness, provided that they are given different
nonces. In this work we do not consider multi-instance security.

– Use of additional inputs: Procedure next may take an additional random
input. If CtE is used, this extension is simply a composition of refresh and the
basic next (without additional inputs). Therefore, without loss of generality,
we can omit the use of addition inputs in next.

6 Security Analysis of CTR-DRBG

6.1 Results and Discussion

Consider an adversary A attacking CTR-DRBG that makes at most q oracle
queries (including ideal-cipher ones) in which each next query is called to output

16 Hoang and Shen

at most B blocks, and the total block length of those outputs is at most s. Let D
be a λ-simple distribution sampler. Assume that under A’s queries, D produces
at most p random inputs, in which the i-th random input has maximum block
length ℓi. Let

L = max{ℓ1, . . . , ℓp}
be the maximum block length of the random inputs, and let

σ = ℓ1 + · · ·+ ℓp

be their maximum total block length. The following Theorem 2 gives a bound
on the robustness of CTR-DRBG on simple samplers.

Theorem 2. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher. Let G be the
construction CTR-DRBG[E] as described above. Let D be a λ-simple distribution
sampler and A be an adversary attacking G whose accounting of queries is given
above. Then

Advrob
G,λ(A,D) ≤ 2(B + 3)(s + 3p)

2n
+

6q(q + 1)

2k
+

6p(q + 1)

2n
+

12p · √q

2λ/2

+
48(
√

q + 1) ·
√

L + 2 · (σ + 2p)

2n
.

Interpreting our bound. Under NIST SP 800-90A, L ≤ 228 and B ≤ 212.
Assuming that q, p ≤ 245 and s, σ ≤ 250, if the min-entropy threshold λ is at
least 216, the adversary’s advantage is at most 2−32. This is comparable to what
conventional blockcipher-based constructions (such as CBCMAC) offer.6

Caveat. Under our security notion, if an adversary can learn the state of
CTR-DRBG, the outputs of next are compromised until refresh is called. Thus
Theorem 2 does not contradict the recent (side-channel) attack of Cohney et
al. [12] on common implementations of CTR-DRBG. Our results indicate that
such an attack can be mitigated by calling refresh frequently, assuming that
each random input has sufficient min entropy. This is consistent with the recom-
mendation of Cohney et al., and thus our work can be viewed as a theoretical
justification for their counter-measures.

Security recommendation. NIST SP 800-90A only requires that random
inputs have min entropy of at least 128 bits. This threshold is too low, even for
the modest goal of using CtE to extract randomness from p random inputs. We
therefore recommend increasing the min-entropy threshold to at least 216 bits.
On the other hand, the standard only requires calling refresh after producing

6 We choose the bound 2−32 in this example because this is a failure probability
that NIST standards usually accept. For instance, NIST 800-38B requires CBCMAC

implementation to rekey after 248 messages so that the probability of IV collision in
CBCMAC under a single key is below 2−32.

Security Analysis of NIST CTR-DRBG 17

248 bits for the outputs. We suggest reducing this limit to, say 224 to force
implementations to refresh more frequently.

Obstacles in the proof of Theorem 2. A common way to prove robustness
of a PRGN is to decompose the complex notion of robustness into two simpler
notions: preserving and recovering [15,17,31]. In particular, if we can bound the
recovering and preserving advantages by ǫ and ǫ′ respectively, then this gives a
bound p(ǫ + ǫ′) on robustness. However, if one uses the decomposition approach
above to deal with CTR-DRBG then one would run into the following issues.

First, at best one can only obtain a birthday bound B2/2n for the preserving
and recovering security: a birthday security is unavoidable since under these two
notions, the adversary has to distinguish a CTR output with a truly random
string. Combining this birthday bound with the blowup factor p leads to an
inferior bound B2p/2n.

Next, there lies a trap in proving recovering security of any PRNG that is built
on top of an AU hash function H. In particular, under the recovering notion, the
adversary needs to pick an index i ∈ {1, . . . , p} to indicate which random input Ii

that it wants to attack, and then predicts the output of HK(Ii) via q guesses. At
the first glance, one can trivially use the Generalized Leftover Hash Lemma to
bound the guessing advantage of each Ij as δ; the recovering advantage should
be also at most δ. However, this argument is wrong, because here the adversary
can adaptively pick the index i after seeing the hash key K. The correct bound
for the recovering advantage should be p · δ. This subtlety is somewhat similar
to selective-opening security on encryption schemes [3, 16].

To understand the adaptivity issue above, consider the following counter-example.
Let H : {0, 1}t × Dom → {0, 1}n be a hash function, and let p = 2t. Let
Dom1, . . . , Domp be a partition of Dom. Suppose that we have p random inputs
I1 ∈ Dom1, . . . , Ip ∈ Domp, each of at least λ min entropy. Assume that if the
key K is a t-bit encoding of an integer i and the input X belongs to Domi then H
misbehaves, outputting 0n; otherwise it is a good cryptographic hash function
that we can model as a (keyed) random oracle. Then H is still a good condenser:
for each fixed i ∈ {1, . . . , p} and for a uniformly random key K←$ {0, 1}t, the
chance that one can predict HK(Ii) after q guesses is at most 1

2t + q
2λ + q

2n .
Now, under the recovering notion, the adversary can choose the index i after
seeing the key K. If the adversary chooses i as the integer that K encodes, then
H(K, Ii) = 0n, and thus the adversary can trivially predict H(K, Ii).

