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Abstract. A two-party fair coin-tossing protocol guarantees output de-
livery to the honest party even when the other party aborts during the
protocol execution. Cleve (STOC–1986) demonstrated that a computa-
tionally bounded fail-stop adversary could alter the output distribution
of the honest party by (roughly) 1/r (in the statistical distance) in an
r-message coin-tossing protocol. An optimal fair coin-tossing protocol
ensures that no adversary can alter the output distribution beyond 1/r.
In a seminal result, Moran, Naor, and Segev (TCC–2009) constructed the
first optimal fair coin-tossing protocol using (unfair) oblivious transfer
protocols. Whether the existence of oblivious transfer protocols is a nec-
essary hardness of computation assumption for optimal fair coin-tossing
remains among the most fundamental open problems in theoretical cryp-
tography. The results of Impagliazzo and Luby (FOCS–1989) and Cleve
and Impagliazzo (1993) prove that optimal fair coin-tossing implies the
necessity of one-way functions’ existence; a significantly weaker hardness
of computation assumption compared to the existence of secure oblivious
transfer protocols. However, the sufficiency of the existence of one-way
functions is not known.
Towards this research endeavor, our work proves a black-box separation
of optimal fair coin-tossing from the existence of one-way functions. That
is, the black-box use of one-way functions cannot enable optimal fair coin-
tossing. Following the standard Impagliazzo and Rudich (STOC–1989)
approach of proving black-box separations, our work considers any r-
message fair coin-tossing protocol in the random oracle model where the
parties have unbounded computational power. We demonstrate a fail-
stop attack strategy for one of the parties to alter the honest party’s
output distribution by 1/

√
r by making polynomially-many additional

queries to the random oracle. As a consequence, our result proves that the
r-message coin-tossing protocol of Blum (COMPCON–1982) and Cleve
(STOC–1986), which uses one-way functions in a black-box manner, is
the best possible protocol because an adversary cannot change the honest
party’s output distribution by more than 1/

√
r.
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Several previous works, for example, Dachman–Soled, Lindell, Mahmoody,
and Malkin (TCC–2011), Haitner, Omri, and Zarosim (TCC–2013), and
Dachman–Soled, Mahmoody, and Malkin (TCC–2014), made partial progress
on proving this black-box separation assuming some restrictions on the
coin-tossing protocol. Our work diverges significantly from these pre-
vious approaches to prove this black-box separation in its full gener-
ality. The starting point is the recently introduced potential-based in-
ductive proof techniques for demonstrating large gaps in martingales in
the information-theoretic plain model. Our technical contribution lies in
identifying a global invariant of communication protocols in the random
oracle model that enables the extension of this technique to the random
oracle model.

1 Introduction

Ideally, in any cryptographic task, one would like to ensure that the honest par-
ties receive their output when adversarial parties refuse to participate any fur-
ther. Ensuring guaranteed output delivery, a.k.a., fair computation, is challeng-
ing even for fundamental cryptographic primitives like two-party coin-tossing. A
two-party fair coin-tossing protocol assures that the honest party receives her out-
put bit even when the adversary aborts during the protocol execution. Cleve [24]
demonstrated that, even for computationally bounded parties, a fail-stop adver-
sary1 could alter the output distribution by 1/r (in the statistical distance) in
any r-message interactive protocols. Intuitively, any r-message interactive pro-
tocol is 1/r-insecure. An optimal r-message two-party fair coin-tossing protocol
ensures that it is only 1/r-insecure.

In a seminal result, nearly three decades after the introduction of optimal fair
coin-tossing protocols, Moran, Naor, and Segev [88] presented the first optimal
coin-tossing protocol construction based on the existence of (unfair) secure pro-
tocols for the oblivious transfer functionality.2 Shortly after that, in a sequence
of exciting results, several optimal/near-optimal fair protocols were constructed
for diverse two-party and multi-party functionalities [58, 14, 59, 13, 6, 64, 4,
86, 5, 3, 23]. However, each of these protocols assumes the existence of secure
protocols for oblivious transfer as well.

In theoretical cryptography, a primary guiding principle of research is to real-
ize a cryptographic primitive securely using the minimal computational hardness
assumption. Consequently, the following fundamental question arises naturally.

1 A fail-stop adversary behaves honestly and follows the prescribed protocol. However,
based on her private view, she may choose to abort the protocol execution.

2 Oblivious transfer takes (x0, x1) ∈ {0, 1}2 as input from the first party, and a choice
bit b ∈ {0, 1} from the second party. The functionality outputs the bit xb to the
second party, and the first party receives no output. The security of this function-
ality ensures that the first party has no advantage in predicting the choice bit b.
Furthermore, the second party has no advantage in predicting the other input bit
x1−b.
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Question: Is the existence of oblivious transfer
necessary

for constructing optimal fair coin-tossing protocols?

For example, the results of Impagliazzo and Luby [74] and Cleve and Impagli-
azzo [25] prove that optimal fair coin-tossing implies that the existence of one-
way functions is necessary; a significantly weaker hardness of computation as-
sumption compared to the existence of secure oblivious transfer protocols. How-
ever, it is unclear whether one-way functions can help realize optimal fair coin-
tossing or not. For instance, historically, for a long time, one-way functions were
not known to imply several fundamental primitives like pseudorandom gener-
ators [73, 66, 67], pseudorandom functions [54, 55], pseudorandom permuta-
tions [81], statistically binding commitment [90], statistically hiding commit-
ment [92, 63], zero-knowledge proofs [57], and digital signatures [93, 97]; eventu-
ally, however, secure constructions were discovered. On the other hand, crypto-
graphic primitives like collision-resistant hash functions, key-agreement schemes,
public-key encryption, trapdoor primitives, and oblivious transfer protocols do
not have constructions based on the existence of one-way functions. Therefore,
is it just that we have not yet been able to construct optimal fair coin-tossing
protocols securely from one-way functions, or are there inherent barriers to such
constructions?

Does optimal fair coin-tossing belong to
Minicrypt or Cryptomania [72]?

