
Adaptively Secure Constrained Pseudorandom
Functions in the Standard Model

Alex Davidson1?, Shuichi Katsumata2??, Ryo Nishimaki3, Shota Yamada2??,
and Takashi Yamakawa3

1 Cloudflare, Portugal
alex.davidson92@gmail.com

2 AIST, Tokyo, Japan
{shuichi.katsumata,yamada-shota}@aist.go.jp

3 NTT Secure Platform Laboratories, Tokyo, Japan
{ryo.nishimaki.zk, takashi.yamakawa.ga}@hco.ntt.co.jp

Abstract. Constrained pseudorandom functions (CPRFs) allow learning
“constrained” PRF keys that can evaluate the PRF on a subset of the
input space, or based on some predicate. First introduced by Boneh and
Waters [AC’13], Kiayias et al. [CCS’13] and Boyle et al. [PKC’14], they
have shown to be a useful cryptographic primitive with many applications.
These applications often require CPRFs to be adaptively secure, which
allows the adversary to learn PRF values and constrained keys in an
arbitrary order. However, there is no known construction of adaptively
secure CPRFs based on a standard assumption in the standard model for
any non-trivial class of predicates. Moreover, even if we rely on strong
tools such as indistinguishability obfuscation (IO), the state-of-the-art
construction of adaptively secure CPRFs in the standard model only
supports the limited class of NC1 predicates.
In this work, we develop new adaptively secure CPRFs for various pred-
icates from different types of assumptions in the standard model. Our
results are summarized below.
– We construct adaptively secure and O(1)-collusion-resistant CPRFs

for t-conjunctive normal form (t-CNF) predicates from one-way func-
tions (OWFs) where t is a constant. Here, O(1)-collusion-resistance
means that we can allow the adversary to obtain a constant number
of constrained keys. Note that t-CNF includes bit-fixing predicates
as a special case.

– We construct adaptively secure and single-key CPRFs for inner-
product predicates from the learning with errors (LWE) assumption.
Here, single-key security means that we only allow the adversary
to learn one constrained key. Note that inner-product predicates
include t-CNF predicates for a constant t as a special case. Thus,
this construction supports more expressive class of predicates than

? Part of this work was completed while the author undertook a research internship at
NTT when he was a PhD student at Royal Holloway. The author was also supported
by the EPSRC and the UK Government as part of the Centre for Doctoral Training
in Cyber Security at Royal Holloway, University of London (EP/K035584/1).

?? The authors were supported by JST CREST Grant Number JPMJCR19F6. The
forth author was also supported by JSPS KAKENHI Grant Number 19H01109.

that supported by the first construction though it loses the collusion-
resistance and relies on a stronger assumption.

– We construct adaptively secure and O(1)-collusion-resistant CPRFs
for all circuits from the LWE assumption and indistinguishability
obfuscation (IO).

The first and second constructions are the first CPRFs for any non-trivial
predicates to achieve adaptive security outside of the random oracle
model or relying on strong cryptographic assumptions. Moreover, the first
construction is also the first to achieve any notion of collusion-resistance
in this setting. Besides, we prove that the first and second constructions
satisfy weak 1-key privacy, which roughly means that a constrained key
does not reveal the corresponding constraint. The third construction is an
improvement over previous adaptively secure CPRFs for less expressive
predicates based on IO in the standard model.

1 Introduction

Pseudorandom functions (PRFs) provide the basis of a huge swathe of cryptog-
raphy. Intuitively, such functions take a secret key and some binary string x
as input, and output (deterministically) some value y. The pseudorandomness
requirement dictates that y is indistinguishable from the output of a uniformly
sampled function operating solely on x. PRFs provide useful sources of random-
ness in cryptographic constructions that take adversarially-chosen inputs. Many
constructions of PRFs from standard assumptions are known, e.g., [25,38,37,7].

There have been numerous expansions of the definitional framework sur-
rounding PRFs. In this work, we focus on a strand of PRFs that are known as
constrained PRFs or CPRFs. CPRFs were first introduced by Boneh and Wa-
ters [15] alongside the concurrent works of Kiayias et al. [33] and Boyle et al. [17].
They differ from standard PRFs in that they allow users to learn constrained keys
to evaluate the PRF only on a subset of the input space defined by a predicate.
Let K be a master key used to compute the base PRF value and let KC be the
constrained key with respect to a predicate C. Then, the output computed using
the master key y = CPRF.Eval(K, x) can be evaluated using a constrained key KC
if the input x satisfies the constraint, i.e., C(x) = 1. However, if C(x) = 0, then
the output y will remain pseudorandom from a holder of KC . The expressiveness
of a CPRF is based on the class of constraints C it supports, where the most
expressive class is considered to be P/poly.

Similarly to the security notion of standard PRFs, we require CPRFs to satisfy
the notion of pseudorandomness on constrained points. Formally, the adversary
is permitted to make queries for learning PRF evaluations on arbitrary points as
with standard PRFs. The adversary is also permitted to learn constrained keys
for any predicates Ci ∈ C where i ∈ [Q] for Q = poly.1 The security requirement
dictates that the CPRF remains pseudorandom on a target input x∗ that has
not been queried so far, where Ci(x∗) = 0 for all i. There have been several
1 Throughout the introduction, poly will denote an arbitrary polynomial in the security
parameter.

2

flavors of this security requirement that have been considered in previous works:
when the adversary can query the constrained keys arbitrarily, then we say the
CPRF is adaptively secure on constrained points; otherwise, if all the constrained
keys must be queried at the outset of the game it is selectively secure.2 When
Q > 1, then we say the CPRF is Q-collusion-resistant. In case Q = poly, we write
poly-collusion-resistant and when Q = 1, we say it is a single-key CPRF. These
two notions capture the requirements of CPRFs and satisfying both requirements
(adaptively-secure, poly-collusion-resistant) is necessary for many applications of
CPRFs [15]. For instance, in one of the most appealing applications of CPRFs
such as length-optimal broadcast encryption schemes and non-interactive policy-
based key exchanges, we require an adaptive and poly-collusion-resistant CPRF
for an expressive class of predicates.

We focus on known constructions of CPRFs in the standard model from
standard assumptions, that is, CPRFs that do not rely on the random oracle model
(ROM) and non-standard assumptions such as indistinguishability obfuscation
(IO) or multilinear maps. We notice that there exists no construction of adaptively
secure CPRFs for any class of predicates in this standard setting. For instance,
even if we consider the most basic puncturable or prefix-fixing predicates, we
require the power of IO or the ROM to achieve adaptive security. (For an
explanation on different types of predicates, we refer to the full version). Notably,
even though we now have many CPRFs for various predicate classes from different
types of standard assumptions such as the learning with errors (LWE) and
Diffie-Hellman (DH) type assumptions [5,19,18,20,3,22,39], all constructions only
achieve the weaker notion of selective security. In addition, other than selectively-
secure CPRFs for the very restricted class of prefix-fixing predicates [5], all the
above constructions of CPRFs provide no notion of Q-collusion-resistance for any
Q > 1. Indeed, most constructions admit trivial collapses in security once more
than one constrained key is exposed. A natural open question arises:

(Q1). Can we construct adaptively secure constrained PRFs for any
class of predicates based on standard assumptions in the standard model;
preferably with collusion-resistance?

Next, we focus on CPRFs based on any models and assumptions. So far
the best CPRF we can hope for — an optimal CPRF — (i.e., it supports the
constraint class of P/poly, it is adaptively secure, and it is poly-collusion resistant)
is only known based on IO in the ROM [28]. The moment we restrict ourselves to
the standard model without relying on the ROM, we can only achieve a weaker
notion of CPRF regardless of still being able to use strong tools such as IO.
Namely, the following three incomparable state-of-the-art CPRFs (based on IO
in the standard model) do not instantiate one of the requirements of the optimal
CPRF: [29] only supports the very limited class of puncturing predicates; [14]
only achieves selective security; and [4] only achieves single-key security for the
2 In general, we can upgrade selective security to adaptive security by complexity
leveraging. However, we want to avoid this since complexity leveraging needs subex-
ponentially hard assumptions.

3

limited class of NC1 predicates. Therefore, a second open question that we are
interested in is:

(Q2). Can we construct an adaptively secure and Q-collusion resistant
(for any Q > 1) constrained PRFs for the widest class of P/poly predicates
in the standard model?

Note that solving the above question for all Q > 1 will result in an optimal
CPRF, which we currently only know how to construct in the ROM.

1.1 Our Contribution
In this study, we provide concrete solutions to the questions (Q1) and (Q2)
posed above. We develop new adaptively secure CPRF constructions for various
expressive predicates from a variety of assumptions in the standard model. We
summarize our results below. The first two results are answers to (Q1), and the
last result is an answer to (Q2).
1. We construct an adaptively secure and O(1)-collusion-resistant CPRF for t-

conjunctive normal form (t-CNF) predicates from one-way functions (OWFs),
where t is any constant. Here, O(1)-collusion-resistance means that it is secure
against adversaries who learn a constant number of constrained keys. This
is the first construction to satisfy adaptive security or collusion-resistance
from any standard assumption and in the standard model regardless of the
predicate class it supports. Our CPRF is based solely on the existence of
OWFs. In particular, it is a much weaker assumption required than all other
CPRF constructions for the bit-fixing predicate (which is a special case
of t-CNF predicates) [15,14,20,3]. Previous works rely on either the LWE
assumption, the decisional DH assumption, or multilinear maps.

2. We construct an adaptively secure and single-key CPRF for inner-product
predicates from the LWE assumption. Although our second CPRF does not
admit any collusion-resistance, inner-product predicates are a strictly wider
class of predicates compared to the t-CNF predicates considered above. (See
the full version.) All other lattice-based CPRFs supporting beyond inner-
product predicates (NC1 or P/poly) [19,18,20,22,39] achieve only selective
security and admits no collusion-resistance.

3. We construct an adaptively secure and O(1)-collusion-resistant CPRF for
P/poly from IO and the LWE assumption. More specifically, we use IO and
shift-hiding shiftable functions [39], where the latter can be instantiated
from the LWE assumption. This is the first adaptively secure CPRF for
the class of P/poly in the standard model (it further enjoys any notion of
collusion-resistance). As stated above, current constructions of CPRFs in the
standard model either: only support the limited class of puncturing predicates
[29]; achieves only selective security [14]; or only achieves single-key security
for the limited class of NC1 predicates [4].

