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Abstract. This is the extended abstract of [MS20]. See the full version
at eprint:2019/1142.
We show how to generalize lattice reduction algorithms to module lat-
tices. Specifically, we reduce γ-approximate ModuleSVP over module lat-
tices with rank k ≥ 2 to γ′-approximate ModuleSVP over module lattices
with rank 2 ≤ β ≤ k. To do so, we modify the celebrated slide-reduction
algorithm of Gama and Nguyen to work with module filtrations, a high-
dimensional generalization of the (Z-)basis of a lattice.
The particular value of γ that we achieve depends on the underlying
number field K, the order R ⊆ OK , and the embedding (as well as, of
course, k and β). However, for reasonable choices of these parameters, the
resulting value of γ is surprisingly close to the one achieved by “plain”
lattice reduction algorithms, which require an arbitrary SVP oracle in
the same dimension. In other words, we show that ModuleSVP oracles
are nearly as useful as SVP oracles for solving higher-rank instances of
approximate ModuleSVP.
Our result generalizes the recent independent result of Lee, Pellet-Mary,
Stehlé, and Wallet, which works in the important special case when β = 2
and R = OK is the ring of integers of K under the canonical embedding,
while our reduction works . Indeed, at a high level our reduction can be
thought of as a generalization of theirs in roughly the same way that
block reduction generalizes LLL reduction.
In this extended abstract, we present a special case of the more general
result to appear in the full version [MS20].

1 Introduction

A (rational) lattice L ⊂ Qd is the set of all integer linear combinations of
finitely many generating vectors y1, . . . ,ym ∈ Qd,

L := {z1y1 + · · ·+ zmym : zi ∈ Z} .
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For an approximation factor γ ≥ 1, the γ-approximate Shortest Vector
Problem (γ-SVP) asks us to find a non-zero vector y ∈ L whose length
is within a factor γ of the minimum possible.

Lattices have played a key role in computer science since Lenstra,
Lenstra, and Lovász published their celebrated LLL algorithm, which
solves γ-SVP for γ = 2O(d) in polynomial time [LLL82], essentially by
reducing the problem to many instances of exact SVP in two dimensions.
In spite of this very large approximation factor, the LLL algorithm has
found innumerable applications [LLL82, Bab86, SE94, NV10, FS10].

Lattices have taken on an even larger role in recent years because
of the growing importance of lattice-based cryptography [Ajt96, HPS98,
GPV08, Reg09, Pei09, SSTX09, LPR10, Pei16]—that is, cryptography
whose security relies on the hardness of γ-SVP (or a closely related prob-
lem) for some γ (typically, γ = poly(d)). These schemes have several
advantages, such as worst-case to average-case reductions, which show
that some of these schemes are actually provably secure under the as-
sumption that (the decision version of) γ′-SVP is hard in the worst
case [Ajt96, MR07, Reg09, LPR10, LS15, PRS17]. They are also thought
to be secure against quantum attackers, and for this reason, they are likely
to be standardized by NIST (the United States’ National Institute for
Standards and Technology) for widespread use in the near future [NIS18].

However, one drawback of generic lattice-based constructions is their
inefficiency (though, see [ABD+19]). Loosely speaking, this inefficiency
arises from the fact that a lattice in dimension d typically requires about
d2 numbers to specify—at least d generating vectors, each with d coor-
dinates. To get around this, cryptographers often use lattices with cer-
tain additional symmetries [HPS98, PR06, SSTX09, LPR10, SS11, LS12,
DD12, LS15, PRS17], since such lattices can be described succinctly.

In particular, cryptographers typically use (variants of) module lat-
tices. For a number field K of degree n (i.e., K := Q[x]/p(x) for an
irreducible polynomial p(x) of degree n) with an order R ⊆ OK (i.e., a
discrete full-rank subring, such as Z[x]/p(x) when p ∈ Z[x] is monic, or
the ring of integers OK of K), a module lattice over R is the set of all R-
linear combinations of finitely many generating vectors y1, . . . ,ym ∈ K`,

M := {r1y1 + · · ·+ rmym : ri ∈ R} .

By embedding the number field K into Qn (or by equipping K with an
inner product, which is what we do in the sequel), we can view module
lattices as (`n)-dimensional “plain” lattices. In particular, it makes sense
to talk about the length of module elements. A key parameter is the rank
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k of the module lattice, which is the dimension of its K-span. We typically
think of n as large (i.e., n→∞) and k as a relatively small constant.3

We can then define (γ, k)-ModuleSVP over R as the restriction of γ-
SVP to rank-k module lattices M⊂ K` over R (under some inner prod-
uct). Clearly, (γ, k)-ModuleSVP is no harder than γ-SVP over lattices
with rank kn. A key question is whether we can do (significantly) better.
In other words, are there (significantly) faster algorithms for ModuleSVP
than there are for SVP? Does the specialization to module lattices (which
yields large efficiency benefits for cryptography) impact security?

Many cryptographic schemes rely on the assumption that no such
algorithms exist. E.g., about half of the candidate encryption schemes still
under consideration by NIST would be broken in practice if significantly
faster algorithms were found for ModuleSVP [NIS18]. (Just one relies on
“plain” lattices [ABD+19].) We would therefore like to understand the
hardness of ModuleSVP as soon as possible.

Until recently, one might have conjectured that (γ, k)-ModuleSVP is
essentially as hard as γ-SVP on rank kn lattices for all γ and k. However,
a recent (growing) line of work has shown much faster algorithms for
the k = 1 case [CGS14, CDPR16, CDW17, Duc17, DPW19, PHS19], in
which case the problem is called IdealSVP. Most cryptographic schemes
are not known to be broken by these algorithms (or even by an adversary
with access to an oracle for exact IdealSVP). However, similar improve-
ment for the case k = 2 would yield faster algorithms for both the Ring-
LWE problem [SSTX09, LPR10] and the NTRU problem [HPS98], which
would break most cryptographic schemes based on structured lattices.
(We are intentionally ignoring many important details here for simplic-
ity. See [Pei15, Duc17, DPW19, PHS19] for a more careful discussion.)

Therefore, (ignoring a number of important details) the security of
many cryptographic schemes essentially relies on the assumption that
(γ, k)-ModuleSVP for k ≥ 2 is qualitatively different than γ-IdealSVP =
(γ, 1)-ModuleSVP. More generally, this recent (surprising) line of work in
the k = 1 case suggests that we need a better understanding of (γ, k)-
ModuleSVP for all γ and k.

To that end, we observe that much of our understanding of γ-SVP
comes from basis reduction algorithms [LLL82, SE94, GN08, MW16, ALNS19].
These algorithms allow us to reduce γ-SVP in a high dimension d to γ′-
SVP in a lower dimension m (known as the block size) for some approx-

3 Notice that module lattices correspond exactly to lattices that are closed under a
certain set of linear transformations—the linear transformations corresponding to
multiplication by elements of R.
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imation factor γ depending on d, m, and γ′. Indeed, the LLL algorithm
can be viewed as an example of such a reduction for the case m = 2. For
the approximation factors relevant to cryptography, our fastest algorithms
rely on basis reduction. In fact, these are more-or-less our only non-trivial
algorithms for superconstant approximation factors. (See [ALNS19].)

In other words, to solve γ-SVP (or, for that matter, (γ, k)-ModuleSVP)
for superconstant γ, the best known strategy works by reducing the prob-
lem to many instances of SVP with a smaller approximation factor over
lower-dimensional “blocks.” The current state of the art, due to [ALNS19]
and building heavily on the work of Gama and Nguyen [GN08], achieves
an approximation factor of

γ = γ′ · (γ′
√
βn)

2(k−β)
β−1/n (1)

for block size m := βn and dimension d := kn. (We have chosen this
rather strange parameterization to more easily compare with our results
for ModuleSVP.) For cryptanalysis, we typically must take β = Ω(k) and
γ′ ≤ poly(d) in order to achieve a final approximation factor γ that is
polynomial in the dimension d = kn.

1.1 Our results

Lattice reduction for Modules. Our primary contribution is the
following reduction.

