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Abstract. Today’s most compact zero-knowledge arguments are based
on the hardness of the discrete logarithm problem and related classical
assumptions. If one is interested in quantum-safe solutions, then all of the
known techniques stem from the PCP-based framework of Kilian (STOC
92) which can be instantiated based on the hardness of any collision-
resistant hash function. Both approaches produce asymptotically loga-
rithmic sized arguments but, by exploiting extra algebraic structure, the
discrete logarithm arguments are a few orders of magnitude more com-
pact in practice than the generic constructions.

In this work, we present the first (poly)-logarithmic, potentially post-
quantum zero-knowledge arguments that deviate from the PCP approach.
At the core of succinct zero-knowledge proofs are succinct commitment
schemes (in which the commitment and the opening proof are sub-linear
in the message size), and we propose two such constructions based on the
hardness of the (Ring)-Short Integer Solution (Ring-SIS) problem, each
having certain trade-offs. For commitments to N secret values, the com-
munication complexity of our first scheme is Õ(N1/c) for any positive
integer c, and O(log2N) for the second. Both of these are a significant
theoretical improvement over the previously best lattice construction by
Bootle et al. (CRYPTO 2018) which gave O(

√
N)-sized proofs.
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1 Introduction

Zero-knowledge proofs are a crucial component in many cryptographic protocols.
They are essential to electronic voting, verifiable computation, cryptocurrencies,
and for adding stronger security and privacy guarantees to digital signature
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and encryption schemes. Across almost all applications, it is important to be
able to prove in zero-knowledge that one knows how to open a cryptographic
commitment, and to prove that the committed values have particular properties
or satisfy some relations.

Recent years have seen an explosion of new zero-knowledge proof techniques,
each with improvements in proof-size, proving time, or verification time. These
new constructions are based on a variety of cryptographic assumptions, including
the discrete logarithm assumption [14], various pairing-based assumptions in the
Generic and Algebraic Group Models [26,27], collision-resistant hash functions
[8,7], and lattice-based assumptions such as (R)SIS and (R)LWE [13,20,3,19].

Of these, only constructions from hash-functions and lattices stand any chance
of being post-quantum secure. At this point in time, general-purpose lattice-
based proof systems still lag far behind, both asymptotically and in practice,
in proof-size and usability. This may seem somewhat surprising, since unlike
hash-functions, lattices are endowed with algebraic structure that allows for
constructions of rather efficient encryption [34], signature [17,37], and identity-
based encryption schemes [24,18]. One could hope that the additional lattice
structure can be also exploited for succinct zero-knowledge proofs as well.

1.1 Our Contribution

In this paper, we present two novel lattice-based commitment schemes with as-
sociated zero-knowledge opening protocols which prove knowledge of N secret
integers with Õ(N1/c) and Õ(log2N) communication complexity, for any con-
stant c. For the former argument, we sketch out a method for constructing an
argument of knowledge of a satisfying assignment for an arithmetic circuit with
N gates, with Õ(N1/c) communication complexity in the full version of this
paper. Both arguments of knowledge follow the same basic methodology, which
is to replace the homomorphic commitment schemes used in earlier classically-
secure protocols with a commitment scheme based on the (Ring)-SIS problem,
and adapt the security proofs to match.

Our constructions follow the usual framework of being interactive schemes
converted to non-interactive ones using the Fiat-Shamir transform. As with many
schemes constructed in this fashion, their security is proven in the ROM rather
than the QROM. The latter would be very strong evidence of quantum security,4

but the former also appears to give strong evidence of quantum security in prac-
tice. To this day, there is no example of a practical scheme that has been proven
secure in the ROM based on a quantum-safe computational assumption that has
shown any weakness when the adversary was given additional quantum access to
the random oracle. A recent line of works (e.g. [28,16,30,15]) that prove security
in the QROM of schemes using the Fiat-Shamir transform which previously only
known to be secure in the ROM give further evidence that security in the ROM
based on a quantum-safe assumption is a meaningful security notion in practice.

4 Though still technically heuristic because of the assumption that a concrete hash
function acts as a random oracle.
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Our first construction extends the classical interactive argument of [25] in
which the prover commits to message values using Pedersen commitments, and
then commits to those commitments using a pairing-based commitment scheme.
The two-level structure means that a clever commitment-opening procedure
is possible, giving Õ(N1/3) communication costs. With a d-level commitment
scheme, one could hope to extend the technique and construct an argument
with Õ(N1/(d+1))-sized proofs. However, in [25], Pedersen commitments map fi-
nite field elements to source group elements, which are mapped to target group
elements by the second commitment scheme. In the classical setting, this is as
far as the technique can take us, as no homomorphic, compressing commitment
scheme for target group elements is known. In the lattice setting, however, the
message space for SIS commitments are small integers and commitments are just
made up of larger integers. So there is no fundamental reason not to continue.
Using careful manipulation of matrices and moduli, our first new argument ex-
tends this technique to any constant number of levels.

The second argument is based on the techniques in the Bulletproofs protocol
[14], and an earlier protocol [12], which use Pedersen commitments to commit
to long message vectors. The additional structure of the Pedersen commitment
scheme allows a neat folding technique, which reduces the length of committed
message vectors by a factor of two. The prover and verifier repeatedly employ
the technique over logarithmically many rounds of interaction until message
vectors are reduced to a single value, which the prover can then easily send to
the verifier. This gives logarithmic proof sizes. Our new lattice protocol stems
from the observation that a SIS-based commitment scheme has some structure
similarity to the Pedersen commitment scheme, and thus can be made compatible
with the same folding technique. A technical complication that is unique to the
lattice setting is keeping the coefficients of the extracted values from growing
(too much) during each fold, as a direct adaptation of the bulletproof technique
would result in unconstrained growth for every fold which would make the proof
meaningless.

Finally, we make a comparison of these two techniques in terms of commit-
ment/proof sizes as well as sizes of the extracted solutions, alternatively called
“slack”. Our conclusion is that the Bulletproofs folding argument offers smaller
poly-logarithmic proof size at the cost much larger slack. Hence, if one does
not necessarily need their extracted solution to be very small, then using Bullet-
proofs appears to be more suitable. However, in many applications, such as group
signatures or verifiable encryption, zero-knowledge proofs are just one part of a
more complex scheme. If the extracted witnesses are large, then we must adjust
parameters not only for the zero-knowledge proof but also for other components
of the scheme. Thus, we believe the leveled commitments can be applied in such
scenarios at the cost of slightly larger proofs than lattice-based Bulletproofs.

Discussion and Open Problems. The ultimate goal of the line of research that
this paper is pursuing is constructing zero-knowledge proofs with concrete pa-
rameters smaller than those that can be achieved following the PCP approach.
Our current results achieve parameters that are essentially the same asymptot-
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ically, but are larger in practice. The asymptotic equivalence comes from the
fact that we succeeded in making the dimension of the vector(s) representing
the proof be logarithmic in the message size. And while we have also somewhat
restricted the coefficient growth of the proof vector, the coefficients still grow by
some factor with each “folding” of the vector dimension. Finding a technique to
even further restrict the coefficient growth is the main open problem stemming
from this work.

From experience with other primitives, using the additional algebraic struc-
ture of concrete assumptions should (eventually) result in size advantages over
the generic PCP-based approaches that have the implicit lower bounds (of
around 100-200KB) posed by using Merkle-tree commitments. While lattice-
based constructions may not achieve the extreme compactness of discrete log-
arithm based approaches (e.g. Bulletproofs, which have proofs sizes of a few
kilobytes for reasonably-sized circuits), there is reason to hope that they can
be shorter (and faster) than generic constructions. As an analogy, when lattice-
based signatures first appeared [24,33], they were significantly larger than the
generic quantum-safe signatures that one could construct using techniques, such
as one-way functions and Merkle trees, dating back to the 1970s [29,35]. But
expanding upon these early lattice constructions via novel algorithms and tech-
niques exploiting the underlying mathematical structure of lattices, the current
state-of-the-art lattice-based signatures [17,37] are currently an order of mag-
nitude smaller and two orders of magnitude faster than those stemming from
generic constructions [10]. We believe that the techniques of this paper can sim-
ilarly be the beginning of the path to more practical succinct quantum-safe
zero-knowledge.

1.2 Technical Overview

Levelled Commitments. The commitment scheme in [5] arranged N elements
of Zq to which one wants to commit to, into an m× k matrix S and created the
commitment

A · S = T mod q (1)

where A ← Zn×mp is a random matrix and p < q. Notice that T ∈ Zn×kq , and
[5] showed that the proof of knowledge of an S with small (but larger than the
honest prover uses in the proof) coefficients satisfying (1) can be done with λm
elements in Zq 5 where λ is a security parameter. The total size of the proof is
therefore the size of T and the size of the proof of (1), which is nk+λm elements
in Zq. Since n = O(λ), the optimal way to commit to N elements in Zq is to

arrange them into a matrix S ∈ Zm×kq , where m = k = Õ(
√
N). This makes the

total proof size Õ(
√
N).