We also note that our first two constructions satisfy (weak) 1-key privacy, pre-
viously coined by Boneh et al. [14] (see the full version for more details on the
definition of key privacy).

4

Applications. As one interesting application, our CPRF for bit-fixing predicates
can be used as a building block to realize adaptively-secure t-CNF attribute-based-
encryption (ABE) based on lattices, as recently shown by Tsabary [41]. Other
than identity-based encryption [1,21] and non-zero inner product encryption [32],
this is the first lattice-based ABE satisfying adaptive-security for a non-trivial
class of policies. The ABE scheme by Tsabary shows that other than their
conventional use-cases, CPRFs may be a useful tool to achieve higher security of
more advanced cryptographic primitives.

An attentive reader may wonder whether our CPRFs have any other ap-
plications. For instance, as Boneh and Waters proved [15], one can construct
length-optimal broadcast encryption schemes from CPRFs for bit-fixing pred-
icates. However, unfortunately, for these types of applications, we require Q-
collusion-resistance where Q is an a-priori bounded polynomial. Therefore, we
cannot plug in our construction for these types of applications. We leave it as
an interesting open problem to progress our CPRF constructions to achieve
Q-collusion-resistance for larger Q; achieving Q = ω(1) would already seem to
require a new set of ideas.

Relation to the lower bound by Fuchsbauer et al. [24]. One may wonder how our
adaptively secure CPRF relates to the lower bound of adaptively secure CPRFs
proven by Fuchsbauer et al. [24]. They proved that we could not avoid exponential
security loss to prove adaptive pseudorandomness of the specific CPRF for bit-
fixing predicates by Boneh and Waters based on multilinear maps [15]. Fortunately,
their proofs rely heavily on the checkability of valid constrained keys by using
multilinear maps. Therefore, their lower bounds do not apply to our setting since
none of our constructions have checkability.

Comparison with Existing Constructions. There are several dimensions to consider
when we compare CPRF constructions. In this section, we focus on adaptively
secure CPRFs as it is one of our main contributions. Along with related works, a
more extensive comparison is provided in the full version. The following Table 1
lists all the adaptively secure CPRFs known thus far. One clear advantage
of our first two CPRFs is that they are the first CPRF to achieve adaptive
security without relying on IO or the ROM. However, it can be seen that
this comes at the cost of supporting a weaker predicate class, or achieving
single-key or O(1)-collusion-resistance. Regarding our third CPRF, the main
advantage is that it achieves adaptive security and supports the broadest predicate
class P/poly without resorting to the ROM. Compared to the recent CPRF by
Attrapadung et al. [4], we provide a strict improvement since our first construction
supports O(1)-collusion-resistance.

Historical Note on Our First Contribution. In the initial version of this paper,
we gave a construction of adaptively secure and O(1)-collusion-resistant CPRFs
for bit-fixing predicates. After the initial version, Tsabary [41] observed that
essentially the same idea could be used to construct adaptively single-key secure
CPRFs for t-CNF predicates for a constant t. We further extend her construction

5

Table 1. Comparison among adaptively secure CPRFs. In column “Predicate”, LR,
BF, t-CNF, and IP stand for left-right-fixing, bit-fixing, t-conjunctive normal form,
and inner-product predicates, respectively. In column “Assumption”, BDDH, LWE,
SGH, and L-DDHI stand for bilinear decisional Diffie-Hellman, multilinear decisional
Diffie-Hellman, learning with errors, subgroup hiding assumption, and L-decisional
Diffie-Hellman inversion assumptions, respectively. Regarding key privacy, ‡ means that
this satisfies weak key privacy.

Adaptive Collusion-resistance Privacy Predicate Assumption
BW [15] X poly poly LR BDDH & ROM
HKKW [28] X poly 0 P/poly IO & ROM
HKW [29] X poly 0 Puncturing SGH & IO
AMNYY [3] X 1 1 BF ROM

X 1 0 NC1 L-DDHI & ROM
AMNYY [4] X 1 0 NC1 SGH & IO
Sec. 4 X O(1) 1‡ t-CNF (⊇ BF) OWF
Sec. 5 X 1 1‡ IP LWE
Sec. 6 X O(1) 0 P/poly LWE & IO

to construct adaptively secure and O(1)-collusion-resistant CPRFs for t-CNF
predicates for a constant t in the current version. We stress that (the initial version
of) this paper is the first to give adaptively secure or collusion-resistant CPRFs
under a standard assumption and in the standard model, for any non-trivial class
of predicates.

2 Technical Overview

In this section, we explain the approach we took for achieving each of our
CPRFs. For CPRFs for bit-fixing (and t-CNF) predicates, we take a combinatorial
approach. For CPRFs for inner-product predicates, we take an algebraic approach
based on lattices incorporating the so-called lossy mode. For CPRFs for P/poly,
we use shift-hiding shiftable functions [39] and IO as main building blocks. In
the subsequent subsections, we explain these approaches in more detail.

2.1 CPRF for Bit-Fixing/t-CNF

We achieve CPRFs for t-CNF predicates. However, we consider our CPRF for
bit-fixing predicates in the technical overview rather than the more general
CPRF for t-CNF predicates for ease of presentation. The high-level idea is very
similar and generalizes naturally. Here, a bit-fixing predicate is defined by a string
v ∈ {0, 1, ∗}` where ∗ is called the “wildcard”. A bit-fixing predicate v on input
x ∈ {0, 1} is said to be satisfied if and only if (vi = xi) ∨ (vi = ∗) for all i ∈ [`].

We first focus on how to achieve collusion-resistance because the structure
for achieving collusion-resistance naturally induces adaptive security.

6

Combinatorial Techniques for CPRFs for bit-fixing predicates. We start with a
simpler case of single-key CPRF for bit-fixing predicates as our starting point.
We use 2` keys of standard PRFs to construct an `-bit input CPRF for bit-fixing
predicates. Let PRF.Eval : {0, 1}κ×{0, 1}` 7→ {0, 1}n be the evaluation algorithm
of a PRF. We uniformly sample keys Ki,b ∈ {0, 1}κ for i ∈ [`] and b ∈ {0, 1}.
The master key of the CPRF is K = {Ki,b}i∈[`],b∈{0,1} and evaluation on some
x ∈ {0, 1}` is computed as the output of:

CPRF.Eval(K, x) =
⊕̀
i=1

PRF.Eval(Ki,xi , x).

Figure 1 depicts the construction.

· · ·

K1,0

K1,1

K2,0

K2,1

K3,0

K3,1

K`,0

K`,1

Fig. 1. Length-` directed line representation where each nodes are labeled with two
PRF keys. In the figure, the choices of PRF keys correspond to some input x = 011 · · · 0.

The constrained key for a bit-fixing predicate v ∈ {0, 1, ∗}` constitutes a single
PRF key Ki,vi(where vi ∈ {0, 1}), and a pair of PRF keys (Ki,0,Ki,1) (where
vi = ∗). Constrained evaluation is clearly possible for any input x that satisfies
the bit-fixing predicate v since we have keys Ki,vi for non-wildcard parts and
both keys (Ki,0,Ki,1) for wildcard parts.

The (selective) security of the scheme rests upon the fact that for a single
constrained key, with respect to v, there must exist a j ∈ [`] such that (x∗j 6=
vj)∧ (vj 6= ∗) for the challenge input x∗. This is due to the fact that the bit-fixing
predicate v does not satisfy x∗. Then, pseudorandomness of y ← CPRF.Eval(K, x∗)
is achieved because

y ←
⊕̀
i=1

PRF.Eval(Ki,x∗
i
, x∗) = PRF.Eval(Kj,x∗

j
, x∗)⊕

⊕
i6=j

PRF.Eval(Ki,x∗
i
, x∗)

where PRF.Eval(Kj,x∗

j
, x∗) is evaluated using the key that is unknown to the

adversary. Thus, this evaluation can be replaced with a uniformly sampled
yj ∈ {0, 1}n by the pseudorandomness of PRF for key Kj,x∗

j
. In turn, this results

in a uniformly distributed CPRF output y and so pseudorandomness is ensured.
We can instantiate pseudorandom functions using only one-way functions [25,27],
and therefore, so can the above single-key CPRF for the bit-fixing predicate.

7

Allowing > 1 constrained key query. If we allow for more than two constrained
key queries in the above construction, the scheme is trivially broken. Consider
an adversary that queries the two bit-fixing predicates v = 0 ∗ ∗ . . . ∗ ∗0 and
v̄ = 1 ∗ ∗ . . . ∗ ∗1 as an example. Notice that any binary string x of the form
x = 0 . . . 1 or x = 1 . . . 0 will not satisfy either of the predicates. Therefore, we
would like the evaluation value y on such input x by the master key to remain
pseudorandom to the adversary. However, the adversary will be able to collect
all PRF keys {Ki,b}i∈[`],b∈{0,1} by querying v and v̄, and recover the master key
itself in our construction above. Therefore, the adversary will be able to compute
on any input x regardless of its constraints.

Collusion-resistance for two constrained key queries. At a high level, the reason
why our construction could not permit more than one constrained key query
is because we examined each of the input bits individually when choosing the
underlying PRF keys. Now, consider a scheme that considered two input bits
instead of considering one input bit at each node in Figure 1. Figure 2 illustrates
this modified construction. In the set-up shown in Figure 2 at each node (i, j), we
now consider the ith and jth input bits of the string x ∈ {0, 1}` and choose the
key K(i,j),(b1,b2) where b1 = xi and b2 = xj ; the master key is the combination of
all such keys K = {K(i,j),(b1,b2)}(i,j)∈[`]2,(b1,b2)∈{0,1}2 .

· · · · · ·

{K(1,1),(x1,x1)} {K(1,`),(x1,x`)} {K(2,1),(x2,x1)} {K(`,`),(x`,x`)}

Fig. 2. Length-`2 directed line representation where each nodes consider two input bits,
where (xi, xj) ∈ {0, 1} × {0, 1} for all i, j ∈ [`].