Theorem 1 (Informal, see the discussion below and the full ver-
sion [MS20]). For 2 ≤ β < k with β dividing k, there is an efficient
reduction from (γ, k)-ModuleSVP to (γ′, β)-ModuleSVP, where

γ = (γ′)2n · (γ′
√
βn)

2(k−β)
β−1 .

The case β = 2 is of particular interest because of its relevance to
cryptography. We note that, before this work was finished, Lee, Pellet-
Mary, Stehlé, and Wallet published essentially the same reduction for this
important special case [LPSW19]. (Formally, they only showed this for
the canonical embedding for the ring of integers of a number field, but it
is easy to see that this generalizes to arbitrary orders and a more general
class of embeddings that we call “semicanonical.” They also showed a very
interesting algorithm for (γ, 2)-ModuleSVP, which requires a CVP oracle
over a lattice depending only on R. We refer the reader to [LPSW19]
for the details.) For this β = 2 case, the reduction can be viewed as a

4



generalization of the LLL algorithm. (In this extended abstract, we only
present a special case of the β = 2 reduction. See [MS20] for the general
reduction.)

In the general case β ≥ 2, we note the obvious resemblance between
the approximation factor achieved by Theorem 1 and the approximation
factor shown in Eq. (1). Indeed, our reduction can be viewed as a gener-
alization of Gama and Nguyen’s celebrated slide reduction [GN08] to the
module case (see also [ALNS19]).4 Therefore, we can interpret Theorem 1
as saying that “a ModuleSVP oracle is almost as good as a generic SVP
oracle for basis reduction over module lattices.”

Finally, notice that this informal version of Theorem 1 does not men-
tion the number field K, the associated embedding, or the order R ⊆ OK .
In fact, the reduction works for any nice enough number field K, any or-
der R ⊆ OK , and a reasonably large class of embeddings that we call
semicanonical. These are generalizations of the canonical embedding that
might prove useful in other settings. (Formally, we consider semicanonical
inner products on K. See Sections 1.2 and 2.5.) Furthermore, the approx-
imation factor that we achieve depends on certain geometric properties of
the order and the embedding. (See the full version [MS20] for the precise
statement.) The approximation factor shown in Theorem 1 is (a loose up-
per bound on) what we achieve for the canonical embedding of the ring
of integers of a cyclotomic number field.

Two variants. As additional contributions, we note that our reduction
can also be used to solve two variants of ModuleSVP.

The first variant is known as ModuleHSVP (where the H is in honor
of Hermite). This problem asks us to find a non-zero vector that is short
relative to the determinant of the module lattice M, rather than rel-
ative to the shortest non-zero vector. I.e., (γ, k)-ModuleHSVP asks us
to find a non-zero vector x in a rank-k module lattice M with ‖x‖ ≤
γ · det(M)1/(kn). For γ &

√
kn, there is always a non-zero vector satisfy-

ing this inequality. (The minimal value of γ for which γ-HSVP is a total
problem is called Hermite’s constant, which explains the name.) In partic-
ular, (γ

√
kn, k)-ModuleHSVP trivially reduces to (γ, k)-ModuleSVP, but

our reduction achieves a better approximation factor than what one would
obtain by combining this trivial reduction with Theorem 1. (The same is
true of many “plain” basis reduction algorithms [GN08, ALNS19].) This
variant of SVP is enough for most cryptanalytic applications, so that this

4 Indeed, if we take n = 1 and γ′ = 1, then we recover the original slide reduction
algorithm from [GN08]. Specializing further to β = 2 recovers LLL.
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better approximation factor could prove to be quite useful in practice.
(In particular, the analogous result for plain basis reduction algorithms
is often used in cryptanalysis.)

Theorem 2 (Informal, see the full version [MS20]). For 2 ≤ β < k
with β dividing k, there is an efficient reduction from (γH , k)-ModuleHSVP
to (γ′, β)-ModuleSVP, where

γH := γ′
√
n · (γ′

√
βn)

k−1
β−1 .

Again, the approximation factor shown in Theorem 2 is (a loose upper
bound on) what we achieve for the canonical embedding of the ring of
integers of a cyclotomic number field.

Our second variant has no analogue for plain lattices. We consider
the (γ, k)-Dense Ideal Problem ((γ, k)-DIP), in which the goal is to find
a rank-one submodule M′ (i.e., an ideal) such that det(M′)1/n is within
a factor γ of the minimum possible. This problem is in a sense more
natural in our context. Indeed, Theorem 1 is perhaps best viewed as a
consequence of Theorem 3. We again note the obvious similarity between
Theorem 3 and Eq. (1). (There is an analogous result for what we might
call “RankinDIP,” in honor of Rankin’s constants, which asks us to find
an ideal whose determinant is small relative to det(M)1/(nk), just like
ModuleHSVP asks for a vector that is short relative to det(M)1/(kn). For
simplicity, we do not bother to make this formal.)

Theorem 3 (Informal, see the full version [MS20]). For 2 ≤ β < k
with β dividing k, there is an efficient reduction from (γ, k)-DIP to (γ′, β)-
DIP, where

γ := γ′ · (γ′
√
βn)

2(k−β)
β−1 .

Again, the resulting approximation factor depends on the geometry of
the order R, and the above result corresponds to the case when R = OK
is the ring of integers of a number field K under the canonical embedding.

1.2 Our techniques

From bases to filtrations. Lattice basis reduction algorithms take as input
a (Z-)basis (b1, . . . , bd) of a lattice L ⊂ Qd and they iteratively “shorten”
the basis vectors using an oracle for SVP in m < d dimensions. More
specifically, let Li be the lattice spanned by b1, . . . , bi. Basis reduction
algorithms work by finding short vectors in “blocks”—lattices of the form
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L[i,j] := πL⊥i−1
(Lj), where πL⊥i

represents projection onto the subspace

orthogonal to Li. In the basis reduction literature, the Li and L[i,j] are
typically not defined explicitly. Instead, corresponding bases for these
lattices are defined.

To generalize this idea to module lattices, our first challenge is to
find the appropriate analogue of a basis. Indeed, while lattices with rank
d over Z have a Z-basis consisting of d (linearly independent) lattice
vectors, the analogous statement is typically not true for modules over
more general orders R. In other words, our module lattice M of rank
k will not always have an R-basis consisting of only k elements. (E.g.,
rank-one module lattices are ideals, and they have an R-basis consisting
of a single element if and only if they are principal. More generally, all
rank-k module lattices have an R-basis consisting of k vectors if and only
if R is a principal ideal domain. Typically, the rings that interest us are
not principal ideal domains.) This means that basis-reduction techniques
do not really make sense over an R-basis.

So, instead of generalizing Z-bases themselves, we work directly with
the sublattices Li and blocks L[i,j]. To that end, we define a module fil-
tration M1 ⊂M2 ⊂ · · · ⊂ Mk =M ofM as a sequence of k (primitive)
submodules with strictly increasing ranks (over K). Filtrations have the
nice property that the projectionM[i,j] := πM⊥i−1

(Mj) ofMj orthogonal

to Mi is itself a module lattice with rank j − i+ 1. (We are being delib-
erately vague about what we mean by “projection” here. See Sections 1.2
and 2.5.) They are well-behaved in other ways as well. For example, (for
nice enough embeddings) the determinant of M is given by the product

of the determinants of the rank-one projections M̃i := πMi−1(Mi), which
is analogous to the fact that the determinant of a lattice is given by the
product of the lengths of the Gram-Schmidt vectors b̃i of any basis. These
are the key properties that allow us to perform basis reduction using SVP
oracle calls only on module lattices.5

From vectors to ideals (or sublattices). By working with filtrations, our
reduction is most naturally viewed as a variant of basis reduction with
the Gram-Schmidt vectors πL⊥i−1

(bi) replaced by ideals πM⊥i−1
(Mi), and

lengths replaced by the determinant. This naturally gives rise to Theo-
rem 3—a reduction from DIP to DIP.

