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Abstract. Σ-Protocols provide a well-understood basis for secure al-
gorithmics. Recently, Bulletproofs (Bootle et al., EUROCRYPT 2016,
and Bünz et al., S&P 2018) have been proposed as a drop-in replace-
ment in case of zero-knowledge (ZK) for arithmetic circuits, achieving
logarithmic communication instead of linear. Its pivot is an ingenious,
logarithmic-size proof of knowledge BP for certain quadratic relations.
However, reducing ZK for general relations to it forces a somewhat cum-
bersome “reinvention” of cryptographic protocol theory.

We take a rather different viewpoint and reconcile Bulletproofs with
Σ-Protocol Theory such that (a) simpler circuit ZK is developed within
established theory, while (b) achieving exactly the same logarithmic com-
munication.

The natural key here is linearization. First, we repurpose BPs as a
blackbox compression mechanism for standard Σ-Protocols handling ZK
proofs of general linear relations (on compactly committed secret vec-
tors); our pivot. Second, we reduce the case of general nonlinear re-
lations to blackbox applications of our pivot via a novel variation on
arithmetic secret sharing based techniques for Σ-Protocols (Cramer et
al., ICITS 2012). Orthogonally, we enhance versatility by enabling sce-
narios not previously addressed, e.g., when a secret input is dispersed
across several commitments. Standard implementation platforms lead-
ing to logarithmic communication follow from a Discrete-Log assumption
or a generalized Strong-RSA assumption. Also, under a Knowledge-of-
Exponent Assumption (KEA) communication drops to constant, as in
ZK-SNARKS.

All in all, our theory should more generally be useful for modular (“plug
& play”) design of practical cryptographic protocols; this is further evi-
denced by our separate work (2020) on proofs of partial knowledge.
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1 Introduction

The theory of Σ-Protocols provides a well-understood basis for plug-and-play
secure algorithmics.4 Recently, Bulletproofs [6, 8] have been introduced as a
“drop-in replacement” for Σ-Protocols in several important applications. No-
tably, this includes ZK for arithmetic circuits with communication O(log |C| ·κ)
bits where |C| is the circuit size5 and κ is the security parameter, down from
O(|C| · κ) bits. A similar result holds for range proofs.

At the heart of Bulletproofs is an interactive proof of knowledge between a
Prover and Verifier showing that a Pedersen commitment to a vector of large
length n satisfies a multi-variate polynomial equation of degree 2, defined with
an inner product. We refer to this PoK by BP. Concretely, suppose G is a cyclic
group of prime order q (denoted multiplicatively) supporting discrete-log-based
cryptography. Suppose, furthermore, that g = (g1, . . . , gn) ∈ Gn and h ∈ G (each
gi as well as h generators of G) have been set up once-and-for-all such that, for
parties that may subsequently act as provers, finding nontrivial linear relations
between them is computationally as hard as computing discrete logarithms in G.
For each x ∈ Znq , define gx =

∏n
i=1 g

xi
i . A Pedersen-commitment P to a vector

x ∈ Znq is then computed as P = gx · hρ where ρ ∈ Zq is selected uniformly at
random. This commitment is information-theoretically hiding and, on account
of the set-up, computationally binding. Note that it is compact in the sense that,
independently of n, a commitment is a single G-element. Suppose that n is even
and write n = 2m. Setting x = (x0,x1) ∈ Zmq × Zmq , a Bulletproof allows the
prover to prove that it can open P such that the inner-product 〈x0,x1〉 equals
some value claimed by the prover.6

BPs stand out in that they ingeniously reduce communication to O(log n)
elements from O(n) via traditional methods. Although this is at the expense of
introducing logarithmic number of moves (instead of constant), its public-coin
nature ensures that it can be rendered non-interactive using the Fiat-Shamir
heuristic [16]. However, design of BP applications meet with a number of tech-
nical difficulties. First, BPs are not zero-knowledge, and second, cryptographic
protocol theory has to be “reinvented” with the quadratic constraint proved as
its “pivot”. This leads to practical yet rather opaque, complex protocols where
applying natural plug-and-play intuition appears hard.

1.1 Summary of Our Contributions

In this work we take a different approach. We reconcile Bulletproofs with theory
of Σ-Protocols such that (a) applications can follow (established) cryptographic
protocol theory, thereby dispensing with the need for “reinventing” it, while

4 Loosely speaking, we refer to modular design of “cryptographic realizations” of stan-
dard “algorithmic tasks”. In other words, this entails porting algorithms for standard
tasks to cryptographic scenarios, e.g., MPC and zero-knowledge.

5 Actually, the result only depends on the number of inputs and multiplication gates.
6 Alternatively, this inner-product value may be taken as part of the committed vector.
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(b) enjoying exactly the same communication reduction. We do this by giving
a precise perspective on BPs as a significant strengthening of the power of Σ-
protocols. We believe this novel perspective is rather useful for intuitive, plug-
and-play or modular design of practical secure algorithmics. Perhaps surprisingly
our approach yields the same communication complexity; up to and including
the constants.

We combine two essential components. First, we isolate a natural, alterna-
tive pivot: compact commitment with “arbitrary linear form openings”. Given
a Pedersen commitment to a long vector x, consider a ZKPoK that the prover
knows x, while also revealing, for an arbitrary, public, linear form L, the scalar
L(x) correctly and nothing else. This has a simple Σ-Protocol. We then com-
press it by replacing the final (long) prover-message with an appropriate BP
that the prover knows it. Indeed, the relation that this message is required to
satisfy turns out amenable to deployment of a suitable BP. As a result, PoK and
honest-verifier ZK are preserved, but overall communication drops from linear to
logarithmic. In the process, we simplify known run-time analyses of knowledge
extractors involved and give concrete estimates. On top of this, we introduce
further necessary utility enhancements. First, without increasing overall com-
plexity, we show, using the pivot as black-box, how to open several linear form
evaluations instead of just one. Second, using this and by plug & play with our
basic theory, we show how to handle the application scenario where the secret,
long vector is initially “dispersed” across several commitments, by compactify-
ing these into a single compact commitment first. This is useful in important
applications. From this point on, the only fact about the pivot that we will need
is that we have access to a compact commitment scheme that allows a ZKPoK
with low overall communication, showing that the prover knows the long secret
committed vector and showing the correct openings of several linear evaluations
on that committed vector; the technical details do not matter anymore.

Second, the pivot’s significance now surfaces when integrated with a novel
variation on – hitherto largely overlooked – arithmetic secret sharing based tech-
niques for Σ-Protocols [13], inspired by MPC. These techniques allow for lin-
earization of “nonlinear relations”. Mathematically, solving the linear instances
first and then “linearizing” the non-linear ones is perhaps among the most nat-
ural problem solving strategies; here, this fits seamlessly with Sigma-protocol
theory and our adaptation of [13]. It is in these adaptations that free choice of
linear forms in the pivot is fully exploited; the maps arising from our adaptation
of [13] do not form a well-structured subclass of maps. All in all, this yields
simple logarithmic communication solutions for circuit ZK. Similarly for range
proofs, which are now trivial to design. We also offer trade-offs, i.e., “square-
root” complexity in constant rounds. Our results are based on either of three
assumptions, the Discrete Logarithm assumption, an assumption derived from
the Strong-RSA assumption, or a Knowledge-of-Exponent derived assumption.

We proceed as follows. We start by outlining our program, in nearly ex-
clusively conceptual fashion. We believe that the fact that it is possible to do
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so further underscores our main points. Later on we detail how this program
deviates exactly from the paths taken in the recent literature.

1.2 A More Detailed View of Our Program

A. Our Pivotal Σ-Protocol
We isolate a basic Σ-protocol Π0 that, given a compact commitment to a secret
vector x of large length n, allows to partially open it. Concretely, given an ar-
bitrary, public, linear form L, only the value L(x) is released and nothing else.
Briefly, the prover has a compact commitment P to a long secret vector x. By
a simple twist on basic Σ-protocol theory, the prover then selects a compact
commitment A to a secret random vector r. The prover sends, as first move, this
commitment A and the values y = L(x) and y′ = L(r). In the second move, the
verifier sends a random challenge c ∈ Zq. In the third, final move, the prover
then opens the commitment AP c to a vector z (i.e., z is its committed vector;
we leave the randomness underlying the commitment implicit here). Finally, the
verifier checks the opening of the commitment and checks that L(z) = cy + y′.
The communication in this Σ-protocol is dominated by the opening of AP c. The
latter amounts to O(nκ) bits (where κ is the security parameter), whereas the
remainder of the protocol has O(κ) bits in total. That said, it is an honest-verifier
zero-knowledge proof of knowledge (with unconditional soundness). In addition,
we describe an amortized version of this basic Σ-protocol, i.e., a Σ-protocol ΠAm

0

that, given s compact commitments to secret vectors x1, . . . ,xs and a linear form
L, allows to open L(x1), . . . , L(xs) and nothing else. The communication costs
of this amortized Σ-protocol are exactly s − 1 elements more than that of the
basic Σ-protocol (i.e., the evaluations at the s− 1 additional input vectors).