To illustrate our levelled commitment technique, we will describe a com-
mitment scheme and a protocol for achieving a proof size of Õ(N1/3). We will

5 We provide additional background in Section 2.3 for readers not familiar with pre-
vious work.
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commit to S ∈ Zm1·m2×m3 as A1 · ((Im1 ⊗A2) · S mod q2) mod q1 = T where
A1 ← Zn×nm1

q1 ,A2 ← Zn×m2
q2 . Our proof will prove knowledge of an S̄ with

somewhat larger coefficients than S, and also an R̄ ∈ Zn·m1×m3 satisfying

A1 ·
(
(Im1

⊗A2) · S̄ mod q2 + R̄ · q2
)

mod q1 = T, (2)

Let us first show that the above extracted commitment of (S̄, R̄) is binding
based on the hardness of SIS when ‖S̄‖ � q2, ‖R̄‖ � q1/q2 and q2 � q1.
Suppose, for contradiction, there are two (S̄, R̄) 6= (S̄′, R̄′) satisfying (2). In the
first case, suppose that R̄ 6= R̄′. By definition, the coefficients of (Im1 ⊗A2) ·
S̄ mod q2 are smaller than q2, and thus R̄ 6= R̄′ implies that

(Im1
⊗A2) · S̄ mod q2 + R̄ · q2 6= (Im1

⊗A2) · S̄′ mod q2 + R̄′ · q2. (3)

If the parameters are set such that the coefficients of both sides of the above
equation are less than q1, then this gives a solution to SIS for A1. Now assume
that R̄ = R̄′, and so S̄ 6= S̄′. If (Im1

⊗A2) · S̄ ≡ (Im1
⊗A2) · S̄′ (mod q2), then

there must be some S̄i 6= S̄′i ∈ Zm2×m3 such that A2 · S̄i ≡ A2 · S̄′i (mod q2), and
so we have a SIS solution for A2. If (Im1 ⊗A2) · S̄ 6≡ (Im1 ⊗A2) · S̄′ (mod q2),
then the inequality in (3) holds and we have a SIS solution for A1.

We present the basic protocol in Fig. 1. The boxed text contains the parts
necessary to make the protocol zero-knowledge. In this overview, we will ignore
these and only show that the protocol is a proof of knowledge. First, let us show
the correctness of the protocol. Because the coefficients of S,C1, and C2 are
small, the coefficients of Z are also small with respect to q2. Similarly, because
the coefficients of V consist of a product of a matrix with coefficients less than
q2 with a 0/1 matrix C1, parameters can be set such that the coefficients of
the product are less than q1. Thus ‖zi‖ ≤ βz and ‖V‖ ≤ βvq2 can be satisfied
with an appropriate choice of parameters. We now move on to showing that the
verification equations hold. Note that

V =

 V1

...
Vm1

 =


 A2S1

...
A2Sm1

 mod q2

 ·C1 ≡

 A2S1C1

...
A2Sm1

C1

 (mod q2), (4)

and so one can write A2 ·
[
S1C1 · · · Sm1C1

]
≡
[
V1 · · · Vm1

]
(mod q2), and

therefore A2 · Z ≡ A2 ·
[
S1C1 · · · Sm1

C1

]
· C2 (mod q2), which is the first

verification equation. For the second verification equation, observe from (4) and
(2) that

A1 ·V = A1 ·


 A2S1

...
A2Sm1

 mod q2

 ·C1 ≡ T ·C1 (mod q1).

Finally, ignoring constant terms, the total communication cost (including the
statement) can be bounded above by

m3 · (n log q1 + λ) +m2 · λ log βz +m1 · (nλ log(βvq2) + λ2) + nλ log q2.
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P(A1,A2,S,T) V(A1,A2,T)

Y ← Dm2×λ
σ

W = A2Y mod q2

W ∈ Zn×λq2
-

C1 ← {0, 1}m3×λ

C1�
V := ((Im1 ⊗A2) · S mod q2) ·C1

V ∈ Znm1×λ
-

C2 ← {0, 1}λ·m1×λ

C2�

Write S :=

 S1

...
Sm1

 for Si ∈ Zm2×m3

Z :=
[
S1 ·C1 · · ·Sm1 ·C1

]
·C2 +Y

Rej(Z,
[
S1 ·C1 · · ·Sm1 ·C1

]
·C2, σ, ρ)

Z ∈ Zm2×λ
-

Write
[
z1 · · · zλ

]
:= Z

V :=

 V1

...
Vm1


Accept iff:
‖V‖∞ ≤ βvq2, ∀i, ‖zi‖ ≤ βz,
A2 · Z ≡

[
V1 · · · Vm1

]
·C2 +W (mod q2)

A1 ·V ≡ T ·C1 (mod q1)

Fig. 1. Levelled commitment with two levels. Here, βv and βz are parameters which
satisfy βz � q2, βv � q1/q2.

Note that the last term does not depend on m1,m2,m3 hence we ignore it
for now. Therefore, in order to minimise the expression above, we want to set
m1,m2,m3 such that all three corresponding terms are (almost) equal. We select
appropriate n, q1, q2 such that both A1 and A2 are binding (7) and we get
log q2 < log q1 = O(logN) and n = O(λ). Similarly, log βv = O(logN) and
log βz = O(logN). Therefore, the total communication cost is approximately
Õ( 3
√
N).

In Section 3, we extend this approach to more than two levels. Generally, we
propose a proof of knowledge for d ≥ 1 levels with total communication size equal

to O
(
N

1
d+1 · (d3λ log2N + dλ2)

)
. In Section 3.3, we also show how to apply

techniques similar to previous work [14,12,5] in order to extract a relatively short
solution to the relaxed equation (e.g. (2) for d = 2). Due to space limitations,
we skip the details in this overview.

Bulletproofs folding. Our starting point is the lattice equation:

As = t (5)
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where A ∈ R1×k, s ∈ Rk and R = Zq[X]/(Xn + 1). Thus, the number of secrets
is N = kn. In the same vein as [14,12], we are interested in constructing a
protocol where proving knowledge of pre-image s of t comes down to proving
knowledge of some other pre-image, say s′, whose length k/2 is half that of s.
By recursively applying this argument log k times, we obtain poly-logarithmic
proof size. Concretely, we fold the initial statement (5) as follows. Let us write

A =
[
A1 A2

]
and s =

[
s1
s2

]
where s1, s2 ∈ Rk/2.

Let l := A1s2 ∈ R and r := A2s1 ∈ R. Then, for all c ∈ R, (cA1 + A2)(s1 +
cs2) = c2l + ct + r. We observe that s1 + cs2 has length k/2, suggesting the
following protocol for proving knowledge of s. First, the prover P sends l, r
to the verifier V. Then, V samples a challenge c uniformly at random from a
challenge space C ⊆ R and sends it to P. Finally, P sends z = s1 + cs2 to V.
Note that if P is honest then z satisfies the new lattice equation Bz = t′ where
B = cA1 +A2 and t′ = c2l + ct + r. Therefore, instead of sending z directly, the
prover might repeat the protocol and treat z as a new secret vector. By folding
all the way down to vectors of length 1, we get communication costs of order
log k.

Using similar techniques to [14,12], one can extract a solution z̄ to the original
equation Az̄ = t. The problem is that unless we define the challenge space
properly, we do not have any information on the size of ‖z̄‖. Hence, we let C
be the set of monomials of R, i.e. C = {Xi : i ∈ Z}. Then, using the fact that
polynomials of the form 2/(Xi −Xj) ∈ R have coefficients in {−1, 0, 1} [9], we
bound the size of an extracted solution. The only drawback of using this approach
is that we only obtain a solution for a relaxed equation. Concretely, if we apply
the folding technique d times, then we only manage to find a small solution z̄
for the equation Az̄ = 8dt such that ‖z̄‖ = O

(
n3d · 12d · p

)
where p = ‖s‖∞.

For d = log k, the relaxation factor becomes k3. The communication cost for the
(2d+ 1)-round version of the protocol is equal to N log(2dp)/2d + 2dn log q.

Then, we would just pick q which is a little bit larger than the slack. It
is worth mentioning that the protocol in its current state gives us soundness
error of order 1/n, hence we would need to repeat it λ/ log n times in order to
achieve soundness error 2−λ. Therefore, the total proof size can be bounded by

O
(
λN log(2dp)

2d logn
+ λd2n

)
.

Comparison. We investigate in which applications one technique offers asymp-
totically smaller proof size than the other (see Section 4 for more details). First
of all, consider the case when we do not require the extracted solution to be
“very small”. Then, levelled commitments for d = logN − 1 levels provide proof
size of order O

(
λ log5N + λ2 logN

)
.

On the other hand, by applying Bulletproofs folding d = log k times, we
obtain proof size6 O (λn logN · (logN + 1)) . Consequently, the Bulletproofs ap-
proach achieves smaller proof size.