5 In [FS10, LPSW19], the authors work with pseudobases, which consist of vectors
b1, . . . , bk ∈ Kk and ideals I1, . . . , Ik ⊂ K such thatM = I1b1 + · · ·+ Ikbk. These
are quite similar to filtrations. E.g., a pseudobasis can be converted into the filtration
given by Mi := I1b1 + · · ·+ Iibi.
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Indeed, this DIP-to-DIP reduction actually “never looks at the length
of a vector.” It only considers determinants of submodules. And, it can
be viewed as a specialization to module lattices of a more general re-
duction from the problem of finding dense rank-n sublattices of a kn-
dimensional lattice to the problem of finding dense rank-n sublattices in
a βn-dimensional lattice (though we do not bother to show this formally).

From ideals back to vectors. In order to obtain our main result, we must
convert this DIP-to-DIP reduction into a reduction from ModuleSVP to
ModuleSVP. To do so, we use well-known relationships between the length
of short non-zero vectors and the determinants of dense rank-one submod-
ules. Specifically, we use (1) Minkowski’s theorem, which states that any
dense submodule must contain a short vector (which holds for all lattices,
not just module lattices); and (2) the fact that the R-span of a short vec-
tor must be a relatively dense ideal, which has no analogue for lattices in
general. (The latter property is a partial converse of Minkowski’s theorem
for ideals. The quantitative result depends on the geometry of the order
R, which is the main reason that our approximation factors also depend
on this geometry.)

Therefore, a ModuleSVP oracle can be used to find a short vector,
which must generate a dense ideal. And, we may use a DIP oracle to
find a low-rank submodule that contains a short vector. This allows us
to move freely between DIP and ModuleSVP (at the cost of a higher
approximation factor), which yields our main result.

Projections In order for our reduction to make sense, we need some
kind of notion of “projection.” In particular, we need to make sense of the
“projection of a module lattice M ⊂ K` orthogonal to some submodule
lattice M′ ⊆ M” (since this is necessary to define, e.g., M[i,j]). In what
follows, we use the word projection to mean any Q-linear map that equals
its own square.

One way to define projection is by noting that our notion of length in
K` comes from viewing K` = K⊕· · ·⊕K as an n`-dimensional Q-vector
space, and fixing some inner product 〈·, ·〉ρ on K (which immediately
yields an inner product on K`). Indeed, it does not make sense to talk
about ModuleSVP without first fixing some notion of length in K`, and
the most natural notion is given by ‖x‖2ρ := 〈x,x〉ρ. We can then define
our projection as simply the standard orthogonal projection over any
Q vector space. The projection map Πρ,W onto a subspace W ⊆ K` is
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the unique Q-linear map that leaves W unchanged and maps to zero all
elements that are Q-orthogonal to W .

This is of course the most natural notion of projection, and the pro-
jection Πρ has many nice properties (since it is just the standard notion
of Q-linear orthogonal projection). For example, Πρ is contracting (i.e.,
it cannot increase the length of a vector), and det(M) = det(V ⊥ ∩M) ·
det(Πρ,V (M)) (where length and the determinant are defined in terms of
the inner product 〈·, ·〉ρ). However, the lattice Πρ,V (M) might not be a
module lattice. This is a serious issue because we wish to call our Mod-
uleSVP oracle on this projection.

Another idea is to define a K-linear “inner product” 〈·, ·〉K over K`,
given by 〈x,y〉K :=

∑`
i=1 xiyi, where yi is the complex conjugate of yi.

6

We can then define (M′)⊥ := {x ∈ K` : ∀y ∈ M′, 〈y,x〉K = 0} and
define the projection mapping ΠK : K` → K` to be the unique K-linear
map that leaves (M ′)⊥ fixed and sends all elements in M′ to 0.

Since the map ΠK is K-linear (by definition), it maps the module lat-
ticeM to another module lattice ΠK(M). So, it does not have the prob-
lem that Πρ had. However, ΠK might not interact nicely with 〈·, ·〉ρ. E.g.,
ΠK might increase the length of a vector (under the norm induced by Πρ),
and we might not have det(M) = det(M′) · det(ΠK(M)). This is a big
problem, since it means that, e.g., non-zero projections of short vectors in
M “might not be found by a ModuleSVP oracle called on Πρ(M).” More
generally, basis reduction algorithms rely heavily on both the contracting
nature of projection and the identity det(M) = det(M′) det(Πρ(M)).

In summary, Πρ is the “right” notion of orthogonal projection from
a geometric perspective, since it behaves nicely in terms of geometric
quantities like lengths and determinants. On the other hand, ΠK is the
“right” notion of orthogonal projection from a algebraic perspective, since
it preserves the module structure of lattices. Indeed, there is a sense in
which Πρ is the only projection map that is “nice” geometrically, and ΠK

algebraically.

We therefore restrict our attention to number fields K and inner prod-
ucts 〈·, ·〉ρ for which Πρ = ΠK , so that a single projection has both the
algebraic and geometric properties that we need. In particular, we take
number fields K that are closed under complex conjugate (these are the
totally real fields and CM fields) and inner products 〈·, ·〉ρ that “respect

6 Taking the complex conjugate is necessary to guarantee that 〈x,x〉K is non-zero
(and totally positive) for x 6= 0. Formally, this is not quite an inner product because
the base field is neither R nor C. But, it is a non-degenerate conjugate symmetric
sesquilinear form, which makes the analogy useful.
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field multiplication” in the sense that 〈αx,y〉ρ = 〈x, αy〉ρ. Such semi-
canonical inner products have a simple characterization in terms of (full-
rank) linear maps T : K → Q:

〈x,y〉ρ :=
∑
i

T (xiyi) .

(The canonical inner product is the important special case when T :=
TrK/Q is the trace map.)

These same restrictions are also exactly what is needed to guarantee
that the dual M∗ of a module lattice is also a module lattice (which we
also need for our reduction, for k > 2). See Section 2.5 for more details
and other equivalent definitions.

1.3 Related work

The most closely related work to this paper is the recent independent
work of Lee, Pellet-Mary, Stehlé, and Wallet [LPSW19], which was pub-
lished before this work was finished. [LPSW19] proved Theorem 1 in the
important special case when β = 2 and R = OK is the ring of integers
of the number field K under the canonical embedding. Their reduction is
essentially identical to ours, though they use a formally different notion of
a reduced basis that seems not to generalize quite as nicely for larger β.7

They also show a surprising algorithm for (γ, 2)-ModuleSVP (formally,
a quantum polynomial-time reduction from this problem to the Closest
Vector Problem over a lattice that depends only on K), which can be
used to instantiate the (γ, 2)-ModuleSVP oracle.

For β > 2, our reductions are generalizations of the slide-reduction
algorithm of Gama and Nguyen [GN08], and our work is largely inspired
by theirs. Indeed, both our notion of a reduced filtration and our algo-
rithm for constructing one are direct generalizations of the corresponding
ideas in [GN08] from bases of Z-lattices to filtrations of module lattices.

There are also other rather different notions of basis reduction for
module lattices from prior work. For example, for certain Euclidean do-
mains, Napias showed that the LLL algorithm (and Gauss’s algorithm

7 Specifically, in the notation introduced above, they work with the ratio
of det(πM⊥i−1

(Mi)) to det(πM⊥i
(Mi+1)), while we work with the ratio of

det(πM⊥i−1
(Mi)) relative to the minimum possible for a rank-one submodule of

πM⊥i−1
(Mi+1). The distinction is not particularly important for β = 2, but the

analogous conditions for β > 2 are quite different. In particular, the most natural
generalization of the first notion seems to only yield a solution to ModuleHSVP.
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for rank-two lattices) generalizes quite nicely, with no need for an or-
acle [Nap96]. Follow-up work showed how to extend this to more Eu-
clidean domains [GLM09, KL17]. However, it seems that algorithms of
this type can only work in the Euclidean case [LPL18], and for the cryp-
tographic applications that interest us most, the order R is typically not
Euclidean—or even a principal ideal domain. (The algorithm of [LPSW19]
for (γ, 2)-ModuleSVP is particularly surprising precisely because it seems
to mimic Gauss’s algorithm even though it works for non-Euclidean rings.)
In another direction, Fieker and Stehlé showed how to efficiently convert
an LLL-reduced Z-basis for a module lattice into an LLL-reduced pseu-
dobasis, which in our language is essentially a filtration that is reduced
in a certain sense [FS10]. I.e., they show how to efficiently convert a rel-
atively short Z-basis into a relatively nice filtration.
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2 Preliminaries

For x ∈ C, we write x for the complex conjugate of x. For a Q-subspace
V ⊆ Qd and a rational-valued inner product 〈·, ·〉ρ, we define the ρ-
orthogonal projection onto V as the unique Q-linear map Πρ,V : Qd → Qd

that satisfies Πρ,V (x) = x for x ∈ V and Πρ,V (x) = 0 if 〈y,x〉ρ = 0 for
all y ∈ V . We write 〈·, ·〉Q for the standard inner product over Qd.

