
The MALICIOUS Framework:
Embedding Backdoors into Tweakable Block

Ciphers

Thomas Peyrin and Haoyang Wang

School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

thomas.peyrin@ntu.edu.sg, wang1153@e.ntu.edu.sg

Abstract. Inserting backdoors in encryption algorithms has long seemed
like a very interesting, yet difficult problem. Most attempts have been
unsuccessful for symmetric-key primitives so far and it remains an open
problem how to build such ciphers.
In this work, we propose the MALICIOUS framework, a new method to
build tweakable block ciphers that have backdoors hidden which allows
to retrieve the secret key. Our backdoor is differential in nature: a specific
related-tweak differential path with high probability is hidden during
the design phase of the cipher. We explain how any entity knowing the
backdoor can practically recover the secret key of a user and we also argue
why even knowing the presence of the backdoor and the workings of the
cipher will not permit to retrieve the backdoor for an external user. We
analyze the security of our construction in the classical black-box model
and we show that retrieving the backdoor (the hidden high-probability
differential path) is very difficult.
We instantiate our framework by proposing the LowMC-M construction,
a new family of tweakable block ciphers based on instances of the LowMC
cipher, which allow such backdoor embedding. Generating LowMC-M
instances is trivial and the LowMC-M family has basically the same
efficiency as the LowMC instances it is based on.

Keywords: tweakable block cipher, backdoor, differential cryptanalysis,
LowMC-M

1 Introduction

A backdoor in an encryption algorithm enables an entity who knows it to
circumvent the security guarantees so that he can obtain the secret information
more efficiently than with a generic black-box attack. There are two categories
of backdoors. The first one is the backdoor implemented in a security product at
the protocol or key-management level, which is generally considered in practice.

In this article, we focus on the second type: a cryptographic backdoor. A
cryptographic backdoor is embedded directly during the design phase of a crypto-
graphic primitive and renders the cipher susceptible to some dedicated cryptanal-
ysis. Cryptographic backdoors have been extensively studied by Young and Yung,

introducing the term “Kleptography” [41, 44]. However, despite some interest
from the academic community about this topic, there are very few publicly
known backdoored primitives. A concrete example is the pseudorandom number
generator Dual_EC_DBRG [8] designed by NSA, whose backdoor was revealed
by Edward Snowden in 2013 and also in some research works [10,37].

Embedding backdoors into block ciphers is a challenging problem since block
ciphers are deterministic and thus it is complex to exploit randomness in com-
putations. Young and Yung have designed several backdoors in secret block
ciphers [42,43,45], where it is assumed that the cipher specifications are unknown
to the adversary. In this work, we will not make such assumption and we will
consider the specifications of the cipher to be fully public.

A backdoor should be computationally difficult to retrieve, even if its general
form is known. More concretely, the backdoor security (the cost of retrieving the
backdoor) should be the same as the security generically provided by the cipher
(otherwise the backdoor would naturally reduce the security of the block cipher).
Besides, the backdoor should ideally lead to a practical key recovery attack, or
at least reduce the brute force search cost for the adversary. For example, if
a backdoor could reduce the security of AES-256 to 2128, it would be a great
theoretical advance, but would be unusable in practice. Last but not least, the
resulting block cipher also has to be secure in the classical sense, that is, it is
able to resist state-of-the-art cryptanalysis techniques.

There have been only limited works focusing on this direction and to the best
of the authors’ knowledge there is no such design satisfying the above requirements
simultaneously. In 1997, Rijmen and Preneel proposed a special Sbox design
strategy which was used to hide a high-probability linear approximation in an
Sbox [35]. The knowledge of this backdoor leads to an efficient key recovery
attack based on linear cryptanalysis, but only a part of the key information can
be obtained. They presented concrete instantiations by applying the Sbox design
to CAST and LOKI91 ciphers and claimed that the embedded backdoors are
undetectable even if the general form of the backdoor is known. However, this
design was broken subsequently in 1998 [39] by Wu et al. who found a way to
easily recover the backdoor and showed that the security and practicability of the
backdoor can’t be guaranteed at the same time. Later in 1999, Paterson suggested
that if the group generated by round functions acts imprimitively on the message
group, then it is possible to create a backdoor in the cipher [31]. Built upon this
mechanism, he introduced a DES-like cipher which allows an entity knowing the
backdoor to retrieve the key with 241 computations. However, as mentioned by
the author, the backdoor is detectable and the cipher is vulnerable to differential
attacks. Following on this idea, a backdoor based on partitioning cryptanalysis
was studied in [5] and a concrete instance of an AES-like cipher called BEA-1
was later proposed in [6], but no explicit backdoor security was provided. One
can also mention the work from Patarin and Goubin [29, 30] who proposed
“2R–schemes”, basically Sbox-based asymmetric schemes secretly consisting of a
2-round secret Substitution-Permutation Network (SPN) but publicly represented
as its corresponding algebraic equations. However, this research direction also

2

suffered from attacks [12, 40]. Two more backdoor designs [4, 13] have been
introduced, but neither of them provide solid proof for the backdoor security
and even the security of the cipher itself is questionable. Lastly, in a different
setting, a backdoored version of the SHA-1 hash function was proposed in [1],
where the attacker is allowed to pre-choose the constants used in the design, so
he can prepare in advance some specific collision messages for that particular
instance.

Apart from these public researches, one can naturally question if there are
some public block ciphers that might contain backdoors not claimed by the
designers. In particular, primitives whose detailed design rationale is not provided
are naturally more suspicious, especially when the ciphers have been designed by
governmental agencies (as can be seen by the difficulties encountered by the NSA
lightweight block ciphers SIMON and SPECK [9] to become ISO standards). For
example, Perrin found a very strong algebraic structure [32] that is hidden inside
the Sbox employed in both the block cipher Kuznyechik [36] and the hash function
Streebog [27], both primitives being selected as Russian standards (GOST). Even
though there is currently no attack based on this result, it illustrates the issue of
potential backdoor in foreign encryption algorithms and more research is required
to better understand the possibilities and implications of cryptographic backdoor.

We emphasize that inserting backdoors in an encryption algorithm itself is
very different from inserting backdoors in an implementations, being in software
or in hardware (like hardware trojans).

Our Contributions. In this paper, we propose a new method to generate
backdoor encryption algorithms. We bring together tweakable block ciphers
(TBC) and Extendable-Output Function (XOF) in a common framework called
MALICIOUS, which enables the designer to embed backdoors into the TBC. The
general representation of our construction is similar to that of the TWEAKEY
framework [22], but the tweak is handled separately by a XOF and the round
function has to be partially non-linear.

Our backdoor is based on differential cryptanalysis: due to the partial non-
linear layer, the designer can embed related-tweak differential characteristics
with probability 1 over many rounds. In particular, the sub-tweak difference
employed in an embedded differential characteristic is generated from a specific
tweak pair that is chosen in advance by the designer. This malicious tweak pair is
the backdoor, and the XOF applied in the tweak schedule is used to protect the
malicious tweak pair: even knowing the high-probability related-tweak differential
characteristic, it will remain computationally difficult to find a tweak pair that
triggers it. More importantly, the backdoor security is ensured by the target-
difference resistance ability of the chosen XOF. An attacker with the knowledge
of the backdoor is able to retrieve the full key with negligible effort under the
chosen-tweak scenario.

Based on the MALICIOUS framework, we also propose a concrete instantiation
that we call LowMC-M. Our family of TBC LowMC-M is created based on some
instances of the block cipher LowMC [2]. Compared to LowMC, our proposal

3

LowMC-M has an additional sub-tweak addition in each round and the tweak
schedule is a XOF, but the other parts of the round function and the number
of rounds remain unchanged. Apart from its backdoor security that is naturally
inherited from the MALICIOUS framework, we claim that its classical black-box
security against state-of-the-art cryptanalysis is the same as the corresponding
LowMC variants.

We believe this work is a first step in a new direction for the study of backdoors
in encryption algorithms. We are confident that more exotic (based on other types
of cryptanalysis techniques than plain differential cryptanalysis) and potentially
more efficient instances following the MALICIOUS would be possible.

Paper Organization. In Section 2, we present the attacking scenario and
some security notions for backdooring cryptographic primitives. In Section 3
the MALICIOUS framework is described and its backdoor security and design
rationale are explained. We introduce a concrete instantiation of MALICIOUS
(so-called LowMC-M) in Section 4. We then analyze LowMC-M with respect to the
backdoor security and the classical black-box security in Section 5 and Section 6
respectively. Finally, we present our conclusions in Section 7.

2 Preliminaries

2.1 Attacking Scenario

For classical (tweakable) block ciphers, the attacking scenario considers only two
entities: the user (or pair of users) who owns the secret key and the attacker who
tries to break the cryptosystem, i.e., to find out the secret key. For (tweakable)
block ciphers with a backdoor, another entity has to be involved in the attacking
scenario: the designer, who inserts the backdoor into the primitive. Thus, we
have in total three entities: the designer (knows the backdoor, but not the secret
key), the user (knows the secret key, but not the backdoor) and the attacker
(neither backdoor nor key is known).