6 We note that more concrete bounds could be computed. However, this non-tight
bound already shows that Bulletproofs folding offers smaller proof size.
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Next, consider the case when one could only afford limited slack, i.e. the
extracted solution is smaller than some set value B = Nα > N2. First, suppose
that N = λr for some r ≥ 3 (we expect N to be much bigger than λ). Then, we
show that levelled commitments and Bulletproofs provide Õ(Nu) and Õ(Nv)

proof sizes respectively, where u ≈ 1
(α−2)r and v ≈ 1− α−1/2

3 logn+4
7.

Assume the allowed slack is small enough that both u and v are larger than
1/ logN . Then, we just check which one of u, v is bigger8. Since log n ≥ 1 and for
all r ≥ 3, the function fr(x) := (15−2x)(x−2)r−14 is positive for 3 ≤ x ≤ 7, we
deduce that u is smaller than v when α ≤ 7. This suggests that one should use
the levelled commitments protocol when one can only tolerate a limited amount
of slack.

1.3 Related Work

In this paper, we investigate techniques from [14,12] and [25] in the lattice world.
These papers are the most closely related prior works, along with [14], which
forms a key component of the argument in Section 3.

We review proof systems which can prove knowledge of a secret with N
elements, or prove knowledge of a satisfying assignment to an arithmetic circuit
with N gates.

Lattice-Based Arguments. The zero-knowledge argument given in [5] is based on
the SIS assumption, and is capable of proving knowledge of commitment open-
ings with proof size O(

√
N). It was the first and only standard zero-knowledge

protocol based on lattice assumptions to achieve a sublinear communication com-
plexity. Previously, the only other lattice-based arguments of knowledge with
better asymptotic proof size were lattice-based SNARKs [11,23,36]. Although
they offer highly succinct, O(1)-sized proofs, the proofs are only checkable by
a designated verifier, and soundness is based on strong, non-falsifiable assump-
tions.

Hash-Based Arguments STARKs [6] and Aurora [8] are non-interactive argument
systems. Both achieve O(log2N)-sized proofs, with Aurora more efficient by an
order of magnitude due to better constants. Ligero [2] achieves O(

√
N)-sized

proofs, but is highly efficient in practice.

Classically-Secure Arguments. In the discrete-logarithm setting, Bulletproofs
[14] and a related argument [12] give O(logN) communication complexity, using
Pedersen commitments and the same recursive folding technique that inspired
the argument described in Section 4. The protocol of [25] gives O(N1/3) proof
sizes, and uses a two-tiered commitment scheme, based on Pedersen commit-
ments and a related commitment scheme based on pairings. We extend the same
idea to a multi-levelled lattice-based commitment scheme in Section 3.

7 Here, n denotes the degree of the underlying cyclotomic polynomial Xn + 1.
8 This would only asymptotically tell us which method offers smaller proof size.
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There is also a long line of works on succinct non-interactive arguments based
on pairings, culminating in protocols including [26] and [27] which have O(1)
proof size, but rely on strong, non-falsifiable assumptions like the Knowledge-
of-Exponent assumptions, or have security proofs in idealised models like the
Generic Group Model [38] or Algebraic Group Model [21].

2 Preliminaries

Algorithms in our schemes receive a security parameter λ as input (sometimes
implicitly) written in unary. Unless stated otherwise, we assume all our algo-
rithms to be probabilistic. We denote by A(x) the probabilistic computation
of the algorithm A on input x. If A is deterministic, we write y := A(x). We
write PPT (resp. DPT) for probabilistic (resp. deterministic) polynomial time
algorithms. The notation y ← A(x) denotes the event that A on input x re-
turns y. Given two functions f, g : N → [0, 1] we write f(λ) ≈ g(λ) when
|f(λ) − g(λ)| = λ−ω(1). We say that f is negligible when f(λ) ≈ 0 and that f
is overwhelming when f(λ) ≈ 1. For n ∈ N, we write [n] := {1, . . . , n}. Regular
font letters denote elements in Z or Zq, for a prime q, and bold lower-case letters
represent column vectors with coefficients in Z or Zq. Bold upper-case letters
denote matrices. By default, all vectors are column vectors. Let In ∈ Zn×nq be
the n × n identity matrix. We write a list of objects with square brackets, e.g.
[a1, . . . , ak] is a list of k objects: a1, . . . , ak. Also, we denote by [] the empty list.
For any statement st, we define JstK to be equal to 1 if st is true and 0 otherwise.

Sizes of elements. For an even (resp. odd) positive integer α, we define r′ =
r mod α to be the unique element r′ in the range −α2 < r′ ≤ α

2 (resp. −α−12 ≤
r′ ≤ α−1

2 ) such that r′ = r mod α. For an element w ∈ Zq, we write ‖w‖∞ to
mean |w mod q|. Define the `∞ and `2 norms for w = (w1, . . . , wk) ∈ Zkq as
follows:

‖w‖∞ = max
i
‖wi‖∞, ‖w‖ =

√
‖w1‖2∞ + . . .+ ‖wk‖2∞.

However, if we do not state explicitly that w ∈ Zkq but rather treat w as a vector
of integers then the standard notions of L2 and L∞ norms apply. We will also

consider the operator norm of matrices over Z defined by s1(A) = max
‖x‖6=0

(
‖Ax‖
‖x‖

)
.

Probability Distributions. Let D denote a distribution over some set S.
Then, d ← D means that d was sampled from the distribution D. If we write

d
$← S for some finite set S without a specified distribution this means that d

was sampled uniformly random from S. We let ∆(X,Y ) indicate the statistical

distance between two distributions X,Y . Define the function ρσ(x) = exp
(
−x2

2σ2

)
and the discrete Gaussian distribution over the integers, Dσ, as Dσ(x) = ρ(x)

ρ(Z)
where ρ(Z) =

∑
v∈Z

ρ(v).
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We will write A ← Dk×`
σ to mean that every coefficient of the matrix A is

distributed according to Dσ.
Using the tail bounds for the 0-centered discrete Gaussian distribution (cf.

[4]), we can show that for any σ > 0 the norm of x← Dσ can be upper-bounded

using σ. Namely, for any t > 0, we have Prx←Dσ [|x| > tσ] ≤ 2e−t
2/2, and when

x is drawn from Dm
σ , we have

Pr
x←Dmσ

[‖x‖ >
√

2m · σ] < 2−m/4. (6)

2.1 Lattice-based Commitment Schemes

A non-interactive commitment scheme is a pair of PPT algorithms (Gen, Com).
The setup algorithm ck ← Gen(1λ) generates a commitment key ck, which spec-
ifies message, randomness and commitment spaces Mck,Rck,Cck. It also specifies
an efficiently sampleable probability distribution DRck over Rck and a binding set
Bck ⊂ Mck×Rck. The commitment key also specifies a deterministic polynomial-
time commmitment function Comck : Mck × Rck → Cck. We define Comck(m)
to be the probabilistic algorithm that given m ∈ Mck samples r ← DRck and
returns c = Comck(m; r).

The commitment scheme is homomorphic, if the message, randomness and
commitment spaces are abelian groups (written additively) and we have for all
λ ∈ N, and for all ck ← Gen(1λ), for all m0,m1 ∈ Mck and for all r0, r1 ∈ Rck:

Comck(m0; r0) + Comck(m1; r1) = Comck(m0 + m1; r0 + r1).

Definition 2.1 (Hiding). The commitment scheme is hiding if for all PPT
stateful interactive adversaries A

Pr

[
ck ← Gen(1λ); (m0,m1)← A(ck); b← {0, 1};
r← DRck ; c← Comck(mb; r) : A(c) = b

]
≈ 1

2
,

where A outputs m0,m1 ∈ Mck.

Definition 2.2 (Binding). The commitment scheme is computationally bind-
ing if a commitment can only be opened to one value within the binding set Bck.
For all PPT adversaries A

Pr

[
ck ← Gen(1λ); (m0, r0,m1, r1)← A(ck) :

m0 6= m1 and Comck(m0; r0) = Comck(m1; r1)

]
≈ 0,

where A outputs (m0, r0), (m1, r1) ∈ Bck.

The commitment scheme is compressing if the sizes of commitments are
smaller than the sizes of the committed values.

Compressing Commitments Based on SIS. We work with the standard
SIS (shortest integer solution) commitment scheme, which was already implicit
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in the aforementioned work of Ajtai [1] and uses uniformly random matrices

A1 ∈ Zr×2r logp qq and A2 ∈ Zr×nq as a commitment key, where n is the num-
ber of elements that one wishes to commit to and p < q. A commitment to a

vector m ∈ Znp involves choosing a random vector r ∈ Z2r logp q
p and outputting

the commitment vector v = A1r + A2m mod q. By the leftover hash lemma,
(A1,A1r mod q) is statistically close to uniform, and so the commitment scheme
is statistically hiding.9 To prove binding, note that if there are two different
(r,m) 6= (r′,m′) such that v = A1r + A2m ≡ A1r

′ + A2m
′ (mod q), then

A1(r−r′)+A2(m−m′) ≡ 0 (mod q) and the non-zero vector s =

[
r− r′

m−m′

]
is

a solution to the SIS problem for the matrix A = [A1 A2], i.e. As ≡ 0 (mod q).
As long as the parameters are set such that ‖s‖ is smaller than

min{q, 22
√
r log q log δ}10, (7)

the binding property of the commitment is based on an intractable version of
the SIS problem [22].