2.1 Lattices

A lattice L ⊂ Rd is the Z-span of finitely many vectors y1, . . . ,ym ∈ Qd

such that

L := {z1y1 + · · ·+ zmym : zi ∈ Z} ,

If y1, . . . ,ym are Q-linearly independent vectors, then we sometimes call
this a Z-basis, and we write m := rankQ(L). For any lattice L ⊂ Qd and
sublattice L′ ⊆ L, we say that L′ is primitive if L′ = L∩ spanQ(L′). If L′
is primitive and W ⊆ spanQ(L′) is a Q-subspace, then W ∩ L′ is also a
primitive sublattice with rankQ(W ∩ L′) = dimQ(W ).
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The lattice determinant is det(L) :=
√

det(G), where G ∈ Qm×m is
the Gram matrix Gi,j := 〈bi, bj〉Q of B = (b1, . . . , bm) ∈ Qd×m for any
Z-basis B of L (the choice of basis does not matter). If L′ ⊂ L is primitive
and W ⊂ Qd is the subspace of all vectors that are Q-orthogonal to L′,
then det(L) = det(L′) det(ΠQ,W (L)).

We write λ1(L) := miny∈L\{0}〈y,y〉
1/2
Q for the length of a shortest

non-zero vector in L.
The dual lattice L∗ is the set of vectors in the span of L whose inner

product with all lattice vectors is integral,

L∗ := {w ∈ spanQ(L) : ∀y ∈ L, 〈w,y〉Q ∈ Z} .

The dual has as a basis BG−1 for any basis B of L with Gram matrix G,
and in particular, (L∗)∗ = L and det(L∗) = 1/ det(L). We also have the
identity ΠQ,W (L)∗ = W ∩ L∗ for any subspace W ⊂ Qn, provided that
ΠQ,W (L) is a lattice. (Equivalently, this holds for any subspace W that is
spanned by dual lattice vectors, or equivalently, a subspace W such that
the subspace of vectors Q-orthogonal to W is spanned by lattice vectors.)

For a positive integer k, Hermite’s constant is

δk := supλ1(L)/ det(L)1/k ,

where the supremum is over all lattices with rank k. Minkowski’s cele-
brated theorem shows us that δk ≤

√
2k/(πe), and this is known to be

tight up to a small constant factor.

2.2 Number fields

A number field K is a finite degree algebraic field extension of the ra-
tional numbers Q, i.e., K ∼= Q[x]/p(x) for some irreducible polynomial
p(x) ∈ Q[x]. The degree n = [K : Q] of the number field is simply the
degree of the polynomial p. In particular, a degree-n number field is iso-
morphic as a Q-vector space to Qn. (To see this, notice that the elements
1, x, x2, . . . , xn−1 ∈ K form a Q-basis for K.)

We associate a rational-valued inner product 〈·, ·〉ρ : K × K → Q
with our number field K, which satisfies the usual three properties of
symmetry, linearity in the first argument, and positive definiteness.

2.3 Orders, ideals, and module lattices

For a number field K, the set of all algebraic integers in K, denoted
by OK ⊂ K, forms a ring (under the usual addition and multiplication
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operations in K), called the ring of integers of K. (An algebraic integer is
a root of a monic polynomial with coefficients in Z.) The ring of integers
OK is a free Z-module of rank n = [K : Q], i.e., it is the set of all Z-linear
combinations of some basis B = {b1, . . . , bn} ⊂ OK .

An order of K is a subring R ⊆ OK which is also a free Z-module of
rank n.

A (fractional) ideal I of R is the R-span of finitely many elements
y1, . . . , ym ∈ K,

I := {r1y1 + · · ·+ rmym : ri ∈ R} .

More generally, a module latticeM over R is the R-span of finitely many
vectors y1, . . . ,ym ∈ K`

M := {r1y1 + · · ·+ rmym : ri ∈ R} ,

The rank (over K) of a module lattice is the dimension (over K) of its
span (over K), rankK(M) := dimK(spanK(M)). We abuse language a bit
and sometimes refer to rank-one module lattices as ideals, since rank-one
module lattices are isomorphic to ideals (under an appropriate scaling
of the inner product). We say that such an ideal is principal if it is the
R-span of a single element x ∈ K`, and we say that x generates the ideal.

As the name suggests, module lattices are themselves lattices (when
viewed as subsets of Qkn). To see this, it suffices to take a Z-basis r1, . . . , rn
of R and to observe that M is the Z-span of riyj . In particular, if we fix

some inner product 〈·, ·〉ρ on K`, where this inner product is defined more
rigorously in Subsection 2.5, then we can define, e.g., det(M), λ1(M),
M∗, rankQ(M), primitive submodules, etc., in the natural way (see Sub-
section 2.5).

Furthermore, we have rankQ(M) = n · rankK(M). To see this, it
suffices to notice that for any S ⊆ K`, dimQ spanQ({ry : r ∈ R,y ∈
S}) = n · dimK spanK(S).

2.4 The canonical embedding and CM/TR fields

The canonical embedding of a number fieldK := Q[x]/p(x) is an invertible
Q-linear map σ : K → Cn. Up to a reordering of the coordinates, it is
the unique such map such that field multiplication between two elements
y = (y1, . . . , yn) ∈ σ(K) ⊂ Cn and y′ = (y′1, . . . , y

′
n) ∈ σ(K) ⊂ Cn

is coordinate-wise, i.e., σ(yy′) = (y1y
′
1, y2y

′
2, . . . , yny

′
n). Equivalently, the

embedding σ(y) of y is σ(y) = (σ1(y), . . . , σn(y)) ∈ Cn, where the σi are
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the n distinct field embeddings of K into C. Alternatively, if we view y :=
y(x) ∈ Q[x]/p(x) as a polynomial, then the σi correspond to polynomial
evaluation at the n distinct roots in C of the defining polynomial p of K.

A number field K is totally real if all of its embeddings are real. It
is totally imaginary if none of its embeddings lie in R. In the sequel, we
exclusively work over totally real fields or CM-fields. A number field K
is a CM-field if it is a quadratic extension of K/F where the base field
F is totally real but K is totally imaginary. We write “CM/TR field”
to represent number fields that are either CM or totally real. One of
the useful properties of CM/TR fields (and the one that we require) is
that complex conjugation on C induces an automorphism on K which is
independent of its embedding into C. In other words, for every element
x ∈ K, there exists an element x ∈ K such that every field embedding
maps x to the complex conjugate of the embedding of x. This property
allows us to define an “inner product” over K (see next Section).

The inner product induced by the canonical embedding is given by
〈x, y〉σ :=

∑
σi(x)σi(y) ∈ Q for any x, y ∈ K. We will not discuss the

canonical embedding much explicitly in the sequel, but it is a very useful
and important example.

2.5 Semicanonical inner products

For w,y ∈ K` for a CM/TR number field K, we define the “inner prod-
uct” (conjugate symmetric form with 〈w,w〉K 6= 0 for w 6= 0) over K
as 〈w,y〉K :=

∑k
i=1wiyi. We say that w and y are “K-orthogonal” if

〈w,y〉K = 0. For a module lattice M⊂ K`, we write

M⊥ := {x ∈ K` : ∀y ∈M, 〈y,x〉K = 0}

for the set of vectors that are K-orthogonal to M. This is a K-subspace
of K` with dimension equal to `− rankK(M).