One can see that both the user and the attacker have some motivation to
find out what is the backdoor. More importantly, in our model the backdoor is
independent of the secret key, and therefore the user and the attacker possess
the same capability in trying to uncover the backdoor (the cipher specifications
are public known, so they can test the cipher with any chosen key they want).
For the rest of this article, when considering the recovery of the backdoor, we
will simply refer to both of them as the attacker.

2.2 Security Notions and More

We introduce below various notions regarding the security and the practicability
of a backdoor:

– Undetectability: this security notion represents the inability for an external
entity to realize the existence of the hidden backdoor.

4

– Undiscoverability: it represents the inability for an attacker to find the hidden
backdoor, even if the general form of the backdoor is known.

– Untraceability: it states that an attack based on the backdoor should not
reveal any information about the backdoor itself.

– Practicability: this usability notion stipulates that the backdoor is practical,
in the sense that it is easy to recover the secret key once the backdoor is
known.

If a cipher is publicly claimed as potentially backdoored, it will naturally
increase the watchfulness of users, even if they do not know whether there
is indeed backdoored or not embedded in the primitive. In this scenario, the
undetectability notion models the incapacity of a user to find any hard evidence
that a backdoor indeed exists.

For our proposal LowMC-M, the backdoor is claimed to be undetectable,
undiscoverable and practicable, but not untraceable.

2.3 Notations

Given a bit string x, we will denote by x[i] its i-th bit, counting from the least
significant bit (LSB). Given two bit strings x and y, x||y will represent the
concatenation of x and y. Finally, we denote by kj (respectively by tj) the sub-
key (respectively sub-tweak) incorporated during the j-th round of the cipher,
while k0 and t0 are added in as whitening material.

3 The MALICIOUS Framework

In this section, we introduce the MALICIOUS framework which allows to generate
tweakable block ciphers that are embedded with hidden high-probability differen-
tial characteristics. This framework is based on partial non-linear layers for the
internal state transformation and a tweak schedule based on an extendable-output
function (XOF).

3.1 Block Ciphers with Partial Non-Linear Layers

SPN-based block ciphers are usually designed to apply linear layers (Li) and
non-linear layers (Si) to the entire state at every round i. In 2013, an irregular
design was suggested by Gérard et al. [18], where the non-linear layer is only
applied to a subpart of the state at each round. We consider such design with
block size n bits and partial non-linear layers of size s (< n) bits. Assume, without
loss of generality, that the non-linear layer is always applied before the linear
layer at every round. Then, we can write fi(x) = Li(Si(x(0))||x(1)) the round
function fi that transforms the state x at round i, the state being partitioned
into two parts where the non-linear layer only operates on the part x(0) and not
on the part x(1).

Such design allows efficient masking and thus can improve security against
side-channel attacks. A concrete instantiation of this methodology named ZORRO

5

was then proposed [18]. Even though ZORRO was rapidly broken [7,20,33,38], the
general design strategy continued to attract interest from the research community:
in 2015, another such design LowMC was proposed [2]. Its aim was to minimize the
multiplicative complexity and depth of the cipher in order to have performance
advantages in certain applications, including multi-party computation (MPC),
fully homomorphic encryption (FHE) and zero-knowledge proofs (ZK). After a
few tweaks due to security concerns, the current version v3 of LowMC remains
solid after the several third party analysis [15,16,34].

Compared to a full non-linear layer, a partial non-linear layer inevitably
weakens the security of a cipher. One notable property is that there will exist
non-trivial differential characteristics that will not activate any Sboxes over one
or more rounds of the cipher. In a single round, by setting the difference on
x(0) to be 0, there are 2n−s differences of x that do not differentially activate
any Sboxes. Assuming a well designed linear layer with good mixing properties,
one can still expect around 2n−2s differences that will also not differentially
activate any Sboxes in the second round. This reasoning can be continued until
no difference survives and thus the maximal expected number of rounds that a
deterministic differential characteristic can cover is bns c. Note that this number
would of course vary depending on the specificities of the linear layers.

3.2 Tweakable Block Ciphers

The first formal treatment of tweakable block ciphers (TBC) was proposed by
Liskov, Rivest and Wagner in [25,26]. The signature of a conventional block cipher
can be described as E : {0, 1}k × {0, 1}n → {0, 1}n where an n-bit plaintext
is encrypted to an n-bit ciphertext using a k-bit secret key. A tweakable block
cipher accepts an additional t-bit public input called tweak, its signature thus
being E : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n. The introduction of a tweak
input provides the ability for the user to select a permutation among a family of
permutations even when the key is fixed.

Due to this extra degree of freedom that can potentially be leveraged by
the attacker, designing a TBC is not straightforward. Block cipher-based TBC
constructions have been studied, but comes with a non-negligible efficiency
penalty. We can mention the TWEAKEY framework, a recent design strategy to
build ad-hoc TBCs, that was proposed at ASIACRYPT 2014 by Jean et al. [22].
In this framework, the key and tweak inputs are treated equivalently in terms of
design and this material is called tweakey: the tweakey input can be used as key
or tweak value, which is up to the choice of the user.

Unlike the key input, the tweak does not need to be kept secret and therefore
one should assume that an adversary has full control over it. Thus, besides
the attack models of single-key (no difference in the key or tweak), related-key
(difference in the key, but no difference in the tweak), related-tweak (no difference
in the key, but difference in the tweak) and related-tweakey (difference in both
the key and tweak), it is reasonable to consider the chosen-tweak model as a
meaningful model in practice.

6

3.3 Extendable-Output Function

An extendable-output function (XOF) is a generalization of a hash function, where
the output can be extended to any desired length. Similar to a hash function, it
should be collision, preimage and second-preimage resistant. A XOF is a natural
choice when an application requires a hash function to have non-standard digest
length. Technically, it is also possible to use a XOF as a generic hash function by
setting the output length fixed. Besides, it has some other applications, such as
key derivation functions and stream ciphers.

Currently, there are many instances of XOF, such as SHAKE128 and SHAKE256
(defined in SHA-3 standard [17]) and the more efficient variant KangarooTwelve [11].

3.4 The MALICIOUS Construction

Motivation. Differential and linear cryptanalysis are among the most efficient
and well-understood attacks against block ciphers, both in theory and in practice.
Thus, it seems natural to try creating backdoors using these techniques. Yet, there
have been only a few works focusing on this research direction. For example, [3]
and [28] explored backdoors in hash functions based on differential cryptanalysis.
As for block ciphers, to the best of our knowledge, there is only one work from
1997 [35] using linear cryptanalysis. In that paper, special Sboxes are designed
to hide high-probability linear approximations, which then enable a practical
linear cryptanalysis. However, this construction was easily broken by Wu et al.
in the subsequent year [39]. The attack against this cipher shows that the higher
the probability of the embedded linear approximation, the weaker the backdoor
security. Consequently, the authors claimed that it is infeasible for such a cipher
to build a practical backdoor while keeping acceptable backdoor security. They
further noted that “it seems that hiding differentials is more difficult than hiding
linear relations”.

Even though other block ciphers embedding backdoors have been proposed [4,
5, 6, 13,31], their design methodologies are usually very dedicated. On the other
hand, as the topic of backdoor ciphers has not drawn much attention from the
cryptography community, the backdoor security of these ciphers has not been
well analyzed yet.

Considering the above facts, we introduce the MALICIOUS framework which
allows to build efficient backdoors based on differential cryptanalysis. Moreover,
we will show that the backdoor security can be reduced to a variation of the
collision resistance notion of the XOF used in the tweak schedule.

The Construction. MALICIOUS is a framework to build a tweakable block
cipher with n-bit blocksize, k-bit key and tweak of arbitrary size. It consists of
three components:

– a round function fi with partial non-linear layer, which can be expressed as
fi(x) = Li(Si(x(0))||x(1)),

– a tweak schedule based on a XOF,

7

– a key schedule.

The sub-tweak and sub-key values are XORed only to the non-linear part
of the state, but are XORed to full state at the whitening stage1. The cipher is
composed of r consecutive rounds. The framework is depicted in Figure 1.

Key expansion algorithm

K

Extendable-output function

T

P = x0 f1 x1

. . . fr xr
xr+1

k0 k1 kr−1 kr

t0 t1 tr−1 tr

Figure 1: The MALICIOUS framework

The backdoor introduced by MALICIOUS are related-tweak differential charac-
teristics with probability 1 (deterministic). With the knowledge of this backdoor,
a key recovery attack can be performed using various methods of differential
cryptanalysis. It is to be noted that the attack is under the chosen-tweak model:
both the designer and the attacker have complete freedom over the tweak values.
This model is classical for TBC and realistic in practice.