Evaluation is then carried out by adding the PRF values along the directed line
illustrated in Figure 2:

CPRF.Eval(K, x) =
⊕

(i,j)∈[`]×[`]

PRF.Eval(K(i,j),(xi,xj), x),

and constrained keys for v ∈ {0, 1, ∗}` contain the key K(i,j),(b1,b2), for all b1, b2 ∈
{0, 1} such that(

(vi = b1) ∨ (vi = ∗)
)∧(

(vj = b2) ∨ (vj = ∗)
)
,

is satisfied.
To see how this combinatorial change in the construction has an impact

on the collusion-resistance of the scheme, consider a pair of constrained key
queries for bit-fixing predicates v, v̄ ∈ {0, 1, ∗}`. Let x∗ be the challenge input
that is constrained with respect to both v, v̄. Then there exists an i′ ∈ [`] where
(x∗i′ 6= vi′) ∧ (vi′ 6= ∗) and likewise (x∗j′ 6= v̄j′) ∧ (v̄j′ 6= ∗) for some j′ ∈ [`].

8

Equivalently, we must have x∗i′ = 1− vi′ and x∗j′ = 1− v̄j′ for some i′, j′ ∈ [`]. As
a result, for these constrained key queries we observe that the underlying PRF
key K(i′,j′),(1−vi′ ,1−v̄j′) will never be revealed to the adversary.

Using this fact, we can prove that our new CPRF construction achieves
collusion-resistance for two constrained key queries using essentially the same
aforementioned proof technique. We rewrite the CPRF evaluation on x∗ as:

CPRF.Eval(K, x∗) =
⊕

(i,j)∈[`]×[`]

PRF.Eval(K(i,j),(x∗
i
,x∗
j
), x
∗)

= PRF.Eval(K(i′,j′),(x∗
i′
,x∗
j′

), x
∗)⊕

 ⊕
(i,j) 6=(i′,j′)

PRF.Eval(K(i,j),(x∗
i
,x∗
j
), x
∗)

 .

Notice that, since K(i′,j′),(x∗
i′
,x∗
j′

) is never revealed to the adversary, this evaluation
is indistinguishable from a uniformly sampled value y∗. In a simulation where y∗
replaces the underlying PRF evaluation, the entire CPRF evaluation on x∗ is
distributed uniformly and pseudorandomness follows accordingly.

Expanding to O(1)-collusion-resistance. The technique that we demonstrate in
this work is a generalisation of the technique that we used for two-key collusion-
resistance. Instead of considering two input bits at a time, we consider Q input bits
at a time and index each node in the evaluation by the vector (i1, . . . , iQ) ∈ [`]Q.
Then we evaluate the CPRF on x ∈ {0, 1}` as the output of:

CPRF.Eval(K, x) =
⊕

(i1,...,iQ)∈[`]Q
PRF.Eval(K(i1,...,iQ),(xi1 ,...,xiQ), x).

The constraining algorithm works for a bit-fixing predicate defined by v ∈
{0, 1, ∗}` by providing all keys K(i1,...,iQ),(b1,...,bQ) such that∧

j∈[Q]

(bj = vij) ∨ (vij = ∗)

is satisfied. Constrained evaluation is then possible for any input x satisfying the
bit-fixing predicate defined by v.

For any set of Q constrained key queries associated with strings v(1), . . . , v(Q)

and any constrained input x∗, there must exist a vector (i′1, . . . , i′Q) such that
(x∗i′

j
6= v

(j)
i′
j

) ∧ (v(j)
i′
j
6= ∗) for all j ∈ [Q]. Therefore, the key K(i′1,...,i′Q),(x∗

i′1
,...,x∗

i′
Q

) is

never revealed to the adversary. Finally, we can prove the selective pseudorandom-
ness of the CPRF on input x∗ using exactly the same technique as mentioned in
the case when Q = 2. The proof of security is given in the proof of Theorem 4.1.

Importantly, we cannot achieve collusion-resistance for unbounded Q because
there is an exponential dependency on Q associated with the size of the CPRF. For
instance, for the node indexed by the vector (i1, . . . , iQ), there are 2Q underlying
PRF keys associated with this node; moreover, there are `Q such nodes. Therefore

9

the total size of K is (2`)Q. As a result, we are only able to afford Q = O(1) since
` is the input length of PRF, which is a polynomial in the security parameter.
This bound is inherent in the directed line paradigm because our technique is
purely combinatorial.

Finally, we assess the security properties achieved by our CPRF for bit-fixing
predicates. Although we have been showing selective security of our CPRF, we
observe that our construction satisfies adaptive security when the underlying
pseudorandom functions satisfy adaptive pseudorandomness.

Achieving Adaptive security. Our construction arrives at adaptive security es-
sentially for free. Previous constructions for bit-fixing predicates (or as a matter
of fact, any non-trivial predicates) incur sub-exponential security loss during
the reduction from adaptive to selective security, or relies on the random oracle
model or IO; see the full version for an overview. The sub-exponential security
loss is incurred as previous constructions achieve adaptive security by letting the
reduction guess the challenge input x∗ that the adversary chooses.

We can achieve adaptive security with a polynomial security loss (e.g. 1/poly(κ)):
by instead guessing the key (not the challenge input) that is implicitly used by the
adversary (i.e. KT∗,x∗

T
for T ∗ ⊂ [`], |T ∗| = Q). For example in the 2-key setting

explained above, this amounts to correctly guessing the values (i, j) and (x∗i , x∗j)
of the PRF key K(i,j),(x∗

i
,x∗
j
), which happens with probability at most (1/2`)2. If

this key is not eventually used by the challenge ciphertext, or it is revealed via a
constrained key query, then the reduction algorithm aborts. This is because the
entire proof hinges on the choice of this key, rather than the input itself. Since
there are only polynomially many keys (for Q = O(1)), we can achieve adaptive
security with only a 1/poly(κ) probability of aborting.

Finally, we note that there is a subtle technical issue we must resolve due to
the non-trivial abort condition. Similar problems were identified by Waters [42]
who introduced the “artificial abort step”.

2.2 CPRF for Inner-Product

We construct CPRF for the class of inner-product predicates (over the integers)
based on lattices.

The starting point of our CPRF is the lattice-based PRF of [13,6]. At a very
high level, the secret key K of these PRFs is a vector s ∈ Znq and the public
parameters is some matrices (Ai ∈ Zn×mq)i∈[k]. To evaluate on an input x, one
first generates a (publicly computable) matrix Ax ∈ Zn×mq related to input x
and simply outputs the value bs>Axcp ∈ Zmp , where bacp denotes rounding of an
element a ∈ Zq to Zp by multiplying it by (p/q) and rounding the result. Roughly,
the values s>Ax + noise are jointly indistinguishable from uniform for different
inputs x since Ax acts as an LWE matrix. Therefore, if the noise term is sufficiently
small, then bs>Axcp = bs>Ax + noisecp, and hence, pseudorandomness follows.

Pioneered by the lattice-based CPRF of Brakerski and Vaikuntanathan [19],
many constructions of CPRF [12,18] have built on top of the PRF of [13,6]. The

10

high-level methodology is as follows: the constrained key for a constraint C would
be a set of LWE ciphertexts of the form KC := (cti = s>(Ai−Ci ·G)+noise)i∈[k],
where Ci is the ith bit of the description of the constraint C and G is the so-called
gadget matrix [36]. To evaluate on input x using the constrained key KC , one
evaluates the ciphertexts (cti)i∈[k] to ctx = s>(Ax − (1 − C(x)) · G) + noise,
using the by now standard homomorphic computation technique of [11] originally
developed for attribute-based encryption (ABE) schemes. Here, Ax is independent
of the constraint C, that is, Ax can be computed without the knowledge of C.
Then, the final output of the CPRF evaluation with the constrained key will be
bctxcp. Now, if the constraint is satisfied, i.e., C(x) = 1, then computing with
the constrained key KC will result in the same output as the master key K since
we would have ctx = s>Ax + noise.

Unfortunately, all works which follow this general methodology only achieves
selective security. There is a noted resemblance between this construction with the
above types of CPRF and the ABE scheme of [11]. As a consequence, achieving
an adaptively secure CPRF following the above methodology would likely shed
some light onto the construction of an adaptively secure lattice-based ABE.
Considering that adaptively secure ABEs are known to be one of the major open
problems in lattice-based cryptography, it does not seem to be an easy task to
achieve an adaptively secure CPRF following this approach.

We take a different approach by taking advantage of the fact that our con-
straint is a simple linear function in this work due to the technical hurdle above.
Specifically, we only embed the constraint in the master key s instead of em-
bedding the constraint in the master key s and the public matrices (Ai)i∈[k]
as (s>(Ai − Ci ·G))i∈[k]. To explain this idea, we need some preparation. Let
y ∈ Z` be the vector associated with the inner-product constraint Cy, that is, the
constrained key KCy can evaluate on input x ∈ Z` if and only if 〈x,y〉 = 0 (over
the integers). We also slightly modify the PRF of [13,6] so that we use a matrix
S ∈ Zn×`q instead of a vector s ∈ Znq as the secret key. To evaluate on input
x ∈ Z` with the secret key S, we will first compute the vector sx = Sx ∈ Zn and
then run the PRF of [13,6], viewing sx as the secret key. That is, the output of
the PRF is now bs>x Axcp.

The construction of our CPRF is a slight extension of this. The master key
and evaluation with the master key is the same as the modified PRF. Namely, the
master key is defined as K := S and the output of the evaluation is bs>x Axcp. Our
constrained key for the constraint Cy is then defined as KCy := Sy = S+d⊗y> ∈
Zn×`q where d is a uniformly random vector sampled over Znq . Evaluation with
the constrained key KCy = Sy is done exactly the same as with the master key
K = S; it first computes sy,x = Syx and outputs bs>y,xAxcp. It is easy to check
that if 〈x,y〉 = 0 (i.e., Cy(x) = 1), then Syx = (S + d⊗ y>)x = sx. Hence, the
constrained key computes the same output as the master key for the inputs for
which the constraint is satisfied. The construction is very simple, but the proof
for adaptive security requires a bit of work.

As a warm-up, let us consider the easy case of selective security and see why
it does not generalize to adaptive security. When the adversary A submits Cy

11

as the challenge constraint at the beginning of the selective security game, the
simulator samples Ŝ $← Zn×`q and d $← Znq ; sets the master key as K = Ŝ−d⊗y>

and the constrained key as KCy = Ŝ; and returns KCy to A. Since the distribution
of K and KCy is exactly the same as in the real world, the simulator perfectly
simulates the keys to A. Now, notice that evaluation on input x with the master
key K results as

z =
⌊(

(Ŝ− d⊗ y>)x
)>

Ax

⌋
p

≈ b(Ŝx)>Axcp − 〈x,y〉 · bd>Axcp = CPRFKCy
(x)− 〈x,y〉 · PRFd(x),

where CPRFKCy
(x) is the CPRF evaluation with constrained key KCy and

PRFd(x) is the PRF evaluation of [13,6] with secret key d ∈ Znq .3 In partic-
ular, the simulator can simply reply to the evaluation query x made by A by first
evaluating x with the constrained key KCy and then shifting it by 〈x,y〉·PRFd(x).
With this observation, selective security readily follows from the security of the
underlying PRF. Specifically, A will obtain many output values PRFd(x) for
any x of its choice in the course of receiving z back on an evaluation query on
input x. However, PRFd(x∗) will remain pseudorandom for a non-queried input
x∗ due to the security of the PRF. Hence, the challenge output z∗ will remain
pseudorandom from the view of A.