In analogy with ρ-orthogonal projection, for a K-subspace V ⊆ K` we
define the “K-orthogonal projection map onto V ” ΠK,V : K` → K` as the
unique K-linear map satisfying ΠK,V (x) = x for x ∈ V and ΠK,V (x) = 0
if 〈y,x〉K = 0 for all y ∈ V .

We now introduce the related notion of a semicanonical inner product,
which is a generalization of the inner product induced by the canonical
embedding, 〈x, y〉σ =

∑
i σi(x)σi(y) described in the previous section.

Semicanonical inner products share many of the nice geometric properties
of 〈·, ·〉σ, as we will see below.
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Definition 4 (Semicanonical inner product). Given a rational-valued
inner product 〈·, ·〉ρ over a CM/TR number field K, we say that ρ is sem-
icanonical if 〈yz, w〉ρ = 〈y, zw〉ρ for w, y, z ∈ K.

It is easy to see that the inner product 〈·, ·〉σ is semicanonical since
for any w, y, z ∈ K, 〈yz, w〉σ =

∑
i σi(yz)σi(w) =

∑
i σi(yz)σi(w) =∑

i σi(y)σi(zw) =
∑

i σi(y)σi(zw) = 〈y, zw〉σ.

For w,y ∈ K`, we define 〈w,y〉ρ :=
∑k

i=1〈wi, yi〉ρ. We also write
‖w‖2ρ := 〈w,w〉ρ.

Lemma 5. Given a CM/TR number field K and inner product 〈·, ·〉ρ,
the following statements are equivalent.

1. For w, y ∈ K, there exists a Q-linear transformation T : K → Q such
that8

〈w, y〉ρ = T (wy) .

2. ρ is semicanonical.

3. For w,y ∈ K`, 〈w,y〉K = 0 if and only if 〈αw,y〉ρ = 0 for all α ∈ K.

4. For any y ∈ K` and K-subspace V ⊆ K`, we have

ΠK,V (y) = Πρ,V (y) .

Proof. (1 ⇔ 2).

Assume that Condition 2 holds. Define the transformation T : K → Q
as,

T (z) := 〈z, 1〉ρ .

Since 〈·, ·〉ρ is Q-linear, we have that T is Q-linear. For any w, y ∈ K,
〈w, y〉ρ = 〈wy, 1〉ρ = T (wy).

Now, assume that Condition 1 holds, i.e. there exists a Q-linear trans-
formation T : K → Q such that 〈w, y〉ρ = T (wy). For w, y, z ∈ K, we
have

〈yz, w〉ρ = T (yzw) = 〈y, zw〉ρ .

Therefore ρ is semicanonical.

(2 ⇔ 3).

We will first assume Condition 2 and show that Condition 3 holds.
Note that Condition 3 is a biconditional statement. We prove the forward
direction first.

8 For the special case of the canonical embedding 〈·, ·〉σ, T is the trace.
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We need to show that for vectors w,y ∈ K` and α ∈ K satisfying
〈w,y〉K =

∑k
i=1wiyi = 0, we have 〈αw,y〉ρ = 0. This follows directly

from Condition 2,

〈αw,y〉ρ =

k∑
i=1

〈αwi, yi〉ρ =

k∑
i=1

〈α,wiyi〉ρ = 〈α,
k∑
i=1

wiyi〉ρ = 〈α, 0〉ρ = 0 .

Now we prove the backward direction for Condition 3, i.e. for vectors
w,y ∈ K` such that for all α ∈ K, 〈αw,y〉ρ = 0, we need to show that
〈w,y〉K = 0. Based on our assumption and following the calculations
above, we get

0 = 〈αw,y〉ρ = 〈α,
k∑
i=1

wiyi〉ρ .

Since the above expression holds for all α ∈ K, suppose that α =∑k
i=1wiyi, in which case, the above expression becomes 〈α, α〉ρ = 0 which

implies α = 0, or in other words
∑k

i=1wiyi = 0.
Finally, we assume that Condition 3 holds and prove Condition 2.

For α,w′, y′ ∈ K, let w := (αw′, w′, 0, . . . , 0),y := (y′,−αy′, 0, . . . , 0).
Observe that

〈w,y〉K = (αw′)y′ + (w′)(−αy′) = 0 .

By Condition 3, this implies that 〈αw,y〉ρ = 〈αw′, y′〉ρ+〈w′,−αy′〉ρ = 0.
In other words, 〈αw′, y′〉ρ = 〈w′, αy′〉ρ. Therefore, ρ must be semicanoni-
cal.

(3 ⇔ 4).
This follows immediately from the definitions of ΠK,V and Πρ,V . In

particular, both maps are Q-linear (though ΠK,V is also K-linear), which
means that it suffices to show that they behave identically on some Q-
basis of K`. Indeed, by definition, both of them act as the identity map
on V , and their kernels are respectively the subspace of K-orthogonal
vectors to V and ρ-orthogonal vectors to V . Therefore, the two maps are
the same if and only if the subspace of K-orthogonal vectors equals the
subspace of ρ-orthogonal vectors.

Corollary 6. For a CM/TR field K, associated semicanonical inner prod-
uct 〈·, ·〉ρ, order R ⊆ OK , module latticeM⊂ K` over R, and K-subspace
W ⊆ K`,

1. If R is closed under conjugation then the dual denoted by M∗ is also
a module lattice, which satisfies det(M∗) = 1/ det(M).
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2. For any primitive submodule M′ ⊂M we have that

det(M) = det(M′) det(ΠK,(M′)⊥(M)) .

3. For any y ∈ K`, ‖Πρ,W (y)‖ρ ≤ ‖y‖ρ.
4. If M has rank k, and M′ := Πρ,W (M) is also a module lattice with

rank k, then det(M′) ≤ det(M).

Proof. To show Item 1, we need to show that for any y ∈M∗ and r ∈ R,
ry ∈ M∗. For any w ∈ M, by the semicanonical property, 〈w, ry〉ρ =
〈rw,y〉ρ. Since R is closed under conjugation, r ∈ R, and rw ∈M. Since
y ∈ M∗ is a dual vector, 〈rw,y〉ρ ∈ Z, which implies 〈w, ry〉ρ ∈ Z, i.e.,
ry ∈M∗.

To show Item 2, recall from Section 2.1 that for a lattice L ⊂ Qd

with primitive sublattice L′ ⊂ L, we have the analogous fact: det(L) =
det(L′) det(ΠQ,V (L)), where V is the Q-subspace of vectors that are Q-
orthogonal to L. Since module lattices M under the inner product 〈·, ·〉ρ
are in fact lattices, it follows that det(M) = det(M′) det(Πρ,W (M)).
Finally, by Lemma 5, Πρ,W = ΠK,W , so that the identity holds for ΠK,W

as well.
Similarly, Items 3 and 4 follow from the corresponding facts about

projections over Q.

2.6 Some geometric quantities of orders and module lattices

For an order R of a number field K of degree n with an inner product
〈·, ·〉ρ, we define

αR := inf
λ1(I)

det(I)1/n
,

where the infimum is over all rank-one modules I ⊂ K`. (Notice that αR
depends heavily on the choice of inner product 〈·, ·〉ρ, so perhaps formally
we should write αR,ρ. We write αR instead for simplicity.)

For a module lattice M, we define

τ1(M) := min
I⊂M

det(I)1/n ,

where the infimum is over the rank-one submodules I ⊂M (i.e., ideals).
This quantity can be viewed as a different way to generalize λ1(L) to
module lattices over arbitrary orders. I.e., the rank-one “submodules” of
a “module” L over Z are lattices spanned by a single vector, and the
determinant of such a “submodule” is just the length of this vector. So,
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over Z, τ1 = λ1. For higher-dimensional orders R, the rank-one module
lattices are n-dimensional lattices, which do not naturally correspond to
a single vector. So, τ1 and λ1 are distinct quantities.