We now describe how the backdoor can be embedded in the cipher. The core
idea is that the sub-tweak difference of the backdoor chosen tweaks is used to
cancel the difference of the non-linear part of the state in each round, so that
the resulting differential characteristics will have no differentially active Sbox (as
illustrated in Figure 2). In Algorithm 1, we present the general steps to construct
a MALICIOUS instance, in which a deterministic differential characteristic over
r0 (≤ r) rounds is embedded.

The key of the backdoor is the tweak pair generating these particular sub-
tweak differences and the plaintext difference used in the embedded differential
characteristic. We will use the prefix malicious to denote them. We also note that
it is possible to embed multiple differential characteristics simultaneously. Then,
the key recovery complexity will depend on the number of embedded differential
characteristics and the cryptanalysis method.
1 This is equivalent to a full state addition for all rounds, see Section 4.2 for details.

8

Si

Li

Si+1

∆ti−1 ∆ti

∆x(0)

∆x(1)

Figure 2: Transitions of state difference in the embedded related-tweak differential
characteristic. The differences of the hashed blocks can be zero or non-zero, while the
differences of the white blocks are necessarily zero.

Algorithm 1: Constructing a MALICIOUS instance with an embedded
deterministic differential characteristic over r0 rounds
Select a XOF as the tweak schedule.
Choose uniformly at random a pair of tweak values (T1, T2) of arbitrary length.
Compute t10|| . . . ||t1r ← XOF(T1) and t20|| . . . ||t2r ← XOF(T2).
Evaluate the differences ∆ti = t1i ⊕ t2i for all i ∈ [0, . . . , r].

Randomly select a plaintext difference ∆P = ∆x0 for the linear part x(1)
0 and set

∆x
(0)
0 = ∆t

(0)
0 .

for i from 1 to r do
Determine a round function fi with partial non-linear layers such that:
if i < r0 then

Given the input difference (∆xi−1 ⊕∆ti−1), the output difference after fi

has to satisfy ∆x(0)
i = ∆ti.

end
end
Output the cipher description and the r0-round related-tweak differential
characteristic that is embedded into it (with related tweaks T1 and T2).

9

We emphasize that the framework only focuses on the requirements of the
cipher to embed a backdoor. However, a concrete instantiation would also have to
take into account many other design principles so that the cipher could resist all
state-of-the-art cryptanalysis as well as the attack against the backdoor described
in the following section.

3.5 The Backdoor Security

In this section, we will evaluate two particular aspects of the backdoor security: (1)
the complexity for the attacker to find the embedded differential characteristics,
(2) whether additional backdoors exist in the resulting primitives, and if so, what
is the complexity to find them.

Firstly, we will discuss the relation between the malicious tweak pair and its
corresponding plaintext difference. We consider in this article that the number of
rounds for the embedded differential characteristic is publicly known. On the one
hand, if the malicious tweak pair is known to the attacker, then the corresponding
sub-tweak differences can of course be computed. From these sub-tweak differences,
he can obtain partial information about the state differences expected during
the differential characteristic. Note that the embedded differential characteristic
being deterministic indicates that the transformations of state differences are
linear. Hence, by reversing the linear transformations, the malicious plaintext
difference can eventually be recovered. That is, the leakage of the malicious tweak
pair reveals the malicious plaintext difference.

On the other hand, if the malicious plaintext difference is known to the
attacker, he can compute its transformation through the linear layer and obtain
the required value for the sub-tweak difference such that it cancels the non-linear
layer difference (since the sub-tweak is only XORed to the non-linear part, there
is only one such candidate), and continue this process in the following rounds.
Eventually, the embedded differential characteristic will be revealed. However, it
remains difficult to recover the actual malicious tweak pair due to the XOF-based
tweak schedule: given the embedded related-tweak differential characteristic,
finding a tweak pair that leads to it through the XOF will be difficult. We define
this new security notion as target-difference resistance:

Definition 1 (Target-difference resistance). A hash function H is target-
difference resistant if it is hard to find two inputs x and y such that H(x)⊕H(y) =
∆, where ∆ is a given non-zero constant.

To better understand target-difference resistance, we introduce the limited-
birthday problem, which was first proposed in [19]:

Definition 2 (The limited-birthday problem[21]). Let H be an n-bit output
hash function that can be randomized by some input (IV or tweak or etc.) and
that processes any input message of fixed size m bits, where m > n. Let IN
be a set of admissible input differences and OUT be a set of admissible output
differences, with the property that IN and OUT are closed sets with respect to ⊕
operation. Then, for the limited-birthday problem, the goal of the adversary is to

10

generate a message pair (x, y) such that x⊕ y ∈ IN and H(x)⊕H(y) ∈ OUT
for a randomly chosen instance of H.

Let 2I and 2O denote the sizes of IN and OUT respectively. The lower bound
on the time complexity to find a solution for the limited-birthday problem is
max(2 n−O+1

2 , 2n−I−O+1)2. If I is small, the complexity is 2n−I−O+1. However,
even if I is very big, the complexity cannot be below 2 n−O+1

2 .
Target-difference resistance can be seen as a special case of the limited-

birthday problem (as well as a generalisation of the classical collision resistance)
where OUT is limited to a single value (2O = 1) and IN is the full input space.
Therefore, target-difference resistance has the same generic complexity as the
classical collision resistance notion, that is the birthday bound O(2n/2).

More generally, instead of the exact malicious tweak pair, the attacker could
try to find another tweak pair whose sub-tweak differences are also the desired
ones for the embedded differential characteristic. Yet, its complexity is still
covered by the expected target-difference resistance of the XOF.

The above attack can possibly be applied to other plaintext differences.
According to the construction of the MALICIOUS framework, the size of the
input (tweak) to the XOF can be arbitrary long and thus any output of the XOF
can potentially be obtained. For instance, if SHAKE128 is used as XOF, it can
produce at most 2b output streams (b being the state size between absorbing
and squeezing phases in the sponge construction). Hence the number of possible
sub-tweaks values is bounded by 2b, no matter how many rounds it covers, and
the number of sub-tweak differences is accordingly bounded by a greater value
N (≥ 2b). Thus, given a random plaintext difference and a certain number of
rounds, if the size of the required sub-tweak differences for the deterministic
related-tweak differential characteristic does not exceed logN , then there will be
a tweak pair matching the differential characteristic. We summarize this finding
as follows:

Property 1. In addition to the embedded differential characteristics, there might
exist other deterministic differential characteristics that would threaten the cipher
security.

Consequently, we have to evaluate the security of the cipher with respect to
all the potential deterministic differential characteristics, not only the planned
ones. We consider a MALICIOUS instance that has a key size of 128 bits and
employs SHAKE128 as tweak schedule. The security strength of SHAKE128
against collision attack is min(l/2, 128) bits, where l is the output length (or
the length of the colliding part). In order to recover an r0-round deterministic
differential characteristic, the attacker has to find a tweak pair whose sub-tweak
differences are the desired ones. The total size of these sub-tweak differences is
n+s·(r0−1) bits and thus the generic attack complexity is 2min((n+s·(r0−1))/2,128),
which becomes 2128 when (n+ s · (r0 − 1))/2 ≥ 128. The analysis is similar for
2 The success probability here is about 0.63.

11

the case where the key size is 256 bits and SHAKE256 is employed. We define r′
to represent the value of r0 that turns this inequality into an equality:

(n+ s · (r′ − 1))/2 = k (1)

All the deterministic related-tweak differential characteristics smaller than r′

rounds can be recovered with a complexity smaller than the actual key size. There-
fore, in order to prevent these differential characteristics to weaken the cipher, r′
must be taken into consideration when determining the number of rounds of the
MALICIOUS instance. Actually, these related-tweak differential characteristics
will decay exponentially in the remaining rounds as the corresponding sub-tweak
differences are basically random.

3.6 Rationale Underlying the MALICIOUS Construction

When designing a backdoor for block ciphers, the first question that comes into
mind is probably what type of backdoor should be used ? While some existing
backdoor designs directly insert a backdoor inside Sboxes or some other parts
of the round function, we found out that the additional input tweak capability
of a tweakable block cipher could be a perfect carrier of the backdoor. Suppose
that a tweakable block cipher has a special property only when it is initiated
with very specific tweak values, while it performs normally for all the other
tweak values, then this property could be used as a backdoor. Moreover, if the
tweak size is large enough, finding these special tweak values could be as hard
as finding the secret key in the ideal case. One straightforward example of the
special property is to build related-tweak differential characteristics using these
tweaks. In the following, we provide more in-depth explanations on the design
choices in MALICIOUS.

Components Rationale. When instantiating the MALICIOUS framework,
some (security) notions have to be taken into account. The first and most
important one is the undiscoverability: an entity who does not know the backdoor
should not have increased chances to break the cipher. This requires that the
backdoor security has to be as high as the cipher security. Thus, the MALICIOUS
framework should provide a valid and solid security evaluation for the backdoor.

Another important notion is the practicability of the backdoor, and we will
aim to make it as efficient as possible.

We detail in the following how the components of the MALICIOUS framework
do follow these principles.