In this paper, we will use the following lattice commitment scheme.

Gen(1λ)→ ck: Select parameters p, q, r, v,N,B, σ. Pick uniformly random ma-

trices A1
$← Zr×r logp qq and A2

$← Zr×nq . Return ck = (p, q, r, v, `,N, β,Zq,A1,A2).
The commitment key defines the message space Mck = Rnq , randomness

space Rck = R2r logp q
q , commitment space Cck = Zrq, randomness distribution

DRck = Dr
σ and binding space

Bck =

{
s =

[
m
r

]
∈ Rn+2r logp q

q

∣∣∣ ||s|| < B

}
.

Comck(m; r): Given m ∈ Znq and r ∈ Z2r logp q
q return c = A1r + A2s.

In the following, when we make multiple commitments to vectors m1, . . . ,m` ∈
Mck we write C = Comck(M; R) when concatenating the commitment vectors
as C = [c1, · · · , c`]. This corresponds to computing C = A1R + A2M with
M = [m1, · · · ,m`] and randomness R = [r1, · · · , r`].

2.2 Arguments of Knowledge

We will now formally define arguments of knowledge. Let R be a polynomial-
time-decidable ternary relation. The first input will contain public parameters
(a.k.a. common reference string) pp. We define the corresponding language Lpp

9 For improved efficiency, one could reduce the number of columns in A1 and make
the commitment scheme computationally-hiding based on the hardness of the LWE
problem.

10 This constant δ is related to the optimal block-size in BKZ reduction [22], which
is the currently best way of solving the SIS problem. Presently, the optimal lattice
reductions set δ ≈ 1.005.

11



indexed by pp that consists of statement u with a witness w such that (pp, u, w) ∈
R. This is a natural generalisation of standard NP languages, which can be cast
as the special case of relations that ignore the first input.

A proof system consists of a PPT parameter generator K, and interactive
and stateful PPT algorithms P and V used by the prover and verifier. We write
(tr, b) ← 〈P(pp),V(pp, t)〉 for running P and V on inputs pp, s, and t and get-
ting communication transcript tr and the verifier’s decision bit b. We use the
convention that b = 0 means reject and b = 1 means accept.

Definition 2.3. Proof system (K,P,V) is called an argument of knowledge for
the relation R if it is complete and knowledge sound as defined below.

Definition 2.4. (K,P,V) has statistical completeness with completeness error
ρ : N→ [0; 1] if for all adversaries A

Pr

[
pp← K(1λ); (u,w)← A(pp); (tr, b)← 〈P(pp, u, w),V(pp, u)〉 :

(pp, u, w) ∈ R and b = 0

]
≤ ρ(λ).

Definition 2.5. (K,P,V) is knowledge sound with knowledge error ε : N →
[0; 1] if for all DPT P∗ there exists an expected polynomial time extractor E such
that for all PPT adversaries A

Pr

[
pp← K(1λ); (u, s)← A(pp); (tr, b)← 〈P∗(pp, u, s),V(pp, u)〉;

w ← EP∗(pp,u,s)(pp, u, tr, b) : (pp, u, w) /∈ R and b = 1

]
≤ ε(λ).

It is sometimes useful to relax the definition of knowledge soundness by re-
placing R with a relation R̄ such that R ⊂ R̄. For instance, in this work, our
zero-knowledge proofs of pre-images will have “slack”. Thus, even though v is
constructed using r,m with coefficients in Zp, we will only be able to prove
knowledge of vectors r̄, m̄ with larger norms. This extracted commitment is
still binding as long as the parameters are set so that the norm of the vector[

r̄− r̄′

m̄− m̄′

]
is smaller than the bound in (7).

We say the proof system is public coin if the verifier’s challenges are chosen
uniformly at random independently of the prover’s messages. A proof system
is special honest-verifier zero-knowledge if it is possible to simulate the proof
without knowing the witness whenever the verifier’s challenges are known in
advance.

Definition 2.6. A public-coin argument of knowledge (K,P,V) is said to be
statistical special honest-verifier zero-knowledge (SHVZK) if there exists a PPT
simulator S such that for all interactive and stateful adversaries A

Pr

[
pp← K(1λ); (u,w, %)← A(pp); (tr, b)← 〈P(pp, u, w),V(σ, u; %)〉 :

(pp, u, w) ∈ R and A(tr) = 1

]

≈ Pr

[
pp← K(1λ); (u,w, %)← A(pp); (tr, b)← S(pp, u, %) :

(pp, u, w) ∈ R and A(tr) = 1

]
,

where % is the randomness used by the verifier.
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P V

A ∈ Zr×vq ,S ∈ Zv×`,T ∈ Zr×`q A,T
s.t. AS = T

Y ← Dv×n
σ

W = AY W -

C
$← {0, 1}`×n

C�
Z := SC + Y

Abort if Rej(Z,SC, σ, ρ) = 1 Z - [
z1, . . . , zn

]
:= Z

Check:

{
∀i ∈ [n], ‖zi‖ ≤ β
AZ = TC + W

Fig. 2. Amortized proof for ` equations.

2.3 Amortized Proofs of Knowledge

Baum et al. [5] give an amortized proof of knowledge for preimages of SIS com-
mitments (see Fig. 2). The prover P wants to prove knowledge of the secret
matrix S such that AS ≡ T (mod q) , where A,T are known to the verifier V.

The protocol begins with P selecting a “masking” value Y with small coef-
ficients and sending W = AY mod q. Then V picks a random challenge matrix
C ∈ {0, 1}`×n, and sends it to P. Then, P computes Z = SC + Y and performs
a rejection-sampling step (Fig. 3) to make the distribution of Z independent of
S, and if it passes, sends Z to V. Finally, V checks that all columns of Z have
small norms and that AZ ≡ TC + W (mod q).

Rej(Z,B, σ, ρ)
01 u← [0, 1)

02 if u > 1
ρ
· exp

(
−2〈Z,B〉+‖B‖2

2σ2

)
03 then return 0
04 else
05 return 1

Fig. 3. Rejection Sampling [31,32].

This protocol can be proved zero-knowledge using exactly the same tech-
niques as in [31,32], i.e. Lemma 2.7. One proves knowledge-soundness using a
standard heavy-row argument (Lemma A.1).

Lemma 2.7 ([32]). Let B ∈ Zr×n be any matrix. Consider a procedure that
samples Y ← Dr×n

σ and then returns the output of Rej(Z := Y + B,B, σ, ρ)
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where σ ≥ 12
ln ρ · ‖B‖. The probability that this procedure outputs 1 is within

2−100 of 1/ρ. The distribution of Z, conditioned on the output being 1, is within
statistical distance of 2−100 of Dr×n

σ .

By choosing appropriate parameters (r, v, n, `), Baum et al. obtain a Õ(
√
N)

proof size for the standard SIS commitment scheme where N = v` is the number
of entries in the matrix S.

3 Levelled Commitments

In this section, we define levelled lattice commitments and show how to obtain
proofs of knowledge with proof size Õ(N1/c) where N is the number of secrets
and c is a constant. Recall that Baum et al. [5] give an amortized proof of
knowledge for statements of the form T = AS mod q. We call this a level-one
commitment. Roughly speaking, the main idea is to apply lattice commitments
c− 1 times to the secret S in a structured way.

In the full version of this paper, we extend this result and sketch out the
details of an arithmetic circuit satisfiability argument which uses the proof of
knowledge based on levelled commitments as a key component.

From now on, we assume that the secret matrix S already includes the ran-
domness. This not only significantly improves the readability of our protocol,
but also ensures that the standard SIS commitment defined in Section 2.1 is
both binding and hiding.

3.1 Overview

We define our levelled commitment scheme with d levels for constant d. Let
n,m0,m1, ...,md, md+1 ∈ N such that m0 = 1 and N = m1 · . . . · md+1. We
denote Mi,j = mi · mi+1 · . . . · mj and for simplicity, we write Mi = M0,i.
Consider d distinct moduli q1 > q2 > . . . > qd. Let Ad, . . . ,A1 be matrices
such that Ad ∈ Zn×mdqd

and Ai ∈ Zn×n·miqi for i ∈ [d − 1]. Then, the levelled
commitment is a function F defined as follows:

Fi,j (S) :=

{
AiS mod qi, if i = j

Fi,j−1
((

IMi,j−1 ⊗Aj

)
S mod qj

)
if i < j.

(8)

For example, when d = 2, the explicit formula for F is

F1,2 (S) = A1 · ((Im1 ⊗A2) · S mod q2) mod q1. (9)

When d = 3, the explicit formula for F is

F1,3 (S) = A1 · ((Im1
⊗A2) ((Im1·m2

⊗A3) · S mod q3) mod q2) mod q1. (10)

14



Observe that explicit formulae for F written without tensor notation bear some
similarity to Merkle trees of SIS commitments. For instance, if d = 3 then

T = F1,3


 S1

...
Sm1m2


 = A1 ·



A2 ·

 A3S1

...
A3Sm2


...