Impagliazzo [72] introduced five possible worlds and their implications for com-
puter science. In Minicrypt, one-way functions exist; however, public-key cryp-
tography is impossible. In Cryptomania, complex public-key cryptographic prim-
itives like key-agreement and oblivious transfer are feasible.

Among several possible approaches, a prominent technique to address the
question above is to study it via the lens of black-box separations, as intro-
duced by Impagliazzo and Rudich [75]. Suppose one “black-box separates the
cryptographic primitive Q from another cryptographic primitive P .” Then, one
interprets this result as indicating that the primitive P is unlikely to facilitate
the secure construction of Q using black-box constructions.3 Consequently, to
reinforce the necessity of the existence of oblivious transfer protocols for opti-
mal fair coin-tossing, one needs to provide black-box separation of optimal fair
coin-tossing protocols from computational hardness assumptions that are weaker
3 Most constructions in theoretical computer science and cryptography are black-box
in nature. That is, they rely only on the input-output behavior of the primitive P ,
and are oblivious to, for instance, the particular implementation of the primitive
P . The security reduction in cryptographic black-box constructions also uses the
adversary in a black-box manner. There are, however, some highly non-trivial non-
black-box constructions in theoretical computer science, for example, [26, 76, 104, 56,
35, 57, 33, 11]. However, an infeasibility of black-box constructions to realize Q from
P indicates the necessity of new non-black-box constructions, which, historically,
have been significantly infrequent.
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than the existence of oblivious transfer protocols; for example, the existence of
one-way functions [74, 75].

Our results. In this work, we prove the (fully) black-box separation [96]
of optimal two-party fair coin-tossing protocol from the existence of one-way
functions. In particular, we show that any r-message two-party coin-tossing pro-
tocol in the random oracle model, where parties have unbounded computational
power, is 1/

√
r-insecure. In turn, this result settles in the positive the longstand-

ing open problem of determining whether the coin-tossing protocol of Blum [16]
and Cleve [24] achieves the highest security while using one-way functions in a
black-box manner.

Our proof relies on a potential-based argument that proceeds by identifying
a global invariant (see Claim 4.3) across coin-tossing protocols in the random
oracle model to guide the design of good fail-stop adversarial attacks. As a
significant departure from previous approaches [29, 30], our analysis handles the
entire sequence of curious random oracle query-answer pairs as a single instance
of information exposure.

1.1 Our Contributions

Before we proceed to present a high-level informal summary of our results, we
need a minimalist definition of two-party coin-tossing protocols in the random
oracle model that are secure against fail-stop adversaries. An (r, n,X0)-coin-
tossing protocol is a two-party interactive protocol with final output ∈ {0, 1}, and
parties have oracle access to a random oracle4 such that the following conditions
are satisfied.

1. Alice and Bob exchange a total of r messages (of arbitrary length) during the
protocol.5

2. The oracle query complexity of both Alice and Bob is (at most) n in every
execution of the protocol.

3. At the end of the protocol, parties always agree on the output ∈ {0, 1}. Fur-
thermore, the expectation of the output over all possible protocol executions
is X0 ∈ [0, 1].

4. We consider only fail-stop adversarial strategies. If one party aborts during
the protocol execution, then the honest party outputs a defense coin ∈ {0, 1}
based on her view without making additional queries to the random oracle.
Such protocols are called instant protocols, and one may assume any coin-
tossing protocol to be instant without loss of generality [29].6

4 A random oracle is a function sampled uniformly at random from the set of all
functions mapping {0, 1}n → {0, 1}n.

5 In this paper, we avoid the use of “round.” Some literature assumes one round to
contain only one message from some party. Other literature assumes that one round
has one message from all the parties. Instead, for clarity, we refer to the total number
of messages exchanged in the entire protocol.

6 For a more detailed discussion, refer to Remark 2.
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We emphasize that there are additional subtleties in defining coin-tossing proto-
cols in the random oracle model, and Section 2.3 addresses them. In this section,
we rely on a minimalist definition that suffices to introduce our results. Our main
technical result is the following consequence for any (r, n,X0)-coin-tossing pro-
tocol.

Informal Theorem 1 (Main Technical Result) There exists a universal con-
stant c > 0 and a polynomial p(·) such that the following holds. Let π be any
(r, n,X0)-coin-tossing protocol in the information-theoretic random oracle model,
where r, n ∈ N, and X0 ∈ (0, 1). Then, there exists a fail-stop adversarial strat-
egy for one of the parties to alter the expected output of the honest party by
≥ c ·X0(1−X0)/

√
r and performs at most p(nr/X0(1−X0)) additional queries

to the random oracle.

We remark thatX0 may be a function of r and n itself. For example, the expected
output X0 may be an inverse polynomial of r.

This technical result directly yields the following (fully) black-box separation
result using techniques in [75, 96].

Corollary 1 (Black-box Separation from One-way Functions). There
exists a universal constant c > 0 such that the following holds. Let π be any
r-message two-party protocol that uses any one-way function in a fully black-
box manner. Suppose, at the end of the execution of π, both parties agree on
their output ∈ {0, 1}. Before the beginning of the protocol, let the expectation
of their common output be X0 ∈ (0, 1). Then, there is a fail-stop adversarial
strategy for one of the parties to alter the honest party’s expected output by
≥ c ·X0(1−X0)/

√
r.

That is, optimal fair coin-tossing lies in Cryptomania. All our hardness of com-
putation results extend to the multi-party fair computation of arbitrary func-
tionalities, where parties have private inputs if the output of the functionality
has entropy and honest parties are not in the majority.

We emphasize that the black-box separation extends to any primitive (and
their exponentially-hard versions) that one can construct in a black-box manner
from random oracles or ideal ciphers, which turn out to be closely related to ran-
dom oracles [28, 70]. Furthermore, the impossibility result in the random oracle
model implies black-box separations from other (more structured) cryptographic
primitives (and their exponentially-hard versions) like regular one-way functions,
one-way permutations, and collision-resistant hash functions as well. Although
these primitives cannot be constructed from random oracles/ideal cipher in a
black-box manner, using by-now well-establish techniques in this field (see, for
example, [75]), the main technical result suffices to prove the separations from
these structured primitives.