Tweak Schedule Based on XOF. As the malicious tweak values are the
backdoor, the main task of the tweak schedule is to protect the malicious tweaks.
According to the security analysis from Section 3.5, the backdoor security relies on
the target-difference problem, where the attacker tries to find a tweak pair whose
sub-tweak differences are the desired ones. This notion is simply a variation

12

of the classical collision resistance for a hash function, so we expect a good
cryptographic hash function to naturally provide this resistance.

Since MALICIOUS is a generalized framework, the total number of rounds will
vary according to the different instantiations, so does the length of the sub-tweaks.
Hence, the output length of the tweak schedule is expected to be flexible. Besides,
if the tweak schedule was designed specifically for each MALICIOUS instantiation,
it will render the backdoor evaluation much more difficult. Thus, for sake of
simplicity of the analysis, it seems a better idea to make the tweak schedule
uniform in the framework.

For all these reasons, a XOF seemed to be the best choice for our tweak
schedule. The security of actual XOF functions such as SHAKE128 or SHAKE256
is rather well-analyzed and it can provide many choices in terms of security level.

Partial Non-Linear Layers. The probability of a differential characteristic
is determined by the number of differentially active Sboxes. Hence, in order to
embed an efficient backdoor based on a differential characteristic, the best case
is that the differential characteristic activates no Sbox at all. This is obviously
very unlikely to happen in the MALICIOUS framework if the round functions
are fully non-linear layers. Indeed, unless the related-key model is considered,
a non-zero difference inserted in the plaintext would have to be cancelled by
the first sub-tweak difference. However, when inserting differences in the tweak
input, as the sub-tweak differences produced by the XOF will be random, they
will force many active Sboxes in the subsequent rounds. Thus, it is unlikely for
the MALICIOUS framework to be able to embed a deterministic related-tweak
differential characteristic that covers more than a few rounds if full non-linear
layers are utilized. Of course, it is possible to construct a differential characteristic
with limited number of active Sboxes, but this is not the efficiency we are targeting.

We have also tried to modify the framework such that the sub-tweak addition
is not performed every round. For example, an r rounds deterministic related-
tweak differential characteristic can be realized by applying the tweak addition
only once at the beginning, see Figure 3. This way, the sub-tweak difference
∆t0 could neutralize the plaintext input difference ∆x0 and the resulting zero
difference would get through the r rounds with probability 1. However, this
candidate has an obvious fatal flaw: for any tweak pair the attacker can always
set the plaintext input difference to be equal to ∆t0.

∆x0

(= ∆t0)

f1
0

f2
0

. . .
0

fr
0 0

xr+1

∆t0 ∆tr

Figure 3: A defective variant of the MALICIOUS framework. Key addition is omitted.

13

The above analysis shows that full non-linear layers seem not suitable for the
MALICIOUS framework. On the contrary, partial non-linear layers satisfy our
requirements. As in that case the Sbox only applies to a part of the internal state,
the round function is able to map a non-zero input difference to a non-zero output
difference while no active Sbox is activated. In term of building deterministic
differential characteristics, we only have to set the difference of the non-linear
part of the internal state to be zero rather than the full state. This allows to
choose the linear transformation so that the output difference could satisfy the
requirements from Algorithm 1.

4 Instantiating the MALICIOUS Framework with LowMC

In this section, we introduce a concrete instantiation of the MALICIOUS framework,
called LowMC-M, which is based on the family of block ciphers LowMC.

4.1 LowMC

LowMC [2] is a family of block ciphers based on SPN structure with partial
non-linear layers. The parameters are flexible and we denote the block size by
n, the key size by k, the number of Sboxes applied each round by m and the
maximum allowed data complexity by d (d is the log2 of the allowable data
complexity up to which the cipher is expected to give the claimed security). In
order to reach the security claims, the number of rounds r is then derived from
all these parameters using a round formula, the latest version being given in [34].

At the beginning of the encryption process, a key whitening is performed.
The round function at round i consists of four operations in the following order:

– SboxLayer. A 3-bit Sbox is applied in parallel on the s = 3m LSBs of the
state, while the transformation for the remaining n− s bits is the identity.

– LinearLayer(i). The state is multiplied in GF(2) with an invertible n× n
binary matrix Li which is chosen independently and uniformly at random.

– ConstantAddition(i). The state is XORed with an n-bit round constant Ci
which is chosen independently and uniformly at random.

– KeyAddition(i). The state is XORed with an n-bit round key ki. To generate
ki, the master key K is multiplied in GF(2) with an n × k binary matrix
KLi. This matrix is chosen independently and uniformly at random with
rank min(n, k).

4.2 Equivalent Representation of LowMC

As discussed in [14,23,34], round keys and constants in LowMC can be compressed
due to the fact that the non-linear layer is partial.

In the round function, it is possible to exchange the order of consecutive linear
operations. We swap the order of LinearLayer and KeyAddition operations while
keeping ConstantAddition as the last step in round i. Then, the equivalent round

14

key can be written as k′i = L−1
i (ki). We observe that the Sbox only operates

on the first s bits of the state and does not change the rest of the n − s bits.
Thus, we split k′i into k

′(0)
i and k′(1)

i , and we can move the addition of k′(1)
i to

the beginning of the round. Next, we observe that k′(1)
i can move further up to

be combined with ki−1 in the previous round. The procedure is illustrated in
Figure 4. In general, if we start from the last round and iterate this procedure
recursively until all the additions to the linear part have been moved to the
beginning of the algorithm, we will end up with an equivalent representation
where all the round keys are reduced to s bits apart from the whitening key. We
remark that the same reasoning can be applied to the round constants.

This optimized representation can also reduce the implementation cost of the
key schedule. Since all transformations performed during the optimization are
linear and since the key schedule is itself linear, these transformations can be
composed with the key schedule in order to compute the new 3m-bit round keys
directly. We refer to [14] for details.

KeyAddition(i)

ConstantAddition(i)

LinearLayer(i)

SboxLayer

KeyAddition(i-1)

ki

Ci

Li

ki−1

ConstantAddition(i)

LinearLayer(i)

KeyAddition(i)

SboxLayer

KeyAddition(i-1)

Ci

Li

k′i

ki−1

ConstantAddition(i)

LinearLayer(i)

KeyAdd.(i)

SboxLayer

KeyAddition(i-1)

Ci

Li

k′i
(0)

k
(0)
i−1||(k

(1)
i−1+k′i

(1)
)

⇒ ⇒

Figure 4: Simplified representation of LowMC.

4.3 LowMC-M

We will directly use the simplified representation of LowMC as a starting point in
our design, with a further modification: we move LinearLayer behind SboxLayer
in every round3.

LowMC-M is a family of tweakable block ciphers built upon LowMC with an
additional transformation in each round:

– TweakAddition(i). The non-linear part of the state is XORed with an s-bit
sub-tweak ti just after KeyAddition. ti is generated from a XOF whose input
is the original tweak value T .

3 The resulting primitive is an equivalent representation of a LowMC instantiation with
different linear layers, key schedule and round constants, because these components
are chosen randomly.

15

The XOF is based on SHAKE128 or SHAKE256, depending on the key size. All
the other transformations of the round function are the same as for LowMC. The
round function is finally composed of the following operations:
TweakAddition(i) ◦ KeyAddition(i) ◦ ConstantAddition(i) ◦ LinearLayer(i) ◦ SboxLayer

The encryption starts with a key and tweak whitening and the sizes of k0 and
t0 are both n. The derivation formula for the number of rounds r is the same as
for LowMC.

S

Li

Ci⊕ki⊕ti

n−s

s

Figure 5: A single round of LowMC-M.

Notations for LowMC-M. During a differential cryptanalysis, we denote by
Xi the i-th round state difference before the LinearLayer transformation. Given
a matrix Li, we denote its j-th row by Li[j, ∗], and partition Li into four sub-
matrices:

Li =
[
L00
i L01

i

L10
i L11

i

]
where L00

i ∈ GF(2)s×s, L01
i ∈ GF(2)s×(n−s), L10

i ∈ GF(2)(n−s)×s, L11
i ∈

GF(2)(n−s)×(n−s). With this notation, L00
i and L01

i will map X
(0)
i and X

(1)
i

to the non-linear part of the state, respectively. And L10
i and L11

i will map X(0)
i

and X(1)
i to the linear part of the state, respectively.

4.4 Embedding a Backdoor into LowMC-M

There are many forms of differential cryptanalysis that can perform a key recovery
attack, such as the impossible differential attack, the boomerang attack, etc. For
LowMC-M, we use the plain version where the attacker can deduce full or partial

16

information about the r-th round key from a differential characteristic over r − 1
rounds.

Since an (r− 1)-round deterministic differential characteristic can only reveal
the s-bit sub-key kr of the r-th round, more deterministic differential character-
istics should be added in order to eventually recover the full key. After kr has
been retrieved, the cipher can be reduced to r − 1 rounds and thus another s-bit
sub-key kr−1 can be recovered from an (r − 2)-round deterministic differential
characteristic. Finally, assume that there are a total of a such deterministic
differential characteristics embedded in LowMC-M (one on r − 1 rounds, one on
r − 2 rounds, etc., see Figure 6), then a · s sub-key bits can be recovered. As the
key schedule is fully linear and each matrix inside the key schedule is generated
independently and uniformly at random, it implies that one will recover a · s bits
of information about the key by solving a system of linear equations. Therefore,
at most a = dk/se deterministic differential characteristics are needed to recover
the full key.

