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Abstract. We present a cryptographic construction for anonymous to-
kens with private metadata bit, called PMBTokens. This primitive en-
ables an issuer to provide a user with a lightweight, single-use anonymous
trust token that can embed a single private bit, which is accessible only to
the party who holds the secret authority key and is private with respect
to anyone else. Our construction generalizes and extends the functional-
ity of Privacy Pass (PETS’18) with this private metadata bit capability.
It provides unforgeability, unlinkability, and privacy for the metadata bit
properties based on the DDH and CTDH assumptions in the random or-
acle model. Both Privacy Pass and PMBTokens rely on non-interactive
zero-knowledge proofs (NIZKs). We present new techniques to remove
the need for NIZKs, while still achieving unlinkability. We implement
our constructions and we report their efficiency costs.

1 Introduction

The need to propagate trust signals while protecting anonymity has motivated
cryptographic constructions for anonymous credentials [Cha82, CL01]. While
we have constructions that support complex statements, this comes with com-
putation and communication costs. On the other hand, some practical uses re-
quire very simple functionality from the anonymous credential, while having
very strict efficiency requirements. One such example is the setting of Privacy
Pass [DGS+18]. Privacy Pass was designed as a tool for content delivery net-
works (CDNs), which need a way to distinguish honest from malicious content
requests, so as to block illegitimate traffic that could drain network resources
causing a denial of service (DoS). Previous solutions leveraged IP reputation to
assess the reputation of users. While helpful in many cases, IP reputation may
also lead to a high rate of false positives because of shared IP use. In particular,
this is the case for users of privacy tools, such as Tor, VPNs, and I2P. Privacy
Pass [DGS+18] proposes a solution for this problem using anonymous tokens
as a mechanism to prove trustworthiness of the requests, without compromis-
ing the privacy of the user. Since CDNs need to potentially handle millions of
requests per second, efficiency of the cryptographic construction is of extreme
importance.



In this paper, we consider anonymous tokens that can convey two trust sig-
nals, in such a way that the user cannot distinguish which of the two signals is
embedded in her tokens. This extension is motivated by the fact that in a sys-
tem relying on anonymous trust tokens, malicious users be identified as a threat
if the issuer stops providing them with tokens. Since real-world attackers have
means to corrupt honest users, finding out when they have been detected could
serve as an incentive to corrupt more users or adversarial learning against spam
detectors. Being able to pass on the information whether a user is on an allow or
disallow list, and consume it in appropriate ways on the authentication side, mit-
igates such behavior. There has been recent interest in primitives that provide
such functionality in standardization bodies such as the IETF and W3C. This
includes a recent draft proposal for a Trusted Token API submitted by Google
at the W3C, which calls for a secret metadata bit functionality.5 Also an IETF
working group6 is discussing standardization of the core protocol of Privacy Pass
used by Cloudflare7 together with extensions including private metadata bit.

More concretely, we consider an anonymous token primitive that provides
the following functionality: a user and an issuer interact and, as a result of this
interaction, the user obtains a token with a private metadata bit (PMB) embed-
ded in it. The private metadata bit can be read from a token using the secret
key held by the issuer, at redemption time. Each token is one-time use, which
enables the issuer to update the trust assigned to each user without requiring a
complex revocation process, by just adjusting the number of tokens that can be
issued at once and the frequency of serving new token requests. Anonymous to-
ken schemes offer the following security properties: unforgeability, unlinkability,
and privacy of the metadata bit. Unforgeability guarantees that nobody but the
issuer can generate new valid tokens. Unlinkability guarantees that the tokens
that were issued with the same private metadata bit are indistinguishable to
the issuer when redeemed. Privacy of the metadata bit states that no party that
does not have the secret key can distinguish any two tokens, including tokens
issued with different metadata bits.

Our goal is to construct a primitive which achieves the above properties, and
has competitive efficiency introducing minimal overhead over Privacy Pass.