This black-box separation from one-way functions indicates that the two-
party coin-tossing protocol of Blum [16] and Cleve [24], which uses one-way
functions in a black-box manner and builds on the protocols of [7, 21], achieves
the best possible security for any r-message protocol. Their protocol is 1/

√
r-

insecure, and any r-message protocol cannot have asymptotically better security
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by only using one-way functions in a black-box manner, thus resolving this fun-
damental question after over three decades.

1.2 Prior Related Works and Comparison

There is a vast literature of defining and constructing fair protocols for two-
party and multi-party functionalities [58, 14, 59, 13, 2, 6, 64, 4, 86, 5, 3, 23]. In
this paper, our emphasis is on the intersection of this literature with black-box
separation results. The field of meta-reductions [19, 27, 94, 41, 95, 50, 65, 31, 101,
38, 15, 10, 42, 105, 8, 22, 20, 68, 89, 34, 39, 1, 43], which demonstrates similar
hardness of computation results from computational hardness assumptions like
falsifiable assumptions [91], is outside the scope of this work.

In a seminal result, Impagliazzo and Rudich [75] introduced the notion of
black-box separation for cryptographic primitives. After that, there have been
other works [96, 9] undertaking this nuanced task of precisely defining black-box
separation and its subtle variations. Intuitively, separating a primitive Q from a
primitive P indicates that attempts to secure realize Q solely on the black-box
use of P are unlikely to succeed. Reingold, Trevisan, and Vadhan [96] highlighted
the subtleties involved in defining black-box separations by delineating several
variants of separations. In their terminology, this work pertains to a fully black-
box separation where the construction uses P in a black-box manner, and the
security reduction uses the adversary in a black-box manner as well. Since the
inception of black-box separations in 1989, this research direction has been a
fertile ground for highly influential research [98, 75, 99, 102, 80, 51, 49, 53, 37,
48, 71, 32, 52, 18, 12, 17, 103, 40, 69, 87, 77, 29, 36, 62, 82, 83, 30, 84, 85, 46,
47, 44, 45]. Among these results, in this paper, we elaborate on the hardness of
computation results about fair computation protocols.

A recent work of Haitner, Nissim, Omri, Shaltiel, and Silbak [61] introduces
the notion of the “computational essence of key-agreement.” Haitner, Makriyan-
nis, and Omri [60], for any constant r, prove that r-message coin-tossing proto-
cols imply key-agreement protocols, if they are less than 1/

√
r-insecure. Observe

that proving the implication that key-agreement protocol exists is a significantly
stronger result as compared to demonstrating a black-box separation from key-
agreement.7 However, their contribution is incomparable to our result because it
shows a stronger consequence for any constant r.

Among the related works in black-box separation, the most relevant to our
problem are the following. Haitner, Omri, and Zarosim [62], for input-less func-
tionalities, lift the hardness of computation results in the information-theoretic

7 For example, consider the following analogy from complexity theory. We know that
the complexity class Σ2 is separated from the complexity class Σ1 via Cook re-
ductions; unless the polynomial hierarchy collapses. However, the existence of an
efficient protocol for Σ1, implies that the entire polynomial hierarchy collapses, and
we have Σ1 = Σ2. Similarly, the existence of an efficient protocol for a cryptographic
primitive may have several additional implicit consequences in addition to merely
providing oracle access to an implementation of that primitive.
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plain model against semi-honest adversaries to the random oracle model, i.e., ran-
dom oracles are useless. However, coin-tossing is trivial to realize securely against
semi-honest adversaries,8 and fail-stop adversarial strategies are not semi-honest.
Dachman–Soled, Lindell, Mahmoody, and Malkin [29] proved that the random
oracle could be “compiled away” if the coin-tossing protocol has r = O(n/ log n)
messages. Therefore, the fail-stop adversarial strategy of Cleve and Impagli-
azzo [25] in the information-theoretic plain model also succeeds against the two-
party coin-tossing protocol in the random oracle model. Finally, Dachman–Soled,
Mahmoody, and Malkin [30] show a fail-stop adversarial strategy against a par-
ticular class of fair coin-tossing protocols, namely, function oblivious protocols.
An exciting feature of this work is that the attack performed by the adversar-
ial party does not proceed by compiling away the random oracle. Similar proof
techniques were independently introduced by [82, 83] to study the computational
complexity of two-party secure deterministic function evaluations.

Recently, there have been two works providing improvements to the fail-stop
adversarial attacks of Cleve and Impagliazzo [25] in the information-theoretic
plain model. These results proceed by induction on r and employ a poten-
tial argument to lower-bound the performance of the most devastating fail-
stop adversarial strategy against a coin-tossing protocol. Khorasgani, Maji, and
Mukherjee [78] generalize (and improve) the fail-stop attack of Cleve and Im-
pagliazzo [25] to arbitrary X0 ∈ (0, 1), even when X0 depends on r and tends to
0 or 1. Khorasgani, Maji, and Wang [79] decouple the number of messages r in a
coin-tossing protocol and the number of defense updates d that the two parties
perform. They show that a two-party coin-tossing protocol in the information-
theoretic plain model is 1/

√
d-insecure, independent of the number of messages

r in the protocol.
This result [79] is a good starting point for our work because our curious

fail-stop attacker shall perform additional queries to the random oracle; how-
ever, the parties do not update their defense coins during this information ex-
posure. Unfortunately, their approach only applies to interactive protocols in
the information-theoretic plain model. Our work identifies a global invariant for
communication protocols that enables the extension of the approach of [79] to
the random oracle model. Furthermore, we simplify the proof of their result as
well.