The subtlety above also arises in the proof of a theoretical PRNG by Dodis
et al. [15]. These authors are aware of the adaptivity issue, and give a proper
treatment of the recovering bound at the expense of a blowup factor p. The
counter-example above suggests that this factor p is inherent, and there is no
hope to improve the recovering advantage.

To cope with the issues above, instead of using the decomposition approach, we
give a direct proof for the robustness security via the H-coefficient technique.
By considering all CTR outputs at once, we can replace the term B2p/2n by a

18 Hoang and Shen

procedure CTRV
K [E](M)

m← ⌈|M |/n⌉
if c ≥ λ then Keys← Keys ∪ {K}
for i← 1 to m do

Pi ← E(K, V + i)

if c ≥ λ then Queries← Queries ∪ {(K, V + i, Pi)}
P ← P1 · · ·Pm; C ← P [1 : |M |]⊕M ; return C

Fig. 6: The extended code of procedures CTR of Sreal. The code maintains two
lists Keys and Queries that are initialized to ∅. Here c is the global counter estimating
min entropy of the state of Sreal.

better one Bs/2n. Likewise, a direct proof helps us to avoid the blowup factor p
in bounding the guessing advantage of the extracted randomness CtE(Ii).

Tightness of the bound. Our bound is probably not tight. First, the term
p · √q/2λ/2 is from our use of the Generalized Leftover Hash Lemma to analyze
the guessing advantage of CtE[E, n]. It is unclear if a dedicated analysis of the
guessing advantage of CtE can improve this term. Next, the term pq/2n is an
artifact of our analysis in which we only consider the unpredictability of the n-
bit prefix of each CTR key instead of the entire key. It seems possible to improve
this to pq/2k, leading to a better security bound if the underlying blockcipher
is either AES-192 or AES-256. Finally, the term

√
qL · σ/2n is the result of our

multi-collision analysis of CBCMAC, but the bound in Lemma 3 is rather loose.
We leave this as an open problem to improve our bound.

6.2 Proof of Theorem 2

Setup. Since we consider computationally unbounded adversaries, without loss
of generality, assume that A is deterministic. Let Sreal and Sideal be the systems
that model the oracles accessed by A in game Grob

G,λ(A,D) with the challenge bit
b = 1 and b = 0 respectively. For bookkeeping purpose, the system Sreal also
maintains two ordered lists Keys and Queries that are initialized to be ∅. Those
lists shall be updated within procedure CTR of Sreal; the extended code of CTR

is shown in Fig. 6. Informally, Keys keeps track of CTR keys whose min-entropy
counter is at least λ, and Queries maintains the corresponding ideal-cipher queries
of CTR.

A Hybrid Argument. We will now create a hybrid system Shybrid. The hybrid
system will implement Sreal, but each time it’s asked to run CTR, if the min-
entropy level c is at least the threshold λ, our hybrid system will use a fresh,
uniformly random string instead of the CTR output. In particular, the outputs
of RoR of Shybrid, when c ≥ λ, are uniformly random strings. The code of
procedure CTR of Shybrid is shown in Fig. 7. It also maintains the lists Keys and

Security Analysis of NIST CTR-DRBG 19

procedure CTRV
K [E](M)

m← ⌈|M |/n⌉
if c ≥ λ then Keys← Keys ∪ {K}
for i← 1 to m do

if c ≥ λ then Pi←$ {0, 1}n; Queries← Queries ∪ {(K, V + i, Pi)}
else Pi ← E(K, V + i)

P ← P1 · · ·Pm; C ← P [1 : |M |]⊕M ; return C

Fig. 7: The extended code of procedures CTR of Shybrid.

Queries. To avoid confusion, we shall write Keys(S) and Queries(S) to refer to
the corresponding lists of system S ∈ {Sreal, Shybrid}.
For any systems S1 and S0, let ∆A(S1, S0) denote the distinguishing advantage
of the adversary A against the “real” system S1 and “ideal” system S0. We now
construct an adversary A∗ of about the same efficiency as A such that

∆A∗(Sreal, Shybrid) = ∆A(Sideal, Shybrid) .

Adversary A∗ runs A and provides the latter with access to its oracles. However,
for each RoR query, if c ≥ λ (which A∗ can calculate), instead of giving A
the true output, A∗ will instead give A a uniformly random string of the same
length. Finally, when A outputs its guess b′, adversary A∗ will output the same
guess. Adversary A∗ perfectly simulates the systems Sideal (in the real world) and
Shybrid (in the hybrid world) for A, and thus achieves the same distinguishing
advantage.