Using the pivotal Σ-protocol as a black-box, its utility can be enhanced,
which will be important later on. More concretely, many linear forms can be
opened for essentially the price of a single one. First, by deploying a “polynomial
amortization trick” (known, e.g., from MPC) we can do any number of nullity
checks without any substantial increase in complexity. Second, building on this
trick, we can extend the utility to the opening of several arbitrary linear forms
L1, . . . , Ls instead of a single one, at the cost of increasing the communication
by exactly s − 1 values in Zq (i.e., the evaluations of s − 1 additional forms).
Finally, we note the entire discussion on these enhancements holds verbatim
when we replace linear forms by affine forms.7

Note that we have identified two distinct intractability assumptions, each of
which supports this pivot: the Discrete Logarithm assumption (as used in prior
work involving Bulletproofs [6, 8]) but also one derived from the Strong-RSA
assumption (as nailed down in a recent work [9] on Bulletproofs and their im-
proved applications). The introduction focuses on the DL assumption, but the
Σ-protocol for the solution derived from the Strong-RSA assumption follows
similarly. Our program can be based on either platform. In addition, we show

7 I.e., a linear form plus a constant.
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how to base the program on a specific knowledge of exponent assumption. How-
ever, such assumptions are known to be unfalsifiable and, therefore, not without
controversy. The details of our pivotal Σ-protocol can be found in Section 3, and
the utility enhancements are described in Section 5.

B. Compressing the Pivot
We argue that protocol Π0 can be compressed using the ideas underlying Bul-
letproofs, yielding a protocol Πc that has the same functionality and is still
an honest-verifier zero-knowledge proof of knowledge for the relation in ques-
tion, but that has communication O(κ log n) bits instead, and O(log n) moves.
Technically the compression degrades the soundness from unconditional to com-
putational, and protocols with computational soundness are called arguments
of knowledge. However, we will use the terms proof and argument of knowledge
interchangeably. The compression techniques directly carry over to amortized
Σ-protocol ΠAm

0 . See below for variations achieving unconditional soundness.

Main compression idea. The idea is simply as follows, starting from Π0. Sup-
pose that P is the commitment in question. The linear forms are constants as
they are part of the relation proved, so they will not be made explicit for now.
Furthermore suppose that the prover has sent the message a as first move of
Π0, and that the verifier has subsequently sent challenge c as the second move.
Thus, in the third –and final– move, the prover would be required to send the
reply z. The verifier would, finally, apply the verification function φ attached to
Π0 to check that φ(P ; a, c, z) = 1, and accept only if this is the case. To define
the compressed protocol Πc, instead of requiring the prover to send the long
vector z, a suitable adaptation of Bulletproof’s PoK (BP) will be deployed to let
the prover convince the verifier that it knows some z such that φ(P ; a, c, z) = 1,
which is much more efficient. Note that it is immaterial that the Bulletproof
part is not zero knowledge as, in Π0, the prover would have revealed z anyway.

This will ensure the claimed communication reduction, i.e., O(κ log n) bits
in O(log n) moves. We show that, as a trade-off, we may opt for constant num-
ber of rounds (instead of logarithmic) and O(κ

√
n) communication (instead of

logarithmic). But of course, in non-interactive Fiat-Shamir mode (which clearly
applies here), the logarithmic variant may be preferable.

Note that this compression idea equally applies to the enhancements of the
basic utility as discussed above. It gives essentially the same complexities. Of
course, this assumes that the number of openings of linear forms is not too
large; it is not sensitive to the number of nullity checks though. The details of
the compression idea can be found in Section 4.

Refined Analysis of Knowledge Extractors. In the theory of Σ-protocols [10], it is
well known that special soundness implies knowledge soundness with knowledge
error 1/q, where q is the size of the challenge set. This result can be shown [10]
by an application of Jensen’s inequality to the convex function f(X) = X(X −
1/q). Recently, and particularly for the above mentioned compressing techniques,
natural generalizations of special soundness have become relevant. These more
general notions of special soundness can again be shown to imply knowledge
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soundness. However, the proof technique using Jensen’s inequality is no longer
directly applicable. For this reason prior works [6, 8] resort to heavy row type
arguments without computing the exact knowledge error. Here, we show that an
adaptation of the proof using Jensen’s inequality does apply. This results in a
simple proof and a refined analysis of the protocols in this paper.8 The details
of the extractor analysis can be found in the full-version of this paper [1].

Compressed Pivot with Unconditional Soundness. In addition, we show two ap-
proaches for realizing our compressed pivot with unconditional knowledge sound-
ness, rather than computational. In our first approach we simply omit the step of
the BP compression in which the linear-form evaluation is incorporated into the
commitment, and execute that part “in the open”. This works for us here since
we only consider linear constraints in the compressed pivot and no quadratic
ones. As a result, unconditional soundness is achieved. This approach increases
the communication costs by a factor 2.

Our second approach is based on the observation that an unconditionally
sound ZKPoK for opening linear forms can be based on black-box access to an
unconditionally sound ZKPoK for just proving knowledge of an opening of a
Pedersen vector commitment. The reduction uses structural information of a
given linear form (i.e., it depends on the null-space and selection of a basis for
it). By removing the provisions for linear forms from the compressed pivot Πc

the required black-box is realized. The details can be found in the full-version
of this paper [1].

C. Compactifying a Vector of Commitments
Our compressed pivot may be summarized as compact commitments to long
secret vectors that allow for very efficient partial openings, i.e., arbitrary lin-
ear forms applied to the secret committed vector. As we show later on, this is
sufficient for proving any (nonlinear) relation. To make this work, all relevant
prover data (secret data vector plus secret auxiliary data, such a random coins)
is required to be committed to in a single compact commitment.

However, in many relevant practical scenarios, we must assume that the
commitment to the prover’s secret data vector, about which something is to be
proved in zero knowledge, has already been produced before the zero knowledge
protocol is run. In order to handle this, we require the prover to compactify these
commitments together with the secret auxiliary data in a single commitment.

We consider two extreme scenarios: (1) the prover has a single compact com-
mitment to the secret data vector about which some zero knowledge proof is to
be conducted and (2) same, except that the prover has individual commitments
to the coordinates of that secret data vector. For each scenario we give a con-
ceptually clean realization by plug & play with our basic theory. We note that
scenario 1 has not been addressed by previous work.

8 These results hold for one of several possible definitions for knowledge soundness.
Alternative definitions require additional effort for these techniques to work. For
more details see the full-version of this paper [1].
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For the first scenario the prover uses new generators to commit to the aux-
iliary information. Using the compressed Σ-protocol, the prover shows that this
is indeed a commitment that exclusively involves the new generators. Prover
and verifier multiply the two compact commitments to obtain a single compact
commitment to all relevant data.

For the second scenario, a basic (amortized) Σ-protocol shows that the prover
knows openings to all individual commitments. From this basic protocol, we
define a new Σ-protocol as follows. The prover appends the first message a of
the basic protocol with a compact commitment containing all relevant data and
the randomness sampled in the first move of the basic Σ-protocol. After receiving
the challenge the prover’s response can now be computed as a public linear form
(parameterized by the challenge c) evaluated at the vector to which the prover
committed. Instead of sending this message directly, the prover and verifier run
the interactive protocol to open the associated linear form on the compact vector
commitment. The verifier checks that the opening of the vector commitment is
also an opening of the commitment in the Σ-protocol. As a result the prover has
shown that it knows openings to all the individual commitments and that these
openings are contained in the compact commitment together with the auxiliary
data. The details on the compactification of vector commitments can be found
in Section 5.3.

D. Plug-and-Play Secure Algorithmics from Compressed Pivot
We will now explain the power of our compressed pivot. It will turn out that we
only need black-box access. Our key point is to show how to combine this with
a hitherto largely overlooked part of Σ-protocol theory, namely the work of [13]
that shows how to prove arbitrary constraints on committed vectors by exploit-
ing techniques from secure multi-party computation based on arithmetic secret
sharing, more concretely, the ideas underlying the Commitment Multiplication
Protocol from [11]. For more information, see Section 12.5.3 in [12] for a general
description of efficient zero-knowledge verification of secret multiplications in
terms of arbitrary (strongly-multiplicative) arithmetic secret sharing. It is this
combination of “compact commitments with linear openings” and arithmetic se-
cret sharing that allows for “linearizing nonlinear relations”. So this explains
also why our compressed pivot does not need any “direct” provision to handle
nonlinearity.

We need to make some appropriate adaptations to make this work for us
here. We first outline the technique from [13] and then we discuss adaptations.
The work of [13] considers homomorphic commitment schemes where the secret
committed to is not a vector of large length, but a single element of Zq instead.
The primary result is a Σ-protocol showing the correctness of commitments to
m multiplication triples (αi, βi, γi := αiβi), with low amortized complexity for
large m. In other words, the protocol verifies the multiplicative relations, and
the costs per triple are relatively small.

Each of the αi’s (resp., the βi’s and γi’s) is individually committed to.
Their solution employs strongly-multiplicative packed-secret sharing. For in-
stance, consider Shamir’s scheme over Zq, with privacy parameter t = 1, but
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with secret-space dimension m. This uses random polynomials of degree ≤ m,
subject to the evaluations on the points 1, . . . ,m comprising the desired secret
vector. Note that, for each sharing, a single random Zq-element is required (which
can be taken as the evaluation at 0).