1

2

a

...
...

(r − a) rounds

(r − 2) rounds

(r − 1) rounds

... ...

... ...

...

Figure 6: The deterministic differential characteristics embedded into LowMC-M.

Now, we explain how to embed such differential characteristics into an in-
stantiation of LowMC-M. The general procedure is given in Algorithm 1. The
a malicious tweak pairs are chosen by the designer at the very beginning and
the corresponding sub-tweak differences are computed. Then, the linear layer
matrix Li is generated along with the generation of the deterministic differential
characteristics, round by round.

Firstly, we explain how to generate the linear layer matrices. Note that in
order to have a deterministic differential characteristic over i rounds, only the
linear layer matrices of the first i−1 rounds have to be specifically designed as the
matrix Li has no impact on the differences of the i-th round Sboxes. Assuming we
have already embedded a deterministic differential characteristics over i rounds,
then all the linear layer matrices of the first i− 1 rounds of LowMC-M have been
fixed accordingly. If we plan to extend b (b ≤ a) of the a deterministic differential
characteristics by one more round, the matrix Li should be specified. Denote by
SXi the set of X(1)

i of those deterministic differential characteristics that will be
extended in the next round. Here, SXi refers to the b differential characteristics.
Since the non-linear state difference X(0)

i equals to zero for all the b differential

17

characteristics, the set SXi will determine the differential in the following round.
Given the difference set SXi, the output differences after the multiplication by
the matrix L01

i should cancel the following sub-tweak differences so that the b
differential characteristics will activate no Sbox in round i + 1. We detail the
generation of Li in Algorithm 2.

Algorithm 2: Generate linear layer matrix Li.
Input : The set SXi = (X(1)

i,1 , X
(1)
i,2 , · · · , X

(1)
i,b) and the sub-tweak differences

(∆t1i ,∆t2i , · · · ,∆tbi) for the b differential characteristics.
Output :Matrix Li

while True do
for j from 1 to s do

Solve the following system of linear equations and randomly pick one
solution of x = (x1, x2, ..., xn) as L01

i [j, ∗].

X

(1)
i,1 [1] X(1)

i,1 [2] ... X(1)
i,1 [n− s]

X
(1)
i,2 [1] X(1)

i,2 [2] ... X(1)
i,2 [n− s]

...
X

(1)
i,b [1] X(1)

i,b [2] ... X(1)
i,b [n− s]

 ·

x1
x2
...

xn−s

 =

∆t1i [j]
∆t2i [j]

...
∆tbi [j]

 (2)

end
Randomly select the sub-matrices L00

i , L
10
i and L11

i .
if Li is full rank then

return Li

end
end

Denote the b× (n− s) matrix in Equation (2) by MXi. We emphasize that
the rank of MXi should be min(b, n− s), otherwise Equation (2) is likely to have
no solution. In practice, b is always smaller than n− s for a normal parameters
set of LowMC-M. Thus, this requirement also means that the binary vectors of
X

(1)
i in SXi should be linearly independent.
The whole process of generating an instance of LowMC-M is given here:

1. Select a different pairs of tweaks of any desired length and compute the
corresponding sub-tweak differences in all rounds for each pair of tweaks.

2. For each tweak pair, choose an n-bit value of the plaintext difference ∆P as
the input difference for the embedded differential characteristic, while setting
the first s bits of ∆P to be equal to ∆t(0)

0 .
3. For the a differential characteristics, compute X(1)

1 = ∆P (1) ⊕∆t(1)
0 and if

the binary vectors of SX1 are not linearly independent, then go back to step
2.

18

4. For round i from 1 to r − 2:
• Generate the matrix Li using Algorithm 2 with SXi and the correspond-

ing sub-tweak differences as inputs4.
• Except for the last loop, compute the set of SXi+1 through the matrix
multiplication of Li. If the binary vectors of SXi+1 are not linearly
independent, repeat this loop.

5. Choose Lr−1 and Lr independently and uniformly at random from all invert-
ible n× n binary matrices.

6. For all rounds i, choose KLi independently and uniformly at random from
all n × k binary matrices of rank min(n, k) and the round constants Ci as
well.

Recovering the Secret Key With the Backdoor. The backdoor is the a
malicious tweak pairs and the corresponding plaintext differences. With the
knowledge of these related-tweak differential characteristics, the designer can
recover the full key in a very short time. To create the a plaintext differences,
the designer can firstly choose a random P , then compute Pi = P ⊕ ∆Pi for
i ∈ {1, · · · , a}. We note the fact that for any non-zero probability differential
(∆1, ∆2) of LowMC-M Sbox, where ∆1 6= 0 and ∆2 6= 0, there is only one
unordered pair of inputs/outputs of the Sbox satisfying the differential. If each
plaintext difference is used only once in the attack, then two sub-key candidates
will remain for each Sbox as we cannot determine which order of the input/output
pair of the targeted Sbox should be in the attack. The wrong sub-key candidate
can be filtered by repeating the attack with another pair of plaintexts of the
same difference. By doing so, a · s bits of information of the key can be retrieved
in the end. Later, the remaining (k − a · s) key bits, if they exist, can be brute
forced. Finally, the key recovery requires 2(a+ 1) + max(k − a · s, 0) encryptions
and the data complexity is 2(a+ 1).

Note that the bit length of X(1)
i is n− s. In order to ensure that Equation (2)

is solvable, the number of differential characteristics that are embedded in LowMC-
M should not be higher than n− s. Generally, this bound is much higher than
the number of differential characteristics that is actually needed in a concrete
instantiation. Last but not least, one may wonder why we chose different malicious
tweak pairs for the a related-tweak differential characteristics (indeed using a
single malicious tweak pair would work), but we recommend doing so for security
reasons as we will explain in Section 5.1.

4.5 Parameters

The design goal of LowMC-M is to keep the backdoor and the cipher secure, but
also to ensure the efficiency of the key recovery using the backdoor. Based on

4 Starting from round r− a+ 1, the number of deterministic differential characteristics
decrements by 1 at every loop.

19

Table 1: A range of different parameters sets of LowMC-M instantiations. For each
instantiation, the malicious tweak pair that triggers each embedded differential char-
acteristic is unique. d is the log2 of the allowed data complexity, a is the number of
differential characteristics embedded.

block size
n

non-linear
s

key size
k

data
d

rounds
r

#differentials
a

XOF

128

3 128 64 208 43 SHAKE128
6 128 64 104 21 SHAKE128
9 128 64 70 14 SHAKE128
30 128 64 23 5 SHAKE128
90 128 64 14 2 SHAKE128

256

3 256 64 384 85 SHAKE256
9 256 64 129 28 SHAKE256
60 256 64 21 5 SHAKE256
120 256 64 14 3 SHAKE256

these principles, we selected some instantiation parameters5 and we present them
in Table 1. The security analysis is given in Section 5 and Section 6.

Regarding the performances, we evaluated the corresponding LowMC used
in the LowMC-M instances. The LowMC implementations we benchmarked are
optimized for AVX2 instructions. Measurements were performed on an AMD
EPYC 7401 running Ubuntu 18.04. We tested several instances and we observed
that a single encryption generally costs around 10000 to 30000 cycles depending
on the parameters, the block size (= key size) ranging from 128 to 256 bits.

5 Backdoor Security

In this section, we will discuss the backdoor security of LowMC-M with re-
spect to the notions mentioned in Section 2.2: undetectability, undiscoverability,
untraceability and practicability.

5.1 Undetectability

In this subsection, we discuss whether a LowMC-M instance containing a backdoor
is distinguishable from a random LowMC-M with no backdoor embedded. Since
the only difference between these two cases lies in the way the linear layer matrices
are generated, we will investigate the properties of these matrices.
5 The reference code of LowMC-M generation can be found at https://github.com/

MaliciousLowmc/LowMC-M.

20

https://github.com/MaliciousLowmc/LowMC-M
https://github.com/MaliciousLowmc/LowMC-M

We now would like to show that all embedded differential characteristics
must use distinct tweak pairs in order to maintain undetectability. Assuming
there is a backdoored LowMC-M instance that is generated following the steps
described in Section 4.4 and a total of a deterministic related-tweak differential
characteristics are embedded, while only a′ (< a) different tweak pairs are used
during the generation phase. Let cj denote the number of embedded differential
characteristics triggered by the same tweak pair, with j ∈ {1, . . . , a′}. We will
show that some dependency will exist in the linear layer matrices for the first
i (≤ r − a) rounds, consequently some additional deterministic related-tweak
differential characteristics over the first i rounds can be recovered.