Below, we will show that

∆A(Sreal, Shybrid) ≤ (B + 3)(s + 3p)

2n
+

3q(q + 1)

2k
+

3p(q + 1)

2n
+

6p · √q

2λ/2

+
24(
√

q + 1) ·
√

L + 2 · (σ + 2p)

2n
. (2)

Since this bound applies to any adversary of the same accounting of queries, it
applies to adversary A∗ as well, meaning that

∆A∗(Sreal, Shybrid) ≤ (B + 3)(s + 3p)

2n
+

3q(q + 1)

2k
+

3p(q + 1)

2n
+

6p · √q

2λ/2

+
24(
√

q + 1) ·
√

L + 2 · (σ + 2p)

2n
. (3)

By the triangle inequality,

Advrob
G,λ(A,D) = ∆A(Sreal, Sideal)

≤ ∆A(Sreal, Shybrid) + ∆A(Shybrid, Sideal)

= ∆A(Sreal, Shybrid) + ∆A∗(Sreal, Shybrid) . (4)

20 Hoang and Shen

From Equations (2), (3), and (4),

Advrob
G,λ(A,D) ≤ 2(B + 3)(s + 3p)

2n
+

6q(q + 1)

2k
+

6p(q + 1)

2n
+

12p · √q

2λ/2

+
48(
√

q + 1) ·
√

L + 2 · (σ + 2p)

2n
.

We now justify Equation (2) by the H-coefficient technique.

Defining bad transcripts. Recall that when A interacts with a system S ∈
{Sreal, Shybrid}, the system S maintains a (k + n)-bit state S = (K, V). This
state starts as (K0, V0) = (0k, 0n), and then setup is called to update the state
to (K1, V1). The queries of A will cause it to be updated to (K2, V2), (K3, V3), and
so on. When the adversary A finishes querying S, we’ll grant it all states (Ki, Vi),
all random inputs Ij and their extracted randomness CtE[E](Ij), the list Queries,
and triples (J, X, E(J, X)) for any J ∈ {0, 1}k\Keys(S) and X ∈ {0, 1}n. This
extra information can only help the adversary. A transcript is bad if one of the
following conditions happens:

(i) There are different triples (J, X1, Y1), (J, X2, Y2) ∈ Queries(S) that are gen-
erated under the same call of CTR (meaning that X1 6= X2) such that
Y1 = Y2.7 This cannot happen in Sreal but may happen in Shybrid.

(ii) The transcript contains a query (J, X) of A to E/E−1 such that J ∈ Keys(S).
In other words, the adversary somehow managed to guess a secret key of the
CTR mode before it is granted extra information.

(iii) There are distinct i and j, with Kj ∈ Keys(S), such that Ki = Kj . That is,
there is a collision between the keys Ki and Kj , in which Kj is the secret
keys for CTR mode that we want to protect. The other key Ki may either
be a secret CTR key, or a compromised key that the adversary knows.

(iv) There is some key Ki ∈ Keys(S) that is also the constant key in CBCMAC.
(v) There is some key J ∈ Keys(S) that is derived from Ij and there is an index

i 6= j such that J is also the key of CBC encryption in CtE[E](Ii).
(vi) There is some key J ∈ Keys(S) that is derived from Ij such that J is also

the key of CBC encryption in CtE[E](Ij).

If a transcript is not bad then we say that it’s good. Let Treal and Thybrid be the
random variables of the transcript for Sreal and Shybrid respectively.

Probability of bad transcripts. We now bound the chance that Thybrid is
bad. Let Badi be the event that Thybrid violates the i-th condition. By the union
bound,

Pr[Thybrid is bad] = Pr[Bad1 ∪ · · · ∪ Bad6] ≤
6

∑

i=1

Pr[Badi] .

7 One can tell whether two triples in Queries(S) belong to the same call of CTR since
the list Queries(S) is ordered, and the lengths of the messages of CTR are known.

Security Analysis of NIST CTR-DRBG 21

We first bound Pr[Bad1]. Suppose that Queries(Shybrid) are generated from Q
calls of CTR, and let P1, . . . , PQ be the corresponding CTR outputs. Let T1, . . . , TQ

be the block length of P1, . . . , PQ. Note that Q, T1, . . . , TQ are random variables,
but since k ≤ 2n, we have Ti ≤ B + 3 for every i, and T1 + · · · + TQ ≤ s + 3p.
The event Bad1 happens if among Ti blocks of some Pi, there are two duplicate
blocks. Since the blocks of each Pi are uniformly random,

Pr[Bad1] ≤ E
(

Q
∑

i=1

T 2
i

2n

)

≤ E
(

Q
∑

i=1

Ti · (B + 3)

2n

)

≤ (B + 3)(s + 3p)

2n
.

Next, we shall bound Pr[Bad2]. Note that the keys in Keys(Shybrid) can be cat-
egorized as follows.

– Strong keys: Those keys are picked uniformly at random.
– Weak keys: Those keys Ki are generated via

Ki ← CTR
Vi−1

Ki−1
[E]

(

CtE[E](I)
)

[1 : k]

for a random input I of D.

For a strong key, the chance that the adversary can guess it using q ideal-cipher
queries is at most q/2k. Since there are at most q strong keys, the chance that
one of the strong keys causes Bad2 to happen is at most q2/2k. For each j ≤ p,
let Hit2(j) be the event that the key derived from the random input Ij is a weak
key, and it causes Bad2 to happen. From the union bound,

Pr[Bad2] ≤ q2

2k
+ Pr[Hit2(1) ∪ · · · ∪ Hit2(p)] ≤ q2

2k
+

p
∑

j=1

Pr[Hit2(j)] .