Unfortunately, the above approach breaks down if we want to show adaptive
security. This is because the simulator will no longer be able to simulate the
“shift”〈x,y〉 · PRFd(x) if it does not know the vector y associated with the
challenge constraint Cy. In particular, it seems the simulator is bound to honestly
compute the master key K = S and to use K to answer the evaluation query
made before the challenge constraint query. Therefore, to cope with this apparent
issue, we deviate from the above approach used to show selective security.

Our high-level approach for adaptive security will be to argue that d retains
sufficient min-entropy conditioned on the view ofA, whereA obtains a constrained
key KCy = Sy and honest evaluation on inputs (xj)j∈[Q] where Q is an arbitrary
polynomial. Intuitively, if d ∈ Znq retains enough min-entropy, then it will mask
part of the master key S conditioned on A’s knowledge on Sy = S + d⊗y>, and
hence, we would be able to argue that the output evaluated using the master key
S is pseudorandom using some randomness extractor-type argument.

The proof for adaptive security is roughly as follows: Let K = S. The simulator
will basically run identically to the challenger in the real world. It will honestly
answer to A’s evaluation query on input x by returning b(Sx)>Axcp computed
via the master key. When A queries for a constrained key on constraint Cy, the
simulator honestly responds by returning KCy = Sy. Evaluation queries after the
constrained key query will also be answered using the master key. Then, similarly
to the above equation, the output z returned to A as an evaluation query on
3 Note that a lot of subtlety on parameter selections and technicalities regarding
rounding are swept under the rug. However, we believe the rough details are enough
to convey the intuition.

12

input x can be written as

z = b(Sx)>Axcp
≈ b(Syx)>Axcp − 〈x,y〉 · bd>Axcp = CPRFKCy

(x)− 〈x,y〉 · bd>Axcp.

Therefore, conditioned on A’s view, each query will leak information of d through
the term bd>Axcp. Moreover, if we run the standard homomorphic computation
of [11], Ax will be a full-rank matrix with overwhelming probability, and hence,
bd>Axcp may uniquely define d. Notably, information theoretically, everything
about d may completely leak through a single evaluation query. Therefore, the
question to be solved is: how can we restrict the information of d leaked through
the evaluation query?

The main idea to overcome this problem is to use the lossy mode of the LWE
problem [26,8,2,34]. The lossy LWE mode is a very powerful tool which states
that if we sample A ∈ Zn×mq from a special distribution which is computationally
indistinguishable from random (assuming the hardness of LWE), then (A,d>A +
noise) leaks almost no information on d. We call such a matrix A as “lossy”. Our
idea draws inspiration from the recent work of Libert, Stehlé, and Titiu [35] that
shows that this lossy LWE mode can be combined with homomorphic computation
of [11] to obtain adaptively secure distributed lattice-based PRFs. We will setup
the public matrices (Ai)i∈[k] in a special way during the simulation. Concretely,
the special setup induces a lossy matrix on all the evaluation queries and a
non-lossy matrix (i.e., (Ax,d>Ax + noise) uniquely defines d) on the challenge
query with non-negligible probability when we homomorphically compute Ax.
For the knowledgeable readers, this programming of Ax is accomplished by using
admissible hash functions [10]. With this idea in hand, we will be able to argue
that each evaluation query will always leak the same information on d. Then, we
will be able to argue that z∗ = bd>A∗xcp will have high min-entropy conditioned
on A’s view since A∗x will be a non-lossy matrix on the challenge input x∗. Finally,
we will use a deterministic randomness extractor to extract statistically uniform
bits from z∗.

We end this part by noting that K = S and d will be taken from a more
specific domain and there will be many subtle technical issues regarding the
rounding operation in our actual construction. Moreover, similarly to [35], there
are subtle issues on why we have to resort to deterministic randomness extractors
and not any randomness extractors. For more detail, see Sec. 5.

2.3 CPRF for P/poly

Our CPRF for P/poly is constructed based on IO and shift-hiding shiftable
functions (SHSF) [39].

First, we briefly recall SHSF. An SHSF consists of the following algorithms:
a key generation algorithm SHSF.KeyGen, which generates a master key msk;
an evaluation algorithm SHSF.Eval, which takes msk and x ∈ X as input and
outputs y ∈ Y; a shifting algorithm SHSF.Shift, which takes msk and a function
C : X → Y as input and outputs a shifted secret key skC ; and a shifted evaluation

13

algorithm SHSF.SEval, which takes a shifted evaluation key skC and x ∈ X as
input and outputs y ∈ Y. As correctness, we require that SHSF.SEval(skC , x) ≈
SHSF.Eval(msk, x)+C(x) holds where + denotes an appropriately defined addition
in Y and ≈ hides a small error. In this overview, we neglect the error and assume
that this equation exactly holds for simplicity. The security of SHSF roughly
says that skC does not reveal the shifting function C. More precisely, we require
that there exists a simulator SHSF.Sim that simulates skC without knowing C
so that it is computationally indistinguishable from an honestly generated one.

Before going into detail on our CPRF, we make one observation, which
simplifies our security proof. Specifically, we can assume that an adversary does
not make an evaluation query without loss of generality when we consider a
(constant) collusion-resistant CPRF for P/poly. This is because we can replace
polynomial number of evaluation queries with one extra constrained key query on
a “partitioning function” by the standard partitioning technique. (See Lemma 6.2
and its proof in the full version for the detail.) Thus, we assume that an adversary
does not make any evaluation query at all, and only makes constrained key
queries and a challenge query in the following.

We describe our construction of CPRF. A master key K of the CPRF is a
secret key sksim of SHSF generated by SHSF.Sim, and the evaluation algorithm of
the CPRF with the master key K = sksim is just defined as SHSF.SEval(sksim, ·). A
constrained key KC for a circuit C is defined to be an obfuscated program in which
sksim and C are hardwired and that computes SHSF.SEval(sksim, x) if C(x) = 1
and returns ⊥ otherwise. This construction clearly satisfies the correctness of
CPRF.

In the following, we show that this CPRF is adaptively secure against adver-
saries that make O(1) constrained key queries and no evaluation query, which
is sufficient to obtain O(1) collusion-resistant adaptive CPRF that tolerates
polynomial number of evaluation queries as explained above. First, we remark
that constrained key queries made after the challenge query are easy to deal
with. Namely, we can replace the master key hardwired into the constrained keys
with a “punctured key” that can evaluate the CPRF on all inputs except for the
challenge input by using the security of IO and the shift-hiding property of SHSF.
Then, we can argue that the challenge output is still pseudorandom even given
these constrained keys. We omit the details since this is a simple adaptation of
the standard puncturing technique [40,16]. In the following, we assume that all
constrained key queries are made before the challenge query so that we can focus
on the most non-trivial part.

We begin by considering the single-key security, and later explain how to
extend the proof to the O(1)-collusion-resistant case. In the single-key security
game, an adversary only makes one constrained key query C and a challenge
query x∗ in this order. Recall that we are assuming that an adversary does not
make any evaluation query and does not make any constrained key query after a
challenge query is made without loss of generality. The main observation is that
the simulator can generate the master key K with knowledge of the constraint C
associated to the constrained key query since it can postpone generation of K

14

until a constrained key query is made. For proving the security in this setting,
we consider the following game hops.

In the first, we replace the master key K = sksim with a shifted secret key sk1
generated by SHSF.Shift(msk1, C(·) · r). Here, msk1

$← SHSF.KeyGen, C denotes
a negated circuit of C, and r

$← Y. This change will go unnoticed due to
the shift-hiding property of SHSF. Now, by the correctness of SHSF, we have
SHSF.SEval(sk1, x) = SHSF.Eval(msk1, x) + C(x) · r for all x. In particular, the
challenge output can be written as SHSF.Eval(msk1, x

∗) + r since we must have
C(x∗) = 0. On the other hand, for all inputs x such that C(x) = 1, we have
SHSF.SEval(sk1, x) = SHSF.Eval(msk1, x). Since the constrained key KC is an
obfuscated program that computes SHSF.SEval(sk1, x) for x such that C(x) = 1
and ⊥ otherwise, the same functionality can be computed by using msk1 instead
of sk1.

Thus, as a next game hop, we use the security of IO to hardwire msk1 instead
of sk1 into the constrained key KC . At this point, the constrained key KC leaks no
information of r since the distribution of msk1 and r are independent. Thus, we
can use the randomness of r to argue that the challenge output is independently
uniform from the view of the adversary, which completes the security proof.

Next, we explain how to extend the above proof to the case of O(1)-collusion-
resistance. A rough idea is to propagate a “masking term” (which was r in the
single-key case) through a “chain” of secret keys of SHSF so that the masking
term only appears in the challenge output and not used at all for generating
constrained keys. We let Cj denote the j-th constrained key query. Then we
consider the following game hops.

The first game hop is similar to the single-key case except for the choice of the
shifting function. Specifically, we replace the master key K = sksim with a shifted
secret key sk1 that is generated by SHSF.Shift(msk1, C1(·) · SHSF.SEval(sksim

2 , ·))
where msk1 is a master key generated by SHSF.KeyGen and sksim

2 is another
secret key generated by SHSF.Sim. Similarly to the case of the single-key security,
the way of generating K can be made dependent on the first constrained key
query C1 since K is needed for the first time when responding to the first
constrained key query.4 By the correctness of SHSF, we have SHSF.SEval(sk1, x) =
SHSF.Eval(msk1, x) + C1(x) · SHSF.SEval(sksim

2 , x) for all x. Especially, for all
inputs x such that C1(x) = 1, we have SHSF.SEval(sk1, x) = SHSF.Eval(msk1, x).
Therefore, by using the security of IO, we can hardwire (msk1, C1) instead of
(K = sk1, C1) into the first constrained key KC1 since it only evaluates the CPRF
on x such that C1(x) = 1. Here, note that we do not need to hard-wire the value
sksim

2 in the first constrained key KC1 since SHSF.SEval(sksim
2 , x) part is canceled

when C1(x) = 1.
Similarly, for the j-th constrained key for j ≥ 2, we hardwire (msk1, sksim

2 , C1, Cj)
instead of (K = sk1, Cj). We note that we have to hardwire sksim

2 and C1 into
these constrained keys since they may need to evaluate the CPRF on x such
that C1(x) = 0. At this point, the challenge value is SHSF.SEval(sk1, x

∗) =
4 Recall that we assume that an adversary does not make an evaluation query and
that the challenge query is made at the end of the game.