2 Preliminaries

We use uppercase letters for random variables, (corresponding) lowercase letters
for their values, and calligraphic letters for sets. For a joint distribution (A,B),
A and B represent the marginal distributions, and A × B represents the prod-
uct distribution where one samples from the marginal distributions A and B
independently. For a random variable A distributed over Ω, the support of A,
8 Every party broadcasts one uniformly and independently random bit, and all the
parties agree on the parity of all the broadcast bits. This protocol is semi-honest
secure.
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denoted by Supp(A), is the set {x | x ∈ Ω,Pr[A = x ] > 0}. For two random
variables A and B distributed over a (discrete) sample space Ω, their statistical
distance is defined as SD (A,B) := 1

2 ·
∑
ω∈Ω |Pr[A = w ]− Pr[B = w ]| .

For a sequence (X1, X2, . . .), we use X≤i to denote the joint distribution
(X1, X2, . . . , Xi). Similarly, for any (x1, x2, . . . ) ∈ Ω1 × Ω2 × · · ·, we define
x≤i := (x1, x2, . . . , xi) ∈ Ω1×Ω2×· · ·×Ωi. Let (M1,M2, . . . ,Mr) be a joint dis-
tribution over sample space Ω1×Ω2×· · ·×Ωr, such that for any i ∈ {1, 2, . . . , n},
Mi is a random variable over Ωi. A (real-valued) random variable Xi is said to be
M≤i measurable if there exists a deterministic function f : Ω1×· · ·×Ωi → R such
that Xi = f(M1, . . . ,Mi). A random variable τ : Ω1 × · · · × Ωr → {1, 2, . . . , r}
is called a stopping time, if the random variable 1τ≤i is M≤i measurable, where
1 is the indicator function. For a more formal treatment of probability spaces,
σ-algebras, filtrations, and martingales, refer to, for example, [100].

The following inequality shall be helpful for our proof.

Theorem 2 (Jensen’s inequality). If f is a multivariate convex function,
then E

[
f
(
~X
)]
≥ f

(
E
[
~X
])

, for all probability distributions ~X over the domain
of f .

2.1 Two-party interactive protocols in the random oracle model

Alice and Bob speak in alternate rounds. We denote the ith message by Mi.
For every message Mi, we denote Alice’s private view immediately after send-
ing/receiving message Mi as V A

i , which consists of Alice’s random tape RA, her
private queries, and the first i messages exchanged. We use V A

0 to represent Al-
ice’s private view before the protocol begins. Similarly, we define Bob’s private
view V B

i and use RB to denote his private random tape.
Query Operator Q. For any view V , we use Q(V ) to denote the set of all

queries contained in the view V .

2.2 Heavy Querier and the Augmented Protocol

For two-party protocols in the random oracle model, [75, 12] introduced a stan-
dard algorithm, namely, the heavy querier. In this paper, we shall use the fol-
lowing imported theorem.

Imported Theorem 3 (Guarantees of Heavy Querier [12, 83]) Let π be
any two-party protocol between Alice and Bob in the random oracle model, in
which both parties ask at most n queries. For all threshold ε ∈ (0, 1), there exists
a public algorithm, called the heavy querier, who has access to the transcript
between Alice and Bob. After receiving each message Mi, the heavy querier per-
forms a sequence of queries and obtain its corresponding answers from the ran-
dom oracle. Let Hi denote the sequence of query-answer pairs asked by the heavy
querier after receiving message Mi. Let Ti be the union of the ith message Mi

and the ith heavy querier message Hi. The heavy querier guarantees that the
following conditions are simultaneously satisfied.
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– ε-Lightness. For any i, any t≤i ∈ Supp(T≤i ), and query q /∈ Q (h≤i),

Pr
[
q ∈ Q

(
V A
i

∣∣T≤i = t≤i
)]
≤ ε, and Pr

[
q ∈ Q

(
V B
i

∣∣T≤i = t≤i
)]
≤ ε.

– nε-Dependence. Fix any i,

E
t≤i←T≤i

[
SD
((
V A
i , V

B
i

∣∣T≤i = t≤i
)
,
(
V A
i

∣∣T≤i = t≤i
)
×
(
V B
i

∣∣T≤i = t≤i
))]
≤ nε.

Intuitively, it states that on average, the statistical distance between (1) the
joint distribution of Alice’s and Bob’s private view, and (2) the product of
the marginal distributions of Alice’s private views and Bob’s private views is
small.

– O(n/ε)-Efficiency. The expected number of queries asked by the heavy querier
is bounded by O (n/ε). Consequently, it has O

(
n/ε2

)
query complexity with

probability (at least) (1− ε) by an averaging argument.

We refer to the protocol with the heavy querier’s messages attached as the
augmented protocol. We call Ti the augmented message.

2.3 Coin-Tossing Protocol

We will prove our main result by induction on the message complexity of the
protocol. Therefore, after any partial transcript t≤i, we will treat the remainder
of the orginal protocol starting from the (i + 1)th message, as a protocol of its
own. Hence, it is helpful to define the coin-tossing protocol where, before the
beginning of the protocol, Alice’s and Bob’s private views are already correlated
with the random oracle. However, note that, in the augmented protocol, after
each augmented message ti, the heavy querier has just ended. Thus, these corre-
lations will satisfy Imported Theorem 3. Therefore, we need to define a general
class of coin-tossing protocols in the random oracle model over which we shall
perform our induction.

Definition 1 ((ε, ~α, r, n,X0)-Coin-Tossing). An interactive protocol π between
Alice and Bob with random oracle O : {0, 1}λ → {0, 1}λ is called an (ε, ~α, r, n,X0)-
coin-tossing protocol if it satisfies the following.