We now bound each Pr[Hit2(j)]. Let J be the key derived from the random
input Ij and assume that J is weak. Since J ∈ Keys(Shybrid), the next state of
Shybrid is generated (as shown in Fig. 7) by picking a uniformly random string,
and thus subsequent queries give no information on J . In addition, recall that
the n-bit prefix of J is the xor of CtE[E, n](Ij) with a mask Pj . If we grant Pj

to the adversary then it only increases Pr[Hit2(j)]. The event Hit2(j) happens
only if the adversary can somehow guess CtE[E, n](Ij) via q choices of its ideal-
cipher queries. But anything that the adversary receives is derived from the
blockcipher E, the side information zj and the entropy estimation γj of Ij , the
other (Ii, γi, zi) with i 6= j. Thus from Theorem 1,

Pr[Hit2(j)] ≤ q

2n
+

√
q

2λ/2
+

8
√

q(ℓj + 2)3

2n

≤ q

2n
+

√
q

2λ/2
+

8
√

q(L + 2) · (ℓj + 2)

2n
.

Summing up over all events Hit2(1), . . . , Hit2(p),

Pr[Bad2] ≤ q2

2k
+

pq

2n
+

p · √q

2λ/2
+

8
√

q(L + 2) · (σ + 2p)

2n
.

22 Hoang and Shen

We now bound Pr[Bad3]. For a strong key, the chance that it collides with one of
the other q keys in the system in at most q/2k. Since there are at most q strong
keys, the chance that some strong key causes Bad3 to happen is at most q2/2k.
For each j ≤ p, let Hit3(j) be the event that the key derived from the random
input Ij is a weak key, and it causes Bad3 to happen. From the union bound,

Pr[Bad3] ≤ q2

2k
+ Pr[Hit3(1) ∪ · · · ∪ Hit3(p)] ≤ q2

2k
+

p
∑

j=1

Pr[Hit3(j)] .

We now bound each Pr[Hit3(j)]. The event Hit3(j) happens only if the environ-
ment somehow can “guess” CtE[E, n](Ij) via q choices of its other keys, using
just information from the blockcipher E, the side information zj and the entropy
estimation γj of Ij , the other (Ii, γi, zi) with i 6= j. Thus from Theorem 1,

Pr[Hit3(j)] ≤ q

2n
+

√
q

2λ/2
+

8
√

q(ℓj + 2)3

2n

≤ q

2n
+

√
q

2λ/2
+

8
√

q(L + 2) · (ℓj + 2)

2n
.

Summing up over all events Hit3(1), . . . , Hit3(p),

Pr[Bad3] ≤ q2

2k
+

pq

2n
+

p · √q

2λ/2
+

8
√

q(L + 2) · (σ + 2p)

2n
.

Bounding Pr[Bad4] is similar to handling Bad3, but now the environment has
just a single choice, instead of q choices. Thus

Pr[Bad4] ≤ q

2k
+

p

2n
+

p

2λ/2
+

8
√

(L + 2) · (σ + 2p)

2n
.

Bounding Pr[Bad5] is similar to handling Bad3, but now the environment has p
choices instead of q ones. Thus

Pr[Bad5] ≤ pq

2k
+

p2

2n
+

p1.5

2λ/2
+

8
√

p(L + 2) · (σ + 2p)

2n
.

Finally, consider Bad6. Again, the chance that some strong key causes Bad6 to
happen is at most q/2k. For each j ≤ p, let Hit6(j) be the event that the key
derived from the random input Ij is a weak key, and it causes Bad6 to happen.
From the union bound,

Pr[Bad6] ≤ q

2k
+ Pr[Hit6(1) ∪ · · · ∪ Hit6(p)] ≤ q

2k
+

p
∑

j=1

Pr[Hit6(j)] .

We now bound each Pr[Hit6(j)]. The event Hit6(j) happens only if the environ-
ment somehow can “guess” XP[E](Ij) via a single choice of the CTR mask, using
just information from the blockcipher E, the side information zj and the entropy

Security Analysis of NIST CTR-DRBG 23

estimation γj of Ij , the other (Ii, γi, zi) with i 6= j. From Lemma 6 with a single
guess,

Pr[Hit6(j)] ≤ 1

2n
+

1

2λ/2
+

8
√

(ℓj + 2)3

2n
≤ 1

2n
+

1

2λ/2
+

8
√

(L + 2) · (ℓj + 2)

2n
.

Summing up over all events Hit6(1), . . . , Hit6(p),

Pr[Bad6] ≤ q

2k
+

p

2n
+

p

2λ/2
+

8
√

(L + 2) · (σ + 2p)

2n
.