15

SHSF.Eval(msk1, x
∗) + SHSF.SEval(sksim

2 , x∗) where x∗ denotes the challenge
query since we must have C1(x∗) = 0. Next, we apply similar game hops
for the next secret key sksim

2 . Specifically, we replace sksim
2 with sk2 generated

by SHSF.Shift(msk2, C2(·) · SHSF.SEval(sksim
3 , ·)) where msk2 is another master

key generated by SHSF.KeyGen and sksim
3 is another secret key generated by

SHSF.Sim. Again, we remark that the way of generating sk2 can be made
dependent on C2 since it is needed for the first time when responding to
the second constrained key query. At this point, we only have to hardwire
(msk1, C1) into the first constrained key, (msk1,msk2, C1, C2) into the second con-
strained key, and (msk1,msk2, sksim

3 , C1, C2, Cj) into the j-th constrained key for
j ≥ 3, and the challenge output is SHSF.Eval(msk1, x

∗) + SHSF.Eval(msk2, x
∗) +

SHSF.SEval(sksim
3 , x∗). Repeating similar game hops Q times where Q is the

number of constrained key queries, we eventually reach the game where

– for each j ∈ [Q], {(mski, Ci)}i∈[j] is hardwired into the j-th constrained key,
and

– the challenge output is
∑
i∈[Q] SHSF.Eval(mski, x∗) + SHSF.SEval(sksim

Q+1, x
∗).

Especially, in this game, sksim
Q+1 is only used for generating the challenge output

and independent of all constrained keys. Thus, we can conclude that the challenge
output is random relying on the randomness of sksim

Q+1.5 This completes the proof
of the O(1)-collusion-resistant adaptive security of our CPRF.

At first glance, the above security proof may work even if an adversary makes
(bounded) polynomial number of constrained keys since we only have to hardwire
polynomial number of keys and circuits into constrained keys. However, the
problem is that the size of the master key msk depends on the maximal size of
the shifting function in the LWE-based construction of SHSF given in [39]. In
our construction of CPRF, the corresponding shifting function for mski depends
on ski+1, and thus mski must be polynomially larger than ski+1, which itself is
larger than mski+1. Thus, the size of mski grows polynomially in each layer of the
nest. This is the reason why our proof is limited to the O(1)-collusion-resistant
case.

We leave it open to construct an SHSF whose master key size does not depend
on the maximal size of the shifting function, which would result in a bounded
polynomial collusion-resistant adaptively secure CPRF for P/poly.

3 Preliminaries

Notations. For a distribution or random variable X, we write x $← X to denote
the operation of sampling a random x according to X. For a set S, we write s $← S
to denote the operation of sampling a random s from the uniform distribution
over S. Let U(S) denote the uniform distribution over the set S. For a prime q,
we represent the elements in Zq by integers in the range [−(q − 1)/2, (q − 1)/2].
5 We can show that SHSF.SEval(sksim, x) is uniformly distributed in Y over the choice
of sksim for any fixed x

16

For 2 ≤ p < q and x ∈ Zq (or Z), we define bxcp := b(p/q) · xc ∈ Zp. We will
represent vectors by bold-face letters, and matrices by bold-face capital letters.
Unless stated otherwise, we will assume that all vectors are column vectors.

Gadget Matrix. Let n, q ∈ Z and m ≥ ndlog qe. A gadget matrix G is defined as
In ⊗ (1, 2, ..., 2dlog qe−1) padded with m− ndlog qe zero columns. For any t, there
exists an efficient deterministic algorithm G−1 : Zn×tq → {0, 1}m×t that takes
U ∈ Zn×tq as input and outputs V ∈ {0, 1}m×t such that GV = U.

3.1 Admissible Hash Functions and Matrix Embeddings

We prepare the definition of (balanced) admissible hash functions.

Definition 3.1. Let ` := `(κ) and n := n(κ) be integer valued polynomials. For
K ∈ {0, 1,⊥}`, we define the partitioning function PK : {0, 1}` → {0, 1} as

PK(z) =
{

0, if (Ki = ⊥) ∨ (Ki = zi)
1, otherwise

where Ki and zi denote the ith bit of K and z, respectively. We say that an
efficiently computable function Hadm : {0, 1}n → {0, 1}` is a balanced admissible
hash function, if there exists a PPT algorithm PrtSmp(1κ, Q(κ), δ(κ)), which
takes as input a polynomially bounded function Q := Q(κ) where Q : N→ N and
a noticeable function δ := δ(κ) where δ : N→ (0, 1], and outputs K ∈ {0, 1,⊥}`
such that:

1. There exists κ0 ∈ N such that

Pr
[
K

$← PrtSmp
(
1κ, Q(κ), δ(κ)

)
: K ∈ {0, 1,⊥}`

]
= 1

for all κ > κ0. Here κ0 may depend on the functions Q and δ.
2. For κ > κ0, there exists functions γmax(κ) and γmin(κ) that depend on

functions Q and δ such that for all x1, · · · , xQ(κ), x
∗ ∈ {0, 1}n with x∗ 6∈

{x1, · · · , xQ(κ)},

γmin(κ) ≤ Pr
[
PK(Hadm(x1)) = · · · = PK(Hadm(xQ(κ))) = 1 ∧ PK(Hadm(x∗)) = 0

]
≤ γmax(κ)

holds and the function τ(κ) defined as

τ(κ) := γmin(κ) · δ(κ)− γmax(κ)− γmin(κ)
2

is noticeable. The probability is taken over the choice of K $← PrtSmp(1κ, Q(κ), δ(κ)).

17

Theorem 3.1 ([30], Theorem 1). Let n = Θ(κ) and ` = Θ(κ). If Hadm :
{0, 1}n → {0, 1}` is a code with minimal distance c · ` for a constant c ∈ (0, 1/2],
then Hadm is a balanced admissible hash function. Specifically, there exists a PPT
algorithm PrtSmp(1κ, Q, δ) which takes as input Q ∈ N and δ ∈ (0, 1] and outputs
K ∈ {0, 1,⊥}` with η′ components not equal to ⊥, where

η′ =
⌊

log(2Q+Q/δ)
− log(1− c)

⌋
and γ(κ) = 2−η

′−1 · δ.

In particular, when Q = poly(κ) and δ = 1/poly(κ), then η′ = O(log κ) and
γ(κ) = 1/poly(κ).

The following is taken from [11] and [43].

Lemma 3.1 (Compatible Algorithms with Partitioning Functions).
Let PK : {0, 1}` → {0, 1} be a partitioning function where K ∈ {0, 1,⊥}` and as-
sume that K has at most O(log κ) entries in {0, 1}. Then, there exist deterministic
PPT algorithms (Encode,PubEval,TrapEval) with the following properties:

- Encode(K) : on input K, it outputs µ ∈ {0, 1}u where u = O(log2 κ),
- PubEval(x,A) : on input x ∈ {0, 1}` and A ∈ Zn×muq , it outputs Ax ∈ Zn×mq ,
- TrapEval(µ, x,A0,R) : on input µ ∈ {0, 1}u, x ∈ {0, 1}`, A0 ∈ Zn×mq , and

R ∈ {−1, 0, 1}m×mu, it outputs Rx ∈ Zm×m,
- If A := A0R +µ⊗G and R ∈ {0, 1}m×mu where µ is viewed as a row vector
in {0, 1}u, then for Ax = PubEval(x,A) and Rx = TrapEval(µ, x,A,R), we
have Ax = A0Rx + (1− PK(x)) ·G and ‖Rx‖∞ ≤ m3u`.

- Moreover, Rx can be expressed as Rx = R0 + R′x where R0 is the first m
columns of R and is distributed independently from R′x.

Remark 3.1. The last item is non-standard, however, we note that it is without
loss of generality. This is because we can always satisfy the last condition by
constructing a new PubEval′ which simply samples one extra random matrix R̄
and adds A0R̄ to Ax = PubEval(x,A). This requirement is only required in our
security proof of our CPRF for inner product predicates. More details can be
found in [35], Section 4.3.

The following lemma is taken from [31], and is implicit in [9,30,43].

Lemma 3.2 ([31], Lemma 8). Let us consider a random variable coin $← {0, 1}
and a distribution D that takes as input a bit b ∈ {0, 1} and outputs (x, ĉoin) such
that x ∈ X and ĉoin ∈ {0, 1}, where X is some domain. For D, define ε as

ε :=
∣∣∣∣Pr
[
coin $← {0, 1}, (x, ĉoin) $← D(coin) : coin = ĉoin

]
− 1

2

∣∣∣∣ .
Let γ be a map that maps an element in X to a value in [0, 1]. Let us further
consider a modified distribution D′ that takes as input a bit b ∈ {0, 1} and outputs
(x, ĉoin). To sample from D′, we first sample (x, ĉoin) $← D(b), and then with

18

probability 1 − γ(x), we re-sample ĉoin as ĉoin $← {0, 1}. Finally, D′ outputs
(x, ĉoin). Then, the following holds.∣∣∣∣Pr

[
coin $← {0, 1}, (x, ĉoin) $← D′(coin) : coin = ĉoin

]
− 1

2

∣∣∣∣ ≥ γmin · ε−
γmax − γmin

2

where γmin (resp. γmax) is the maximum (resp. minimum) of γ(x) taken over all
possible x ∈ X .

4 CPRFs for Bit-Fixing Predicates from Standard PRFs

In this section, we provide a construction of an adaptively pseudorandom on
constrained points, Q-collusion resistant CPRFs for the bit-fixing predicate from
any PRF, where Q can be set to be any constant independent of the security
parameter. In particular, the result implies the existence of such CPRFs from
one-way functions [25,27]. Recall that no other CPRFs are known to be adaptive
and/or to achieve Q-collusion resistance for any Q > 1 both from the standard
assumptions and in the standard model, excluding the CPRF for the trivial
singleton sets F = {{x} | x ∈ {0, 1}n} [15] or the selectively-secure and collusion-
resistant CPRF for prefix-fixing predicates by [5].