Definition 3. For a LowMC-M instance, Ai is the matrix of dimension (i · s)×
(n− s) defined as:

L01
1

L01
2 · L11

1
L01

3 · L11
2 · L11

1
...

L01
i · L11

i−1 · ... · L11
1

We remark that a malicious plaintext difference ∆P can be retrieved if the

corresponding malicious tweak pair is provided: in order to have a deterministic
differential characteristic all Sboxes must be differentially inactive (i.e., the input
difference of each Sbox should be zero) and thus for a malicious tweak pair that
takes any of the a′ different values, recovering ∆P (0) (the non-linear part of ∆P)
is straightforward as it is equal to the sub-tweak difference ∆t(0)

0 . After that, one
just needs to retrieve the remaining part ∆P (1). In order to have a deterministic
differential characteristic over the first two rounds, L01

1 (X(1)
1) should be equal

to ∆t1, where X(1)
1 = ∆P (1) ⊕∆t(1)

0 . To extend the differential characteristic to
the third round, L01

2 · L11
1 (X(1)

1) should be equal to ∆t2. Continuing this process
until the i-th round, we can create a system of linear equations with n− s binary
variables:

L01

1
L01

2 · L11
1

L01
3 · L11

2 · L11
1

...
L01
i−1 · L11

i−2 · ... · L11
1

 · (X(1)
1) = Ai−1 · (X(1)

1) =

∆t1
∆t2
∆t3
...

∆ti−1

 (3)

Solving Equation (3) will output the solution of X(1)
1 , then the remaining

part ∆P (1) can be recovered naturally. However, there may be more solutions as
the number of solutions is determined by the rank of Ai−1.

In cases where the number of rounds i is large enough such that (i− 1) · s�
(n− s), if all the linear layer matrices are chosen independently and uniformly at

21

random, the rank of Ai−1 will be n− s with very high probability. However, for
a LowMC-M instance with backdoor embedded, since the linear layer matrices
are specially designed, the rank of Ai−1 can not be determined similarly.

Determining the Rank of Ai−1. We first introduce the following definition.

Definition 4. If M is an n × m binary matrix and v is an n-bit vector, the
solution space sol(M, v) is defined as: sol(M,v) = {xT ∈ {0, 1}m : Mx = v}.

Assume that a special LowMC-M instance is generated with c related-tweak
deterministic differential characteristics over i rounds while only one malicious
tweak pair is used. During the generation of L01

j , j ∈ {1, . . . , i− 1}, Equation (2)
could be simplified as:

MXj · x = 1 or MXj · x = 0 (4)

where 0 and 1 are c-bit vectors full of zeros and ones, respectively.
Denote by V the union of sol(MX1,1) and sol(MX1,0), the rows of L01

1 are
chosen from V . Since the dimensions of sol(MX1,1) and sol(MX1,0) are both
n− s− c, then the dimension of V is n− s− c+ 1. When j = 2, Equations (4)
can be represented by:

MX1 · (L11
1)T · x = 1 or MX1 · (L11

1)T · x = 0

because X(1)
2 = L11

1 ·X
(1)
1 . The rows of L01

2 are chosen from sol(MX1 · (L11
1)T ,1)

or sol(MX1 · (L11
1)T ,0). Before we continue, we will use the following lemma.

Lemma 1. Let M1 and M2 be two binary matrices of dimension (n×m) and
(m ×m) respectively. If x ∈ sol(M1 ·M2, v), then x ·MT

2 ∈ sol(M1, v) for any
n-bit vector v.

Proof. For any x ∈ sol(M1 ·M2, v), we have (M1 ·M2) · xT = v. It can be
represented by M1 · (M2 · xT) = v, thus (M2 · xT)T = x ·MT

2 ∈ sol(M1, v). �

According to Lemma 1, if x ∈ sol(MX1 ·(L11
1)T ,1), then x·L11

1 ∈ sol(MX1,1)
and also if x ∈ sol(MX1 · (L11

1)T ,0), then x · L11
1 ∈ sol(MX1,0). Thus, all the

rows of L01
2 · L11

1 are in the space V . Similarly, we can get the same results for
L01

3 ·L11
2 ·L11

1 , · · · , L01
i−1 ·L11

i−2 · ... ·L11
1 . To summarize, all the rows of Ai−1 for this

special LowMC-M instance are chosen from the space V of dimension n−s− c+1.
Thus, the rank of Ai−1 is n− s− c+ 1.

Let us return back to the previous LowMC-M instance mentioned at the
beginning of this subsection. We can divide the a differential characteristics into
a′ sub-groups where each sub-group includes cj differential characteristics that
are triggered with the same tweak pair, j ∈ {1, . . . , a′}. Then, the space V will
be the intersection of all the spaces that are determined by the a′ sub-groups.
We summarize the result as follows.

22

Proposition 1. If there is a total of a′ different malicious tweak pairs and each
of them is used to build cj deterministic differential characteristics over i rounds
in an instance of LowMC-M, with (i− 1) · s� (n− s), then the rank of Ai−1 will
be n− s−

∑a′

j=1(cj − 1).

As a result, the rank of Ai−1 is n−s−
∑a′

j=1(cj−1) and a total of 2
∑a′

j=1
(cj−1)

deterministic differential characteristics for each of the a′ tweak pairs can be
recovered by the designer. Note that the rank of Ai−1 can be easily computed
by any entity. Compared to the full rank Ai−1 for a random LowMC-M with no
backdoor embedded, the unusual property of Ai−1 for the backdoored LowMC-M
will uncover the existence of the backdoor if a′ < a. However, if a′ = a, that is,
cj = 1 for all j ∈ {1, . . . , a′}, then Ai−1 will be full rank. Therefore, in order
to keep the backdoor of LowMC-M undetectable, we recommend to not use the
same tweak pair for building more than one differential characteristics in the
generation phase.

5.2 Undiscoverability

In this subsection, we discuss whether the backdoor from a LowMC-M instance can
be efficiently recovered by an attacker. Recall that some unknown deterministic
related-tweak differential characteristics potentially exist in LowMC-M, according
to Property 1. Instead of considering the embedded backdoor exclusively, we eval-
uate the complexity of finding any useful deterministic related-tweak differential
characteristics for an attacker. Basically, the complexity is based on the XOF
security properties.

We simply adopt the security analysis for the general MALICIOUS framework
in Section 3.5. For any LowMC-M instance, the bound r′ derived from Formula 1
is much smaller compared to the total number of rounds, which poses no threat
to the backdoor. We list the evaluation for some instances in Table 2.

We can examine the undiscoverability security from another perspective. Note
that deterministic related-tweak differential characteristics can be derived as
long as Equation (3) is solvable. The requirement for the equation to be solvable
is that the ranks of the coefficient matrix Ai−1 and the augmented matrix of
Equation (3) are equal, which means that the vector on the right side of the
equation, denoted as v, has to be a combination of the columns of Ai−1. Observe
that the number of such combinations is 2α, α being the rank of Ai−1 and it can
be computed according to Proposition 1. As for vector v, it is random due to
the XOF and its size is s · (i− 1). In conclusion, Equation (3) is solvable with
probability 2α−s·(i−1), that is, the complexity of finding an i-round deterministic
related-tweak differential characteristic is 2s·(i−1)−α. We define r′′ to represent
the value of i that turns the complexity to be equal to the key space size

r′′ = k + α

s
+ 1 (5)

23

The maximal value is r′′ = k+n
s when Ai−1 is full rank of n− s. Still, r′′ is much

smaller than the number of rounds of any LowMC-M instance, see examples in
Table 2.

To summarize, the backdoor and the other potential deterministic related-
tweak differential characteristics of the same length are fully protected by the
XOF, and its recovery is as hard as brute forcing the key.

Table 2: Backdoor security evaluation for LowMC-M-n/s with block size n, key size n,
non-linear layer size s and log2 data complexity 64. r is the actual number of rounds of
the instance, r′ and r′′ are defined in Formulas 1 and 5 respectively.

Parameters r r′ r′′

LowMC-M-128/3 208 44 86
LowMC-M-128/6 104 23 43
LowMC-M-128/9 70 16 29
LowMC-M-128/30 23 6 9
LowMC-M-128/90 14 3 3

LowMC-M-256/3 384 87 170
LowMC-M-256/9 129 30 57
LowMC-M-256/60 21 6 9
LowMC-M-256/120 14 4 5

5.3 Untraceability and Practicability

As for practicability, only negligible data and computation are required to launch
a full key recovery attack with the knowledge of the backdoor, as explained in
Section 4.4. Thus, the full key can be recovered within seconds.

Since the usage of the backdoor requires chosen tweaks, the malicious tweaks
can be detected by the user once the designer makes queries to attack him, which
means the backdoor is traceable. Besides, as only a few queries are needed to
launch an attack with the knowledge of the backdoor, the user is able to quickly
brute force the queries to find out the malicious tweak pairs.

6 Cipher Security

In this section, we study the security of LowMC-M as a tweakable block cipher.