It is important to note that, given secret vector and random element, it
holds by Lagrange Interpolation that, for each c ∈ Zq, the evaluation f(c) of
such polynomial f(X) is some public Zq-linear combination over the coordinates
of the secret vector and the random element. Namely, consider the map that
takes m + 1 arbitrary evaluations on the points 0, . . . ,m and that outputs the
unique polynomial f(X) of degree ≤ m interpolating them to the evaluations of
f(X) in all other points. A transformation matrix describing this map does not
correspond to a Vandermonde-matrix, but it can be determined from it.

Now, assume that 2m < q (for strong-multiplicativity). The protocol goes as
follows.

– The vectors of commitments to the multiplication triples are assumed to be
part of the common input.

– The prover selects a random polynomial f(X) that defines a packed secret
sharing of the vector (α1, . . . , αm). The prover also selects a random poly-
nomial g(X) that defines a packed secret sharing of the vector (β1, . . . , βm).
Finally, the prover computes the product polynomial h(X) := f(X)g(X) of
degree ≤ 2m < q.

– The prover commits to the random Zq-element for the sharing based on
f(X), i.e., f(0), and commits to the random Zq-element for the sharing
based on g(X), i.e., g(0). The prover also commits the evaluations of h(X) on
the points 0,m+ 1, . . . , 2m.9 Note that the “absent” evaluations at 1, . . . ,m
comprise the γi’s and their commitments are already assumed to be part of
the common input.

– The prover sends these commitments to the verifier.

– The verifier selects a random challenge c ∈ Zq distinct from 1, . . . ,m and
sends it to the prover.

– By public linear combinations, both prover and verifier can compute three
commitments: one to u := f(c), one to v := g(c) and one to w := h(c).
The prover opens each of these (assuming, of course, that c is in the right
range). The verifier checks each of these three openings and checks whether
w = uv. If the committed polynomials do not satisfy f(X)g(X) = h(X),
and under the assumption that the commitment scheme is binding, there
are at most 2m values of c out of the q −m possibilities such that the final
check goes through. So a lying prover is caught with probability greater
than 1− 2m/(q −m). With q exponential in the security parameter and m,
say, polynomial in it, this is exponentially close to 1. Honest-verifier zero-
knowledge essentially follows from 1-privacy of the secret sharing scheme.

9 By Lagrange interpolation these points, together with the γi’s, determine h(X).
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Our first observation here is as follows. In the above protocol, the prover may
as well use our compressed pivot as a black-box. Indeed, the entire vector

y = (α1, . . . , αm, β1, . . . , βm, f(0), g(0), h(0), h(1), . . . , h(2m)) ∈ Z4m+3
q

of data that the prover commits to in the protocol above can be committed
to in a single compact commitment. Note that, by definition, γi = h(i) for all
1 ≤ i ≤ m. Furthermore, all of the data opened to the verifier is some fixed linear
form on the (long) secret committed vector y. Indeed:

1. Each of the values u, v correspond to an opening of a public linear form
applied to y. The linear form is determined by some row in a transformation
matrix as addressed above, under the convention that the form takes zeros
on the portion of the coordinates of y not relevant to the computation.

2. Similarly for the value w, except that this simply corresponds to an “eval-
uation of a polynomial whose coefficients are defined by a part of y”. So
evaluation is a public linear form as well.

Overall, we get an honest-verifier proof of knowledge for showing correctness of
m secret multiplication-triples with O(k logm) bits communication in O(logm)
moves (or in constant rounds but with O(k

√
m) bits communication).

Our second observation here is as follows. Suppose we have an arithmetic
circuit10 C over Zq with n inputs, s outputs and m multiplication gates.11 We
can easily turn the observation above into a solution for “circuit zero-knowledge”,
i.e., the prover convinces the verifier that the committed vector x ∈ Znq satisfies
some constraint captured by a given circuit C which (w.l.o.g.) returns 0. We
note that [13] also gives a solution for circuit zero-knowledge. But that one does
not work for us here as it gives too large complexity. So we make some changes.

By the aforementioned compactification techniques it is sufficient to consider
the ZK scenario where the prover wants to demonstrate that C is satisfiable; this
means that we may assume that the prover commits to all relevant data (inputs
and all auxiliary data) in a single compact commitment. Other ZK scenarios,
in which the prover has already committed to input data, are dealt with by
first compactifying existing commitments and auxiliary information into a single
compact commitment.

The protocol goes as follows. The prover first determines the computation
graph implied by instantiating the circuit C with its input vector x ∈ Znq . The
m multiplication gates in C will be handled as above, i.e., via polynomials f(X),
g(X) and h(X) defining packed-secret sharings of the left inputs, the right inputs
and outputs of the multiplication gates. The prover commits to each of the coor-
dinates of x and to the auxiliary data aux = (f(0), g(0), h(0), h(1), . . . , h(2m)) ∈
Z2m+3
q in one single compact commitment. The length γ of the committed vector

y thus equals n+ 2m+ 3.

10 Each gate of the circuit has fan-in two, but unbounded fan-out.
11 We only count multiplication gates with variable inputs. Additions and multiplica-

tions by constants are implicitly handled and immaterial to the communication.
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A simple fact about arithmetic circuits shows that all wire values are acces-
sible as affine combinations of the coefficients committed to. These affine com-
binations are uniquely defined by the addition and scalar multiplication gates of
the circuit. This explains why, in contrast to the discussion above, it is no longer
necessary to commit explicitly to the αi’s and the βi’s as these are now implicitly
committed to via said affine functions of y. Therefore, since the values f(0), g(0)
are still included in y, the polynomials f(X), g(X) and h(X) are well-defined
by y, and their evaluations are, by composition of the appropriate maps, also
affine evaluations on y.

With the above observations in hand, the protocol is reduced to opening the
affine map Φ that, on input y, outputs (C(x), f(c), g(c), h(c)) for a challenge
c ∈ Zq \ {1, . . . ,m} sampled uniformly at random by the verifier. First, the
verifier checks that h(c) = f(c)g(c) which, as above, shows that the required
multiplicative relations hold with high probability. Second, the verifier checks
that C(x) = 0, which shows that the circuit is satisfiable and that the prover
knows a witness x. By the amortized nullity checks (A) the costs of these open-
ings can be amortized. As a result, circuit zero knowledge can be done O(k log γ)
bits in O(log γ) moves. In particular, the communication costs are independent
of the number of output vertices s. Trade-off between communication and moves
applies as above. More details on circuit ZK can be found in Section 6.

E. Range Proofs
In a basic range proof a prover wishes to commit to a secret integer v and
show that this integer is in a public range, say [0, 2n−1]. From the above circuit
ZK protocols, range proofs immediately follow. A prover simply considers the
bit decomposition b ∈ Zn of the integer v, the length of this decomposition
determines the range. Note that v can be accessed as a linear form evaluated
at b and thereby a commitment to b is an implicit commitment to v. Prover
and verifier run the above circuit satisfiability protocol to commit to b and
prove that C(b) = 0 for C : Znq → Znq , x 7→ x ∗ (1 − x), where ∗ represents
the component-wise product. The nullity check for C shows that the committed
coefficients are indeed bits. The communication complexity of this range proof
is O(κ log n) bits.

Using the techniques described in Section 5.3, this functionality can be ex-
tended to scenario where a prover has to prove that a Pedersen commitment to
v ∈ Zq is in a certain range. The details can be found in Section 7.

F. Our Program from the Strong-RSA Assumption
Thus far, we have implemented our program in the discrete log setting, starting
from Pedersen commitments and their basic Σ-protocols. Besides some minor
details in the compressed pivot, we show that the above discussion holds verbatim
for a commitment scheme based on an assumption derived from the Strong-
RSA assumption. More precisely, we show how the polynomial commitment
scheme from a recent work [9] can be adapted to open arbitrary linear forms.
Our adaptations of the linearization techniques from [13] are directly applicable
to the Strong-RSA derived pivot. The details can be found in Section 7 and the
full-version of this paper.
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G. Our Program from the Knowledge-of-Exponent Assumption
In addition to the discrete log and strong-RSA derived assumptions, our program
can also be based on an assumption derived from the Knowledge-of-Exponent
Assumption (KEA). Note that KEA is unfalsifiable and its application is not
completely without controversy [27, 4]. Moreover, this approach introduces a
trusted set-up phase, which might be undesirable. The main benefit of the KEA
based approach is that it reduces the communication complexity from logarith-
mic to constant, i.e., independent of the dimension of the committed vector. In
Section 9 we describe the main techniques and for more details we refer to [22].

H. Proofs of Partial Knowledge from Compressed Σ-Protocol Theory
In a ZK proof of (k, n)-partial knowledge, a prover knowing witnesses for some k-
subset of n given public statements can convince the verifier of this fact without
revealing which k-subset. In separate work [2], we construct logarithmic size
proofs of partial knowledge for all k, n, by adapting our compressed Σ-protocols
and repurposing ideas from [14]. So far, a linear size solution is known for all
k, n [14]; logarithmic size only for k = 1, i.e., 1-out-of-n proofs [23, 5, 25]. We
note that, for k = 1, we nearly halve the best known communication costs.

I. Our program from Lattice Assumptions
From the work of [7] we can extract an instantiation of our compressed pivot
based on lattice assumptions. Based on this, our framework can therefore be
instantiated from lattice assumptions. However, lattice based proofs of knowledge
in general are typically subject to a so called soundness slack that is further
increased by the compression in [7]. Therefore, whether or not one follows our
framework, selection of larger implementation parameters is warranted. Further
research is required to determine if and how the implementation parameters can
be improved.