– Setup. There is an arbitrary set S ⊆ {0, 1}λ, which is publicly known, such
that for all queries s ∈ S, the query answers O(s) are also publicly known.
Let ΩA, ΩB, and ΩO be the universes of Alice’s random tape, Bob’s random
tape, and the random oracle, respectively. There are also publicly known sets
A ⊆ ΩA × ΩO and B ⊆ ΩB × ΩO. The random variables RA, RB, and O
are sampled uniformly conditioned on that (1) (RA, O) ∈ A, (2) (RB, O) ∈ B,
and (3) O is consistent with the publicly known answers at S. Alice’s private
view before the beginning of the protocol is a deterministic function of RA

and O, which might contain private queries. Likewise, Bob’s private view is a
deterministic function of RB and O.9

9 Basically, S is the set of all the queries that the heavy querier has published. A is
the set of all possible pairs of Alice’s private randomness rA and random oracle o
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– Agreement. At the end of the protocol, both parties always agree on the output
∈ {0, 1}. Without loss of generality, we assume the output is concatenated to
the last message in the protocol.10

– Defense preparation. At message Mi, if Alice is supposed to speak, in ad-
dition to preparing the next-message Mi, she will also prepare a defense coin
for herself as well. If Bob decides to abort the next message, she shall not
make any additional queries to the random oracle, and simply output the de-
fense she has just prepared. [29, 30] introduced this constraint as the “instant
construction.” They showed that, without loss of generality, one can assume
this property for all the defense preparations except for the first defense (see
Remark 2). We shall refer to this defense both as Alice’s ith defense and also
as her (i + 1)th defense. Consequently, Alice’s defense for every i is well-
defined. Bob’s defense is defined similarly. We assume the party who receives
the first message has already prepared her defense for the first message before
the protocol begins.

– ε-Lightness at Start. For any query q /∈ S, the probability that Alice has
asked query q before the protocol begins is upper bounded by ε ∈ [0, 1]. Similarly,
the probability that Bob has asked query q is at most ε.

– ~α-Dependence. For all i ∈ {0, 1, . . . , r}, Alice’s and Bob’s private views are
αi-dependent on average immediate after the message Ti. That is, the following
condition is satisfied for every i.

αi := E
t≤i←T≤i

[
SD
((
V A
i , V

B
i

∣∣T≤i = t≤i
)
,
(
V A
i

∣∣T≤i = t≤i
)
×
(
V B
i

∣∣T≤i = t≤i
))]

– r-Message complexity. The number of messages of this protocol is r =
poly (λ). We emphasize that the length of the message could be arbitrarily
long.

– n-Query complexity. For all possible complete executions of the protocol,
the number of queries that Alice asks (including the queries asked before the
protocol begins) is at most n = poly(λ). This also includes the queries that
are asked for the preparation of the defense coins. Likewise, Bob asks at most
n queries as well.

– X0-Expected Output. The expectation of the output is X0 ∈ (0, 1).

Remark 1. Let us justify the necessity of ~α-dependence in the definition. We note
that when heavy querier stops, Alice’s and Bob’s view are not necessarily close to
the product of their respective marginal distributions.11 However, to prove any

that are consistent with Alice’s messages before this protocol begins. Similarly, B is
the set of all consistent pairs of Bob’s private randomness rB and random oracle o.

10 This generalization shall not make the protocol any more vulnerable. Any attack
in this protocol shall also exist in the original protocol with the same amount of
deviation. This only helps simplify the presentation of our proof.

11 For instance, suppose Alice samples a uniform string u1
$←− {0, 1}λ and sends O(u1)

to Bob. Next, Bob samples a uniform string u2
$←− {0, 1}λ and sends O(u2) to Alice.

Assume the first message and the second message are the same, i.e., O(u1) = O(u2).
Then, there are no heavy queries, but Alice’s and Bob’s private views are largely
correlated.
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meaningful bound on the susceptibility of this protocol, we have to treat ~α as an
additional error term. Therefore, we introduce this parameter in our definition.
However, the introduction of this error shall not be a concern globally, because
the heavy querier guarantees that over all possible executions this dependence
is at most nε (on average), which we shall ensure to be sufficiently small.

Remark 2. We note that, after every heavy querier message, the remaining sub-
protocol always satisfies the definition above. However, the original coin-tossing
protocol might not meet these constraints. For example, consider a one-message
protocol where Alice queries O(0λ), and sends the parity of this string to Bob as
the output. On the other hand, Bob also queries O(0λ) and uses the parity of this
string as his defense. This protocol is perfectly secure in the sense that no party
can deviate the output of the protocol at all. However, the query 0λ is 1-heavy in
Bob’s private view even before the protocol begins. Prior works [29, 30] rule out
such protocols by banning Bob from making any queries when he prepares his
first defense. In this paper, we consider protocols such that no queries are more
than ε-heavy when Bob prepares his first defense. We call this the ε-lightness at
start assumption. The set of protocols that prior works consider is identical to
the set of protocols that satisfies 0-lightness at start assumption.

To justify our ε-lightness at start assumption, we observe that one can always
run a heavy querier with a threshold ε before the beginning of the protocol as a
pre-processing step. Note that this step fixes only a small part (of size O(n/ε)) of
the random oracle, and, hence, the random oracle continues to be an “idealized”
one-way function. If this protocol is a black-box construction of a coin-tossing
protocol with any one-way function, the choice of the one-way function should
not change its expected output. Therefore, by running a heavy querier before
the beginning of the protocol, it should not alter the expected output of the
protocol. After this compilation step, all queries are ε-light in Bob’s view before
the protocol begins. Consequently, our inductive proof technique is applicable.

Remark 3. Let us use the an example to further illustrate how we number Alice’s
and Bob’s defense coins. Suppose Alice sends the first message in the protocol.
Bob shall prepare his first defense coin even before the protocol begins. Alice,
during her preparation of the first message, shall also prepare a defense coin as
her first defense.

The second message in the protocol is sent by Bob. Since Alice is not speaking
during this message preparation, her second defense coin remains identical to her
first defense coin. Bob, on the other hand, shall update a new defense coin as
his second defense during his preparation of the second message.

For the third message, Alice shall prepare a new third defense coin and Bob’s
third defense coin is identical to his second defense coin. This process continues
for r messages during the protocol execution.