Summing up, and taking into account that q ≥ p,

Pr[Thybrid is bad] ≤ (B + 3)(s + 3p)

2n
+

3q(q + 1)

2k
+

3p(q + 1)

2n
+

6p · √q

2λ/2

+
24(
√

q + 1) ·
√

L + 2 · (σ + 2p)

2n
. (5)

Transcript ratio. Let τ be a good transcript such that Pr[Thybrid = τ] > 0.
We now prove that

1− Pr[Treal = τ]

Pr[Thybrid = τ]
≤ 0 . (6)

If Treal is good then Queries(Sreal) and the granted triples (K, X, Y) at the end of
the game (with all K ∈ {0, 1}n\Keys(Sreal) and X ∈ {0, 1}n), would contain all
adversary’s queries to E/E−1 and Sreal’s queries to E in its setup, next, refresh

procedures. Since A is deterministic, when Treal is good, it is completely de-
termined from D’s outputs, Queries(Sreal), and the granted triples (K, X, Y) at
the end of the game. Let Queries(τ) and Keys(τ) be the value of Queries(S) and
Keys(S) for S ∈ {Sreal, Shybrid} indicated by τ . Thus the event that Treal = τ
can be factored into the following sub-events:

– Inputs: The distribution sampler D outputs as instructed in τ .
– Prim: The blockcipher E agrees with the granted queries (K, X, Y) in τ ,

with K ∈ {0, 1}n\Keys(τ). That is, for any such triple (K, X, Y), if we query
E(K, X), we’ll get the answer Y .

– Collreal: The blockcipher E agrees with the triples in Queries(τ). Note that
for any (K, X, Y) ∈ Queries(τ), we have K ∈ Keys(τ).

Due to the key separation in Prim and Collreal and due to the fact that D has
no access to E,

Pr[Treal = τ] = Pr[Inputs] · Pr[Prim] · Pr[Collreal] .

Likewise, if Thybrid is good then the granted triples (K, X, Y) at the end of the
game (with all K ∈ {0, 1}n\Keys(Shybrid) and X ∈ {0, 1}n), would contain all
adversary’s queries to E/E−1 and Shybrid’s queries to E in its setup, next, refresh

procedures. Thus if Thybrid is good then it is completely determined from D’s
outputs, Queries(Shybrid), and the granted triples (K, X, Y) at the end of the
game. Hence the event that Thybrid = τ can be factored into Inputs, Prim and the
following sub-event:

24 Hoang and Shen

– Collideal: For any triple (K, X, Y) ∈ Queries(τ), if we pick Z←$ {0, 1}n, we’ll
have Z = Y . This random variable Z stands for the uniformly random block
that Shybrid samples when it is supposed to run E(K, X) (but actually does
not do) under procedure CTR on key K ∈ Keys(τ).

Then
Pr[Thybrid = τ] = Pr[Inputs] · Pr[Prim] · Pr[Collideal] .

Therefore,
Pr[Treal = τ]

Pr[Thybrid = τ]
=

Pr[Collreal]

Pr[Collideal]
.

Now, suppose that Queries(τ) contains exactly r keys, and the i-th key contains
exactly ti tuples. Since τ is good, for any two tuples (K, X, Y) and (K, X ′, Y ′)
of the i-th key, we have X 6= X ′ and Y 6= Y ′. Thus on the one hand,

Pr[Collreal] =
r

∏

i=1

1

2n(2n − 1) · · · (2n − ti + 1)
.

On the other hand,

Pr[Collideal] =

r
∏

i=1

1

(2n)ti
.

Hence
Pr[Collideal] ≤ Pr[Collreal] ,

and thus
Pr[Treal = τ]

Pr[Thybrid = τ]
=

Pr[Collreal]

Pr[Collideal]
≥ 1

as claimed.

Wrapping it up. From Lemma 1 and Equations (5) and (6), we conclude that

∆A(Sreal, Shybrid) ≤ (B + 3)(s + 3p)

2n
+

3q(q + 1)

2k
+

3p(q + 1)

2n
+

6p · √q

2λ/2

+
24(
√

q + 1) ·
√

L + 2 · (σ + 2p)

2n

as claimed.

7 Breaking CTR-DRBG with a Seed-dependent Sampler

In this section, we show that if the underlying blockcipher is AES-128 then
CTR-DRBG is insecure in the new security model of Coretti et al. [13].

Seedless PRNGs. A seedless PRNG that is built on top of an ideal primitive Π
is a tuple of deterministic algorithms G = (setup, refresh, next), any of which has
oracle access to Π. Algorithm setupΠ(I), on a random input I, outputs a state S.

Security Analysis of NIST CTR-DRBG 25

Game Gres
G,Π(A)

b←$ {0, 1}; s← ε; (I, s)←$ AΠ(s)

S ← setupΠ(I); b′←$ ARef,RoR,Π(s)

return (b′ = b)

procedure Ref(I)

S ← refreshΠ(S, I)

procedure RoR(1ℓ)

(R1, S)← nextΠ(S, ℓ)

R0←$ {0, 1}ℓ

return Rb

Fig. 8: Game defining resilience for a seedless PRNG G = (setup, refresh, next)
that is built on top of an ideal primitive Π.

Next, algorithm refreshΠ(S, I) takes as input a state S and a string I and then
outputs a new state. Finally algorithm nextΠ(S, ℓ) takes as input a state S and
a number ℓ ∈ N, and then outputs a new state and an ℓ-bit output string. Note
that the description of CTR-DRBG in Fig. 5 also conforms to this syntax.