A2 ·

A3Sm1(m2−1)+1

...
A3Sm1m2




.

Here, T represents a commitment to the whole tree. In our protocol, the state-
ment will be F1,d (S) ≡ T (mod q1), where S is a matrix consisting of small
elements.

For readability, let us introduce commitments for intermediate vertices in
this tree. We start from the leaves and denote them as S[i1,...,id−1] where each
ik ∈ [mk]. More concretely, write

S =



S[1,...,1,1]

S[1,...,1,2]

...
S[1,...,1,md−1]

S[1,...,2,1]

...
S[m1,...,md−1]


, where S[i1,...,id−1] ∈ Zmd×md+1 . (11)

Now we can define commitments for the intermediate vertices in the commitment
tree. Fix k ∈ [d− 2] and recursively define

S[i1,...,ik] := (Imk+1
⊗Ak+2)


S[i1,...,ik,1]

S[i1,...,ik,2]

...
S[i1,...,ik,mk+1]

 mod qk+2 ∈ Znmk+1×md+1 . (12)

Let us also set S[] := (Im1
⊗A2)

 S[1]

...
S[m1]

 mod q2 ∈ Znm1×md+1 . Then, we have

A1S[] ≡ T (mod q1).

Relaxed Opening. Recall that our protocol aims to prove knowledge of a
small matrix S such that F1,d (S) ≡ T (mod q1). However, our extraction algo-
rithm finds a slightly larger (but still small) matrix S′ and additional matrices
R1, . . . ,Rd−1 such that F̃1,d (S′; R1, . . . ,Rd−1) ≡ T (mod q1) where F̃ is de-
fined by

F̃i,j (S′; Ri, . . . ,Rj−1) := F̃i,j−1(X mod qj + qjRj−1; Ri, . . . ,Rj−2) (13)
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and X := (IMi−1,j−1
⊗ Aj)S

′ for i < j and F̃i,i(S
′) := (Imi−1

⊗ Ai)S
′ mod qi.

For example, if d = 2 then F̃1,d is defined to be

F̃1,d(S
′; R1) = A1 · ((Im1

⊗A2) · S′ mod q2 + R1 · q2) mod q1 (14)

similarly to (2). Clearly, if R1, . . . ,Rd−1 are all zero matrices then F̃1,d (S′; R1, . . . ,Rd−1) =
F1,d(S

′).
We observe that this is enough for practical applications as long as A1, . . . ,Ad

are binding. Indeed, one can show, using similar methods to Section 1.2, that
Fi,j is binding based on the hardness of SIS for appropriate parameter choice
q1, . . . , qd (see Section 3.4).

Formally, given matrices Ad, . . . ,A1 such that Ad ∈ Zn×mdq and Ai ∈
Zn×n·miq for i ∈ [d−1], the relation we give a zero-knowledge proof of knowledge
for the relation

R =


(pp, u, w) =

(
(q,m, n,B,BR,A1, . . . ,Ad),T, (S

′, R̄)
) ∣∣∣∣

J‖si‖ ≤ 2dBKi∈[md+1] ∧ J‖Ri‖∞ ≤ BRKi∈[d−1] ∧ JRi ∈ ZnMi×md+1Ki∈[d−1]

∧ (S′,T) ∈ ZMd×md+1 × Zn×md+1
q1 ∧ F̃1,d

(
S′; R̄

)
≡ T (mod q1)


where we denote R̄ := (R1, . . . ,Rd−1),S′ := [s1 . . . smd+1

],q := (q1, . . . , qd) and
m := (m0, . . . ,md+1).

3.2 The Main Protocol

We present our zero-knowledge proof of knowledge in Fig. 4. First, we describe
supporting algorithms that we will use in the protocol. Firstly, BTi takes a matrix
Z which has a number of rows divisible by mi and outputs its block transpose:

BTi(Z) :=
[
Z1 · · ·Zmi

]
, where Z =

 Z1

...
Zmi

 .

On the other hand, Foldi is a recursive algorithm which takes as input Mi matri-
ces U1, . . . ,UMi

and i+ 1 challenge matrices C1, . . . ,Ci+1. If i = 0 then it sim-
ply outputs U1C1. Otherwise, it splits the vector (U1, . . . ,UMi

) into mi shorter
ones, i.e. Ūj = (U(j−1)Mi−1+1, . . . ,UjMi) and runs U′j = Foldi−1(Ūj ; C1, . . . ,Ci)

for each j ∈ [mi]. Eventually, it outputs
[
U′1 · · ·U′mi

]
Ci+1. We show more prop-

erties of this algorithm in the correctness section.
The statement is F1,d (S) ≡ T (mod q1). The protocol begins with the prover

P selecting a masking value for Y with small coefficients and sending W =
AdY mod qd. In the i-th round, the verifier V picks a random challenge Ci and
sends it to P. The prover applies Fold to the intermediate commitments

Vi = (S[1,...,1],S[2,1,...,1], . . . ,S[m1,1,...,1],S[1,2,...,1], . . . ,S[m1,...,mi−1])
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as well as all the previous challenges C1, . . . ,Ci sent by V. If i = d then P also
adds Y and runs rejection sampling. Next, it returns

Zi = Foldi−1(Vi; C1, . . . ,Ci) + Ji = dKY.

Finally, the verifier checks that all the Zi are small and for all i ∈ [d− 1]:

Ai+1Zi+1 ≡ BTi(Zi)Ci+1 + Ji = d− 1KW (mod qi+1).

We assume that
(
IMd−1

⊗Ad

)
S mod qi is public, although this information is

not used by the verifier. Consequently, for all 0 ≤ k < d− 1 and any i1, . . . ik ∈
[m1]× . . .× [mk], S[i1,...,ik] is known as well.

P0(pp,S)

01 Y ← D
md×λ
σ

02 W := AdY mod qd
03 return (W, St = Y)

Pi(pp, (C1, . . . ,Ci),S, St = Y) for i ∈ [d]
04 if i = 1 then
05 Vi := S[]

06 else Vi := (S[1,...,1],S[2,1,...,1], . . . ,S[m1,...,mi−1])
07 V′i := Foldi−1(Vi;C1, . . . ,Ci)
08 if i = d then
09 Zd := V′d + Y
10 Abort if Rej(Zd,V

′
d, σ, ρ) = 1

11 else Zi := V′i
12 return (Zi, St = Y)

Foldi(U1, . . . ,UMi ;C1, . . . ,Ci+1)
13 if i = 0
14 then return U1C1

15 U′j := Foldi−1(U(j−1)Mi−1+1, . . . ,UjMi−1 ;C1, . . . ,Ci)

16 return
[
U′1 · · ·U′mi

]
Ci+1

BTi(Z)

17 Write Z =

 Z1

...
Zmi


18 return

[
Z1 · · ·Zmi

]
V(pp,T, (Ci,Zi) for i ∈ [d])

19
[
z1, . . . , zmd+1

]
:= Zd

20 Check:
21 1. ∀j ∈ [md+1], ‖zj‖ ≤ B
22 2. ∀i ∈ [d− 1], ‖Zi‖∞ ≤Mi−1md+1λ

i−1 qi+1−1

2

23 3. A1Z1 ≡ TC1 (mod q1)
24 4. ∀i ∈ [d− 2],Ai+1Zi+1 ≡ BTi(Zi)Ci+1 (mod qi+1)
25 5. AdZd ≡ BTd−1(Zd−1)Cd + W (mod qd)

Fig. 4. Levelled Lattice Commitment Protocol.

3.3 Security Analysis

We start by proving certain properties of the Fold algorithm defined in Fig. 4.
They will be crucial when proving correctness of our protocol.

Lemma 3.1. Let i ∈ [d] and k, `,m ∈ N. Take arbitrary U1, . . . ,UMi
∈ Zk×md+1

and C1, . . . ,Ci+1 such that C1 ∈ {0, 1}md+1×λ and for j > 1, Cj ∈ {0, 1}mj−1λ×λ.
Then, the following hold.

(i) There exist matrices D1, . . . ,DMi ∈ Zmd+1×λ such that ‖Di‖∞ ≤ λi and

Foldi(U1, . . . ,UMi
; C1, . . . ,Ci+1) =

∑Mi

t=1 UtDt.
(ii) For all A ∈ Zm×k,

A·Foldi(U1, . . . ,UMi ; C1, . . . ,Ci+1) = Foldi(AU1, . . . ,AUMi ; C1, . . . ,Ci+1).
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(iii) Suppose that each Uj can be written as Uj =

Uj,1

...
Uj,`

, where all matrices

Uj,j′ have the same dimensions. Then:

Foldi(U1, . . . ,UMi ; C1, . . . ,Ci+1) =

Foldi(U1,1, . . . ,UMi,1; C1, . . . ,Ci+1)
...

Foldi(U1,`, . . . ,UMi,`; C1, . . . ,Ci+1)

 .
Proof. Each part of Lemma 3.1 is proved by induction on i. A detailed proof
can be found in the full version of this paper.