Note that it is easy to extend our CPRF for the bit-fixing predicate to a
CPRF for the t-CNF predicate where t is a constant. See the full version for the
detail.

4.1 Preparation: Bit-Fixing Predicates

Here, we provide the constraint class we will be considering: bit-fixing predicates.

Definition 4.1 (Bit-Fixing Predicate). For a vector v ∈ {0, 1, ∗}`, define
the circuit CBF

v : {0, 1}` → {0, 1} associated with v as

CBF
v (x) =

∧̀
i=1

((
vi

?= xi
)∨(

vi
?= ∗
))
,

where vi and xi denote the ith bit of the string v and x, respectively. Then, the
family of bit-fixing predicates (with input length `) is defined as

CBF
` := {CBF

v | v ∈ {0, 1, ∗}`}.

Since we can consider a canonical representation of the circuit CBF
v given the

string v ∈ {0, 1, ∗}`, with an abuse of notation, we may occasionally write v ∈ CBF
`

and view v as CBF
v when the meaning is clear.

We also define a helper function GBF
auth which, informally, outputs a set of all the

authorized inputs corresponding to a bit-fixing predicate. For any v ∈ {0, 1, ∗}`
and T = (t1, · · · , tQ) ∈ [`]Q such that Q ≤ `, let us define vT ∈ {0, 1, ∗}Q as the

19

string vt1vt2 · · · vtQ , where vi is the ith bit of v. Then we define the function GBF
auth

as follows.

GBF
auth(vT) = {w ∈ {0, 1}Q | CBF

vT (w) = 1}.

In words, it is the set of all points with the same length as vT that equals to
vT on the non-wild card entries. For example, if ` = 8, Q = 5, v = 011 ∗ 01 ∗ 1,
and T = (4, 1, 2, 6, 1), then vT = ∗0110 and the authorized set of points would
be GBF

auth(vT) = {00110, 10110}. Here, with an abuse of notation, we define the
function GBF

auth for all input lengths.

4.2 Construction

Let n = n(κ), and k = k(κ) be integer-valued positive polynomials of the
security parameter κ and Q be any constant positive integer smaller than n. Let
CBF := {Cκ}κ∈N := {CBF

n(κ)}κ∈N be a set of family of circuits representing the class
of constraints. Let ΠPRF = (PRF.Gen,PRF.Eval) be any PRF with input length
n and output length k.

Our Q-collusion resistance CPRF ΠCPRF for the constrained class CBF is
provided as follows:

CPRF.Gen(1κ): On input the security parameter 1κ, it runs KT,w $← PRF.Gen(1κ)
and K̂T,w $← PRF.Gen(1κ) for all T ∈ [n]Q and w ∈ {0, 1}Q. Then it outputs
the master key as

K =
(

(KT,w), (K̂T,w)
)
T∈[n]Q,w∈{0,1}Q

.

CPRF.Eval(K, x): On input the master key K and input x ∈ {0, 1}n, it first parses(
(KT,w), (K̂T,w)

)
T∈[n]Q,w∈{0,1}Q ← K.

It then computes

y =
⊕

T∈[n]Q
PRF.Eval(KT,xT , x),

where recall xT ∈ {0, 1}Q is defined as the string xt1xt2 · · ·xtQ and T =
(t1, · · · , tQ). Finally, it outputs y ∈ {0, 1}k.

CPRF.Constrain(K, CBF
v): On input the master key K and a circuit CBF

v ∈ CBF
n , it

first parses K into
(
(KT,w), (K̂T,w)

)
T∈[n]Q,w∈{0,1}Q ← K and sets v ∈ {0, 1, ∗}n

as the representation of CBF
v . Then it outputs the constrained key

Kv =
(

K̃T,w
)
T∈[n]Q,w∈{0,1}Q

,

where K̃T,w = KT,w if w ∈ GBF
auth(vT), and K̃T,w = K̂T,w otherwise. Recall

that GBF
auth(vT) = {w ∈ {0, 1}Q | CBF

vT (w) = 1}.

20

CPRF.ConstrainEval(Kv, x): On input the constrained key Kv and an input x ∈
{0, 1}n, it first parses

(
K̃T,w

)
T∈[n]Q,w∈{0,1}Q ← Kv. It then uses the PRF

keys included in the constrained key and computes

y =
⊕

T∈[n]Q
PRF.Eval(K̃T,xT , x).

Finally, it outputs y ∈ {0, 1}k.

Theorem 4.1. If the underlying PRF ΠPRF is adaptively pseudorandom, then
our above CPRF ΠCPRF for the bit-fixing predicate CBF is adaptively pseudorandom
on constrained points and Q-collusion resistant for any Q = O(1).

We omit the proofs of correctness and security due the space limit. See the
full version for omitted proofs.

5 CPRF for Inner Products

5.1 Construction

In this section, we construct CPRFs for inner products over the integer. Fix a
security parameter κ and define the following quantities:

– Let D := [−B,B]` ⊂ Z` where inner products between two vectors v,w ∈ D
are defined in the natural way over the integers. Let CIP := {Cv}v∈D be the
set of circuits where each Cv : D → Z is defined as Cv(w) = (〈v,w〉 ?= 0),
that is, if the inner product is zero then it outputs 1, and otherwise 0.

– Let bin : D → {0, 1}ˆ̀ be a one-to-one map which provides a binary represen-
tation of elements in D where ˆ̀ := ` · dlog(2B + 1)e.

– Let Hadm : {0, 1}ˆ̀→ {0, 1}L be a balanced admissible hash function where
L = Θ(κ) by Theorem 3.1.

– Let Hwise = {Hwise : Zmp → Zkp} be a family of ζ-wise independent hash
functions.

– Let n,m, u, q, p, β, β̄ be additional parameters used within the CPRF scheme
and let h, αLWE, α1, α2 be parameters used within the security proof, where
h, αLWE are LWE-related. The details on the parameters setting is provide
after our construction below.

Our CPRF ΠCPRF for the constrained class of inner products over the integer
CIP is provided below. Here, the domain, range, and key space of our CPRF are
D, Zkp, and Zn×`, respectively.

CPRF.Setup(1κ): On input the security parameter 1κ, it first samples random
matrix A $← Zn×muq . It also samples a ζ-wise independent hash function
Hwise : Zmp → Zkp.

pp =
(

A,Hwise

)
.

21

CPRF.Gen(pp): On input the public parameter pp, it samples a matrix S $←
[−β̄, β̄]n×` ⊂ Zn×` and sets the master key as K = S.

CPRF.Eval(pp,K,x): On input the public parameter pp, master key K = S ∈
Zn×` and input x ∈ D, it first computes s = Sx ∈ Zn and x = Hadm(bin(x)) ∈
{0, 1}L. It then computes

z =
⌊
s>Ax

⌋
p
∈ Zmp ,

where Ax = PubEval(x,A). Finally, it outputs v = Hwise(z) ∈ Zkp.
CPRF.Constrain(K, Cy): On input the master key K = S and constraint Cy ∈ CIP,

it first samples a random vector d $← [−β, β]n. It then outputs constrained
key Ky ∈ Zn×` defined as

Ky = S + d⊗ y>.

CPRF.ConstrainEval(pp,Ky, x): On input the public parameter pp, constrained
key Ky = Sy ∈ Zn×` and input x ∈ D, it first computes sy = Syx ∈ Zn and
x = Hadm(bin(x)) ∈ {0, 1}L. It then computes

zy =
⌊
s>y Ax

⌋
p
∈ Zmp ,

where Ax = PubEval(x,A). Finally, it outputs v = Hwise(zy) ∈ Zkp.

5.2 Correctness and Parameter Selection

Correctness. We check correctness of our CPRF. Let Cy be any inner-product
predicate in CIP. By construction when we evaluate with a constrained key Ky
on input x we have

zy =
⌊
s>y Ax

⌋
p

=
⌊((

S + d⊗ y>
)
x
)>

Ax

⌋
p

=
⌊
s>Ax + 〈x,y〉 · d>Ax

⌋
p
,

where s = Sx. Therefore, if 〈x,y〉 = 0 over Z, i.e., the input x satisfies the
constraint Cy, then the right hand side will equal to bs>Axcp, which is exactly
what is computed by algorithm CPRF.Eval using the master key K. Hence, the
output value v = Hwise(z) is the same for both values computed by the master
key K and constrained key Ky.

Parameter Selection. We summarize the relation which our parameters must
satisfy below. Note that some parameters only show up during the security proof.
See the full version for the reasons of these parameter choices.

– m > (n+ 1) log q + ω(logn)
– αLWEq > 2

√
h

– ‖x>S>ERx‖∞ ≤ α1 for all x ∈ D
– ‖`Bd>ERx‖∞ ≤ α2 for all x ∈ D

22

– q = 2mpB` · (α1 + α2) · κω(1) for all x ∈ D
– β̄ ≥ βB and β̄ = n`βB · κω(1)

– n̄ := n · log(2β + 1)− h · log q = Ω(κ)

Fix ` = `(κ), B = B(κ), h = h(κ), and u = O(log2 κ), where ` and B defines the
constraint space (i.e., the set of vectors D), h(≥ κ) defines the lattice dimension
for the underlying LWE problem, and u is the parameter for the admissible hash
(see Sec. 3.1). We assume without loss of generality that ` and h are polynomial
in κ. Then, one way to set the parameters would be as follows:

n = `h1.1, m = `2h1.2, q = 2``14h7.6B`+2κ3 logκ,

p = 10, αLWE = 2
√
h · q−1, ζ = n̄+ ` · logB,

α1 = α2 = `12h6.4B2κ2 logκ, β = 1, β̄ = `2h1.1Bκlogκ,

where we set q to be the next largest prime. Above we use the simplifying argument
that for any positive constant c, we have κ0.1 = ω(logc κ) and log κ = ω(1) for
sufficiently large κ ∈ N and set ζ according to the deterministic randomness
extractor lemma by Dodis [23] (see the full version for the detail). The output
space of our CPRF is {0, 1}n̄ = {0, 1}Θ(κ).

5.3 Security Proof

Theorem 5.1. The above CPRF ΠCPRF for the inner product predicate CIP is
adaptively single-key pseudorandom on constrained points against adversaries that
make exactly one constrained key query, assuming hardness of the LWEn,m,q,DZ,αLWEq

problem.