Security modeling. Instead of using the full notion of Coretti et al. [13], we
levy some additional restrictions on the adversary to simplify the definition and
to make our attack more practical. In particular, we (i) strip away the adversary’s
ability to read or modify the PRNG’s state, (ii) require that each random input
must have sufficient min entropy, and (iii) forbid the adversary from calling next

when the accumulated entropy is insufficient. The simplified notion, which we
call resilience, is described in Fig. 8. Define

Advres
G,Π(A) = 2 Pr

[

Gres
G,Π(A)

]

− 1

as the advantage of A breaking the resilience of G. Informally, the game begins
by picking a challenge bit b←$ {0, 1}. In the first phase, the adversary A, given
just oracle access to Π, outputs a random input I and keeps some state s. The
game then runs setupΠ(I) to generate an initial state S for the PRNG. In the
second phase, the adversary, in addition to Π, is given the following oracles:

(i) An oracle Ref(I) to update the state S via S ← refreshΠ(I).
(ii) An oracle RoR(1ℓ) to get the next ℓ-bit output. The game runs the next

algorithm on the current state S to update it and get an ℓ-bit output R1,
and also samples a uniformly random string R0←$ {0, 1}ℓ. It then returns Rb

to the adversary.

The goal of the adversary is to guess the challenge bit b, by outputting a bit b′.

To avoid known impossibility results [11], one needs to carefully impose restric-
tions on the adversary A. Consider game Gres

G,Π(A) in which the challenge bit
b = 0. Note that this game is independent of the construction G: one can
implement the oracle Ref(I) to do nothing, and oracle RoR(1ℓ) to return
R←$ {0, 1}ℓ. Let si and Li be the random variables for the adversary’s state
and its current list of queries/answers to Π right before the adversary makes
the i-th query to RoR, respectively. Let Ii be the list of random inputs before
the adversary makes the i-th query to RoR. We say that A is λ-legitimate if
H∞(I | si, Li) ≥ λ, for any i ∈ N and any I ∈ Ii.

26 Hoang and Shen

The attack. We adapt the ideas of the CBCMAC attack in [13] to attack
CTR-DRBG, assuming that the key length and block length of the underlying
blockcipher are the same. In other words, our attack only applies if the underlying
blockcipher is AES-128. Still, it works for any fixed entropy threshold λ > 0.

Let E : {0, 1}k×{0, 1}n → {0, 1}n be the underlying blockcipher of CTR-DRBG,
and let π be the permutation in CBCMAC. Pick an arbitrary integer m ≥ λ. For
each a ∈ {0, 1}, let

Ua ← [a]32 ‖ 0n−32 ‖ [(mn + n− 64)/8]32 ‖ [n/4]32 ,

and let
Ba ← CBCMAC[π]

(

Ua ‖ 0n−64
)

.

For each integer i ≥ 0 and any string x ∈ {0, 1}n, define πi(x) recursively via
πi(x)← π

(

πi−1(x)
)

and π0(x)← x. In the first phase, for each i ∈ {0, . . . , m−1},
the adversary A picks Mi←$ {πi(B0)⊕ πi(B1), 0n}. It then outputs

I ← 0n−64 ‖M0 ‖ · · · ‖Mm−1 ,

and also outputs the empty string as its state s. In the second phase, A queries
RoR(1n) to get an answer Y . Next, recall that in the real world (where the
challenge bit b = 1), to set up the initial state, setup(I) first derives

K ← CBCMAC[π](U0 ‖ I ‖ P); IV← CBCMAC[π](U1 ‖ I ‖ P) ,

where P ← pad(ε), and then runs CBCIV
K [E](02n). Our adversary aims to predict

two possible pairs (K0, V0) and (K1, V1) for (K, IV), and then compare Y with
the corresponding RoR outputs Z0 and Z1. Specifically, A runs the following
code

for a ∈ {0, 1} do
P ← pad(ε); Ka ← π

(

πm(Ba)⊕ P
)

; Va ← π
(

πm(B1−a)⊕ P
)

Ra ← CBCVa

Ka
[E](02n); Ja ← Ra[1 : n], V ∗a ← Ra[n + 1 : 2n]

Za ← CTRE(Ja, V ∗a , 0n)
if Y ∈ {Z0, Z1} then return 1 else return 0

In summary, A makes 2m queries to π in the first phase, and 2m + 4 queries
to π and 6 queries to E in the second phase. Let L be the list of queries and
answers to π and E. Since the state s of A right before it queries RoR is the
empty string, in the ideal world, we have H∞(I | s, L) = m ≥ λ, and thus the
adversary is λ-legitimate.

We now analyze the adversary’s advantage. In the ideal world, the answer Y
is a uniformly random string, independent of Z0 and Z1, and thus the chance
that Y ∈ {Z0, Z1} is 21−n. As a result, the chance that A outputs 1 in the
ideal world is 21−n. In the real world, we claim that A’s prediction of (K, V) is
correct. Consequently, the chance that it outputs 1 in the real world is 1, and
thus Advres

G,Π(A) = 1− 21−n.