We are now ready to prove security properties of our protocol.

Theorem 3.2. Let s ≥ maxi1,...,id−1
s1(S[i1,...,id−1]), ρ > 1 be a constant, σ ∈ R

be such that σ ≥ 12
ln ρMd−1sλ

d−1√md+1λ, and B =
√

2mdσ. Then the protocol
described in Fig. 4 is a zero-knowledge proof of knowledge for R.

Proof. We prove correctness and zero-knowledge, and prove knowledge sound-
ness separately in Theorem 3.3.

Correctness. If P and V are honest then the probability of abort is ex-
ponentially close to 1 − 1/ρ (see Lemma 2.7). Indeed, note that by Lemma
3.1 (i) and the triangle inequality we know that ‖V ′d‖ is bounded above by
Md−1sλ

d−1√md+1λ. In a similar manner, one can show that the second verifi-
cation condition is satisfied. Now, we show that the equations verified by V are
true.

Firstly, note that A1Z1 = A1Fold(S[]; C1) = A1S[]C1 ≡ TC1 (mod q1).
Now, fix i ∈ [d− 1]. We know that Zi = Foldi−1(Vi; C1, . . . ,Ci) (line 7) where

Vi = (S[1,...,1],S[2,1,...,1], . . . ,S[m1,1,...,1],S[1,2,...,1], . . . ,S[m1,...,mi−1]).

By definition, each S[j1,...,ji−1] is equal to Ai+1S[j1,...,ji−1,1]

...
Ai+1S[j1,...,ji−1,mi]

 .
By Lemma 3.1 (ii) and (iii), we have

Zi =

 Ai+1Foldi−1(Vi,1; C1, . . . ,Ci)
...

Ai+1Foldi−1(Vi,mi ; C1, . . . ,Ci)

 ,
where

Vi,j = (S[1,...,1,j],S[2,1,...,1,j], . . . ,S[m1,1,...,1,j],S[1,2,...,1,j], . . . ,S[m1,...,mi−1,j]).
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Observe that Vi+1 is indeed equal to the concatenation of vectors Vi,1, . . .Vi,mi .
Then, by applying the BT function to Zi and by definition of Fold, we obtain:

BTi(Zi)Ci+1 =
[
Ai+1V̄1 · · · Ai+1V̄mi

]
Ci+1

= Ai+1

[
V̄1 · · · V̄mi

]
Ci+1

= Ai+1Foldi(Vi+1; C1, . . . ,Ci+1)

= Ai+1Zi+1,

(15)

where V̄j := Foldi−1(Vi,j ; C1, . . . ,Ci). The last verification equation is also
satisfied using the same argument as before and noting that AdY = W.

Eventually, since each coefficient of Z is statistically close to Dσ, then ac-
cording to (6) we have ‖zi‖ ≤

√
2mdσ with overwhelming probability.

Honest-Verifier Zero-Knowledge. We will now prove that our proto-
col is honest-verifier zero-knowledge. More concretely, we show that it is zero-
knowledge when the prover does not abort prior to sending Zd. We recall that
for all 0 ≤ k < d− 1, S[i1,...,ik] is known to adversaries.

Define a simulator S as follows. It first selects C1
$← {0, 1}md+1×λ and Cj

$←
{0, 1}mj−1λ×λ for j = 2, . . . , d. Next, S samples Zd ← D

Md−1×λ
σ . Then, for

i ∈ [d− 1], the simulator sets Zi := Foldi−1(Vi; C1, . . . ,Ci) where

Vi = (S[1,...,1],S[2,1,...,1], . . . ,S[m1,1,...,1],S[1,2,...,1], . . . ,S[m1,...,mi−1]).

Finally, S sets W := AdZd−BTd−1(Zd−1)Cd and outputs (W,C1,Z1, . . . ,Cd,Zd).
It is clear that V verifies with overwhelming probability. We already argued

in the section on correctness that in the real protocol when no abort occurs

the distribution of Zd is within statistical distance 2−100 of D
Md−1×λ
σ . Since W

is completely determined by Ad,Zd−1,Zd,Cd and additionally, the distribution
of Zi output by S is identical to the one in the real protocol for i ∈ [d − 1],
the distribution of (W,C1,Z1, . . . ,Cd,Zd) output by S is within 2−100 of the
distribution of these variables in the actual non-aborting run of the protocol. ut

Knowledge Soundness. We describe a knowledge extractor E which finds
small matrices S′ and R1, . . . ,Rd−1 such that T = F̃1,d (S′; R1, . . . ,Rd−1).

Theorem 3.3. For any prover P∗ who succeeds with probability ε > 2−λ+1 ·
(4dN)2d over its random tape χ ∈ {0, 1}x and the challenge choice C1, . . . ,Cd,

such that C1
$← {0, 1}md+1×λ and Cj

$← {0, 1}mj−1λ×λ for j > 1, there exists
a knowledge extractor E running in expected time poly(λ)/ε who can extract
S′ and R1, . . . ,Rd−1 such that F̃1,d (S′; R1, . . . ,Rd−1) = T. Moreover, each
column of S′ has norm at most 2dB and ∀k ∈ [d − 1], we have ‖Rk‖∞ ≤
2k
(
Mk−1md+1λ

k−1 + 2
)
.

Proof. We provide a sketch of the proof here and include more detail in the full
version of this paper. First, the extractor E constructs a tree T of partial tran-
scripts similar to [14,12] where each vertex of T (apart from the root) is created
using extraction techniques from [5] based on the heavy-rows argument. The
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tree-construction algorithm TreeConstruct is given in Fig. 7 in Section A. Next,
E computes relaxed openings of the levelled commitments, using the algorithm
in Fig. 8 in Section A.

We sketch some of the steps of the extraction algorithm. First, we can fix
α ∈ [md+1] and define an extractor E which finds small vectors s′, r1, . . . , ri−1
such that F1,d (s′; r1, . . . , rd−1) = tα, where tα is the α-th column vector of T
11. Then, using the extraction strategy from [5], we can find Z′1,Z

′′
1 such that

A1(z′1,u − z′′1,u) ≡ tα (mod q1) for some u, where z′1,u (resp. z′′1,u) is the u-th
column of Z′1 (resp. Z′′1). Hence, E must find a preimage of z′1,u and z′′1,u. We
focus on the former. By symmetry, the latter can be obtained analogously.

Suppose that we continue running the prover P∗ given the first response
Z′1. We want to get a preimage of the u-th column of Z′1. Note that when
applying BT1 to Z′1, the u-th column vector gets split into the u-th, u+λ-th,...,
u+(m1−1)λ-th columns. Take arbitrary j ∈ {u+ iλ : 0 ≤ i < m1}. Then, again
by rewinding P∗, we can get Z′2,Z

′′
2 such that

A2ẑ2,j = A2(z′2,v − z′′2,v) ≡ BT(Z′1)j (mod q2)

for some v, where ẑ2,j := z′2,v − z′′2,v and BT1(Z′1)j denotes the j-th column of
BT1(Z′1). By repeating this argument for all possible j, we obtain:

(Im1
⊗A2)

 ẑ2,u
...

ẑ2,u+(m1−1)λ

 =

 BT1(Z′1)u
...

BT1(Z′1)u+(m1−1)λ

 = z′1,u (mod q2).

Observe how the tree structure appears in the argument. We first find Z′1 and Z′′1
which correspond to the two children of the root. Then, for each such vertex V ,
we repeat the same argumentm1 times and add new childrenW1,W

′
1, . . . ,Wm1

,W ′m1

of V . In general, the tree T has exactly 2iMi−1 vertices on each level i > 0.
Eventually, the extracted solution consists of responses which correspond to

the leaves of T. We also get additional terms Ri since each verification equation
holds for different moduli. Hence, in order to make any implications from them,
we need to first “lift” the previous verification equation and then we can apply
it to the next one. The Ri terms are the result of such lifting. ut

3.4 Asymptotic Parameter Choice

In this section, we set parameters for our protocol which minimise the to-
tal communication size (see Table 5). More concretely, we pick q1, . . . , qd and

m1, . . . ,md+1 (conditioned on the fact that N =
∏d+1
i=1 mi is fixed and N =

O(λr) for some constant, integer r). For readability, we consider asymptotic pa-
rameter choice, neglecting constant terms and focussing on the leading terms
using “big-O” notation.

11 By collecting extracted solutions for all α, we can merge them and thus obtain the
overall solution.
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Parameter Size Description

λ Security parameter
p poly(λ) The largest value of the secrets, i.e. ‖S‖∞
s Operator norm of S
N m1 · . . . ·md+1 = poly(λ) Number of secrets
n d · O(logN) Number of rows in A1, . . . ,Ad

qi O
(
Nd−i+2(2λ)dp2

)
Modulus corresponding to the commitment Ai

mi

(
O
(

d·logN
d2λ·log2 N+λ2

)
·N
) 1
d+1

i−th dimension of S for i ∈ [d− 1]

md O
(
d2·log2 N+λ
λd·logN

) d
d+1 ·

(
N
λ

) 1
d+1 d−th dimension of S

md+1

(
O
(

λdd·logN
d2·log2 N+λ

)
·N
) 1
d+1

(d+ 1)−th dimension of S

σ 12
ln ρ

Md−1sλ
d−1
√
md+1λ Standard deviation for rejection sampling

B
√

2md · σ Soundness slack from proof of knowledge

BR (2λ)dN · σ Infinity norm of extracted matrices R1, ...,Rd−1

Fig. 5. Parameter choice for our protocol.