1.3 Comparison with Earlier Work

Traditional solutions for circuit ZK in the discrete logarithm setting have a com-
munication complexity that is linear in the circuit size. Building on the work of
Groth [20], an ingenious recursive approach achieved logarithmic communication
complexity [6]. At its heart lies an earlier version of the BP protocol discussed
earlier. Further improvements were introduced in [8] and later revisited in [24].
Recently, Bünz, Fisch and Szepieniec [9] show that similar results can be derived
from the Strong-RSA assumption. The main merit of the Strong-RSA derived
solutions is a reduction in the number of public parameters. In addition, [9]
deploys proofs of exponentiation [29] to reduce the computational complexity.

A common denominator in the aforementioned works is the use of a quadratic
constraint as a main pivot. In [20], a specific inner-product relation is introduced,
and it is shown how basic Σ-protocols for this relation can be enhanced to
achieve sub-linear communication complexity. A similar inner-product relation
lies at the foundation of the logarithmic size protocols of [6], except that it
also uses an earlier version of the BP idea. In [8], it is subsequently shown
that a modification of the quadratic relation leads to better constants. In [24],
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more general quadratic constraints were considered with a view towards reducing
computational complexity in specific ZK scenarios. Also they strive for a more
modular approach. However, this induces (minor) communication overhead in
comparison to Bulletproofs [8].

Furthermore, it is worth mentioning that in [6], as an intermediate stepping
stone, a polynomial commitment scheme is constructed. A polynomial commit-
ment is a commitment to the coefficient vector of a polynomial together with
the functionality of opening the evaluation at any given point. The solution
derived from the Strong-RSA assumption [9] bases itself entirely on this poly-
nomial functionality. For general relations it uses recent, but complicated, re-
ductions [18, 26, 30]. Constructing protocols from quadratic constraints, either
directly or via a polynomial commitment scheme, leads to a complex theory
in which plug-and-play secure algorithmics appears hard. Significant effort is
required to realize higher level applications such as circuit ZK or range proofs.

As for zero-knowledge, the work of [8] and [24] establishes this property at
a higher level, and not, as do the other works, at the level of their main pivot,
which leads to additional difficulties in designing ZK protocols. In fact, in [24],
zero-knowledge, reduced communication and reduced computation is achieved
in an integrated manner.

The most significant difference between our approach and that of the afore-
mentioned works is our simple and direct construction of a compressed pivot to
open arbitrary linear forms and to combine this with the simple (MPC inspired)
linearization techniques from [13]. The compression is achieved by a suitable
adaptation of the BP ideas [8], and the linearization techniques discard the need
for a direct provision to handle nonlinearity. Moreover, plug and play design
of applications according to this compressed Σ-protocol theory is just as easy
as with the standard Σ-protocol theory. Despite the conceptual simplicity, the
communication complexities of our approach are, even including the constants,
equal to that of Bulletproofs [8].

Note that polynomial evaluation, as used in some of the other works, of
course also comes down to the evaluation of a linear form, albeit a specific one.
Therefore these approaches are not amenable to the linearization techniques
we use. Opening arbitrary linear forms therefore seems to be a sweet spot in
that it achieves conceptual simplicity, both in designing ZK protocols and in
implementing the pivot.

2 Notation and Conventions

In this section we introduce the basic notation used in the remainder of the
paper. To this end, let us consider dummy protocol Πd.

Let (x;w) ∈ Rd, then x is called a statement and w is called a witness for x.
An interactive protocol Πd for relation Rd is a protocol that allows a prover to
convince a verifier that it knows a witness w for statement x.

The protocol’s public parameters are typically a set of generators g1, . . . , gn, h
of a group G of prime order q. We assume that, in the setup phase, these gen-
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erators are sampled uniformly at random such that the prover does not know a
non-trivial discrete log relation between them. We say that the protocol is com-
putationally knowledge sound, under the discrete logarithm assumption, if there
exists an efficient extractor that either extracts a witness or finds a non-trivial
discrete log relation between the public parameters g1, . . . , gn, h.

Furthermore the protocol Πd takes as public input x and as prover’s private
input w, which we write as either Πd(x;w) or, in the graphical protocol de-
scription, as Input(x;w). The verifier always implicitly outputs reject or accept.
Optionally, the protocol can output a public string y to both verifier and prover,
and a private string w′ only to the prover. In this case we write Output(y;w′).
In addition to the input and output of the protocol, the prover’s claim (i.e,
(x;w) ∈ Rd) is made explicit in the graphical protocol description.

Finally, we write L
(
Znq
)

:= {(L : Znq → Zq) : L linear} for the set of linear
forms on Znq .

3 The Basic Pivot

This section formally describes the Pedersen vector commitment scheme and our
pivotal Σ-protocol, as discussed in Section 1.2 (A). In addition, we describe a
standard amortized Σ-protocol for opening a linear form on many commitments.
Compression is described in Section 4.

3.1 The Basic Σ-protocol

The primary commitment scheme under consideration in this paper is the Ped-
ersen vector commitment scheme.

Definition 1 (Pedersen Vector Commitment [28]). Let G be an Abelian
group of prime order q. Pedersen vector commitments are defined by the following
setup and commitment phase:

– Setup: g = (g1, . . . , gn)←R Gn, h←R G.
– Commit: Com : Znq × Zq → G, (x, γ) 7→ hγgx := hγ

∏n
i=1 g

xi
i .

We define gx :=
∏n
i=1 g

xi
i and gc := (gc1, g

c
2, . . . , g

c
n) for any g ∈ Gn, x ∈ Znq and

c ∈ Zq. Moreover, the component-wise product between two vectors g,h ∈ Gn
is written as g ∗ h = (g1h1, g2h2, . . . , gnhn).

Pedersen vector commitments are perfectly hiding and computationally bind-
ing under the assumption that the prover does not know a non-trivial discrete
log relation between the generators g1, . . . , gn, h.

To open a commitment to a linear form L : Znq → Zq means that the prover
wishes to reveal L(x) together with a proof of validity without revealing any
additional information on x. Achieving this functionality amounts for the prover
to send the value L(x) along with a ZKPoK for the relation

R =
{(
P ∈ G, L ∈ L

(
Znq
)
, y ∈ Zq; x ∈ Znq , γ ∈ Zq

)
:

P = gxhγ , y = L(x)} .
(1)
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Protocol 1, denoted by Π0, shows a basic Σ-protocol for relation R. Π0 was
informally described in Section 1.2 (A). Theorem 1 shows that Π0 is indeed
a special honest-verifier zero-knowledge (SHVZK) Proof of Knowledge (PoK).
Both the communication costs from the prover P to the verifier V and vice
versa are given. Note that in the non-interactive Fiat-Shamir [16] mode the
communication costs from verifier to prover might be irrelevant.

Theorem 1 (Basic Pivot). Π0 is a 3-move protocol for relation R. It is
perfectly complete, special honest-verifier zero-knowledge and unconditionally
knowledge sound with knowledge error 1/q. Moreover, the communication costs
are:

– P → V: 1 element of G and n+ 2 elements of Zq.
– V → P: 1 element of Zq.

Protocol 1 Σ-protocol Π0 for relation R
Σ-protocol to prove correctness of a linear form evaluation.

Public Parameters : g ∈ Gn, h ∈ G
Input(P,L, y;x, γ)

P = gxhγ ∈ G
y = L(x) ∈ Zq

Prover Verifier

r←R Znq , ρ←R Zq
t = L(r)

A = grhρ
t,A−−−−−−→

c←R Zq
c←−−−−−−

z = cx + r
φ = cγ + ρ

z,φ−−−−−−→
gzhφ

?
= AP c

L(z)
?
= cy + t

3.2 Amortization over Many Commitments

A standard amortization technique for Σ-protocols allows a prover to show cor-
rectness of s evaluations of the linear form L on s committed vectors for essen-
tially the costs of one evaluation. For details we refer to the full-version of this
paper [1].
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4 Compressing the Pivot

This section shows how Bulletproof techniques can be applied to compress our
pivotal Σ-protocol Π0, as mentioned in Section 1.2 (B). The key observation is
that sending the final message ẑ := (z, φ) ∈ Zn+1

q is actually a (trivial) proof of
knowledge for the relation

R1 =
{(
P̂ , L̂, ŷ; ẑ

)
: ĝẑ = P̂ ∧ ŷ = L̂(ẑ)

}
, (2)

where, with respect to relation R, ĝ := (g1, . . . , gn, h) ∈ Gn+1, P̂ := AP c, ŷ :=

cy + t and L̂(z, φ) := L(z) for all (z, φ). Another PoK would also suffice, in
particular a PoK with a smaller communication complexity. Moreover, it is im-
material that the PoK is zero-knowledge as the original PoK clearly is not. In [6]
this observation was applied to Groth’s Σ-protocol [20]. The main difference is
that we start with linear form relation R, whereas Groth’s Σ-protocol is for a
specific quadratic relation.

Let Π be a PoK for relation R1. We call the new protocol obtained by
replacing the final move of protocol Π0 by protocol Π the composition and write
Π �Π0. Since Π0 is SHVZK it immediately follows that the composition is also
SHVZK.