Remark 5.1. We note that we can assume the adversary makes exactly one
constrained key query without loss of generality. This is a useful condition to
assume to handle adversaries that make no constrained key query but queries
x∗ = 0 as the target input at the challenge phase. The above assumption
holds because we can generically add security against adversaries that make
no evaluation query by simply xoring an evaluated value of a (standard) PRF.
The details are as follows. We add the same (standard) PRF key k both in the
master secret key and constrained key. When evaluating on input x, we will
also xor the value PRF(k,x). Therefore, in case no constraint queries are made,
pseudorandomness of PRF(k,x) can be used instead since k is not revealed.

We omitted the proofs due to the space limit. See the full version for the
proofs.

6 CPRF for P/poly

6.1 Shift-Hiding Shiftable Function

Here, we review the notion of shift-hiding shiftable function (SHSF) introduced
by Peikert and Shiehian [39]. We note that our definition of correctness is slightly

23

different from theirs. Specifically, we need a statistical notion of correctness
whereas they only considered a computational notion of correctness. Nonetheless,
a simple variant of their SHSF also satisfies our definition of correctness as seen
in Lemma 6.1.

A SHSF with input space {0, 1}` and output space Zmq with a rounding modu-
lus p < q consists of a tuple of PPT algorithmsΠSHSF = (SHSF.KeyGen,SHSF.Eval,
SHSF.Shift,SHSF.SEval,SHSF.Sim)6 where:

SHSF.KeyGen(1κ, 1σ)→ msk: The key generation algorithm takes as input the
security parameter 1κ and the circuit size parameter 1σ, and outputs a master
key msk.

SHSF.Eval(msk, x)→ y: The evaluation algorithm takes as input a master key
msk and an input x ∈ {0, 1}`, and outputs y ∈ Zmq .

SHSF.Shift(msk, C)→ skC : The shift algorithm takes as input a master key msk
and a circuit C that computes a shift function, and outputs a shifted secret
key skC .

SHSF.SEval(skC , x)→ y: The shifted evaluation algorithm takes as input a secret
key skC and an input x ∈ {0, 1}`, and outputs y ∈ Zmq .

SHSF.Sim(1κ, 1σ)→ sk: The key simulation algorithm takes as input the security
parameter 1κ and the circuit size parameter 1σ, and outputs a simulated
secret key sk.

We require ΠSHSF to satisfy the following properties.
p-Rounded ε-Correctness.

For all x ∈ {0, 1}`, circuit C : {0, 1}` → Zmq whose description size is at most
σ, and v ∈ Zmq , we have

Pr[bSHSF.SEval(skC , x) + vcp 6= bSHSF.Eval(msk, x) + C(x) + vcp] ≤ ε

where msk $← SHSF.KeyGen(1κ, 1σ) and skC $← SHSF.Shift(msk, C).
Shift Hiding. We define the notion of shift hiding for SHSFs. Informally, we
require that a shifted secret key skC does not reveal the corresponding shifting
circuit C.

Formally, this security notion is defined by the following game between an
adversary A and a challenger:

Key Query: At the beginning of the game, the adversary is given the security
parameter 1κ, the circuit size parameter 1σ, and returns a circuit C : {0, 1}` →
Zmq whose description size is at most σ.

Key Generation: The challenger chooses a random bit coin $← {0, 1}. Then it
generates sk as follows:
• If coin = 0, it generates msk $← SHSF.KeyGen(1κ, 1σ) and sk $← SHSF.Shift(msk, C).

6 In the original definition of [39], there is an additional setup algorithm that generates
a public parameter. We omit this algorithm since in general we can always include
the public parameter in the secret key.

24

• If coin = 1, it generates sk $← SHSF.Sim(1κ, 1σ).
It returns sk to A.

Guess: Eventually, A outputs ĉoin as a guess for coin.

We say the adversary A wins the game if ĉoin = coin.

Definition 6.1. An SHSF ΠSHSF is said to be shift hiding if for all σ = poly(κ)
and PPT adversary A, |Pr[A wins]− 1/2| = negl(κ) holds.

Lemma 6.1 ([39]). If LWEn,m,q,DZ,α is hard for q = 2poly(κ,σ) · ε−1, m =
nblog qc and α = poly(n) , then for any ` = poly(κ), there exists an SHSF from
{0, 1}` to Zmq that is shift hiding and satisfies p-rounded ε-correctness for some
divisor p of q such that p < εq.

Proof. Shiehian and Peikert [39] proved that if LWEn,m,q,DZ,α is hard for q =
2poly(κ,σ), m = nblog qc and α = poly(n), then there exists an SHSF that is shift
hiding and satisfies “approximated correctness”, where the latter states that∣∣∣(SHSF.SEval(skC , x)−

(
SHSF.Eval(msk, x) + C(x)

))
i

∣∣∣ ≤ B = κpoly(κ)

for all i ∈ [m], where (z)i for any z ∈ Zm denotes the i-th entry of z. This implies
that for any v ∈ Zmq and p that divides q, we have

bSHSF.SEval(skC , x) + vcp = bSHSF.Eval(msk, x) + C(x) + vcp

as long as we have, for all i ∈ [m],

(SHSF.SEval(skC , x) + v)i /∈
q

p
Z + [−B,B]. (1)

Let us now consider a slight modification of their SHSF where an additional
random vector r $← Zmq is included in both msk and skC .7 The modified SHSF.Eval
and SHSF.SEval will now add r to the original outputs, e.g., run SHSF.Eval of
[39] and add r to the output. It is clear that this modification does not harm
the shift hiding property. With this slightly modified variant, for any fixed
x ∈ {0, 1}` and C, SHSF.SEval(skC , x) is uniformly distributed over Zmq where
the randomness is taken over the choice of msk $← SHSF.KeyGen(1κ, 1σ) and
skC $← SHSF.Shift(msk, C). Then, the probability that Equation (1) does not
hold is at most 2pB

q for each i ∈ [m]. By taking the union bound, the probability
that there exists i ∈ [m] such that Equation (1) does not hold is at most 2pBm

q .
By taking the parameters so that 2pBm

q ≤ ε, the slightly modified SHSF satisfies
p-rounded ε-correctness.
7 Note that the vector r is sampled in the key generation, and not relevant to the
vector v that appeared above.

25

6.2 Construction of CPRF

Here, we give a construction of an adaptively secure CPRF for all polynomial-size
circuits (i.e., P/poly) from SHSF and IO.
Preparation. Before describing our construction, we prove a general lemma
that enables us to focus on adversaries that do not make any evaluation queries.
Namely, if we call constrained key queries made before (resp. after) the challenge
query pre-challange (resp. post-challenge) constrained key queries, then we have
the following lemma.

Lemma 6.2. If there exists a CPRF for P/poly that is adaptively secure against
adversaries that make at most Q1 pre-challenge constrained key queries, Q2 post-
challenge constrained key queries, and no evaluation query, then the CPRF is
adaptively secure against all adversaries that make at most Q1 − 1 pre-challenge
constrained key queries, Q2 post-challenge constrained key queries, and poly(κ)
evaluation queries.

Roughly speaking, the lemma follows by considering a no-evaluation query
adversary A which queries its challenger for a constrained key for the “partition-
ing function” ([30,43]). Then, A can simulate the view to the standard CPRF
adversary B by simulating all evaluation queries made by B with this constrained
key. In particular, with non-negligible probability, the partitioning function will
output 1 for all evaluation queries and will output 0 for the challenge query.
Therefore, A will be able to answer the evaluation queries made by B using its
constrained key while it will not be able to answer the challenge query. Hence,
with one extra constrained key query on the partitioning function, all evaluation
queries can be simulated, which eliminates the necessity of evaluation queries.
The full proof can be found in the full version.

Construction. Here, we construct an adaptively secure CPRF that tolerates
Q1 = O(1) pre-challenge constrained key queries and Q2 = poly(κ) post-
challenge constrained key queries. By Lemma 6.2, we can assume that A does
not make an evaluation query without loss of generality. Let z be the max-
imum description size of the circuit that is supported by our CPRF. Let
ΠSHSF = (SHSF.KeyGen,SHSF.Eval,SHSF.Shift,SHSF.SEval,SHSF.Sim) be an
SHSF with input space {0, 1}` and output space Zmq that is shift hiding with
a rounding modulus p < negl(κ) · q that satisfies p-rounded ε-correctness where
ε := 2−`negl(κ). We define parameters σQ1+1, ..., σ1 in the following recursive
way.8

1. Set σQ1+1 as the maximum size of the circuit in the set {Ceq[x∗, r] | x∗ ∈
{0, 1}`, r ∈ Zmq }, where Ceq[x∗, r](·) is a circuit which outputs r on input
x = x∗, and 0 otherwise.9

8 In the actual scheme, only σ1 will appear and σ2, ..., σQ1+1 are only used in the
security proof.

9 Although there may be many ways to describe the circuit Ceq[x∗, r], we consider the
most obvious and standard one.

26

ConstrainedKey[sk1, C]
Input: x ∈ {0, 1}`

Constants:sk1, C
If C(x) = 1
Output bSHSF.SEval(sk1, x)cp

Else
Output ⊥

Fig. 3. Description of Program ConstrainedKey[sk1, C]

2. For i = Q1, ..., 1, set σi as the maximum size of the circuit that com-
putes C(·) · SHSF.SEval(ski+1, ·), where the max is taken over all ski+1

$←
SHSF.Sim(1κ, 1σi+1) and circuit C : {0, 1}` → {0, 1} with description size
at most z. Here, C denotes a circuit such that C(x) := (1 − C(x)) for all
x ∈ {0, 1}` and C(·) · SHSF.SEval(ski+1, ·) denotes the circuit that takes
x ∈ {0, 1}` as input and returns C(x) · SHSF.SEval(ski+1, x).

Note that the size of parameters satisfy σ1 > σ2 > · · · > σQ1+1.
Whenever we use IO, the circuit to be obfuscated is supposed to be padded

so that they are as large as any circuit that replaces the circuit in the security
proof. Then our CPRF is described as follows:10

CPRF.Gen(1κ): On input the security parameter 1κ, it generates sk1
$← SHSF.Sim(1κ, 1σ1),

and outputs K := sk1.
CPRF.Eval(K, x): On input the master key K = sk1 and input x ∈ {0, 1}`, it

computes y := SHSF.SEval(sk1, x) and outputs bycp.
CPRF.Constrain(K, C): On input the master key K = sk1 and constraint C, it

returns KC := iO(ConstrainedKey[sk1, C]) where ConstrainedKey[sk1, C] is a
program described in Figure 3 (with an appropriate padding).