Security Analysis of NIST CTR-DRBG 27

To justify the claim above, note that K ← CBCMAC[π](B0, M0 · · ·Mm−1 ‖ P)
and IV← CBCMAC[π](B1, M0 · · ·Mm−1 ‖ P). From the definition of CBCMAC,
the two CBCMAC calls above can be rewritten as follows:

X0 ← B0; Y0 ← B1

for i = 0 to m− 1 do Xi+1 ← π(Xi ⊕Mi); Yi+1 ← π(Yi ⊕Mi)
K ← π(Xm ⊕ P); IV← π(Ym ⊕ P)

We will prove by induction that in the code above, {Xi, Yi} = {πi(B0), πi(B1)}
for every i ∈ {0, . . . , m}; the claim above corresponds to the special case i = m.
The statement is true for the base case i = 0, from the definition of X0 and Y0.
Assume that our statement is true for i < m, we now prove that it also holds
for i + 1. Since Mi ∈ {πi(B0) ⊕ πi(B1), 0n}, from the inductive hypothesis,
{Xi ⊕Mi, Yi ⊕Mi} = {πi(B0), πi(B1)}. As Xi+1 ← π(Xi ⊕Mi) and Yi+1 ←
π(Xi ⊕Mi), our statement also holds for i + 1.

Discussion. The key idea of the attack above is to craft a random input I such
that it is easy to learn both the key K and the initialization vector IV of CBC in
CtE[E](I). This attack can be extended for a general key length k ∈ {n, . . . , 2n},
but now the adversary can only learn just K and the (2n− k)-bit prefix of IV.
Still, the adversary can make 2k−n guesses to determine the remaining k−n bits
of IV. This leads to a theoretical attack of about 264 operations for AES-192,
but for AES-256, the cost (2128 operations) is prohibitive. We leave it as an open
problem to either extend our attack for CTR-DRBG with AES-256, or to prove
that it is actually resilient.

Acknowledgments

We thank Stefano Tessaro for insightful discussions, Yevgeniy Dodis for suggest-
ing the study of CTR-DRBG in the seedless setting, and CRYPTO reviewers for
useful feedback. Viet Tung Hoang was supported in part by NSF grants CICI-
1738912 and CRII-1755539. Yaobin Shen was supported in part by National
Key Research and Development Program of China (No. 2019YFB2101601, No.
2018YFB0803400), 13th five-year National Development Fund of Cryptography
(MMJJ20170114), and China Scholarship Council (No. 201806230107). Much of
this work was done while Yaobin Shen was visiting Florida State University.

References

1. Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert, F.X., Yu,
Y.: Leftover hash lemma, revisited. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 1–20. Springer, Heidelberg (Aug 2011)

2. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation with
applications to /dev/random. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM
CCS 05. pp. 203–212. ACM Press (Nov 2005)

28 Hoang and Shen

3. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for en-
cryption and commitment secure under selective opening. In: Joux, A. (ed.) EU-
ROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (Apr 2009)

4. Bellare, M., Pietrzak, K., Rogaway, P.: Improved security analyses for CBC MACs.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 527–545. Springer, Hei-
delberg (Aug 2005)

5. Bernstein, D.J.: Cache-timing attacks on AES (2005)
6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge-based pseudo-

random number generators. In: Mangard, S., Standaert, F.X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 33–47. Springer, Heidelberg (Aug 2010)

7. Campagna, M.: Security bounds for the NIST codebook-based deterministic
random bit generator. Cryptology ePrint Archive, Report 2006/379 (2006),
https://eprint.iacr.org/2006/379

8. Checkoway, S., Maskiewicz, J., Garman, C., Fried, J., Cohney, S., Green, M.,
Heninger, N., Weinmann, R.P., Rescorla, E., Shacham, H.: A systematic analy-
sis of the Juniper Dual EC incident. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. pp. 468–479. ACM (2016)

9. Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T., Ristenpart,
T., Bernstein, D.J., Maskiewicz, J., Shacham, H., Fredrikson, M.: On the practical
exploitability of dual EC in TLS implementations. In: Proceedings of the 23rd
USENIX Security Symposium. pp. 319–335 (August 2014)

10. Chen, S., Steinberger, J.P.: Tight security bounds for key-alternating
ciphers. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 327–350. Springer, Heidelberg (May 2014).
https://doi.org/10.1007/978-3-642-55220-5_19

11. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity (extended abstract). In: 26th FOCS. pp. 429–
442. IEEE Computer Society Press (Oct 1985)

12. Cohney, S., Kwong, A., Paz, S., Genkin, D., Heninger, N., Ronen, E., Yarom, Y.:
Pseudorandom black swans: Cache attacks on CTR DRBG. In: IEEE Security and
Privacy 2020 (2020)

13. Coretti, S., Dodis, Y., Karthikeyan, H., Tessaro, S.: Seedless fruit is the sweetest:
Random number generation, revisited. In: CRYPTO 2019. pp. 205–234 (2019)

14. Dodis, Y., Gennaro, R., Håstad, J., Krawczyk, H., Rabin, T.: Randomness extrac-
tion and key derivation using the CBC, cascade and HMAC modes. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (Aug
2004)

15. Dodis, Y., Pointcheval, D., Ruhault, S., Vergnaud, D., Wichs, D.: Security analysis
of pseudo-random number generators with input: /dev/random is not robust. In:
Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 13. pp. 647–658. ACM
Press (Nov 2013)

16. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In: 40th
FOCS. pp. 523–534. IEEE Computer Society Press (Oct 1999)

17. Gazi, P., Tessaro, S.: Provably robust sponge-based PRNGs and KDFs. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 87–116.
Springer, Heidelberg (May 2016). https://doi.org/10.1007/978-3-662-49890-3_4