The essence of Bulletproofs is a PoK, denoted by BP, with logarithmic com-
munication complexity for the following inner product relation,

Rbullet =
{(
P ∈ G, u ∈ Zq; a,b ∈ Znq

)
: P = gahb ∧ u = 〈a,b〉

}
, (3)

where g,h ∈ Gn are the public parameters. The quadratic relation Rbullet is
quite similar to the relation R1 and it turns out that minor adaptations of BP
give a logarithmic size PoK for relation R1. We will now describe the components
of the BP protocol, while simultaneously adapting these to our relation R1.

4.1 Reduction from Relation R1 to Relation R2

The first step of the BP PoK is to incorporate the linear form into the Pedersen
vector commitment. For this step an additional generator k ∈ G is required such
that the prover does not know a discrete log relation between the generators
g1, . . . , gn, h, k. More precisely, the problem of finding a proof for relation R1 is
reduced to the problem of finding a proof for relation

R2 =
{(
Q ∈ G, L̃ ∈ L

(
Zn+1
q

)
; ẑ ∈ Zn+1

q

)
: Q = ĝẑkL̃(ẑ)

}
. (4)

where, Q := P̂ kŷ and L̃ := cL̂ for a random challenge c ∈ Zq sampled by the
verifier. The reduction is described in Protocol 2 and denoted by Π1. Lemma 1
shows that Π1 is an argument of knowledge for relation R1.

Lemma 1. Π1 is a 2-move protocol for relation R1. It is perfectly complete and
computationally knowledge sound, under the discrete logarithm assumption, with
knowledge error 1/q. Moreover, the communication costs are:
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– P → V: n+ 1 elements of Zq.
– V → P: 1 element of Zq.

Proof. Completeness follows directly.
Knowledge soundness: We show that there exists an efficient algorithm χ

that, on input two accepting transcripts, either extracts a witness for R1, or finds
a non-trivial discrete log relation. So let (c1, ẑ1) and (c2, ẑ2) be two accepting

transcripts with c1 6= c2, then ĝẑ1−ẑ2kc1L̂(ẑ1)−c2L̂(ẑ2) = k(c1−c2)ŷ. Hence, either
we have found a non-trivial discrete log relation, or ẑ1 = ẑ2 and c1L̂(ẑ1) −
c2L̂(ẑ2) = (c1 − c2)ŷ. In the latter case, it follows that L̂(ẑ1) = L̂(ẑ2) = ŷ.

Moreover, from this it follows that ĝẑ1kc1L̂(ẑ1) = P̂ kc1ŷ which implies ĝẑ1 = P̂ .
Hence, ẑ1 is a witness for relation R1. From basic Σ-protocol theory the

existence of an efficient extractor now follows, which proves the theorem.

Protocol 2 Argument of Knowledge Π1 for R1

Reduction from relation R1 to relation R2.

Public Parameters : ĝ ∈ Gn+1, k ∈ G
Input(P̂ , L̂, ŷ; ẑ)

P̂ = ĝẑ ∈ G
ŷ = L̂(ẑ) ∈ Zq

Prover Verifier
c←−−−−− c←R Zq
ẑ−−−−−→

ĝẑkcL̂(ẑ) ?
= P̂ kcŷ

4.2 Logarithmic Size PoK for Linear Relation R2

Next we deploy the main technique of the Bulletproof protocol to construct an
efficient PoK for relation R2. For simplicity let us assume that n+ 1 is a power
of 2. If this is not the case the vector can be appended with zeros. The protocol
is recursive and in each iteration the dimension of the witness is halved until
its dimension equals 2. We could add one additional step to the recursion and
only send the response when the dimension equals 1. This would reduce the
communication costs by one field element, but it would increase the number of
group elements sent by the prover by 2.

For any even dimension m and vector g ∈ Gm, we define gL = (g1, . . . , gm/2)
as its left half and gR = (gm/2+1, . . . , gm) as its right half. The same notation is
used for vectors in Zmq . For a linear form L : Zmq → Zq, we define

LL : Zm/2q → Zq, x 7→ L(x, 0), LR : Zm/2q → Zq, x 7→ L(0,x), (5)
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where (x, 0), (0,x) ∈ Zmq are the vectors x appended with m/2 zeros on the
right and left, respectively. Recall that the component-wise product between
two vectors is denoted by ∗.

The compression is described in Protocol 3 and denoted by Π2. Theorem 2
shows that protocol Π2 is a proof of knowledge for relation R2. Note that, in
contrast to the compression mechanism of [8], protocol Π2 is unconditionally
knowledge sound. Theorem 2 and especially the soundness error are derived
from our refined extractor analysis for which we refer to the full-version of this
paper [1].

Theorem 2 (Compression Mechanism). Π2 is a (2µ+ 1)-move protocol for
relation R2, where µ = dlog2(n+ 1)e − 1. It is perfectly complete and uncondi-
tionally knowledge sound with knowledge error

κ =

∑µ
i=1 2qµ−i(q − 2)i−1

qµ
≤ 2µ

q
. (6)

Moreover, the communication costs are:

– P → V: 2 dlog2(n+ 1)e − 2 elements of G and 2 elements of Zq.
– V → P: dlog2(n+ 1)e − 1 elements of Zq.

Proof. Completeness follows directly.

Knowledge soundness follows in a similar manner as it does for the amor-
tized Σ-protocol mentioned in Section 3.2. Namely, by the same “polynomial
amortization trick” the commitments A, Q, B are combined in a single commit-
ment Q′ := AQcBc

2

where c is a random challenge. Informally, if a prover can
open commitment Q′, it follows, with high probability, that a prover can open
all three commitments A, Q and B. For completeness we include the detailed
proof.

We show that Π2 is (3, . . . , 3)-special sound (see the full-version of this pa-
per [1]), i.e., that there exists an efficient algorithm χ that, on input a depth µ
(3, . . . , 3)-tree of accepting transcripts finds a witness for relation R2. Knowledge
soundness then follows from Lemma 3 of the full-version of this paper [1].

For simplicity we assume that we only run one of the recursive steps, i.e.,
we consider the 3-move variant of protocol Π2, where the prover sends the re-
sponse z′ regardless of its dimension, and we show that this protocol is 3-special
sound. From there (3, . . . , 3)-special soundness follows by an inductive argument
of which we omit the details.

So let us show that there exists an efficient algorithm χ that, on input 3 ac-
cepting transcripts (A,B, c1, z1), (A,B, c2, z2), (A,B, c3, z3), with ci 6= cj for
all i, j, outputs a witness for relation R2. Given these transcripts let us define
Vandermonde matrix

V =

 1 1 1
c1 c2 c3
c21 c

2
2 c

2
3

 , (7)
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with det(V ) = (c3− c1)(c3− c1)(c3− c2). Since ci 6= cj for all i, j, it follows that
V is invertible and that we can define(

a1 a2 a3

)T
:= V −1

(
0 1 0

)T
. (8)

Now it is easily seen that, for z̄ :=
(∑3

i=1 aizi,
∑3
i=1 aicizi

)
, it holds that

gz̄kL̃(z̄) = Q. Hence, z is a witness for relation R2, which proves the claim.

Protocol 3 Compressed Proof of Knowledge Π2 for R2

Public Parameters : ĝ, k

Input(Q, L̃; ẑ)

Q = ĝẑkL̃(ẑ)

Prover Verifier

A = ĝẑL
R kL̃R(ẑL)

B = ĝẑR
L kL̃L(ẑR) A,B−−−−−−−−−−−−−−→

c←R Zq
c←−−−−−−−−−−−−−−

g′ := ĝcL ∗ ĝR ∈ G(n+1)/2

Q′ := AQcBc
2

L′ := cL̃L + L̃R
z′ = ẑL + cẑR

if
(
z′ ∈ Z2

q

)
:

z′−−−−−−−−−−−−−−→ (g′)
z′
kL

′(z′) ?
= Q′

else : Run Π2(Q′, L′; z′) with
Public Parameters : g′, k

4.3 Composing the Building Blocks

The compressedΣ-protocolΠc for relation R is the composition of the previously
mentioned protocols, i.e., Πc := Π2�Π1�Π0. For a graphical protocol description
of Πc we refer to the full-version of this paper [1]. Theorem 3 shows that Πc

is indeed a SHVZK argument of knowledge for relation R with a logarithmic
communication complexity.

Theorem 3 (Compressed Pivot). Πc is a (2µ+3)-move protocol for relation
R, where µ = dlog2(n+ 1)e − 1. It is perfectly complete, special honest-verifier
zero-knowledge and computationally knowledge sound, under the discrete loga-
rithm assumption, with knowledge error

κ =
(2q − 1)qµ + (q − 1)2

∑µ
i=1 2qµ−i(q − 2)i−1

qµ+2
≤ 2µ+ 2

q
. (9)
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Moreover, the communication costs are:

– P → V: 2 dlog2(n+ 1)e − 1 elements of G and 3 elements of Zq.
– V → P: dlog2(n+ 1)e+ 1 elements of Zq.

Proof. Completeness follows directly from the completeness of Π0, Π1 and Π2.
SHVZK follows since Π0 is SHVZK. The simulator for Πc namely runs the

simulator for Π0 and continues with honest executions of Π1 and Π2.
Knowledge soundness follows from Lemma 3 of the full-version of this

paper [1].