CPRF.ConstrainEval(pp,K, x): On input the public parameter pp, constrained key
KC and input x ∈ {0, 1}`, it outputs KC(x).

The following theorem addresses security of the above CPRF.

Theorem 6.1. If iO is a secure indistinguishability obfuscator and ΠSHSF sat-
isfies p-rounded ε-correctness and the shift hiding, then the above CPRF is
adaptively secure against adversaries that make at most Q1 = O(1) pre-challenge
constrained key queries, Q2 = poly(κ) post-challenge constrained key queries, and
no evaluation query.

Combining this theorem with Lemmata 6.1 and 6.2 we obtain the following
theorem.

Theorem 6.2. If LWEn,m,q,DZ,α is hard for n = poly(κ), q = 2poly(κ,z)+`, m =
nblog qc, and α = poly(n), , then there exists a CPRF for P/poly that is adaptively
10 In our scheme, a public parameter is just the security parameter. So we omit the

setup algorithm CPRF.Setup.

27

secure against adversaries that make at most O(1) pre-challenge constrained key
queries, poly(κ) post-challenge constrained key queries, and poly(κ) evaluation
queries. Especially, under the same assumption, there exists an O(1)-collusion-
resistant adaptively secure CPRF for P/poly.

We omit the proof of Theorem 6.1 due to the space limit. See the full version
for the proof.

References

1. S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard
model. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
553–572. Springer, Heidelberg, May / June 2010.

2. J. Alwen, S. Krenn, K. Pietrzak, and D. Wichs. Learning with rounding, revisited -
new reduction, properties and applications. In R. Canetti and J. A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 57–74. Springer, Heidelberg,
Aug. 2013.

3. N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, and T. Yamakawa. Con-
strained PRFs for NC1 in traditional groups. In H. Shacham and A. Boldyreva,
editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 543–574. Springer,
Heidelberg, Aug. 2018.

4. N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, and T. Yamakawa. Adap-
tively single-key secure constrained PRFs for NC1. In D. Lin and K. Sako, editors,
PKC 2019, Part II, volume 11443 of LNCS, pages 223–253. Springer, Heidelberg,
Apr. 2019.

5. A. Banerjee, G. Fuchsbauer, C. Peikert, K. Pietrzak, and S. Stevens. Key-
homomorphic constrained pseudorandom functions. In Y. Dodis and J. B. Nielsen,
editors, TCC 2015, Part II, volume 9015 of LNCS, pages 31–60. Springer, Heidelberg,
Mar. 2015.

6. A. Banerjee and C. Peikert. New and improved key-homomorphic pseudorandom
functions. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume
8616 of LNCS, pages 353–370. Springer, Heidelberg, Aug. 2014.

7. A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In
D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 719–737. Springer, Heidelberg, Apr. 2012.

8. M. Bellare, E. Kiltz, C. Peikert, and B. Waters. Identity-based (lossy) trapdoor
functions and applications. In D. Pointcheval and T. Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 228–245. Springer, Heidelberg, Apr.
2012.

9. M. Bellare and T. Ristenpart. Simulation without the artificial abort: Simplified
proof and improved concrete security for Waters’ IBE scheme. In A. Joux, editor,
EUROCRYPT 2009, volume 5479 of LNCS, pages 407–424. Springer, Heidelberg,
Apr. 2009.

10. D. Boneh and X. Boyen. Secure identity based encryption without random oracles.
In M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 443–459.
Springer, Heidelberg, Aug. 2004.

11. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikun-
tanathan, and D. Vinayagamurthy. Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In P. Q. Nguyen and E. Oswald, editors,

28

EUROCRYPT 2014, volume 8441 of LNCS, pages 533–556. Springer, Heidelberg,
May 2014.

12. D. Boneh, S. Kim, and H. W. Montgomery. Private puncturable PRFs from standard
lattice assumptions. In J. Coron and J. B. Nielsen, editors, EUROCRYPT 2017,
Part I, volume 10210 of LNCS, pages 415–445. Springer, Heidelberg, Apr. / May
2017.

13. D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key homomorphic
PRFs and their applications. In R. Canetti and J. A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 410–428. Springer, Heidelberg, Aug. 2013.

14. D. Boneh, K. Lewi, and D. J. Wu. Constraining pseudorandom functions privately.
In S. Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages 494–524.
Springer, Heidelberg, Mar. 2017.

15. D. Boneh and B. Waters. Constrained pseudorandom functions and their applica-
tions. In K. Sako and P. Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270
of LNCS, pages 280–300. Springer, Heidelberg, Dec. 2013.

16. D. Boneh and M. Zhandry. Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In J. A. Garay and R. Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 480–499. Springer, Heidelberg,
Aug. 2014.

17. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom
functions. In H. Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519.
Springer, Heidelberg, Mar. 2014.

18. Z. Brakerski, R. Tsabary, V. Vaikuntanathan, and H. Wee. Private constrained
PRFs (and more) from LWE. In Y. Kalai and L. Reyzin, editors, TCC 2017, Part I,
volume 10677 of LNCS, pages 264–302. Springer, Heidelberg, Nov. 2017.

19. Z. Brakerski and V. Vaikuntanathan. Constrained key-homomorphic PRFs from
standard lattice assumptions - or: How to secretly embed a circuit in your PRF.
In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS,
pages 1–30. Springer, Heidelberg, Mar. 2015.

20. R. Canetti and Y. Chen. Constraint-hiding constrained PRFs for NC1 from LWE.
In J. Coron and J. B. Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210
of LNCS, pages 446–476. Springer, Heidelberg, Apr. / May 2017.

21. D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate
a lattice basis. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,
pages 523–552. Springer, Heidelberg, May / June 2010.

22. Y. Chen, V. Vaikuntanathan, and H. Wee. GGH15 beyond permutation branching
programs: Proofs, attacks, and candidates. In H. Shacham and A. Boldyreva,
editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 577–607. Springer,
Heidelberg, Aug. 2018.

23. Y. Dodis. Exposure-resilient cryptography. PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA, USA, 2000.

24. G. Fuchsbauer, M. Konstantinov, K. Pietrzak, and V. Rao. Adaptive security of
constrained PRFs. In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part II,
volume 8874 of LNCS, pages 82–101. Springer, Heidelberg, Dec. 2014.

25. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986.

26. S. Goldwasser, Y. Kalai, C. Peikert, and V. Vaikuntanathan. Robustness of the
learning with errors assumption. ICS, pages 230–240, 2010.

27. J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

29

28. D. Hofheinz, A. Kamath, V. Koppula, and B. Waters. Adaptively secure constrained
pseudorandom functions. In I. Goldberg and T. Moore, editors, FC 2019, volume
11598 of LNCS, pages 357–376. Springer, Heidelberg, Feb. 2019.

29. S. Hohenberger, V. Koppula, and B. Waters. Adaptively secure puncturable
pseudorandom functions in the standard model. In T. Iwata and J. H. Cheon,
editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 79–102. Springer,
Heidelberg, Nov. / Dec. 2015.

30. T. Jager. Verifiable random functions from weaker assumptions. In Y. Dodis and
J. B. Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 121–143.
Springer, Heidelberg, Mar. 2015.

31. S. Katsumata and S. Yamada. Partitioning via non-linear polynomial functions:
More compact IBEs from ideal lattices and bilinear maps. In J. H. Cheon and
T. Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages
682–712. Springer, Heidelberg, Dec. 2016.

32. S. Katsumata and S. Yamada. Non-zero inner product encryption schemes from
various assumptions: LWE, DDH and DCR. In D. Lin and K. Sako, editors,
PKC 2019, Part II, volume 11443 of LNCS, pages 158–188. Springer, Heidelberg,
Apr. 2019.

33. A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable
pseudorandom functions and applications. In A.-R. Sadeghi, V. D. Gligor, and
M. Yung, editors, ACM CCS 2013, pages 669–684. ACM Press, Nov. 2013.

34. B. Libert, A. Sakzad, D. Stehlé, and R. Steinfeld. All-but-many lossy trapdoor
functions and selective opening chosen-ciphertext security from LWE. In J. Katz
and H. Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages
332–364. Springer, Heidelberg, Aug. 2017.

35. B. Libert, D. Stehlé, and R. Titiu. Adaptively secure distributed PRFs from LWE.
In A. Beimel and S. Dziembowski, editors, TCC 2018, Part II, volume 11240 of
LNCS, pages 391–421. Springer, Heidelberg, Nov. 2018.

36. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 700–718. Springer, Heidelberg, Apr. 2012.

37. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. J. ACM, 51(2):231–262, 2004.

38. M. Naor, O. Reingold, and A. Rosen. Pseudorandom functions and factoring. SIAM
J. Comput., 31(5):1383–1404, 2002.

39. C. Peikert and S. Shiehian. Privately constraining and programming PRFs, the
LWE way. In M. Abdalla and R. Dahab, editors, PKC 2018, Part II, volume 10770
of LNCS, pages 675–701. Springer, Heidelberg, Mar. 2018.

40. A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In D. B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

41. R. Tsabary. Fully secure attribute-based encryption for t-CNF from LWE. In
A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of
LNCS, pages 62–85. Springer, Heidelberg, Aug. 2019.

42. B. R. Waters. Efficient identity-based encryption without random oracles. In
R. Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127.
Springer, Heidelberg, May 2005.

43. S. Yamada. Asymptotically compact adaptively secure lattice IBEs and verifi-
able random functions via generalized partitioning techniques. In J. Katz and
H. Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages
161–193. Springer, Heidelberg, Aug. 2017.

30

	 Adaptively Secure Constrained Pseudorandom Functions in the Standard Model
	Introduction
	Our Contribution

	Technical Overview
	CPRF for Bit-Fixing/t-CNF
	CPRF for Inner-Product
	CPRF for P/poly

	Preliminaries
	Admissible Hash Functions and Matrix Embeddings

	CPRFs for Bit-Fixing Predicates from Standard PRFs
	Preparation: Bit-Fixing Predicates
	Construction

	CPRF for Inner Products
	Construction
	Correctness and Parameter Selection
	Security Proof

	CPRF for P/poly
	Shift-Hiding Shiftable Function
	Construction of CPRF