We define

µR,k := sup
M

τ1(M)

det(M)1/(kn)
,

where the supremum is over all rank-k module latticesM⊂ Kk′ (for any
integer k′ ≥ k). (This can be thought of as the module analogue of either
Rankin’s constant or Hermite’s constant.)

For a module lattice M of rank k, we have the simple inequality
τ1(M) ≤ µR,k det(M)1/(kn), and the following relationship between τ1
and λ1, which is governed by αR.

Lemma 7. Given a number field K, order R ⊆ OK , a module latticeM,
and an inner product 〈·, ·〉ρ

λ1(M)

δn
≤ τ1(M) ≤ λ1(M)

αR
, (2)

1 ≤ µR,k ≤
√
kn

αR
. (3)

Proof. Let I ⊂ M be the ideal generated by a non-zero shortest vector
in M, so that λ1(I) = λ1(M). Then from the definition of αR, we know

det(I)1/n ≤ λ1(I)

αR
. (4)

Since I ⊂M, we also have that

τ1(M) ≤ det(I)1/n . (5)

Combining Eqs. (4) and (5) yields the upper bound in (2).
Let I ′ ⊂ M be an ideal satisfying det(I ′)1/n = τ1(M). Then by the

definition of Hermite’s constant, we have

λ1(I ′) ≤ δn det(I ′)1/n = δnτ1(M) .

The lower bound in (2) follows by noting that λ1(M) ≤ λ1(I ′).
Observe that for rank k module lattices, Minkowski’s theorem gives

us λ1(M) ≤
√
kn det (M)1/(kn). Combining this relation with the up-

per bound from (2) yields the upper bound in (3). The lower bound
is witnessed by, e.g., M = Rk, which satisfies τ1(M) = det(R)1/n =
det(M)1/(kn).
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We also have the following well-known property of the canonical em-
bedding.

Lemma 8. For any order R ⊆ OK of any number field K under the
inner product 〈·, ·〉σ induced by the canonical embedding, we have

αR =

√
n

det(R)1/n
.

In particular, if R := OK is the ring of integers of a cyclotomic num-
ber field K, then det(R)1/n ≤

√
n, so that αR ≥ 1.

2.7 ModuleSVP and the Dense Ideal Problem

We now provide the formal definition of ModuleSVP, and its variant the
Dense Ideal Problem.

Definition 9 (ModuleSVP). For a number field K, order R ⊆ OK ,
rank k ≥ 1, approximation factor γ = γ(R, k) ≥ 1, and inner product
〈·, ·〉ρ, (γ, k)-ModuleSVP is defined as follows. The input is (a generating
set for) a module lattice M ⊂ K` with rank k. The goal is to output a
module element x ∈M such that 0 < ‖x‖ρ ≤ γλ1(M).

Definition 10 (The Dense Ideal Problem). For a number field K,
order R ⊆ OK , rank k ≥ 2, approximation factor γ = γ(R, k) ≥ 1, and
inner product 〈·, ·〉ρ, the (γ, k)-Dense Ideal Problem, or (γ, k)-DIP, is
the search problem defined as follows. The input is a (generating set for)
module lattice M ⊂ K` with rank k, and the goal is to find a submodule
M′ ⊂ M with rank-one (i.e., an ideal lattice) such that det(M′)1/n ≤
γτ1(M).

Definition 11 (ModuleHSVP). For a number field K, order R ⊆ OK ,
rank k ≥ 2, approximation factor γ = γ(R, k) ≥ 1, and inner product
〈·, ·〉ρ, (γ, k)-ModuleHSVP is defined as follows. The input is (a generat-
ing set for) a module lattice M ⊂ K` with rank k. The goal is to output
a module element x ∈M such that 0 < ‖x‖ρ ≤ γ det(M)1/(kn).

Notice that a solution to the above problem is guaranteed to exist if
γ ≥ δkn.

Theorem 12. For a number field K, order R ⊆ OK , rank β ≥ 2, ap-
proximation factor γ′ = γ′(R, β) ≥ 1, and an inner product 〈·, ·〉ρ, there

exists a reduction from (γ, β)-DIP to (γ′, β)-ModuleSVP where γ := γ′δn
αR

.

19



Proof. The reduction takes as input a module lattice M of rank β, and
uses the output from the (γ′, β)-ModuleSVP oracle which is a non-zero
vector x ∈ M such that 0 < ‖x‖ρ ≤ γ′λ1(M), to output a submodule
M′ ⊂M such that det(M′)1/n ≤ γτ1(M).

Let M′ := Rx, i.e. M′ is a principal ideal generated by x. Note that
λ1(M′) ≤ ‖x‖ρ ≤ γ′λ1(M). Then using Lemma 7, we have

det(M′)1/n ≤ λ1(M′)
αR

≤ γ′λ1(M)

αR
≤ γ′

αR
· δn · τ1(M) ,

as needed.

2.8 On bit representations

Throughout this work, we follow the convention (common in the liter-
ature on lattices) of avoiding discussion of the particular bit represen-
tation of elements in K. In practice, one can represent elements in K
as polynomials with rational coefficients, and the inner product can be
represented by specifying the pairwise inner products of basis elements
(i.e., as a quadratic form). Since arithmetic operations may be performed
efficiently with these representations, we are largely justified in ignoring
such bit-level details.

In the full version [MS20], we discuss this a bit more, but see [GN08]
for a more detailed discussion about the bit-level complexity of basis
reduction, and [LPSW19] for a similar discussion in the context of module
lattices specifically. We will need one fact that makes use of the bit-level
representation.

Fact 13. If the number field K, its inner product 〈·, ·〉ρ, and the order
R ⊆ OK are represented as described above, then for any integer ` ≥ 1
and any module lattice M⊂ K`

2− poly(m,`) ≤ det(M) ≤ 2poly(m,`) ,

where m is the bit length of this description together with the description
of a generating set for M.

3 Filtrations

For a module lattice M ⊂ K` over an order R ⊆ OK with rank k over
a CM/TR field K, a filtration of M is a nested sequence M1 ⊂ M2 ⊂
· · · ⊂ Mk =M of module lattices over R such that
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1. Primitivity: Mi =M∩ spanK(Mi);

2. Increasing ranks: rankK(Mi) = i; and

3. Rank-one projections: M̃i := ΠK,M⊥i−1
(Mi) is a rank-one module

lattice over R.

(In fact, primitivity together with the fact that Mi ⊂ Mi+1 is a strict
containment already implies the other two conditions. E.g., this implies
that rankK(Mi) < rankK(Mi+1), and since the ranks are positive inte-
gers with rankK(Mk) = k, we must have rankK(Mi) = i. Nevertheless,
we find it helpful to state the other two conditions explicitly.) We also
write M[i,j] := ΠK,M⊥i−1

(Mj), which we call a block of the filtration. We

also adopt the convention that M0 = {0} is the zero module.

Filtrations for module lattices overR are analogues of bases for lattices
over Z. Specifically, the basis b1, . . . , bd ∈ Qd of a lattice naturally corre-
sponds to the filtration given by Li := {z1b1+· · ·+zibi : zj ∈ Z}. The M̃i

defined above are the analogues of the Gram-Schmidt orthogonalization
b̃1, . . . , b̃d of a lattice over Q. We therefore call M̃i an R-Gram-Schmidt
orthogonalization.

It is perhaps not immediately obvious that filtrations are nice to work
with, or even that they always exist. So, we first note that they exist and
can be found efficiently.

Fact 14. For a CM/TR number field K, order R ⊆ OK , an inner product
〈·, ·〉ρ, and a module lattice M⊂ K` with rank k, there exists a filtration
M1 ⊂M2 ⊂ · · · ⊂ Mk =M.

Furthermore, R-generating sets for theMi can be computed efficiently
(given an R-generating set for M), and if ρ is semicanonical, det(M) =

det(M̃1) · · · det(M̃k).