1.1 Our Contributions

Our work includes the following contributions. We formalize the security proper-
ties of the primitive of anonymous tokens with private metadata bit. We present
a new construction for this primitive, called PMBToken, which extends Privacy
Pass (PP) to support private metadata bit, while maintaining competitive effi-
ciency. Further, we introduce new techniques that allow to remove the need for
NIZK in the constructions of both Privacy Pass and PMBToken. This simplifies

5 See https://github.com/WICG/trust-token-api#extension-metadata and
https://web.dev/trust-tokens/.

6 See https://datatracker.ietf.org/wg/privacypass/about/.
7 See https://blog.cloudflare.com/cloudflare-supports-privacy-pass/.
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and optimizes the constructions in which the NIZK proof computation is a major
bottleneck. The resulting schemes satisfy a weaker unlinkability notion. Finally,
we implement all the above candidate constructions in Rust, and we summarize
the performance of our schemes.

A failed approach and its insight. The starting point of our study is Privacy
Pass, which uses the verifiable oblivious PRF (VOPRF) primitive of Jarecki et
al. [JKK14] Fx(t) = xHt(t) (additively denoted). In the oblivious PRF evaluation
mechanism, the user sends to the issuer rHt(t) for a randomly selected value r,
receives back rxHt(t) from which she recovers the output xHt(t).

8 Obliviousness
is guaranteed by the blinding factor r, which makes the distribution of rHt(t)
uniform even when knowing t. The PRF output can be verified by the user pro-
viding her with a DLEQ proof, which guarantees that logHt(t)(Fx(t)) = logGX,
where G is the base point and X := xG is published by the issuer as a public
parameter for the scheme.

There is a natural idea to upgrade the above functionality to support a private
metadata bit, which is to have two secret keys and use each of these keys for one of
the bits. However, this idea does not work directly; the reason for this stems from
the fact that the underlying VOPRF is a deterministic primitive. In particular,
this means that if we are using two different keys for tokens issued with different
private metadata bit values, the VOPRF evaluations on the same input t will
be the same if they are issued with the same key and will be different with high
probability if used with different keys. Thus, if the user obtains multiple tokens
using the same input value t (the issuer, by blindness, has no way of telling), she
will be able to distinguish which ones were issued with the same bit.

New randomized tokens and private metadata. To resolve the above issue we
introduce a construction which makes the token issuance a randomized func-
tionality where the randomness is shared between the user and the issuer. We
use the following function F(x,y)(t;S) = xHt(t) + yS, where t is the value that
will be input of the user and S is the randomness of the evaluation, which will
be determined by the two parties, more specifically S = r−1Hs(rHt(t); s) where
r is the blinding factor chosen by the user and s is a random value chosen by the
issuer. This functionality suffices to construct a new anonymized token where
during the oblivious evaluation the user sends T ′ = rHt(t), receives back from
the issuer s,W ′ = xT ′ + yHs(T

′; s), unblinds the values S = r−1Hs(T
′; s) and

W = r−1W ′, and outputs (S,W ).
The token verification checks that W = xHt(t) + yS. In order to provide

verifiability, the issuer provides an element of the form X = xG+ yH and sends
a proof that X = xG+ yH and W = xHt(t) + yS are computed using the same
secret key (x, y). This is similar to Okamoto–Schnorr blind signatures [Oka92],

8 In Privacy Pass the resulting value xHt(t) is used for the derivation of a HMAC key
in order to avoid credential hijacking. We cover token hijacking in the full version.
Throughout this work, we assume that the communication channel between user and
issuer is encrypted and authenticated.
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with the key difference that we redefine this as a secret key primitive which
enables us to have a round-optimal blind evaluation algorithm.

We apply the idea of using two different keys for each private metadata bit
value to the above randomized construction; the resulting construction is called
PMBTokens. The public parameters are now a pair (X0 := x0G + y0H,X1 :=
x1G + y1H), a token issued with a private metadata bit b is of the form W ′ =
xbHt(t) + ybS and the DLEQ proof is replaced with a DLEQOR proof stating
that either W ′ and X0, or W ′ and X1, are computed using the same secret key
(x0, y0) or (x1, y1).