In a completely analogous manner, the amortized Σ-protocol ΠAm
0 of Sec-

tion 3.2 can be compressed. For the properties of the amortized and compressed
Σ-protocol we refer to the full-version of this paper [1].

4.4 Compressed Pivot with Unconditional Soundness

Note that since protocol Π1 has computational soundness so does the compressed
pivot Πc. In the full-version of this paper [1] we show two approaches for deriving
an unconditionally sound compressed pivot.

4.5 A Remark on Sublinear Communication Complexity

A straightforward adaptation of the compression techniques from Section 4 al-
lows the round complexity of the compressed pivot to be reduced from loga-
rithmic to constant. However, this reduction comes at the cost of increasing the
communication complexity from O(log(n)) to O(

√
n) elements. For more details

on this trade-off we refer to the full-version of this paper [1].

5 The Compressed Pivot as a Black-Box

From this point on, the only facts about the pivot that we need is that we
have access to a compact vector commitment scheme that allows a prover to
open arbitrary linear forms on multiple commitments. Hence, we assume black-
box access to such a pivot. First, we treat the utility enhancements mentioned in
Section 1.2 (A). Second, we describe the compactification techniques as discussed
in Section 1.2 (C).

We use the following notation. We write [x] for a compact commitment to
a vector x ∈ Znq , and for a (public) linear form L we write ΠOpen ([x], L; x) for
the interactive protocol that reveals L(x) and nothing else to the verifier. Recall
that our notation ΠOpen ([x], L; x) means that interactive protocol ΠOpen takes
as public input [x] and L and as prover’s private input x. The communication
costs of ΠOpen are equal to the cost of the underlying interactive protocol (Πc)
plus 1 field element from P to V (the output of L), unless of course the output
is known in advance. Similarly, we write ΠOpen ([x1], . . . , [xs], L; x1, . . . ,xs) for
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the (amortized) interactive protocol that exclusively reveals L(xi) for 1 ≤ i ≤ s
to the verifier.

At this point, the implementation details of the compact commitment scheme
do not matter anymore. However, when we give concrete knowledge errors and
communication costs it is implicitly assumed that [·] is instantiated with Peder-
sen vector commitments and compressed Σ-protocol Πc.

5.1 Many Nullity Checks for the Price of One

A “polynomial amortization trick” (known, e.g., from MPC) allows us to do
many nullity checks on the committed vector x without a substantial increase
in complexity. Consider linear forms L1, . . . , Ls and suppose the prover claims
that Li(x) = 0 for i = 1 . . . , s. The verifier then samples ρ ∈ Zq uniformly at
random and asks the prover to open the linear form L(x) :=

∑s
i=1 Li(x)ρi−1,

i.e., prover and verifier run ΠOpen ([x], L; x). The opening of L(x) equals the
evaluation of some polynomial of degree at most s − 1. If this polynomial is
non-zero, it has at most s − 1 zero’s. Hence, L(x) = 0 implies that Li(x) = 0
for all i with probability at least 1 − (s − 1)/q. When q is exponential and s is
polynomial in the security parameter this probability is exponentially close to
1. We write ΠNullity([x], L1, . . . , Ls; ,x) for this protocol. The communication
costs are equal to the costs of a single nullity-check (s = 1) plus one additional
Zq element from V to P (the challenge ρ).

The above discussion holds verbatim when we replace the linear forms by
affine forms Φ1, . . . , Φs, for which we also write ΠNullity([x], Φ1, . . . , Φs; x). More-
over, by the amortized and compressed Σ-protocol ΠAm

c these techniques di-
rectly carry over to the scenario where the prover makes the same nullity claims
over many different commitments.

5.2 Opening Affine Maps

Many ZK scenarios can be reduced to nullity-checks and, as such, the above
utility enhancement is extremely powerful. As an often encountered example,
we specifically mention the functionality of opening arbitrary affine maps Φ :
Znq → Zsq, x 7→ Ax + b, at the cost of increasing the communication by exactly
s−1 values in Zq in comparison to opening one linear form (i.e., the evaluations
of s−1 additional outputs). Note that Φ is the combination of s affine forms. The
protocol goes as follows. The prover reveals the evaluation y = Φ(x) followed by
an amortized nullity-check on the affine forms Φ1(x) − y1, . . . , Φs(x) − ys. For
the interactive protocol that opens an affine map Φ we write ΠOpen ([x], Φ; x).

As before, this protocol directly caries over the scenario where a prover opens
the evaluations of Φ on many committed vectors. The communications costs
are only increased by the additional evaluations, i.e., the communication costs
of the underlying compressed Σ-protocol remain the same. Note that in this
case amortization is applied twice. First, at the Σ-protocol level, allowing many
commitments to be considered. Second, only requiring black-box access to the
pivotal Σ-protocols, allowing many affine forms to be considered.
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5.3 Compactifying a Vector of Commitments

So far, we have shown how to open many linear forms L applied to a compactly
committed secret vector x with low complexity. Dealing with nonlinear functions
of a secret-vector-of-interest x will, as shown in Section 6, require that the prover,
at the starting point, is also committed to a vector aux consisting of correlated
secret randomness. As the method will consist of opening appropriate linear
forms on the entire vector given by the pair (x, aux), it will be assumed that the
prover is committed to this pair via a single compact commitment.

Now, from a practical application perspective, it is likely that the prover is
already committed to x before the start of a ZK proof. Consider, for example,
the following two extreme cases:

– Case 1: The prover is committed to x in a single compact commitment.
This scenario may be said to correspond to a “textbook” ZK setting.

– Case 2: The prover is committed to the coordinates of x individually. This
scenario is relevant in practical situations with a natural dynamic where
provers deliver committed data in subsequent transactions and only period-
ically prove in ZK some property on the compound information.

In order to deal with each of these scenarios, we need some further utility en-
hancements of the compressed pivot in order to bring about the desired starting
point for the methods from Section 6, without too much loss in communication.
It turns out that this is just a matter of “technology”, i.e., plug and play with
our compressed pivot and its basic theory suffices.

Besides these extreme cases one can consider hybrid scenarios in which the
secret-vector-of-interest x is dispersed over various compact commitments. The
methods described below both carry over to hybrid scenarios. The optimal ap-
proach depends on specific properties of the scenario. Namely, the communica-
tion complexity of the “Case 1 enhancement” is linear in the number of commit-
ments, whereas the communication complexity of the “Case 2 enhancement” is
linear in the (maximum) dimension of the committed vectors.

Case 1. We describe a straightforward approach. We use the homomorphic
property of Pedersen commitments. The prover has a compact commitment P
to x. Taking from the public set-up information a new set of generators disjoint
from the initial set that, supposedly, underlies P , the prover creates a compact
commitment Q to aux. Eventually, the prover will set P ′ := P ·Q as the compact
commitment to the secret pair (x, aux), a join. But, first, the prover must show
that x and aux “live on disjoint sets of generators”. This is just a nullity check,
basically. The prover shows that, in P , there is a window of zeros w.r.t. the new
generators, i.e., each occurs to the power 0. Similarly for Q but with a window
of zeros w.r.t. the initial set of generators. By the methods for amortized nullity
checks described earlier, this is handled with logarithmic communication. In fact,
for the methods of Section 6 to work, it is easy to see that it suffices to perform
the check on Q only. However, since the methods of Section 6 would be applied
serially, i.e., after the join above, this would incur a constant multiplicative
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factor 2 loss in communication efficiency. We show how it can be done in parallel,
thereby avoiding any such loss.

The amortized pivot allows a prover to open one linear form on many com-
pact commitments efficiently. By the amortized nullity checks a prover can open
many linear forms on one compact commitments efficiently. Together these amor-
tization techniques almost suffice, except that they force a prover to open linear
forms “intended” for one particular commitment on other commitments as well;
they reveal the cross-terms. Thus, to prevent a privacy breach, we need to mask
these cross-terms appropriately and we do this by constructing a small shell
around commitments containing sufficient randomness. Masking the appropri-
ate cross-terms returns us to the “standard” amortization scenario where the
prover wishes to open one affine map on multiple compact commitments. The
shells cause unintended evaluations to return random values, whereas intended
evaluations are left unaltered. For the details we refer to the full-version of this
paper [1].

Case 2. In this case we describe a simple, single protocol that integrates the com-
pactification of a vector of commitments to individual coordinates of x together
with a compact commitment to aux. See the full-version of this paper [1] for the
details. Performing this integration in parallel with the methods of Section 6 is
a straightforward application of the amortized nullity checks.

6 Proving Nonlinear Relations via Arithmetic Circuits

Using our compressed pivot as a black-box, this section describes how to obtain
efficient zero-knowledge arguments for arbitrary arithmetic circuits. We consider
arithmetic circuits C over Zq with n inputs, s outputs and m multiplication
gates. Addition and multiplication gates have fan-in 2 and unbounded fan-out.
The number of addition gates is immaterial, as is the number of gates for scalar
multiplication. For this reason m only refers to the multiplication gates that take
two variable inputs. We fix an ordering 1, . . . , n of the inputs and an ordering
1, . . . ,m of the multiplication gates.