To begin with, we compute simple upper bounds for the norms of the prover’s
responses. First, let us assume that secret elements in S have size at most p < N ,
i.e. ‖S‖∞ ≤ p. Using the Cauchy-Schwarz inequality and the definition of an
operator norm, we get a bound s ≤ Np2. Now, we provide a simple bound on B
which is defined in Theorem 3.2:

B =
√

2mdσ =
√

2md ·
12

ln ρ
Md−1sλ

d−1√md+1λ = O(λdN2p2).

We note this bound can be substantially improved. Concretely, s ≤ mdmd+1p
2

since we only consider the operator norm of md×md+1 matrices in Zp. By picking
the parameters set below, we get s = O(λ2N2/d+1). However, for readability, we
demonstrate a simpler bound.

We know from Theorem 3.3 that for k ∈ [d− 1] we have

‖Rk‖∞ ≤ 2k
(
Mk−1md+1λ

k−1 + 2
)
≤ (2λ)dN =: BR.

We are ready to set qd. In order to make Ad binding and satisfy (7), one needs to
pick qd > 2‖s′i‖ where s′i is the i-th column of the extracted matrix S′ in Theorem
3.2. We know that ‖s′i‖ ≤ 2dB and therefore choose qd = O

(
(2λ)dN2p2

)
.

Next, let us fix i ∈ [d − 1] and consider the explicit formula for Fi,j in
(13) without tensor notation. One observes that each copy of the matrix Ai is
multiplied from the right-hand side by a matrix of the form U = (V mod qi+1)+
qi+1R and we know that ‖R‖∞ ≤ (2λ)dN . Thus, we just need to choose qi which
satisfies qi > 2N‖U‖∞ ≥ N ·

(
qi+1 + 2 · (2λ)dN

)
= Nqi+1 + 2 · (2λ)dN2. We

solve this recursive formula for qi and obtain

qi = O
(
Nd−i

(
(2λ)dN2p2 +

2 · (2λ4)N2

N − 1

)
− 2 · (2λ4)N2

N − 1

)
= O

(
Nd+2−i(2λ)dp2

)
.

(16)

Hence, we have log qi ≤ log q1 = d ·O(logN) for i ∈ [d]. Finally, in order to make
all commitments A1, . . . ,Ad satisfy (7), we pick n = d · O(logN).
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Now, let us set m1, . . . ,md+1 which minimise the total communication cost
of our protocol, including the statement T. First, note that the verifier V sends
λmd+1 + λ2 · (m1 + . . . + md−1) bits as challenges. Next, consider the commu-
nication cost from the prover’s side. At the beginning, P sends W which has
nλ log qd = O(d2λ log2N) bits. Since it does not contain any m1, . . . ,md+1, we
ignore this term for now. Next, we note that from the second verification equa-
tion, each Zi sent by P satisfies:

log (2‖Zi‖∞) ≤ log
(
Mi−1md+1λ

i−1(qi+1 − 1)
)
≤ log(Nλdqi+1) = d · O(logN)

for i ∈ [d − 1]. On the other hand, with overwhelming probability we have
‖Zd‖∞ ≤ 6σ = O(λdN2p2) and thus

log (2‖Zd‖∞) = O(d log λ+ logN) = d · O(logN).

Therefore, P sends in total (excluding W)

nmd+1 log q1 +

d−1∑
i=1

nmiλ log (2‖Zi‖) +mdλ log (2‖Zd‖∞)

≤

(
nmd+1 +

d−1∑
i=1

nmiλ+mdλ

)
d · O(logN)

(17)

bits. Eventually, this can be upper-bounded by:

d−1∑
i=1

(nλd · O(logN) + λ2) ·mi + λd · O(logN) ·md + (nd · O(logN) + λ) ·md+1.

In order to minimise this expression, we want to set m1, . . . ,md+1 in such a way
that all these d+ 1 terms are (almost) equal. Fix md+1. Then,

md =
nd · O(logN) + λ

λd · O(logN)
·md+1 and mi =

md+1

λ
for i ∈ [d− 1].

We compute an exact expression for md+1 as follows:

N =

d+1∏
i=1

mi =
nd · O(logN) + λ

λdd · O(logN)
(md+1)

d+1

and hence we can set

md+1 =

(
λdd · O(logN)

nd · O(logN) + λ
·N
) 1
d+1

<
(
λd+1N

) 1
d+1 = λ ·N

1
d+1 .

Then, the total communication cost (now including W) is bounded above by:

O(d2λ log2N) + (d+1)(nd · O(logN) + λ) ·md+1

= O
(
d2λ log2N + (d+ 1)(d2 · log2N + λ)λN

1
d+1

)
= O

(
N

1
d+1 · (d3λ log2N + dλ2)

)
.

(18)

To obtain logarithmic proof size, set d + 1 = logN , giving communication cost
λ · O

(
log5N + λ logN

)
.
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4 Bulletproofs Folding Protocol

In the discrete logarithm setting, one can apply recursive arguments as in [14,12]
and thus obtain logarithmic proof sizes. We show how these techniques can also
be used in the lattice setting. Concretely, suppose the statement is as usual
As = t where A ∈ R1×k, s ∈ Rk with ‖s‖∞ ≤ p and R = Z[X]/(Xn + 1). Then
the number of secrets N is equal to kn. We highlight that the only variables
which are defined the same in this section and the previous one are λ (security
parameter), N (number of secrets) and p (the largest coefficient of the secrets).

We fold the initial statement as follows. Let us write A =
[
A1 A2

]
and s =[

s1
s2

]
where s1, s2 ∈ Rk/2. Hence, if we define l = A1s2 ∈ R and r = A2s1 ∈ R

then for all c ∈ R, (cA1 + A2)(s1 + cs2) = c2l + ct + r. This gives the following
proof of knowledge of s.

P V

l = A1s2, r = A2s1
l, r

c
$← {Xi : i ∈ Z2n} ⊂ R

c

z = s1 + cs2
z

(cA1 + A2)z
?
= c2l + ct + r

‖z‖∞
?
≤ 2p

The vector z has length k/2, so this protocol has half the communication cost
of simply sending s. We can repeat this protocol for the new statement Bz = t′

where B = cA1 + A2 and t′ = c2l + ct + r.
Iterating the folding trick down to vectors of length 1 yields a protocol with

communication cost O(log k). Extraction works in principle as follows. First, let
us focus on extracting in the one-round protocol presented above. By rewinding
we can get three equations

(ciA1 + A2)zi = c2i l + cit + r, i = 1, 2, 3

for three different challenges ci and answers zi. Combine these to obtain

A1

(
3∑
i=1

λicizi

)
+ A2

(
3∑
i=1

λizi

)
=

3∑
i=1

λic
2
i l +

3∑
i=1

λicit +

3∑
i=1

λir. (19)

If λ = (λ1, λ2, λ3)T is a solution of the systemc21 c22 c23c1 c2 c3
1 1 1

λ1λ2
λ3

 =

0
1
0

 ,
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then Equation (19) implies

A1

(
3∑
i=1

λicizi

)
+ A2

(
3∑
i=1

λizi

)
= A

3∑
i=1

λi

[
cizi
zi

]
= t.

Hence, we get a preimage of t but the problem is that in general it will not be
short since λi can be large. In order to estimate the size of λi, we use the fact
that for i 6= j, polynomials of the form 2/(Xi − Xj) ∈ R have coefficients in
{−1, 0, 1} ([9]). Also, we know by the properties of Vandermonde matrices that
λi are of the form ±f · (Xu − Xv)−1 · (Xv − Xw)−1 · (Xw − Xu)−1 for some
pairwise distinct u, v, w ∈ Z2n and ‖f‖1 ≤ 2. Therefore, we have ‖8λi‖∞ ≤ 2n2.
Hence, we have extracted a solution z̄ which satisfies Az̄ = 8t and

‖z̄‖∞ =

∥∥∥∥∥
3∑
i=1

8λi

[
cizi
zi

]∥∥∥∥∥
∞

≤
3∑
i=1

∥∥∥∥8λi

[
cizi
zi

]∥∥∥∥
∞
≤

3∑
i=1

2n2 · 2np = 12n3p.

The extractor for the full protocol constructs a tree of partial transcripts
similar to [14,12] and applies the strategy we described above at every level.
Due to the small soundness error of order 1/n, the protocol has to be repeated
sufficiently many times to achieve negligible soundness error.