Removing the NIZK. Both Privacy Pass and PMBTokens employ zero-knowled-
ge arguments of knowledge to achieve unlinkability. This approach guarantees
that the user can verify that she has obtained a token issued under the same
secret key as in the issuer’s public parameters. Unlinkability follows from the fact
that tokens issued under the same secret key are indistinguishable. We consider
a slightly weaker unlinkability guarantee for the user during token issuance,
which is that either the token she has received is issued under the public key
or the token is indistinguishable from a random value, however, the user cannot
distinguish these two cases. Now, a user will not be able to know in advance
whether she has a token that will be valid at redemption. Another difference is
that, if the issuer misbehaves, incorrectly issued tokens will be indistinguishable
for the issuer from incorrectly formed tokens that a malicious user may try to use.
Note that in any of the above constructions the issuer also distinguishes valid
from invalid, however, the difference is that the she can check if the received
tokens are valid.

We present modifications of both Privacy Pass and PMBTokens that satisfy
this version of unlinkability, while removing the need for DLEQ or DLEQOR
proofs and improving the computational cost for the issuer, which is the bottle-
neck in systems that need to support large number of users who perform many
transactions and hence need to obtain tokens regularly.

Our approach for removing the DLEQ proof from Privacy Pass borrows
ideas from the construction of a verifiable partially oblivious PRF of Jarecki
et al. [JKR18], but simplifies their construction which has additional complexity
in order to achieve user verifiability. We use the idea to use not only multiplica-
tive but also additive blinding of the user’s input in the form T ′ = r(Ht(t)−ρG).
Now, an honest evaluation of the issuer W ′ = xr(Ht(t)− ρG) can be unblinded
by the user by computing r−1W + ρX = xHt(t)− ρ(xG) + ρX = xHt(t), where
X = xG is the issuer’s public key. On the other hand, any dishonestly computed
W ′ which is of the form W ′ = r−1T ′ + P for some P 6= 0 when unblinded will
contain a random additive factor r−1P , thus the resulting value will be random.
Similarly to Jarecki et al. [JKR18], we can recover verifiability by doing another
oblivious evaluation on the same value t and comparing the outputs, which will
be equal only if the the issuer used the public key for both executions. We also
observe that these checks can be batched for an arbitrary number of issued to-
kens by computing a random linear combination of the values Ht(ti), obtaining
a VOPRF evaluation on that value, and comparing with the same linear com-
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bination of the other tokens. Thus a user can verify n tokens by running one
additional token request only. We note further that removing the zero knowledge
argument significantly simplifies the issuer work, which now consist only of one
multiplication.

Applying the above idea to the anonymous token construction with private
metadata bit is more challenging since the user does not know which of the two
public keys the issuer will use. However, the user can unblind the response from
the issuer using each of the public keys and thus obtain one valid and one random
token. This property turns out to be true if the issuer behaves honestly but if
the issuer is malicious, he can create public keys and a response W ′ such that
the two values obtained from the unblinding with each of the public keys are
correlated and this correlation can be used for fingerprinting the user. Thus, in
our construction the user computes two values T ′d = rd(Ht(t)−ρdG), for d = 0, 1,
and the issuer uses one of them to compute his response W ′ = xbT

′
b+ybS

′
b with a

private bit b. The user unblinds W ′ using both public keys and the scalars rd, ρd
for d ∈ {0, 1} to obtain S0,W0, S1,W1, which she uses for the final token. The
resulting token verifies with only one of the issuer’s keys: the key corresponding
to the private metadata value.

Verification oracle. One last wrinkle in the security proof is whether the adver-
sary for unforgeability and privacy of the metadata bit properties should have
access to a verification oracle for tokens of his choice. This is not explicitly sup-
ported in the current Privacy Pass security proof [DGS+18]. We provide a new
proof for unforgeability of Privacy Pass in the presence of a verification oracle
based on a different hardness assumption, the Chosen Target Gap Diffie–Hellman
assumption, which is a formalization of the Chosen Target Diffie–Hellman in a
Gap DH group, which was defined by Boneh et al. [BLS01]. In the context of
anonymous tokens with private metadata bit, we distinguish a Verify oracle
which just simply checks validity of the token, and a Read oracle that returns
the value of the private metadata bit (which could be 0, 1, or invalid, and in some
applications, e.g. blocklisting, we can merge the states of value 0 and invalid bit).
We present an anonymous token construction that provides unforgeability and
privacy for the metadata bit even when the adversary has access to the Verify
oracle, but we crucially require that the adversary does not get an oracle access
that reads the private metadata bit of a token.