Notation. Let Xi represent the expected output conditioned on the first i
augmented messages, i.e., the random variable T≤i. Let DA

i be the expectation of
Alice’s ith defense coin conditioned on the first i augmented messages. Similarly,

11



let DB
i be the expectation of Bob’s ith defense coin conditioned on the first i aug-

mented messages. (Refer to Definition 1 for the definition of ith defense. Recall
that, for both Alice and Bob, the ith defense is defined for all i ∈ {1, 2, . . . , r}.)
Note that random variables Xi, D

A
i , and DB

i are all T≤i-measurable.

3 Our Results

Given an (ε, ~α, r, n,X0)-coin-tossing protocol π and a stopping time τ , we define
the following score function that captures the susceptibility of this protocol with
respect to this particular stopping time.

Definition 2. Let π be an (ε, ~α, r, n,X0)-coin tossing protocol. Let P ∈ {A,B}
be the party who sends the last message of the protocol. For any stopping time
τ , define

Score(π, τ) := E
[
1(τ 6=r)∨(P 6=A) ·

∣∣Xτ −DA
τ

∣∣+ 1(τ 6=r)∨(P 6=B) ·
∣∣Xτ −DB

τ

∣∣] .
We clarify that the binary operator ∨ in the expression above represents the
boolean OR operation, and not the “join” operator.

To provide additional perspectives to this definition, we make the following
remarks similar to [79].

1. Suppose Alice is about to send (m∗i , h
∗
i ) as the ith message. In the information-

theoretic plain model, prior works [25, 78] consider the gap between the ex-
pected output before and after this message. Intuitively, since Alice is sending
this message, she could utilize this gap to attack Bob, because Bob’s defense
cannot keep abreast of this new information. However, in the random oracle
model, both parties are potentially vulnerable to this gap. This is due to the
fact that the heavy querier message might also reveal information about Bob.
For instance, it might reveal Bob’s commitments sent in previous messages
using the random oracle as an idealized one-way function. Then, Alice’s de-
fense cannot keep abreast of this new information either and thus Alice is
potentially vulnerable.

2. Due to the reasons above, for every message, we consider the potential de-
viations that both parties can cause by aborting appropriately. Suppose we
are at transcript T≤i = t∗≤i, which belongs to the stopping time, i.e., τ = i.
And Alice sends the last message (m∗i , h∗i ). Naturally, Alice can abort without
sending this message to Bob when she finds out her ith message is (m∗i , h∗i ).
This attack causes a deviation of

∣∣Xτ −DB
τ

∣∣. On the other hand, Bob can
also attack by aborting when he receives Alice’s message (m∗i , h

∗
i ). This at-

tack ensures a deviation of
∣∣Xτ −DA

τ+1

∣∣. Note that for the (i+1)th message,
Alice is not supposed to speak, her (i+1)th defense is exactly her ith defense.
Hence this deviation can be also written as

∣∣Xτ −DA
τ

∣∣.
3. The above argument has a boundary case, which is the last message of the

protocol. Suppose Alice sends the last message. Then, Bob, who receives this
message, cannot abort anymore because the protocol has ended. Therefore,
if our stopping time τ = n, the score function must exclude

∣∣Xτ −DA
τ

∣∣. This
explains why we have the indicator function 1 in our score function.
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4. Lastly, we illustrate how one can translate this score function into a fail-stop
attack strategy. Suppose we find a stopping time τ∗ that witnesses a large
score Score(π, τ∗). For Alice, we will partition the stopping time into two
partitions depending on whether Xτ ≥ DB

τ or not. Similarly, for Bob, we
partition the stopping time into two partitions depending on whether Xτ ≥
DA
τ . These four attack strategies correspond to Alice or Bob deviating towards

0 or 1. And the summation of the deviations caused by these four attacks are
exactly Score(π, τ∗). Hence, there must exist a fail-stop attack strategy for
one of the parties that changes the honest party’s output distribution by
≥ 1

4 · Score(π, τ
∗).

Given the definition of our score function, we are interested in finding the
stopping time that witnesses the largest score. This motivates the following def-
inition.

Definition 3. For any (ε, ~α, r, n,X0)-coin-tossing protocol π, define

Opt(π) := max
τ

Score(π, τ).

Intuitively, Opt(π) represents the susceptibility of the protocol π. Our main
theorem states the following lower bound on this quantity.

Theorem 4 (Main Technical Result in the Random Oracle Model).
For any (ε, ~α, r, n,X0)-coin-tossing protocol π, the following holds.

Opt(π) ≥ Γr ·X0 (1−X0)−

(
nr · ε+ α0 + 2

r∑
i=1

αi

)
,

where Γr :=
√√

2−1
r , for all positive integers r. Furthermore, one needs to make

an additional O (n/ε) queries to the random oracle (in expectation) to identify
a stopping time τ witnessing this lower bound.

We defer the proof to Section 4. In light of the remarks above, this theorem
implies the following corollary.

Corollary 2. Let π be a coin-tossing protocol in the random oracle model that
satisfies the ε-lightness at start assumption (see Remark 2). Suppose π is an r-
message protocol, and Alice and Bob ask at most n queries. The expected output
of π is X0. Then, either Alice or Bob has a fail-stop attack strategy that deviates
the honest party’s output distribution by

Ω

(
X0 (1−X0)√

r

)
.

This attack strategy performs O
(

n2r2

X0(1−X0)

)
additional queries to the random

oracle in expectation.
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This corollary is obtained by substituting ε = X0(1−X0)
nr2 in Theorem 4. Imported Theorem 3

guarantees that, for all i, the average dependencies after the ith message are
bounded by nε. Hence, the error term is o

(
X0(1−X0)√

r

)
.

The efficiency of the heavy querier is guaranteed by Imported Theorem 3.
One can transform the average-case efficiency to worst-case efficiency by forc-
ing the heavy querier to stop when it asks more than n2r3

(X0(1−X0))
2 queries. By

Markov’s inequality, this happens with probability at most O
(
X0(1−X0)

r

)
=

o
(
X0(1−X0)√

r

)
, and thus the quality of this attack is essentially identical to the

averge-case attack.