The approach is to combine the compressed pivot with an adaptation of the
work of [13] that shows how to prove arbitrary constraints on vectors of com-
mitted elements by exploiting techniques from secure multi-party computation.
Concretely, we use the ideas underlying the Commitment Multiplication Proto-
col from [11].12 A detailed overview of the approach has been given in Section 1.2
(D). Here, we summarize the key points and formalize the main properties of
the resulting protocols.

6.1 Basic Circuit Satisfiability

First, we consider the basic circuit satisfiability scenario in which a prover shows
that it knows an input x ∈ Znq for which the arithmetic circuit C evaluates to 0.

12 For a general description of efficient ZK verification of secret multiplications, in terms
of (strongly-multiplicative) arithmetic secret sharing, see Section 12.5.3 [12].
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More precisely, we construct a ZK protocol for the following circuit satisfiability
relation: Rcs = {(C; x) : C(x) = 0}.

Our approach follows the commit and prove paradigm, i.e., the prover com-
mits to the witness x and subsequently proves that it satisfies the required
relation. The terminology circuit satisfiability seems to suggest that we are only
considering circuits for which it is hard to compute a satisfying witness x. How-
ever, many practical scenarios consider circuits C for which it is easy to compute
an x such that C(x) = 0. In these scenarios the arithmetic circuit allows the
prover to show that a committed vector satisfies certain properties.

If C is an affine map, i.e., without multiplication gates, the protocol fol-
lows directly from the (enhanced) functionality of our pivot. Namely, the prover
commits to x and runs ΠNullity([x], C; x). Hence, addition gates and scalar mul-
tiplications, are implicitly handled since our pivot allows the opening of arbitrary
linear forms.

Multiplication gates are handled by an appropriate adaptation of the tech-
niques from [13]. Their primary result is a Σ-protocol showing correctness of m
multiplication triples (αi, βi, γi). First, we recall the adaptation of their approach
that uses our compressed pivot as a black-box. See also the first observation made
in Section 1.2 (D). The protocol goes as follows.

– The prover selects a random polynomial f(X) ∈ Zq[X]≤m that defines a
packed secret sharing of the vector (α1, . . . , αm). The prover also selects a
random polynomial g(X) ∈ Zq[X]≤m that defines a packed secret sharing of
the vector (β1, . . . , βm). Finally, the prover computes the product polynomial
h(X) := f(X)g(X) of degree ≤ 2m < q.

– The prover commits to the vector

y = (α1, . . . , αm, β1, . . . , βm, f(0), g(0), h(0), h(1), . . . , h(2m)) ∈ Z4m+3
q

in a single compact commitment and sends the commitment to the verifier.
Note that, by Lagrange interpolation, the polynomials f(X), g(X) and h(X)
are uniquely defined by the vector y.

– The verifier selects a random challenge c ∈ Zq distinct from 1, . . . ,m and
sends it to the prover.

– Public linear combinations of the coefficients of y define three values: u :=
f(c), v := g(c) and w := h(c). These values are opened and the verifier
checks whether w = uv. A cheating prover is caught with probability greater
than 1 − 2m/(q −m) and honest-verifier zero-knowledge essentially follows
from 1-privacy of the secret sharing scheme.

Now we adapt this approach to the circuit satisfiability scenario, where we
let C : Znq → Zsq be an arbitrary arithmetic circuits with m multiplication
gates. We use a simple fact about a circuit C. Consider the computation graph
induced by evaluation at input-vector x ∈ Znq . Write γ1, . . . , γm ∈ Zq for the
resulting outputs of the multiplication gates. For each i, write (αi, βi) ∈ Z2

q for
the resulting inputs to the i-th multiplication gate. Finally, write ω ∈ Zsq for
the resulting output of the circuit. Then, for each i, there are affine forms13

13 Zq-linear forms plus a constant.

23



ui, vi : Zn+m
q → Zq, depending only on C, such that, for all x ∈ Znq , it holds

that αi = ui(x, γ1, . . . , γm) and βi = vi(x, γ1, . . . , γm). These forms are uniquely
determined by the addition and scalar multiplication gates. Similarly, there is
an affine function w : Zn+m

q → Zsq such that, for all x ∈ Znq , it holds that
ω = w(x, γ1, . . . , γm). In other words, a given pair (x, γ1, . . . , γm) ∈ Znq ×Zmq can
be completed to an accepting computation graph if and only if ui(x, γ1, . . . , γm) ·
vi(x, γ1, . . . , γm) = γi (for i = 1, . . . ,m) and w(x, γ1, . . . , γm) = 0.

The vector y, from the above multiplication-triples approach, is now adapted
as follows. The prover includes the input vector x. However, the αi’s and the
βi’s are omitted from y. Otherwise, the vector y is unchanged. In particular,

y = (x, f(0), g(0), h(0), h(1), . . . , h(2m)) ∈ Zn+2m+3
q

and (x, γ1, . . . , γm) := (x, h(1), . . . , h(m)) is a subvector of y. Subsequently, the
prover compactly commits to this adapted vector y. By the handle discussed
above, the prover needs to convince the verifier that (1) w(x, γ1, . . . , γm) = 0,
and that (2) αi · βi = γi for all 1 ≤ i ≤ m. The αi’s and βi’s are now taken as
the evaluation at (x, γ1, . . . , γm) of the affine functions ui, vi introduced above.
Note that we may capture all these as affine functions evaluated at y.

As for (1), checking that w(x, γ1, . . . , γm) = 0 is just a nullity check as
provided by the pivot. As for (2), the polynomials f(X), g(X) are still well-
defined by the prover’s compact commitment to y. Namely, ρ := f(0), i.e.,
the randomness underlying its selection, is still included in y. As the αi’s thus
defined are affine functions of y, the prover is still (implicitly) committed to a
polynomial f(X) of degree ≤ m such that f(0) = ρ and f(i) = αi (i = 1, . . . ,m)
and evaluation of f(X) in a point c is still, by composition of appropriate maps,
an affine evaluation at y, as enabled by the pivot. Since ρ′ := g(0) is also still
included in y, a similar conclusion is drawn about the βi’s, g(X), and evaluation
of the latter. As no changes with respect to h(X) were made in y, we conclude
that the required check can be performed in the same way as before.

The costs of the different openings are reduced by applying the amortized
nullity checks of Section 5.1. In fact, the communication costs are independent
of the number of outputs s.

The protocol is formally described in Protocol 4 and denoted byΠcs. Protocol
Πcs only requires black-box access to the commitment scheme [·]. For notational
convenience, we write

ΠNullity ([y], C(x), f(c)− y1, g(c)− y2, h(c)− y3; y) (10)

for the amortized nullity check on the affine forms associated to the s+ 3 coef-
ficients of (C(x), f(c)− z1, g(c)− z2, h(c)− z3).

Theorem 4 shows that, when [·] is instantiated with Pedersen vector commit-
ments and compressed Σ-protocol Πc, Πcs is a SHVZK argument of knowledge
for relation Rcs. The theorem also shows that the knowledge error depends on
the number of multiplication gates in the circuit. If the circuit size is polyno-
mial in the security parameter and q is exponential, then the knowledge error is
exponentially close to 0.
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Theorem 4 (Basic Circuit ZK). Πcs is a (2µ + 7)-move protocol for the
circuit relation Rcs, where µ = dlog2(n+ 2m+ 4)e − 1. It is perfectly complete,
special honest-verifier zero-knowledge and computationally knowledge sound, un-
der the discrete logarithm assumption, with knowledge error

κ ≤ 2µ+ 2m+ s+ 4

q −m
. (11)

Moreover, the communication costs are:

– P → V: 2 dlog2(n+ 2m+ 4)e elements of G and 6 elements of Zq.
– V → P: dlog2(n+ 2m+ 4)e+ 3 elements of Zq.

Proof (Sketch). Completeness follows directly.
Knowledge soundness: By Lagrange interpolation there exists an efficient

algorithm to reconstruct a polynomial of degree t given t+1 evaluations. Hence,
the packed secret sharing and the amortized nullity-checks are (2m+ 1)-special
sound and 4-special sound, respectively. The soundness in these steps is compu-
tational, i.e., it is essential that the prover does not know a non-trivial discrete
log relation. The proof now follows from Lemma 4 of the full-version of this
paper [1].

SHVZK follows from 1-privacy of the secret sharing scheme and the fact
that Πc is SHVZK.

6.2 Circuit ZK from Compactification

Thus far, we have restricted ourselves to the basic circuit satisfiability scenario
where the prover commits to all input and auxiliary data at once. However, there
is a great variety of other scenarios, where the circuit takes as input committed
values. As in Section 5.3 we consider two extreme cases for circuit ZK:

– Case 1. Prove that C(x) = 0 for a vector commitment [x] with x ∈ Znq .
– Case 2. Prove that C(x1, . . . , xn) = 0 for commitments [xi] with xi ∈ Zq

for all i.

These cases are dealt with by compactifying the commitments into a single
compact commitment to all relevant data. The resulting protocol for Case 1 is

denoted by Π
(1)
cs with corresponding relation R

(1)
cs and its properties are given by

Theorem 5. Recall that we consider arithmetic circuits C over Zq with n input,
s output and m multiplication gates.