18. Gullasch, D., Bangerter, E., Krenn, S.: Cache games - bringing access-based cache
attacks on AES to practice. In: 2011 IEEE Symposium on Security and Privacy.
pp. 490–505. IEEE Computer Society Press (May 2011)

19. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

https://eprint.iacr.org/2006/379
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-662-49890-3_4

Security Analysis of NIST CTR-DRBG 29

20. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and
Qs: Detection of widespread weak keys in network devices. In: Proceedings of the
21st USENIX Security Symposium. pp. 205–220 (August 2012)

21. Hoang, V.T., Shen, Y.: Security analysis of NIST CTR-DRBG. Cryptology ePrint
Archive, Report 2020/619 (2020), https://eprint.iacr.org/2020/619

22. Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension:
Exact bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (Aug
2016). https://doi.org/10.1007/978-3-662-53018-4_1

23. Hutchinson, D.: Randomness in Cryptography: Theory Meets Practice. Ph.D. the-
sis, Royal Holloway, University of London (2018)

24. Neve, M., Seifert, J.P.: Advances on access-driven cache attacks on AES. In: Bi-
ham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 147–162. Springer,
Heidelberg (Aug 2007)

25. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (Feb 2006)

26. Patarin, J.: The “coefficients H” technique (invited talk). In: Avanzi, R.M., Keliher,
L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg
(Aug 2009)

27. Raz, R., Reingold, O.: On recycling the randomness of states in space bounded
computation. In: 31st ACM STOC. pp. 159–168. ACM Press (May 1999)

28. Ruhault, S.: SoK: security models for pseudo-random number generators. IACR
Transactions on Symmetric Cryptology pp. 506–544 (2017)

29. Shrimpton, T., Terashima, R.S.: A provable-security analysis of Intel’s se-
cure key RNG. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Part I. LNCS, vol. 9056, pp. 77–100. Springer, Heidelberg (Apr 2015).
https://doi.org/10.1007/978-3-662-46800-5_4

30. Shrimpton, T., Terashima, R.S.: Salvaging weak security bounds for blockcipher-
based constructions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016,
Part I. LNCS, vol. 10031, pp. 429–454. Springer, Heidelberg (Dec 2016).
https://doi.org/10.1007/978-3-662-53887-6_16

31. Woodage, J., Shumow, D.: An analysis of NIST SP 800-90A. In: EUROCRYPT
2019. pp. 151–180 (2019)

A Problems in Hutchinson’s Analysis of CTR-DRBG

In this section, we describe the issues in Hutchinson’s analysis of CTR-DRBG [23].
For convenience, we shall use the notation and terminology in Section 4.

First, under CTR-DRBG, one uses CBCMAC to extract randomness multiple
times from basically the same random input (with different constant prefixes).
Conventional analysis of CBCMAC [14] via the Leftover Hash Lemma [19] only
implies that each of the corresponding outputs is marginally pseudorandom, but
in the proof of his Lemma 5.5.4, Hutchinson incorrectly concludes that they are
jointly pseudorandom.

Next, in the proof of his Lemma 5.5.14, Hutchinson considers a multicollision

CBCMAC[π](M1) = CBCMAC[π](M∗
1), . . . , CBCMAC[π](Mr) = CBCMAC[π](M∗

r)

https://eprint.iacr.org/2020/619
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-662-46800-5_4
https://doi.org/10.1007/978-3-662-53887-6_16

30 Hoang and Shen

with r ∈ {2, 3} and a truly random permutation π : {0, 1}n → {0, 1}n. As-
sume that each individual collision CBCMAC[π](Mi) = CBCMAC[π](M∗

i) hap-
pens with probability at most ǫ. Hutchinson claims (without proof) that the
multicollision happens with probability at most ǫ3, but this is obviously wrong
for r = 2. While one may try to salvage the proof by changing the multicollision
probability to ǫr, proving such a bound is difficult.

Next, in several places, his probabilistic reasoning is problematic. For instance,
in the proof of his Lemma 5.5.14, he considers X1 ← CBCIV1

K1
[E](03n) and X2 ←

CBCIV2

K2
[E](03n), for K1 6= K2 and IV1 6= IV2, and E : {0, 1}k×{0, 1}n → {0, 1}n

is modeled as an ideal cipher. He claims that

Pr[X1 = X2] ≤ 1

23n
·
(18

2n

)3

,

but this collision probability is actually around 1
23n , which is much bigger than

the claimed bound.

In addition, while Hutchinson appears to consider random inputs of a general
block length L, he actually uses L = 3 in the proof of his Lemma 5.5.4, and the
resulting incorrect bound propagates to other places.

Finally, even if all the bugs above are fixed, Hutchinson’s approach is doomed
to yield a weak bound

p2

2(λ−n)/2
+

σp

2n/2
,

assuming that we have p random inputs, each of at least λ ≥ n bits of min en-
tropy, and their total block length is at most σ. This poor bound is due to: (i) the
decomposition of robustness to two other notions (preserving and recovering)
that leads to a p-blowup, and (ii) the unnecessary requirement that CBCMAC

on random inputs yield pseudorandom (instead of just unpredictable) outputs.

	Security Analysis of NIST CTR-DRBG