4 Proof of Theorem 4

In this section, we prove Theorem 4 using induction on the message complexity
r. We first provide some useful lemmas in Section 4.1. Next, we prove the base
case in Section 4.2. Finally, Section 4.3 proves the inductive step.

Throughout this section, without loss of generality, we shall assume that
Alice sends the first message in the protocol.

4.1 Useful Imported Technical Lemmas

Firstly, it is implicit in [12] that if (1) Alice’s and Bob’s private view before the
protocol begins are α0-dependent, (2) all the queries are ε-light for Bob, and (3)
Alice asks at most n queries to prepare her first message, then after the first
message, Alice’s and Bob’s private view are (α0 + nε)-dependent.

Lemma 1 (Technical Lemma [12]). We have

SD
((
V A
1 , V

B
0

)
,
(
V A
1 × V B

0

))
≤ α0 + nε.

Additionally, the following inequality from [79] shall be useful for our proof.

Lemma 2 (Imported Technical Lemma, Lemma 1 in [79]). For all P ∈
[0, 1] and Q ∈ [0, 1/2], if P,Q satisfies

P −Q− P 2Q ≥ 0,

then for all x, α, β ∈ [0, 1], we have

max (P · x(1− x) , |x− α|+ |x− β|) ≥ Q ·
(
x(1− x) + (x− α)2 + (x− β)2

)
.

In particular, for all r ≥ 1, the constraints are satisfied if we set P = Γr and

Q = Γr+1, where Γr :=
√√

2−1
r .
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4.2 Base case of the Induction: Message Complexity r = 1

Let π be an (ε, ~α, r, n,X0)-coin-tossing protocol with r = 1. In this protocol,
Alice sends the only message M1. We shall pick the stopping time τ to be 1.
Note that this is the last message of the protocol and hence Bob who receives it
cannot abort any more. Therefore, our score function is the following

Score(π, τ) = E
[∣∣X1 −DB

1

∣∣] .
Let DB

0 = E
[
DB

1

]
, which is the expectation of Bob’s first defense before the

protocol begins. Recall that in the augmented protocol T1 = (M1, H1), and X1

and DB
1 are T1 measurable. We have

E
[∣∣X1 −DB

1

∣∣] = E
m1←M1

[
E

h1←(H1|M1=m1)

[∣∣X1 −DB
1

∣∣]]
(i)
≥ E

m1←M1

[∣∣∣E[X1|M1 = m1 ]− E
[
DB

1 |M1 = m1

] ∣∣∣]
(ii)
≥ E

m1←M1

[∣∣∣E[X1|M1 = m1 ]−DB
0

∣∣∣− ∣∣∣DB
0 − E

[
DB

1 |M1 = m1

] ∣∣∣]
(iii)
≥ E

m1←M1

[∣∣∣E[X1|M1 = m1 ]−DB
0

∣∣∣]− α0 − nε

(iv)
≥ X0 ·

(
1−DB

0

)
+ (1−X0) ·DB

0 − α0 − nε

≥ X0 (1−X0) +
(
X0 −DB

0

)2 − α0 − nε
≥ X0 (1−X0)− α0 − nε.

In the above inequality, (i) and (ii) are because of triangle inequality. Since
we assume the output is concatenated to the last message of the protocol,
E[X1|M1 = m1 ] ∈ {0, 1}. And by the definition of X0, the probability of the
output being 1 is X0. Hence we have (iv).

To see (iii), note that

E
[
DB

1

∣∣M1 = m1

]
=
∑
vA1 ,v

B
0

Pr
[
V A
1 = vA1 , V

B
0 = vB0

∣∣M1 = m1

]
E
[
DB

1

∣∣V B
0 = vB0

]
≤

∑
Q(vA1)∩Q(vB0)=∅

Pr
[
V A
1 = vA1

∣∣M1 = m1

]
· Pr

[
V B
0 = vB0

]
E
[
DB

1

∣∣V B
0 = vB0

]
+

∑
Q(vA1)∩Q(vB0) 6=∅

Pr
[
V A
1 = vA1 , V

B
0 = vB0

∣∣M1 = m1

]
E
[
DB

1

∣∣V B
0 = vB0

]
Hence,∣∣E[DB

1

∣∣M1 = m1

]
−DB

0

∣∣ ≤ Pr
(vA1 ,v

B
0)←(V A

1 ,V
B
0 )|M1=m1

[
Q
(
vA1
)
∩Q

(
vB0
)
6= ∅
]
.
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Therefore,

E
m1←M1

[∣∣∣E[DB
1

∣∣M1 = m1

]
−DB

0

∣∣∣]
≤ E
m1←M1

[
Pr

(vA1 ,v
B
0)←(V A

1 ,V
B
0 )|M1=m1

[
Q
(
vA1
)
∩Q

(
vB0
)
6= ∅
]]

≤ Pr
(vA1 ,v

B
0)←(V A

1 ,V
B
0 )

[
Q
(
vA1
)
∩Q

(
vB0
)
6= ∅
]
≤ α0 + nε.

This completes the proof for the base case.

4.3 Inductive Step

Suppose the theorem is true for r = r0 − 1, we are going to prove it for r = r0.
Let π be an arbitrary (ε, ~α, r0, n,X0)-coin-tossing protocol. Assume the first
augmented message is (M1, H1) = (m∗1, h

∗
1), and conditioned on that, X1 = x∗1,

DA
1 = dA,∗1 , and DB

1 = dB,∗1 . Moreover, the remaining sub-protocol π∗ is an
(ε, ~α∗, r0 − 1, n, x∗1)-coin-tossing protocol. By our induction hypothesis,

Opt (π∗) ≥ Γr0−1 · x∗1 (1− x∗1)−

(
n(r0 − 1)ε+ α∗0 +

r0−1∑
i=1

α∗i

)
.