Efficiency of our constructions. We consider the most expensive computation
operation in the above protocols (scalar multiplication) and the largest com-
munication overhead (the number of group elements transferred). We report in
Table 1 the efficiency of our constructions. Additionally, the variant of our con-
structions that supports a verification oracle in the PMB security game adds the
overhead of Okamoto–Schnorr Privacy Pass to the overhead of PMBTokens. The
modifications of the constructions that do not use DLEQ or DLEQOR proofs
save work for the issuer with no or moderate increase in communication and
increased user computation. This computation trade-off is beneficial for settings
where the issuer handles orders of magnitude more token issuance requests than
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Table 1. Computation and communication costs of our constructions.

Construction # Multiplications Communication

user issuer (# elements)

PP (Constr. 1), [DGS+18] 6 3 2

OSPP (Constr. 2) 9 6 2

PMBT (Constr. 3) 15 12 2

PPB (Constr. 4) 4 1 2

PMBTB (Constr. 5) 12 2 3

any particular user. We further implement our constructions in Rust, and re-
port their practicals costs in Section 8. Using a Ristretto group on Curve25519,
PMBTokens issuance runs in 845 µs and redemption takes 235 µs, while Privacy
Pass issuance runs in 303 µs and redemption takes 95 µs. Without the issuance
NIZK, Construction 5 introduces a small overhead over Privacy Pass.

Paper Organization. We overview the hardness assumptions and the building
block primitives we use in Section 2. Section 3 defines our new anonymous to-
kens primitive and its security notions. We recall the Privacy Pass construction in
Section 4, and present a (randomized) Okamoto–Schnorr anonymous tokens con-
struction in Section 5. Next, Section 6 presents our construction for anonymous
tokens with private metadata bit, called PMBTokens. Section 7 proposes modi-
fications of Privacy Pass and PMBTokens that avoid the need of zero-knowledge
proofs. Finally, Section 8 reports on the efficiency costs of our implementation.

Due to space constraints, the security proofs are provided in the full version
of this paper [KLOR20].

1.2 Related work

Starting with the work of Chaum [Cha82], the concept of blind signatures has
been widely used as a tool for building anonymous credentials. Blind Schnorr
and Okamoto–Schnorr signatures, which have been studied and analyzed in the
random oracle model [CP92, Oka92, PS00, Sch01, Sch06, FPS19], require three
moves of interaction between the user and the issuer. Blind signatures construc-
tions that achieve one round, which is the goal for our construction, rely on
more expensive building blocks. Partially blind signatures, for which we also
have round-optimal constructions [Fis06, SC12, BPV12], allow the issuer to em-
bed some information in the signature, however, this information is public, unlike
the private metadata bit that is the goal of our construction. The works of Bold-
yareva [Bol03] and Bellare et al. [BNPS03] achieve round optimal (one round)
constructions in the random oracle model under interactive assumptions. These
constructions use the same blinding idea as the VOPRF [JKK14] used by Pri-
vacy Pass, but are defined over groups where DDH is easy and CDH holds (or
where the RSA assumptions hold), which enables public verifiability but requires
larger group parameters. Other blind signature constructions have evolved from
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constructions that need a CRS [Fis06, SC12, BFPV11] to constructions in the
standard model [GG14, FHS15, FHKS16], but they rely on bilinear groups. This
adds complexity to the group instantiations for schemes and computational cost,
which we aim to minimize.

Group signatures [CvH91, Cam97, BMW03] present functionality which al-
lows all member of the group to sign messages, with the property that signatures
from different signers are indistinguishable. At the same time there is a master
secret key that belongs to a group manager, which can be used to identify the
signer of a message. We can view different signer keys as signing keys for the
private metadata bits, and the master secret key as a way to read that bit value.
Group blind signatures [LR98], which provide also the oblivious evaluation for
the signing algorithm we aim at, provide a solution for the anonymous token
functionality with a private metadata bit. Existing blind group signatures con-
structions [LR98, Ram13, Gha13] require multiple rounds of interaction for the
oblivious signing and communication of many group elements.