Theorem 5 (Circuit ZK Case 1). Π
(1)
cs is a (2µ+9)-move protocol for circuit

relation R
(1)
cs , where µ = dlog2(n+ 2m+ 6)e− 1. It is perfectly complete, special

honest-verifier zero-knowledge and computationally knowledge sound, under the
discrete logarithm assumption, with knowledge error

κ ≤ 2µ+ 2m+ 4 + max(n, s+ 3)

q −m
. (12)

Moreover, the communication costs are:
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Protocol 4 Circuit Satisfiability Argument Πcs for Relation Rcs
The polynomials f and g are sampled uniformly at random such that their
evaluations in 1, . . . ,m coincide with the left and, respectively, right inputs of
the m multiplication gates of C evaluated at x.

Input(C;x)
C : Znq → Zsq
C(x) = 0

Prover Verifier
f, g ←R Zq[X]≤m
h(X) := f(X)g(X)

y = (x, f(0), g(0), h(0),

h(1), . . . , h(2m))

[y]−−−−−−−−−−−−−−→

c←R Zq \ {1, . . . ,m}
z1 = f(c)

c←−−−−−−−−−−−−−−
z2 = g(c)

z3 = h(c)
z1,z2,z3−−−−−−−−−−−−−−→

z3
?
= z1z2

ΠNullity

[y],

C(x)
f(c)− z1
g(c)− z2
h(c)− z3

; z



– P → V: 2 dlog2(n+ 2m+ 6)e+ 4 elements of G and 12 elements of Zq.
– V → P: dlog2(n+ 2m+ 6)e+ 5 elements of Zq.

The protocol for Case 2 is denoted by Π
(2)
cs with corresponding relation R

(2)
cs

and its properties are given by Theorem 6. Note that in this case we can restrict
ourselves to n ≤ 2m. For if n is larger than the number of inputs to multi-
plication gates there must exist linear reductions that can be applied directly
to the Pedersen commitments [xi] using its homomorphic properties. There-
fore, the communication costs from prover to verifier are upper-bounded by
2 dlog2(4m+ 5)e + 9 ≤ 2 dlog2(m+ 2)e + 13 elements. Bulletproofs achieve a
communication cost of 2 dlog(m)e + 13 elements. Hence, perhaps surprisingly,
our plug-and-play approach almost never increases the communication costs.

Theorem 6 (Circuit ZK Case 2). Π
(2)
cs is a (2µ+7)-move protocol for circuit

relation R
(2)
cs , where µ = dlog2(n+ 2m+ 5)e− 1. It is perfectly complete, special

honest-verifier zero-knowledge and computationally knowledge sound, under the
discrete logarithm assumption, with knowledge error

κ ≤ 2µ+ 2m+ n+ s+ 5

q −m
. (13)

Moreover, the communication costs are:
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– P → V: 2 dlog2(n+ 2m+ 5)e+ 1 elements of G and 8 elements of Zq.
– V → P: dlog2(n+ 2m+ 5)e+ 4 elements of Zq.

7 Range Proofs

In a range proof a prover wishes to show that a secret committed integer v is
in a public range, say [0, 2n−1]. For our range proofs, we invoke the circuit ZK
protocols of Section 6 in a black-box manner and thereby achieve a conceptual
simplification of earlier solutions such as those in [6, 8]. Note that this black-box
approach for range proofs can also be instantiated from the circuit ZK protocols
of (e.g.) [6] and [8]. For details we refer to the full-version of this paper [1].

8 Our Program from the Strong-RSA Assumption

In this section we describe how our program can be based on Strong-RSA derived
assumptions, as mentioned in Section 1.2 (F). We treat the main differences and
refer to the full-version of this paper [1] and [9] for more details.

A disadvantage of the Pedersen vector commitment scheme is the number
of generators required. In fact, to commit to an n-dimensional vector, n + 1
generators of the group G are required. Moreover, the compressed Σ-protocol
Πc has a verification time that is linear in the dimension n.

Alternatively, vector commitment schemes can be constructed via integer
commitment schemes [17, 15]. A commitment to the vector x ∈ Znq is then a
commitment to an integer representation x̂ ∈ Z of x. The integer commitment
schemes of [17, 15] are constructed by using groups G of unknown order.

This is precisely the approach followed in a recent work of Bünz, Fisch
and Szepieniec [9]. They construct a polynomial commitment scheme allow-
ing a prover to commit to a polynomial f ∈ Zq[X] of arbitrary degree, via a
unique integer representation of its coefficient vector. A commitment to such a
representation only requires two group elements g, h ∈ G.

The work of [9] shows how to open arbitrary evaluations f(a) ∈ Zq of a
committed polynomial without revealing any additional information about f .
Their polynomial evaluation protocol uses recursive techniques similar to those
used in Bulletproofs. This approach results in a logarithmic communication com-
plexity. In addition, [9] deploys Proofs of Exponentiation (PoE) [29] to achieve
logarithmic verification time.

Their work refers to generic constructions that can be used to obtain more
general ZK protocols from polynomial commitment schemes. However, we argue
that these constructions are overly complicated and that a stronger functionality
(vector commitment scheme with linear form openings) avoids many difficulties
in the design of ZK protocols. Moreover, it turns out that the protocols of [9]
only require minor adaptations to accommodate this stronger functionality. From
this, an instantiation of the black-box functionality of Section 5 is derived, now
based on the hardness assumptions related to the Strong-RSA assumption [3].
The techniques of Section 6 and Section 7 directly apply, and the higher level

27



applications inherit the logarithmic communication and computation complexity
of the vector commitment scheme. The compactification methods of Section 5.3
are tailored to Pedersen (vector) commitments. Minor modifications are required
to adapt these techniques to the Strong-RSA setting.

9 Our Program from the KEA

If one desires our program can also be instantiated from the the Knowledge-of-
Exponent Assumption (KEA), i.e., we construct a KEA based vector commit-
ment scheme with compact linear form openings. The techniques from Section 6
apply as before, resulting in ZK protocols for arbitrary arithmetic circuits. Bas-
ing our program on KEA reduces communication complexity from logarithmic
to constant. The protocols do require a trusted setup that depends on the arith-
metic circuit under consideration.

We stress that KEA is of a different nature than the discrete log or strong-
RSA assumption. KEA is not an intractability assumption and it is unfalsifi-
able [27, 4]. For these reasons, its application is not completely without contro-
versy.

We now, informally, describe the main components of the KEA based vector
commitment scheme together with its ZK protocol for opening linear forms. Our
approach uses the techniques of [22] and only minor adaptations are required.

A compact commitment to a vector x ∈ Znq is, as before, a Pedersen vec-
tor commitment P = hγgx. A ZKPoK for knowing an opening to P is another
Pedersen commitment P ′ to x, under the same randomness γ, using a different
set of generators h′ := hα, g′1 := gα1 , . . . , g

′
n := gαn . The value α ∈ Zq is sam-

pled uniformly at random in the trusted setup phase and is only shared with a
designated verifier. Both sets of generators are public and part of the common
reference string. The proof P ′ is verified by checking that P ′ = Pα.

The Knowledge-of-Exponent Assumption states that an adversary capable of
computing pairs (P, P ′) with P ′ = Pα, either knows α or an opening to P . From
this assumption knowledge soundness follows. Correctness and zero-knowledge
are immediate. Note that the resulting ZKPoK is non-interactive and its size is
independent of the dimension n.

Given a bilinear pairing e : G×G→ GT the verification can be done without
knowledge of α, eliminating the restriction to a designated verifier. In this case
verification amounts to checking that e(P, h′) = e(h, P ′).

To prove that the committed vector x satisfies a linear form relation L(x) =
u, the generators are taken of a specific form. More precisely, the generators
are sampled under the condition that gi = hβ

i

, for some secret β ∈ Zq, for all
1 ≤ i ≤ n. The associated KEA derived assumption is the n-power Knowledge-
of-Exponent Assumption (n-PKEA).

Groth showed that, using this additional structure, together with the bilinear
pairing, efficient circuit ZK protocols exist [22]. His protocols are easily adapted
to our situation, where we simply wish to prove correctness of a linear form
evaluation. The adaptation relies on the following observation. Suppose that
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a = (a1, . . . , an) ∈ Znq is such that L(z) = 〈a, z〉 for all z ∈ Znq , and let us

define the following polynomials: f(Y ) := γ+
∑n
i=1 xiY

i, g(Y ) :=
∑n−1
i=0 an−iY

i

and h(Y ) := f(Y )g(Y ) =
∑2n−1
i=0 ciY

i. The n-th coefficient of h(Y ) equals cn =
〈x,a〉 = L(x). This observation allows for a straightforward adaptation of the
product argument in [22, Section 6] , resulting in a constant size ZKPoK for the
correctness of a linear form evaluation. We omit further details and refer the
reader to [22].

For circuit ZK protocols we apply the techniques from Section 6 to linearize
the non-linearities in a black-box manner. In contrast, other KEA based ap-
proaches use a protocol for proving quadratic relations as their main pivot and
translate arithmetic circuit relations to so called quadratic span programs or
QSPs [19, 21]. This translation, also called arithmetization, is not required when
applying our linearization techniques. However, in contrast to other KEA based
protocols, the linearization techniques render our solution interactive (although
in a setting where Fiat-Shamir applies). Additionally, we note that this approach
achieves constant verification complexity, in contrast to the linear complexity of
the DL based approach, i.e., our KEA based protocol is a ZK-SNARK.
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