(For simplicity, we shall use Err (~α, n, r) to represent α0 +
∑r
i=1 αi + nrε in the

rest of the proof.) That is, there exists a stopping time τ∗ for sub-protocol π∗,
whose score is lower bounded by the quantity above. On the other hand, we
may choose not to continue by picking this message (M1, H1) = (m∗1, h

∗
1) as our

stopping time. This would yield a score of∣∣∣x∗1 − dA,∗1

∣∣∣+ ∣∣∣x∗1 − dB,∗1

∣∣∣ .
Hence, the optimal stopping time would decide on whether to abort now or defer
the attack to sub-protocol π∗ by comparing which one of those two quantities is
larger. This would yield a score of

max
(
Opt (π∗) ,

∣∣∣x∗1 − dA,∗1

∣∣∣+ ∣∣∣x∗1 − dB,∗1

∣∣∣)
≥ max

(
Γr0−1 · x∗1 (1− x∗1) ,

∣∣∣x∗1 − dA,∗1

∣∣∣+ ∣∣∣x∗1 − dB,∗1

∣∣∣)− Err (~α∗, n, r0 − 1)

(i)
≥ Γr0

(
x∗1 (1− x∗1) +

(
x∗1 − d

A,∗
1

)2
+
(
x∗1 − d

B,∗
1

)2)
− Err (~α∗, n, r0 − 1) ,

where inequality (i) is because of Lemma 2. Now that we have a lower bound on
how much score we can yield at every first augmented message, we are interested
in how much they sum up to.

Without loss of generality, assume there are totally ` possible first augmented
messages, namely t(1)1 , t

(2)
1 , . . . , t

(`)
1 . The probability of the first message being t(i)1
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is p(i) and conditioned that, X1 = x
(i)
1 , DA

1 = d
A,(i)
1 , and DB

1 = d
B,(i)
1 . Moreover,

the remaining r0 − 1 protocol has dependence vector ~α(i). Therefore, we are
interested in,

∑̀
i=1

p(i)
(
Γr0

(
x
(i)
1

(
1− x(i)1

)
+
(
x
(i)
1 − d

A,(i)
1

)2
+
(
x
(i)
1 − d

B,(i)
1

)2)
− Err

(
~α(i), n, r0 − 1

))
Define the tri-variate function Φ as

Φ(x, y, z) := x(1− x) + (x− y)2 + (x− z)2.

We make the crucial observation that this function can also be rewritten as

Φ(x, y, z) = x+ (x− y − z)2 − 2yz.

Therefore, we can rewrite the above quantity as

∑̀
i=1

p(i)
(
Γr0

(
x
(i)
1 +

(
x
(i)
1 − d

A,(i)
1 − dB,(i)1

)2
− 2 · dA,(i)1 · dB,(i)1

)
− Err

(
~α(i), n, r0 − 1

))
We observe the following case analysis for the three expressions in the potential
function above.

1. For the x term, we observe that the expectation of x(i)1 is X0, i.e., we have∑`
i=1 p

(i) · x(i)1 = X0.
2. For the (x − y − z)2 term, we note that it is a convex tri-variate function.

Hence, Jensen’s inequality is applicable.
3. For the y · z term, we have the following claim.

Claim (Global Invariant).∣∣∣∣∣∑̀
i=1

p(i) · dA,(i)1 · dB,(i)1 − E
[
DA

1

]
E
[
DB

1

]∣∣∣∣∣ ≤ (α0 + nε) + α1.

Proof. To see this, consider the expectation of the product of Alice and Bob
defense when we sample from

(
V A
1 , V

B
0

)
. This expectation is α0 + nε close to

E
[
DA

1

]
E
[
DB

1

]
because joint distribution

(
V A
1 , V

B
0

)
is α0+nε close to the product

of its marginal distribution by Lemma 1.
On the other hand, this expectation is identical to the average (over all

possible messages) of the expectation of the product of Alice and Bob defense
when we sample from

(
V A
1 , V

B
0

∣∣∣T1 = t
(i)
1

)
. Conditioned on first message being

t
(i)
1 , this expectation is α(i)

0 -close to dA,(i)1 ·dB,(i)1 because
(
V A
1 , V

B
0

∣∣∣T1 = t
(i)
1

)
has

α
(i)
0 -dependence by definition.
Finally, we note that, by definition,

∑`
i=1 p

(i)α
(i)
0 = α1. Note that the indices

between α and α(i) are shifted by 1. This is because of that the dependence after
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the first message of the original protocol is the average of the dependence before
each sub-protocol begins.

This proves that
∑`
i=1 p

(i) · dA,(i)1 d
B,(i)
1 and E

[
DA

1

]
E
[
DB

1

]
are (α0+nε)+α1

close. ut

Given these observations, we can push the expectation inside each term, and
they imply that our score is lower bounded by

Γr0

(
X0 +

(
X0 − E

[
DA

1

]
− E

[
DB

1

])2 − 2 · E
[
DA

1

]
· E
[
DB

1

]
− (α0 + α1 + nε)

)
−
∑̀
i=1

p(i) · Err
(
~α(i), n, r0 − 1

)
We note that by definition (again note that the indices of α and α(i) are shifted
by 1),

(α0 + α1 + nε) +
∑̀
i=1

p(i) · Err
(
~α(i), n, r0 − 1

)
= Err (~α, n, r0) .

Therefore, our score is at least

Γr0

(
X0 +

(
X0 − E

[
DA

1

]
− E

[
DB

1

])2 − 2 · E
[
DA

1

]
· E
[
DB

1

])
− Err (~α, n, r0) .

Switching back to the form of x(1− x) + (x− y)2 + (x− z)2, we get

Γr0

(
X0 (1−X0) +

(
X0 − E

[
DA

1

])2
+
(
X0 − E

[
DB

0

])2)− Err (~α, n, r0)

≥ Γr0 ·X0 (1−X0)− Err (~α, n, r0)

= Γr0 ·X0 (1−X0)−

(
nr0ε+ α0 + 2

r0∑
i=1

αi

)
.

This completes the proof of the inductive step and, hence, the proof of Theorem 4.
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