Proof. Let y1, . . . ,ym ∈ K` be an R-generating set for M, and suppose
without loss of generality that y1, . . . ,yk are linearly independent over K.
We take Mi :=M∩ spanK(y1, . . . ,yi). An R-generating set for Mi can
be computed by finding a Z-basis for Mi (as a lattice) and then noting
that a Z-basis is also an R-generating set.

The fact about the determinants follows from Item 2 in Corollary
6.

Finally, given a semi-canonical inner product 〈·, ·〉ρ and R that is
closed under conjugation, each filtration M1 ⊂M2 ⊂ · · · ⊂ Mk =M of
M induces a dual filtration given by ΠK,M⊥k−1

(M)∗ ⊂ ΠK,M⊥k−2
(M)∗ ⊂

· · · ⊂ ΠK,M⊥1
(M)∗ ⊂ M∗, where ΠK,M⊥i

(M)∗ is a module lattice with
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rank k − i. Equivalently, the dual filtration is given by M∗ ∩M⊥k−1 ⊂
(M∗ ∩M⊥k−2) ⊂ · · · ⊂ (M∗ ∩M⊥1 ) ⊂ M∗. In particular, the R-Gram-
Schmidt orthogonalization of the dual filtration is the dual of the reverse
of the R-Gram-Schmidt orthogonalization of the original filtration, in
analogy to the reversed dual basis B−s that is commonly used in basis
reduction. (See, e.g., [GN08, MW16].)

4 An LLL-style algorithm for the special case of β = 2

Here, we present our reductions in the special case when β = 2 and when
the number field is sufficiently nice. The results here are strictly general-
ized by and subsumed by those presented in the full version [MS20], and
the proofs have many common features. (Our proofs are also essentially
the same as those in [LPSW19].)

Recall that we denote blocks of the filtrationM1 ⊂ . . . ⊂Mk =M as
M[i,j] = ΠK,M⊥i−1

(Mj), and rank-one projections as M̃i = ΠK,M⊥i−1
(Mi).

Definition 15 (DIP reduction). For a CM/TR number field K, an
order R ⊆ OK , an inner product 〈·, ·〉ρ, and approximation factor γ ≥ 1,
a filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk = M of a module M over R is
γ-DIP-reduced if det(M1)

1/n ≤ γ · τ1(M).

Definition 16 (γ-reduced filtration). For a CM/TR number field K,
an order R ⊆ OK , an inner product 〈·, ·〉ρ, and approximation factor
γ ≥ 1, a filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk of a module M over R is
γ-reduced if M[i,i+1] is γ-DIP-reduced for all i ∈ [1, k − 1].

We now show a number of properties of γ-reduced filtrations that
make them useful for solving ModuleSVP and its variants.

Lemma 17. For a CM/TR number field K, an order R ⊆ OK , approxi-
mation factor γ = γ(R, k) ≥ 1, a semicanonical inner product 〈·, ·〉ρ, and
a γ-reduced filtration M1 ⊂M2 ⊂ · · · ⊂ Mk, we have

det(M1)
1/n ≤ (γµR,2)

2(i−1) det(M̃i)
1/n ,

for all 1 ≤ i ≤ k.

Proof. Since M1 ⊂M2 ⊂ · · · ⊂ Mk is γ-reduced,

det(M̃i)
1/n ≤ γ · τ1(M[i,i+1])

≤ γ · µR,2 · det(M[i,i+1])
1/(2n)

= γ · µR,2 ·
(

det(M̃i) det(M̃i+1)
)1/(2n)

,
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where the last equality follows from Fact 14 (since ρ is semicanonical). Re-

arranging, we see that det(M̃i)
1/n ≤ (γµR,2)

2 det(M̃i+1)
1/n. By a simple

induction argument, we see that det(M1)
1/n ≤ (γµR,2)

2(i−1) det(M̃i)
1/n.

Lemma 18. For a CM/TR number field K, an order R ⊆ OK , an ap-
proximation factor γ ≥ 1, and a semicanonical inner product 〈·, ·〉ρ, if a
filtration M1 ⊂M2 ⊂ · · · ⊂ Mk is γ-reduced, then

det(M1)
1/n ≤ γ · (γµR,2)2(k−2) · τ1(M) , and (6)

det(M1)
1/n ≤ (γµR,2)

k−1 · det(M)1/(kn) . (7)

Proof. First, suppose that τ1(M2) = τ1(M). Then, the result is imme-
diate, from the fact that the filtration is γ-reduced, i.e., det(M1)

1/n ≤
τ1(M2) = τ1(M).

Otherwise, let i ∈ [2, k − 1] be such that τ1(Mi+1) = τ1(M) but
τ1(Mi−1) 6= τ1(M). Since Mk = M, there must exist such an i. In
particular, there exists some rank-one module lattice M′ ⊂ Mi+1 with
M′ 6⊂ Mi−1 such that det(M′)1/n = τ1(M). Since Mi−1 is primitive,
M′ 6⊂ spanKMi−1. Therefore, ΠK,M⊥i−1

(M′) ⊂ M[i,i+1] is a non-zero

rank-one module lattice. It follows that

τ1(M[i,i+1]) ≤ det(ΠK,M⊥i−1
(M′))1/n ≤ det(M′)1/n = τ1(M) ,

where the second inequality is Item 4 of Corollary 6. Then, since the
filtration is γ-reduced,

det(M̃i)
1/n ≤ γτ1(M[i,i+1]) ≤ γτ1(M) .

By combining the expression above with Lemma 17, we have

det(M1)
1/n ≤ γ · (γµR,2)2(i−1) · τ1(M) , (8)

and recalling that i ≤ k − 1, we obtain Eq. (6).

Again, recall from Lemma 17 that det(M1)
1/n ≤ (γµR,2)

2(i−1) det(M̃i)
1/n.

Taking the product of these inequalities for 1 ≤ i ≤ k, we see that

det(M1)
k/n ≤ (γµR,2)

k(k−1) det(M)1/n .

Raising both sides to the power 1/k yields Eq. (7).
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Corollary 19. For a CM/TR number field K, an order R ⊆ OK , an
approximation factor γ = γ(R, k) ≥ 1, and a semicanonical inner product
〈·, ·〉ρ, if a filtration M1 ⊂M2 ⊂ · · · ⊂ Mk is γ-reduced, then

λ1(M1) ≤
γδn
αR
· (γµR,2)2(k−2) · λ1(M) , and (9)

λ1(M1) ≤ δn(γµR,2)
(k−1) · det(M)1/(kn) . (10)

Proof. By combining Eq. (6) from Lemma 18 with Lemma 7, we have

det(M1)
1/n ≤ γ · (γµR,2)2(k−2) · τ1(M) ≤ γ · (γµR,2)2(k−2) ·

λ1(M)

αR
.

Using the definition of Hermite’s constant δn with the above relation, we
obtain Eq. (9):

λ1(M1) ≤ δn det(M1)
1/n ≤ δn · γ(γµR,2)

2(k−2) · λ1(M)

αR
.

Eq. (10) follows by directly applying the definition of Hermite’s constant
to Eq. (7) from Lemma 18.

4.1 Finding γ-reduced filtrations

We are now ready to show how to find a γ-reduced filtration with access
to a (γ, 2)-ModuleSVP oracle. The reduction is a natural analogue of the
LLL algorithm, and essentially identical to the reduction in [LPSW19].

Definition 20 ((γ, k)-RFP). For a CM/TR number field K, order R ⊆
OK , rank k ≥ 1, approximation factor γ = γ(R, k) ≥ 1, and inner product
〈·, ·〉ρ, the (γ, k)-Reduced Filtration Problem, or (γ, k)-RFP, is the search
problem defined as follows. The input is (a generating set for) a module
lattice M⊂ K` with rank k, and the goal is to find a γ-reduced filtration
M1 ⊂M2 ⊂ · · · ⊂ Mk.

Theorem 21. For any CM/TR number field K, order R ⊆ OK , rank
k ≥ 2, approximation factor γ = γ(R, k) ≥ 1, semicanonical inner product
〈·, ·〉ρ, and constant ε > 0, there is an efficient reduction from ((1+ε)γ, k)-
RFP to (γ, 2)-DIP.