Proof size and slack. Let us consider the protocol with d ≤ log k rounds. Then,
using the same extraction strategy as above recursively, we obtain a relaxed open-
ing z̄ to the modified equation: Az̄ = 8dt such that ‖z̄‖∞ =

(
(6n3)d · 2d · p

)
=

O
(
n3d · 12d · p

)
. Therefore, we set q = O

(
n3d · 12d · p

)
. The proof size is then

equal to N log(2dp)/2d + 2dn log q which is O(N log(2dp)/2d + d2n log n).
Since this gives a soundness error of O(1/n), we repeat the protocol λ/ log n

times in order to get soundness error 2−λ. This gives a total proof size of

O
(
λN log(2dp)

2d logn
+ λd2n

)
.

Suppose that we follow this protocol all the way down to vectors of length
1, i.e. d = log k. Then, we have a “slack” 12 of ‖z̄‖∞ = O

(
n3 logNN4p

)
since

k = N/n < N . The proof size is bounded by O
(
λn logN + λn log2N

)
.

Comparison. We compare the Bulletproofs approach with levelled commit-
ments introduced in Section 3 in terms of both proof sizes and slack. The latter
one is not clearly defined in context of levelled commitments since one extracts
some secret matrix S′ along with additional terms R1,R2, . . . ,Rd−1 (where d
is a number of levels). Therefore, we only focus on the size of S′ and ignore
the other terms. We provide a comparison of sizes for both techniques in Fig.
6. Firstly, we observe that none of these methods provide a way to extract an
exact solution to the original equation. Indeed, with lattice commitments we
only manage to extract S′ along with extra terms R1, . . . ,Rd−1 which satisfy
(13). On the other hand, with Bulletproofs we extract a relaxed opening z̄ such

12 Slack here means the Euclidean norm of an extracted solution.
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Bulletproofs Levelled Commitments

Logarithmic proof size O
(
λn logN + λn log2N

)
O
(
λ log5N + λ2 logN

)
Corresponding slack O

(
n3 logNN4

√
Np
)

O(λlogNN3p2)

poly(λ,N1/c) proof size O
(
λN1/c logN + λn log2N

)
O
(
N1/c · (c3λ log2N + cλ2)

)
Corresponding slack O

(
n3(c−1) logN/c ·N4(c−1)/c

√
N · p

)
O
(
(2λ)cN2p2

)
Fig. 6. Comparison of lattice Bulletproofs and levelled commitments.

that Az̄ = 8dt. In practice, this implies that the slack we have for z̄ gets also
multiplied by the relaxation factor 8d in front of t. For d = log k, this factor
becomes k3 = N3/n3.

From Fig. 6 we deduce that Bulletproofs folding offers smaller proof size at
the cost of larger slack. Indeed, if one is not limited with any particular amount
of slack then one can achieve quadratic-logarithmic proof size as shown on the
top-left part of the table. Now, suppose that we can only tolerate B = Nα of
slack for some α. The question would be which method achieves smaller proof
size given this condition. Note that if α = 7.5 then by the argument above, one
would simply use Bulletproofs (by setting n = 2). Hence, assume that 3 ≤ α ≤ 7.
For readability, from now on we do not write the “big-O” for each expression.
Nevertheless, we still consider asymptotic parameters.

Let us first focus on levelled commitments – we find c such that (2λ)cN2p2 =
B. Then

c =
log(B/N2p2)

log(2λ)
≈ (α− 2) · logN

log(2λ)
≈ (α− 2)r

where N = λr for some constant r 13. Then, the levelled commitments achieve
Õ(N1/(α−2)r) proof size. Now consider the Bulletproofs solution. To begin with,
we would like to find d such that n3d · 12d ·

√
Np = B. By solving this equation

we have

d ≈ log(B/
√
N)

3 log n+ 4
=

(α− 1/2) logN

3 log n+ 4
= γ logN

where γ = (α−1/2)/(3 log n+ 4). Then, the Bulletproofs protocol has Õ(N1−γ)
proof size. Therefore, we just need to compare 1− γ with 1/(α− 2)r. The main
observation is that for r ≥ 3, the quadratic function fr(x) := (15−2x)(x−2)r−14
is positive when 3 ≤ x ≤ 7. Hence

1

(α− 2)r
<

15− 2α

14
≤ 1− α− 1/2

3 log n+ 4
= 1− γ.

This shows that if one is given only a limited (and relatively small) slack, one
should consider using the levelled commitments approach to obtain small sub-
linear proof sizes.

13 We neglect the log p term.
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A Knowledge Soundness

In this section, we state the heavy-rows lemma and describe the extraction al-
gorithms used in the proof of Theorem 3.3. A detailed analysis of the extraction
algorithms is provided in the full version of this paper.

Lemma A.1. Let K > 1 and H ∈ {0, 1}`×n for some n, ` > 1, such that a
fraction ε of the inputs of H are 1. We say that a row of H is “heavy” if it
contains a fraction at least ε/K of ones. Then less than 1/K of the ones in H
are located in heavy rows.
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TreeConstructi([j1, . . . , ji],Ci,Zi, t)
01 V = T [j1, . . . , ji]
02 chal(V ) = Ci, resp(V ) = Zi, index(V ) = t
03 (root, V1, . . . , Vi) :=vertices on the path from root to V where V = Vi
04 if i = d then
05 return
06 zt := t-th column vector of Zi

07 Write zt =

 zt,0
...

zt,mi−1


08 tj := t+ (j − 1)λ for j ∈ [mi]
09 for j ∈ [mi] :
10 Select random C′i+1 and then C′′i+1 such that ∀u 6= tj , c

′T
i+1,u = c′′Ti+1,u and c′′Ti+1,tj

is freshly sampled
11 Run P∗ on the i+ 1-th random challenge C′i+1 until it outputs Z′i+1

12 Rewind P∗ and re-run it on the i+ 1-th challenge C′′i+1 until it outputs Z′′i+1

13 T ′ := (W, chal(V1), resp(V1), . . . ,C′i+1,Z
′
i+1)

14 T ′′ := (W, chal(V1), resp(V1), . . . ,C′′i+1,Z
′′
i+1)

15 count = 0
16 while i = d− 1 and count < λ(4dN)2d/ε and T ′ is not a valid transcript:
17 Rewind P∗ and run P∗ on the new C′d until it outputs Z′d
18 T ′ = (W, chal(V1), resp(V1), . . . ,C′d,Z

′
d)

19 count = count + 1
20 if count ≥ λ(4dN)2d/ε then abort

21 count = 0
22 while i = d− 1 and count < 2λ(4dN)2d/ε and T ′′ is not a valid transcript:
23 Rewind P∗ and run P∗ on C′′i+1 such that ∀u 6= tj , c

′T
i+1,u = c′′Ti+1,u and c′′Ti+1,tj

is freshly sampled
24 Get response Z′′d
25 T ′′ = (W, chal(V1), resp(V1), . . . ,C′′d ,Z

′′
d)

26 count = count + 1
27 if count ≥ 2λ(4dN)2d/ε then abort

28 Let ` be an index where c′Ti+1,u[`] 6= c′′Ti+1,u[`] (w.l.o.g. c′Ti+1,u[`] − c′′Ti+1,u[`] = 1,
otherwise swap)
29 TreeConstructi+1([j1, . . . , ji, (j, 0)],C′i+1,Z

′
i+1, `)

30 TreeConstructi+1([j1, . . . , ji, (j, 1)],C′′i+1,Z
′′
i+1, `)

Fig. 7. Construction of a tree T of partial transcripts for P∗. We denote c′Ti+1,j (resp.
c′Ti+1,j) to be the j-th row of C′i+1 (resp. C′i+1).
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Extracti(V )
01 T [j1, . . . , ji] = V
02 if i = d then return respindex(V )
03 for j ∈ [mi]:
04 (s′j,0; rj,0,i+2, . . . , rj,0,d−1)← Extracti+1(T [j1, . . . , ji, (j, 0)])
05 (s′j,1; rj,1,i+2, . . . , rj,1,d−1)← Extracti+1(T [j1, . . . , ji, (j, 1)])
06 if i < d− 1 then
07 w = Fi+2,d(s

′
j,b; rj,b,i+2, . . . , rj,b,d−1)

08 rj,b,i+1 := (respindex(T [j1, . . . , ji, (j, b)])−w) /qi+2 for b ∈ {0, 1}
09 vb := (IMi+1,d−1 ⊗Ad)s

′
j,b mod qd for b ∈ {0, 1}

10 for k = d− 1, d− 2, . . . , i+ 1:
11 u := (v0 − v1 − (v0 − v1 mod qk)) /qk
12 r̂j,k := rj,0,k − rj,1,k + u
13 if k > i+ 1 then vb = (IMi+1,k−1 ⊗Ak)(vb + rj,b,k) mod qk for b ∈ {0, 1}

14 return ŝ =

 s′1,0 − s′1,1
...

s′mi,0 − s′mi,1

 and r̂k =

 r̂1,k
...

r̂mi,k

 for k = i+ 1, . . . , d− 1

Fig. 8. Extracting relaxed openings of levelled commitments, or more concretely,
preimages of Fi+1,d.
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