24

6.1 Attacks Based on Tweak

In comparison to LowMC, an additional tweak addition is introduced in LowMC-M.
Theoretically, this feature will provide extra degrees of freedom for the attacker
and might naturally weaken LowMC-M when compared to LowMC. However, since
the tweak schedule is an XOF, the attacker cannot control its output. Even if the
attacker could brute force some structures on the sub-tweaks for a few rounds,
this will result in the remaining rounds containing completely random structure,
which consequently prevent the attacker utilizing these remaining rounds for
what should have been the best attack on LowMC. Hence, we believe that the
extra degrees of freedom provided by the tweak is not easily usable and will not
lead to any important improvement over classical attack, including the existing
cryptanalysis [15,16,34] on LowMC.

6.2 Attacks without Tweak

All the current attacks [15, 16, 34] on LowMC have been conducted under the
assumption that the linear layer matrices of LowMC are chosen independently and
uniformly at random. Except the tweak addition, LowMC-M has the equivalent
specification to LowMC. The only difference lies in the way the linear layer
matrices Li are chosen during the generation phase. In order to prove that the
security of LowMC-M is on par with that of LowMC, we need to show that the
linear layer matrices of LowMC-M are indistinguishable from those of LowMC-M
from the perspective of the attacker. We will evaluate this with respect to the
randomness and independence.

Randomness of Linear Layer Matrices. The randomness of the linear layer
matrix Li is analyzed by scrutinizing its four sub-matrices one by one.

L00
i and L10

i . As described in Algorithm 2, the two sub-matrices L00
i and L10

i

of Li are chosen independently and uniformly at random for each round.

L11
i . Even though L11

i is chosen randomly in Algorithm 2, there is a supplementary
requirement during the generation phase. That is, the binary vectors of SXi+1
have to be linearly independent, which adds an extra constraint to L11

i since each
binary vector of SXi+1 is obtained by:

X
(1)
i+1 = L11

i ·X
(1)
i (6)

and thus the transformation of L11
i should map a set of linearly independent vec-

tors to another set of linearly independent vectors. Since L11
i is chosen randomly

and all the X(1)
i involved are linearly independent, every X(1)

i+1 in SXi+1 produced
by Formula 6 can be regarded as random binary vectors and are independent
from each other. On the other hand, note that at most a = dk/se differential
characteristics are embedded in LowMC-M, which means that the size of SXi+1
is dk/se at most. For any reasonable parameter set, we will have dk/se � (n− s).

25

Based on Lemma 2 below, we can compute the probability that the set SXi+1
is linearly independent. As a result, the probability is almost 1, which is also
verified from our experiments.

Hence, the constraint on L11
i is very loose. The final selection of L11

i will not
introduce any special property.

Lemma 2. [24, adapted] For m random n-bit vectors over F2 (m 6 n), the
probability that they are linearly independent is p(m) =

∏m−1
k=0 (1 − 2k−n). In

particular, p(n) > 0.2887.

L01
i . L01

i is the essential part for embedding backdoors, and thus it is the one
specially designed. The row length of L01

i is n− s bits, while in the generation
phase each row is chosen from a sub-space of dimension n − s − b which is
determined by the corresponding Equation (2), b being the size of SXi. However,
we will show that for the attacker this special chosen L01

i is still indistinguishable
from a randomly chosen one.

Observe that both MXi and the sub-tweak difference vector in Equation (2)
are unknown for the attacker, thus the solution space is unidentified. Moreover,
the solution space for each row of L01

i could be different due to the sub-tweak
difference. Therefore, it is impossible for the attacker to trace some rows of L01

i

to the targeted hidden sub-space.
To summarize, the four sub-matrices are indistinguishable from random

matrices for the attacker. The only connection between these four sub-matrices
is that the combined matrix Li should be invertible, which is also the same for
LowMC, so it reveals no additional information. Hence, we conclude that for the
attacker the matrix Li is indistinguishable from a random matrix.

Independence between Linear Layer Matrices. The definition of Ar cap-
tures partial information of the matrices that includes L10

i and L11
i over r

consecutive rounds. If the linear layer matrices are chosen independently and
uniformly at random, the resultant Ar should be random, thus the rank of Ar
will be n− s when r · s� (n− s). If the rank for a LowMC-M instance is smaller
than n− s, it will imply a connection between these matrices. As suggested in
Proposition 1, the rank of Ar can be computed by n− s−

∑a′

i=1(ci− 1). In order
to eliminate the connections, each ci should equal to 1, that is, different malicious
tweak pairs should be used to build different differential characteristics during
the generation phase.

The two sub-matrices L00
i and L10

i are chosen randomly and independently,
so it will not impose any connection between the matrices.

We remark that even if there is some dependence existing between the linear
layer matrices, the cipher security is still unlikely to be threatened. Yet, we
conservatively recommend to avoid such dependency in a LowMC-M instance.

26

7 Conclusion

In this article, we proposed the MALICIOUS framework for embedding backdoors
into tweakable block ciphers. The backdoor is a set of related-tweak differential
characteristics with probability 1, from which the secret key can be recovered
fully and efficiently. Besides, the backdoor security of our proposal is reduced
to the target-difference resistance (a variant of the classical collision resistance,
with the same generic complexity) of the XOF employed in the cipher. We also
proposed several concrete instances LowMC-M, which are directly inspired from
the block cipher LowMC.

We have proved that it is possible to build a secure and efficient backdoor
into tweakable block ciphers. Third party analysis is of course required to fully
understand its security, but our proposal could be a new interesting direction
towards building backdoors in symmetric-key primitives.

Not only this result will increase the community’s awareness to potential
backdoors in symmetric-key primitives, but it can also lead to new applications.
It has been shown in [35] that a backdoored block cipher is equivalent to a public
key encryption where the backdoor is regarded as the secret key. Even though our
proposal does not yet reach the usability of a public encryption scheme, building
public-key primitives out of symmetric-key ones has been a long standing open
problem.

We envision several future works after this first step. Other cryptanalysis
techniques than just a plain differential attack (such as impossible differential
attacks, boomerang attacks, integral attacks, etc.) might also be used to build
backdoors and could allow us to build more efficient or more usable designs. It
would also be interesting to build other types of backdoored primitives, such
as Message Authentication Codes (MAC), Authenticated Encryption (AE), etc.
which might require totally different design strategies. Finally, our proposal
remains somewhat traceable (once the backdoor used against him, a user could
try to check all of its tweak values queried and check which tweaks pair leads
to a related-tweak differential with a very good probability) and it would be
interesting to study new techniques or protocols to reduce this detection surface
as much as possible.

Acknowledgements

The authors would like to thank the anonymous referees and Eik List for their
helpful comments. We also thank Shiyao Chen for his help on automatic search
tools. We furthermore thank the Picnic team for providing standalone optimized
implementations of LowMC.

References

1. Albertini, A., Aumasson, J.P., Eichlseder, M., Mendel, F., Schläffer, M.: Malicious
Hashing: Eve’s Variant of SHA-1. In: Joux, A., Youssef, A.M. (eds.) SAC 2014:

27

21st Annual International Workshop on Selected Areas in Cryptography. LNCS,
vol. 8781, pp. 1–19. Springer, Heidelberg, Germany (2014)

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology –
EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg,
Germany (2015)

3. AlTawy, R., Youssef, A.M.: Watch your Constants: Malicious Streebog. Cryptology
ePrint Archive, Report 2014/879 (2014), https://eprint.iacr.org/2014/879

4. Angelova, V., Borissov, Y.: Plaintext Recovery in DES-like Cryptosystems Based
on S-boxes with Embedded Parity Check. Serdica Journal of Computing 7(3),
257p–270p (2013)

5. Bannier, A., Bodin, N., Filiol, E.: Partition-Based Trapdoor Ciphers. Cryptology
ePrint Archive, Report 2016/493 (2016), http://eprint.iacr.org/2016/493

6. Bannier, A., Filiol, E.: Mathematical Backdoors in Symmetric Encryption Systems-
Proposal for a Backdoored AES-like Block Cipher. arXiv preprint arXiv:1702.06475
(2017)

7. Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Keller, N., Tsaban, B.:
Cryptanalysis of SP Networks with Partial Non-Linear Layers. In: Oswald, E.,
Fischlin, M. (eds.) Advances in Cryptology – EUROCRYPT 2015, Part I. LNCS,
vol. 9056, pp. 315–342. Springer, Heidelberg, Germany (2015)

8. Barker, E.B., Kelsey, J.M.: Recommendation for Random Number Generation
Using Deterministic Random Bit Generators (revised). US Department of Com-
merce, Technology Administration, National Institute of Standards and Technology,
Computer Security Division, Information Technology Laboratory (2007)

9. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013), http://eprint.iacr.org/2013/404

10. Bernstein, D.J., Lange, T., Niederhagen, R.: Dual EC: A Standardized Back Door.
In: The New Codebreakers, pp. 256–281. Springer (2016)

11. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V., Viguier, B.: Kanga-
rooTwelve: Fast hashing based on keccak-p. In: Preneel, B., Vercauteren, F. (eds.)
ACNS 18: 16th International Conference on Applied Cryptography and Network
Security. LNCS, vol. 10892, pp. 400–418. Springer, Heidelberg, Germany (2018)

12. Biham, E.: Cryptanalysis of Patarin’s 2-Round Public Key System with S Boxes (2R).
In: Preneel, B. (ed.) Advances in Cryptology - EUROCRYPT 2000, International
Conference on the Theory and Application of Cryptographic Techniques, Bruges,
Belgium, May 14-18, 2000, Proceeding. LNCS, vol. 1807, pp. 408–416. Springer
(2000), https://doi.org/10.1007/3-540-45539-6_28

13. Calderini, M., Sala, M.: On Differential Uniformity of Maps that May Hide an
Algebraic Trapdoor. In: International Conference on Algebraic Informatics. pp.
70–78. Springer (2015)

14. Dinur, I., Kales, D., Promitzer, A., Ramacher, S., Rechberger, C.: Linear Equivalence
of Block Ciphers with Partial Non-Linear Layers: Application to LowMC. In: Ishai,
Y., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2019, Part I. LNCS,
vol. 11476, pp. 343–372. Springer, Heidelberg, Germany (2019)

15. Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized Interpolation Attacks on LowMC.
In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology – ASIACRYPT 2015,
Part II. LNCS, vol. 9453, pp. 535–560. Springer, Heidelberg, Germany (2015)

16. Dobraunig, C., Eichlseder, M., Mendel, F.: Higher-Order Cryptanalysis of LowMC.
In: Kwon, S., Yun, A. (eds.) ICISC 15: 18th International Conference on Informa-

28

https://eprint.iacr.org/2014/879
http://eprint.iacr.org/2016/493
http://eprint.iacr.org/2013/404
https://doi.org/10.1007/3-540-45539-6_28

tion Security and Cryptology. LNCS, vol. 9558, pp. 87–101. Springer, Heidelberg,
Germany (2016)

17. Dworkin, M.J.: SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. Tech. rep. (2015)

18. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.X.: Block Ciphers That
Are Easier to Mask: How Far Can We Go? In: Bertoni, G., Coron, J.S. (eds.)
Cryptographic Hardware and Embedded Systems – CHES 2013. LNCS, vol. 8086,
pp. 383–399. Springer, Heidelberg, Germany (2013)

19. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-Like
Permutations. In: Hong, S., Iwata, T. (eds.) Fast Software Encryption – FSE 2010.
LNCS, vol. 6147, pp. 365–383. Springer, Heidelberg, Germany (2010)

20. Guo, J., Nikolic, I., Peyrin, T., Wang, L.: Cryptanalysis of Zorro. Cryptology ePrint
Archive, Report 2013/713 (2013), http://eprint.iacr.org/2013/713

21. Iwamoto, M., Peyrin, T., Sasaki, Y.: Limited-Birthday Distinguishers for Hash
Functions - Collisions beyond the Birthday Bound Can Be Meaningful. In: Sako,
K., Sarkar, P. (eds.) Advances in Cryptology – ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 504–523. Springer, Heidelberg, Germany (2013)

22. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and Keys for Block Ciphers: The TWEAKEY
Framework. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology – ASI-
ACRYPT 2014, Part II. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg,
Germany (2014)

23. Kales, D., Perrin, L., Promitzer, A., Ramacher, S., Rechberger, C.: Improvements
to the Linear Operations of LowMC : A Faster Picnic (2018)

24. Kolchin, V.: Random Graphs. Cambridge University Press (1999)
25. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable Block Ciphers. In: Yung, M. (ed.)

Advances in Cryptology – CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer,
Heidelberg, Germany (2002)

26. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable Block Ciphers. Journal of Cryp-
tology 24(3), 588–613 (Jul 2011)

27. Matyukhin, D., Rudskoy, V., Shishkin, V.: A Perspective Hashing Algorithm. In:
Materials of XII scientific conference RusCryptoâĂŹ2010 (2010)

28. Morawiecki, P.: Malicious Keccak. Cryptology ePrint Archive, Report 2015/1085
(2015), https://eprint.iacr.org/2015/1085

29. Patarin, J., Goubin, L.: Asymmetric Cryptography with S-Boxes. In: Han, Y.,
Okamoto, T., Qing, S. (eds.) ICICS 97: 1st International Conference on Information
and Communication Security. LNCS, vol. 1334, pp. 369–380. Springer, Heidelberg,
Germany (1997)

30. Patarin, J., Goubin, L.: Trapdoor One-Way Permutations and Multivariate Poly-
nominals. In: Han, Y., Okamoto, T., Qing, S. (eds.) ICICS 97: 1st International
Conference on Information and Communication Security. LNCS, vol. 1334, pp.
356–368. Springer, Heidelberg, Germany (1997)

31. Paterson, K.G.: Imprimitive Permutation Groups and Trapdoors in Iterated Block
Ciphers. In: Knudsen, L.R. (ed.) Fast Software Encryption – FSE’99. LNCS, vol.
1636, pp. 201–214. Springer, Heidelberg, Germany (1999)

32. Perrin, L.: Partitions in the S-Box of Streebog and Kuznyechik. IACR Transactions
on Symmetric Cryptology 2019(1), 302–329 (2019)

33. Rasoolzadeh, S., Ahmadian, Z., Salmasizadeh, M., Aref, M.R.: Total Break of Zorro
using Linear and Differential Attacks. Cryptology ePrint Archive, Report 2014/220
(2014), http://eprint.iacr.org/2014/220

29

http://eprint.iacr.org/2013/713
https://eprint.iacr.org/2015/1085
http://eprint.iacr.org/2014/220

34. Rechberger, C., Soleimany, H., Tiessen, T.: Cryptanalysis of Low-Data Instances
of Full LowMCv2. IACR Transactions on Symmetric Cryptology 2018(3), 163–181
(2018)

35. Rijmen, V., Preneel, B.: A Family of Trapdoor Ciphers. In: Biham, E. (ed.) Fast
Software Encryption – FSE’97. LNCS, vol. 1267, pp. 139–148. Springer, Heidelberg,
Germany (1997)

36. Shishkin, V., Dygin, D., Lavrikov, I., Marshalko, G., Rudskoy, V., Trifonov, D.:
Low-Weight and Hi-End: Draft Russian Encryption Standard. CTCrypt 14, 05–06
(2014)

37. Shumow, D., Ferguson, N.: On the Possibility of a Back Door in the NIST SP800-90
Dual Ec Prng. In: Proc. Crypto. vol. 7 (2007)

38. Wang, Y., Wu, W., Guo, Z., Yu, X.: Differential Cryptanalysis and Linear Distin-
guisher of Full-Round Zorro. Cryptology ePrint Archive, Report 2013/775 (2013),
http://eprint.iacr.org/2013/775

39. Wu, H., Bao, F., Deng, R.H., Ye, Q.Z.: Cryptanalysis of Rijmen-Preneel Trapdoor
Ciphers. In: Ohta, K., Pei, D. (eds.) Advances in Cryptology – ASIACRYPT’98.
LNCS, vol. 1514, pp. 126–132. Springer, Heidelberg, Germany (1998)

40. Ye, D., Lam, K., Dai, Z.: Cryptanalysis of "2 R" Schemes. In: Wiener, M.J. (ed.) Ad-
vances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 15-19, 1999, Proceedings. LNCS, vol.
1666, pp. 315–325. Springer (1999), https://doi.org/10.1007/3-540-48405-1_20

41. Young, A., Yung, M.: The Dark Side of “Black-Box” Cryptography, or: Should
We Trust Capstone? In: Koblitz, N. (ed.) Advances in Cryptology – CRYPTO’96.
LNCS, vol. 1109, pp. 89–103. Springer, Heidelberg, Germany (1996)

42. Young, A., Yung, M.: Monkey: Black-Box Symmetric Ciphers Designed for MONop-
olizing KEYs. In: Vaudenay, S. (ed.) Fast Software Encryption – FSE’98. LNCS,
vol. 1372, pp. 122–133. Springer, Heidelberg, Germany (1998)

43. Young, A., Yung, M.: A Subliminal Channel in Secret Block Ciphers. In: Handschuh,
H., Hasan, A. (eds.) SAC 2004: 11th Annual International Workshop on Selected Ar-
eas in Cryptography. LNCS, vol. 3357, pp. 198–211. Springer, Heidelberg, Germany
(2004)

44. Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. John
Wiley & Sons (2004)

45. Young, A.L., Yung, M.: Backdoor Attacks on Black-Box Ciphers Exploiting Low-
Entropy Plaintexts. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 03: 8th Aus-
tralasian Conference on Information Security and Privacy. LNCS, vol. 2727, pp.
297–311. Springer, Heidelberg, Germany (2003)

30

http://eprint.iacr.org/2013/775
https://doi.org/10.1007/3-540-48405-1_20

	 The MALICIOUS Framework: Embedding Backdoors into Tweakable Block Ciphers