Proof. The idea is to use our (γ, 2)-DIP oracle to compute a (1 + ε)γ-
reduced filtration just like the LLL algorithm computes a reduced basis. In
particular, on input (a generating set for) a module latticeM⊂ K` with
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rank k, the reduction first computes a filtrationM1 ⊂ · · · ⊂ Mk =M of
M (as in Fact 14). It then repeatedly updates this filtration in place as
follows.

For eachM[i,i+1], the reduction calls the (γ, 2)-DIP oracle withM[i,i+1]

as input and receives as output some rank-one ideal M̃′i ⊂ M[i,i+1]. We

may assume without loss of generality that M̃′i is a primitive submodule

of M[i,i+1], i.e., that M̃′i =M[i,i+1] ∩ spanK(M̃′i). If (1 + ε)n det(M̃′i) <
det(M̃i) then the reduction setsMi so that M̃i = M̃′i and leavesMj un-
changed for j 6= i. (Formally, the reduction can do this by, e.g., picking any
i-dimensional K-subspace W of spanK(Mi+1) such that ΠK,M⊥i−1

(W ) =

spanK(M̃′i) and Mi−1 ⊂ W and setting Mi := W ∩M. As we noted
in Section 2.1, Mi will then be a primitive submodule with rank i, and
it follows from the conditions on W that Mi−1 ⊂ Mi ⊂ Mi+1 and
M̃i = M̃′i.)

The reduction terminates and outputs the current filtration when none
of these checks results in an update to the filtration, i.e., when for all i,
(1 + ε)n det(M̃′i) ≥ det(M̃i).

We first observe that the output filtration is indeed (1 + ε)γ-reduced.
To see this, notice that the reduction only terminates if the filtration
satisfies

det(M̃i)
1/n ≤ (1 + ε) det(M̃′i)1/n ≤ (1 + ε)γ · τ1(M[i,i+1]) ,

as needed.

It remains to show that the reduction terminates in polynomial time.
Our proof is more-or-less identical to the celebrated proof in [LLL82] (and
the proof in [LPSW19]). Consider the potential function

Φ(M1, . . . ,Mk) :=
k∏
i=1

det(Mi) .

At the beginning of the reduction, logΦ(M1, . . . ,Mk) is bounded by a
polynomial in the input size (since Φ is efficiently computable). And,
by Fact 13, − log(Φ(M1, . . . ,Mk)) is bounded by a polynomial in the
input size throughout the reduction. Therefore, it suffices to show that
the potential decreases by at least, say, a constant factor every time that
the reduction updates the filtration.

Consider a step in the reduction in which it updatesMi. Denote M̂0

as Mi before the update and M̂1 as Mi after the update. Then, since ρ
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is semicanonical, by Item 2 of Corollary 6, we have

det(M̂1) = det(Mi−1) det(M̃′i) < det(Mi−1)
det(M̃i)

(1 + ε)n
=

det(M̂0)

(1 + ε)n
.

The other terms det(Mj) for i 6= j in the definition of Φ remain un-
changed. Thus, the potential function decreases by a factor of at least
(1 + ε)n after each update, as needed.

Finally, we derive the main results of this section as corollaries of
Theorem 24.

Corollary 22. For any CM/TR number field K, order R ⊆ OK , rank
k ≥ 2, approximation factor γ′ = γ′(R, k) ≥ 1, semicanonical inner
product 〈·, ·〉ρ, and constant ε > 0, there exists an efficient reduction from
(γ, k)-DIP to (γ′, 2)-DIP where

γ := (1 + ε)γ′ · ((1 + ε)γ′ · µR,2)2(k−2) .

Proof. The reduction takes as input a (generating set of a) module lattice
M of rank k and runs the ((1+ε)γ′, k)-RFP procedure from Theorem 21,
using the (γ′, 2)-DIP oracle, receiving as output some ((1 + ε)γ′)-reduced
filtration M1 ⊂ · · · ⊂ Mk = M of M. Finally, the reduction outputs
M1.

Clearly, the reduction runs in polynomial time. By Eq. (6) from Lemma
18, we must have

det(M1)
1/n ≤ (1 + ε)γ′ · ((1 + ε)γ′ · µR,2)2(k−2)τ1(M) = γτ1(M) ,

as needed.

Corollary 23. For any CM/TR number field K, order R ⊆ OK closed
under conjugation, rank k ≥ 2, approximation factor γ′ = γ′(R, k) ≥ 1,
semicanonical inner product 〈·, ·〉ρ, and constant ε > 0, there exists an
efficient reduction from (γR, k)-RFP to (γ′, 2)-ModuleSVP where γR :=

(1 + ε)γ
′δn
αR

.

Proof. The reduction takes as input a (generating set of a) module lat-
tice M of rank k. It then runs the procedure from Theorem 21 with
γ := γ′δn/αR. Each time that this procedure requires a call to its (γ, 2)-
DIP procedure, it uses the procedure from Theorem 12 and its (γ′, 2)-
ModuleSVP oracle to solve the (γ, 2)-DIP instance.

Clearly, the reduction runs in polynomial time and outputs a γR-
reduced filtration of M, where γR = (1 + ε)γ = (1 + ε)γ

′δn
αR

.
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Theorem 24 (Main Theorem). For any CM/TR number field K, or-
der R ⊆ OK , rank k ≥ 2, approximation factor γ = γ(R, k) ≥ 1, sem-
icanonical inner product 〈·, ·〉ρ, and constant ε > 0, there is an efficient
reduction from (γ, k)-ModuleSVP to (γ′, 2)-ModuleSVP where

γ := (1 + ε) ·
(γ′δn
αR

)2
·
(

(1 + ε)γ′ ·
δnµR,2
αR

)2(k−2)
.

There is also an efficient reduction from (γH , k)-ModuleHSVP to (γ′, 2)-
ModuleSVP, where

γH := γ′δn ·
(

(1 + ε)γ′ ·
δnµR,2
αR

)k−1
.

Proof. In fact, the reduction is the same for both ModuleSVP and Mod-
uleHSVP. On input (a generating set for) a module latticeM⊂ K` with
rank k, the reduction proceeds as follows. It obtains a γR-reduced filtra-
tion M1 ⊂ M2 ⊂ · · · ⊂ Mk using its (γ′, 2)-ModuleSVP oracle, where

γR := (1 + ε)γ
′δn
αR

(by Corollary 23). It then calls its (γ′, 2)-ModuleSVP
onM2 which outputs a vector x such that 0 < ‖x‖ρ ≤ γ′λ1(M2). It then
simply outputs this vector.

Since M1 ⊂M2, we have

0 < ‖x‖ρ ≤ γ′λ1(M2) ≤ γ′λ1(M1) .

By Eq. (9) of Corollary 19,

λ1(M1) ≤
γRδn
αR

· (γRµR,2)2(k−2) · λ1(M)

=
(1 + ε)γ′δ2n

α2
R

·
(

(1 + ε)
γ′δn
αR

µR,2

)2(k−2)
· λ1(M)

Combining the above two expressions, we get

0 < ‖x‖ρ ≤
(1 + ε)γ′2δ2n

α2
R

·
(

(1 + ε)
γ′δn
αR

µR,2

)2(k−2)
· λ1(M) .

Therefore,

γ = (1 + ε) ·
(γ′δn
αR

)2
·
(

(1 + ε)γ′ ·
δnµR,2
αR

)2(k−2)
,

as needed.
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Similarly, by Eq. (10) of Corollary 19,

‖x‖ρ ≤ γ′δn · (γRµR,2)(k−1) · det(M)1/(kn)

= γ′δn · ((1 + ε)γ′δnµR,2/αR)k−1 · det(M)1/(kn) ,

which gives the reduction from ModuleHSVP.
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[DPW19] Léo Ducas, Maxime Plançon, and Benjamin Wesolowski. On
the shortness of vectors to be found by the Ideal-SVP quantum
algorithm. In CRYPTO, 2019.
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