Abdalla et al. [ANN06] introduced a notion of blind message authentication
codes (MACs), a secret key analog to blind signatures. They showed that this
notion can exist only assuming a commitment of the private key, and showed how
to instantiate that primitive with Chaum’s blind signatures [Cha82]. Davidson et
al. [DGS+18] construct a similar private key functionality for anonymous tokens
using a VOPRF [JKK14]; it is called Privacy Pass and is the basis of this work.

Everspaugh et al. [ECS+15] introduce the primitive of a partially oblivious
PRF, which analogously to blind signatures allows the party with the secret key
to determine part of the input for the PRF evaluation. However, this input needs
to be public for verifiability. The presented partially blind PRF uses bilinear
groups and pairings. Jarecki et al. [JKR18] show how to obtain a threshold
variant of the partially oblivious PRF.

The work of Tsang et al. [TAKS07] presents a construction for blacklistable
anonymous credentials using bilinear maps, which enables the issuer to create
a blacklist of identities and the user can only generate an authentication token
if she is not blacklisted; hence the user does find out whether she has been
blacklisted in this process.

In keyed-verification anonymous credentials [CMZ14], the issuer and verifier
are the same party. They use an algebraic MAC in place of a signature scheme,
where the message space is a n-tuple of elements in Zp (or in G). They can
be used to provide an anonymous token primitive (at a slightly higher cost)
but they’re overall meant for multi-use credentials. We are not aware of any
extension that allows for the embedding of a private metadata bit.

2 Preliminaries

Notation. When sampling the value x uniformly at random from the set S, we
write x←$S. When sampling the value x from a probabilistic algorithm M, we
write x← M. We use := to denote assignment. For an integer n ∈ N, we denote
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Game CTGDHGrGen,A,`(λ)

Γ := (G, p,G)← GrGen(1λ)

x←$Zp; X := xG

q := 0; Q := [ ]

(ti, Zi)i∈[`+1] ← ATarget,Help,Ddh(Γ,X)

for i ∈ [`+ 1] :

if ti 6∈ Q then return 0

Yi := Q[ti]

return
(
q ≤ ` and
∀i 6= j ∈ [`+ 1] ti 6= tj and

∀i ∈ [`+ 1] xYi = Zi
)

Oracle Target(t)

if t ∈ Q then

Y := Q[t]

else :

Y ←$G
Q[t] := Y

return Y

Oracle Help(Y )

q := q + 1

return xY

Oracle Ddh(Y,Z)

return (Z = x · Y )

Fig. 1. The Chosen-target gap Diffie–Hellman security game.

with [n] the interval {0, . . . , n− 1}. We denote vectors in bold. For a vector a,
we denote with ai the i-th element of a.

The output resulting form the interaction of two (interactive) PPT algorithms
A,B is denoted as Ja, bK ← 〈A,B〉. If only the first party receives a value at the
end of the interaction, we write a← 〈A,B〉 instead of Ja,⊥K← 〈A,B〉.

We assume the existence of a group generator algorithm GrGen(1λ) that,
given as input the security parameter in unary form outputs the description
Γ = (G, p,G,H) of a group G of prime order p; G and H are two nothing-
up-my-sleeve (NUMS) generators of G. For simplicity, we will assume that the
prime p is of length λ.

2.1 Security assumptions

We assume the reader to be familiar with the discrete logarithm (DLOG), de-
cisional Diffie–Hellman (DDH), and computational Diffie–Hellman (CDH) as-
sumptions. In this work, we will use the chosen-target gap Diffie–Hellman (CT-
GDH) assumption.

Chosen-target gap Diffie–Hellman. The chosen-target Diffie–Hellman (CTDH)
assumption [Bol03, HL06] states that any PPT adversary A has negligible ad-
vantage in solving CDH on `+ 1 target group elements, even when given access
to a CDH helper oracle for ` instances. We formalize here its gap [OP01] flavor,
in which the adversary has, in addition, access to a DDH oracle for arbitrary
group elements. Note that the CTDH assumption was originally introduced by
Boldyreva [Bol03] in gap DH groups [BLS01], that is, in groups where CDH is
hard but DDH is assumed to be easy. In other words, the original definition of
CTDH was already in groups where the adversary has access to a DDH oracle.
Here, we introduce the chosen-target gap Diffie–Hellman assumption (CTGDH,
that is, the gap version of CTDH) as a security experiment where the adversary
is provided a challenge X ∈ G, and has access to three oracles: the Target
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Game KSNDΠ,R,A,Ext(λ)

Γ ← GrGen(1λ)

(crs, td)← Π.Setup(Γ )

r←$ {0, 1}A.rl(λ); (φ, π) := A(crs; r)

w ← Ext(td, r)

return (Π.Verify(crs, φ, π) and R(φ,w) = false)

Game ZKβ
Π,R,A(λ)

Γ ← GrGen(1λ)

(crs, τ)← Π.Setup(Γ )

β′ ← AProve(crs)

return β′

Oracle Prove(φ,w)

if R(φ,w) = false then

return ⊥
π0 ← Π.Prove(crs, φ, w)

π1 ← Π.Sim(crs, τ, φ)

return πβ

Fig. 2. Games for knowledge soundness (KSND), and zero knowledge (ZK).

oracle, that given as input a string t ∈ {0, 1}∗, outputs a random group ele-
ment; the Help oracle, that outputs the CDH of X with an arbitrary group
element Y ∈ G, and the Ddh oracle, that given as input two group elements
(Y,Z) ∈ G2 returns 1 if and only if (X,Y, Z) is a Diffie–Hellman tuple. We
describe the Target oracle in this cumbersome way to ease readability of the
security proofs later.

Formally, we say that CTGDH holds for the group generator GrGen if for any
PPT adversary A, and any ` ≥ 0:

AdvctgdhGrGen,A,`(λ) := Pr
[
CTGDHGrGen,A,`(λ) = 1

]
= negl(λ) ,

where CTGDHGrGen,A,`(λ) is defined in Figure 1. Note that for ` = 0, the game
CTGDHGrGen,A,0(λ) is equivalent to gap CDH.

2.2 Non-interactive arguments of knowledge

A non-interactive proof system Π for relation R consists of the following three
algorithms:

– (crs, td)← Π.Setup(Γ ), the setup algorithm that outputs a common reference
string (CRS) crs together with some trapdoor information td.

– π ← Π.Prove(crs, φ, w), a prover which takes as input some (φ,w) ∈ R and a
CRS crs, and outputs a proof π.

– bool← Π.Verify(crs, φ, π) a verifier that, given as input a statement φ together
with a proof π outputs true or false, indicating acceptance of the proof.

The proof system Π is a non-interactive zero-knowledge (NIZK) argument of
knowledge if it satisfies the following properties:

Completeness. Π is complete if every correctly generated proof verifies. More for-
mally, a proof system Π is complete if for any Γ ∈ [GrGen(1λ)], crs ∈ [Π.Setup(Γ )]
and (φ,w) ∈ R:

Pr[Π.Verify(crs, φ,Π.Prove(crs, φ, w))] = 1− negl(λ) .

Knowledge soundness. A proof system Π for relation R is knowledge-sound if for
any PPT adversary A there exists a PPT extractor Ext such that:

AdvksndΠ,R,A,Ext(λ) := Pr
[
KSNDΠ,R,A,Ext(λ)

]
= negl(λ) ,
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where KSNDΠ,R,A,Ext(λ) is defined in Figure 2 and A.rl(λ) is the randomness
length for the machine A. An argument of knowledge is a knowledge-sound proof
system. In our proofs, for ease of notation, we will omit to specify explicitly that
the extractor takes as input the coins of the adversary.
Zero Knowledge. A proof system Π for R is zero-knowledge if no information
about the witness is leaked by the proof, besides membership in the relation.
This is formalized by specifying an additional PPT algorithm Π.Sim, that takes
as input the trapdoor information td and a statement φ, and outputs a valid
proof π indistinguishable from those generated via Π.Prove. Formally, A proof
system Π for relation R is zero-knowledge if for any PPT adversary A:

AdvzkΠ,R,A(λ) :=
∣∣Pr
[
ZK0

Π,R,A(λ)
]
− Pr

[
ZK1

Π,R,A(λ)
]∣∣ = negl(λ) ,

where ZKβ
Π,R,A(λ) is defined in Figure 2.

Throughout this paper, we will assume the existence of the following proof
systems, that we summarize here in Camenisch-Stadler notation [Cam97]:

ΠDLOG := NIZK{(x) : X = xG} (1)

ΠDLEQ := NIZK{(x) : X = xG ∧ W = xT } (2)

ΠDLEQ2 := NIZK{(x, y) : X = xG+ yH ∧ W = xT + yS} (3)

ΠDLOGAND2 := NIZK{(x,y) : ∀i∈{0, 1} Xi = xiG+ yiH } (4)

ΠDLEQOR2 := NIZK{(x, y) : ∃i∈{0, 1} Xi = xG+ yH ∧W = xT + yS} (5)

Eq. (1) and Eq. (4) are discrete logarithm proofs for one, respectively two genera-
tors. Eq. (2) and Eq. (3) prove discrete logarithm equality under one, respectively
two generators. Finally, Eq. (5) proves discrete logarithm equality for one out of
two group elements (in the witness, the index is denoted as i ∈ {0, 1}). In the full
version [KLOR20], we provide a more formal description of the above relations,
and efficient instantiations with techniques for batching proofs at issuance time.

3 Anonymous tokens

We describe two flavors of anonymous tokens. The first flavor enables a user to
obtain a token from an issuer ; the user can later use this token as a trust signal,
for one-time authentication. In the second flavor, the issuer has an additional
input during the token issuance, a private metadata bit, that is hidden within
the token. The private metadata bit can later be recovered by the issuer at re-
demption time. The following definition captures both functionalities; in shaded
text, we refer only to the anonymous token with private metadata bit.

Anonymous token. An anonymous token scheme with private metadata bit AT
consists of the following algorithms:

– (crs, td)← AT.Setup(1λ), the setup algorithm that takes as input the security
parameter λ in unary form, and returns a CRS crs and a trapdoor td.
All the remaining algorithms take crs as their first input, but for notational
clarity, we usually omit it from their lists of arguments.
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– (pp, sk) ← AT.KeyGen(crs), the key generation algorithm that generates a
private key sk along with a set of public parameters pp;

– σ ← 〈AT.User(pp, t),AT.Sign(sk, b)〉, the token issuance protocol, that involves
interactive algorithms AT.User (run by the user) with input a value t ∈ {0, 1}λ,
and AT.Sign (run by the issuer) with input the private key sk and a bit b. At
the end of the interaction, the issuer outputs nothing, while the user outputs
σ, or ⊥.

– bool ← AT.Verify(sk, t, σ), the verification algorithm that takes as input the
private key sk and a token (t, σ). It returns a boolean indicating if the token
was valid or not.

– ind← AT.ReadBit(sk, t, σ), the metadata extraction algorithm that takes as
input the private key sk, and a token (t, σ). It returns an indicator ind ∈ {⊥
, 0, 1}, which is either the private metadata bit, or ⊥.

Throughout the rest of this paper, we assume that AT has a one-round signing
protocol initiated by the user. Thus, for simplicity, we split the signing algorithms
(AT.Sign and AT.User) into non-interactive algorithms that take as input a mes-
sage, and the partial state (if any). They will return the next message together
with the updated state sti. Concretely, the signing protocol will be composed of
the following (non-interactive) algorithms:

– (usr msg0, st0)← AT.User0(pp, t);

– srv msg1 ← AT.Sign0(sk, b, usr msg0);

– σ ← AT.User1(st0, srv msg1)

We demand that anonymous token schemes satisfies correctness, unforgeability,
unlinkability, and privacy of the metadata bit.

Correctness. An anonymous token scheme AT is correct if any honestly-gene-
rated token verifies and the correct private metadata bit is retrieved success-
fully. That is, for any crs ∈ [AT.Setup(1λ)], any (pp, sk) ∈ [AT.KeyGen(crs)], any
t ∈ {0, 1}λ, and b ∈ {0, 1}:

Pr[AT.Verify(sk, t, 〈AT.User(pp, t),AT.Sign(sk, b)〉) = 1] = 1− negl(λ), (6)

Pr[AT.ReadBit(sk, t, 〈AT.User(pp, t),AT.Sign(sk, b)〉) = b] = 1− negl(λ) (7)

Unforgeability. The first security property that we require from an anonymous
token is unforgeability, which guarantees that no adversary can redeem more
tokens than it is allowed. This is formalized with a standard one-more security
game where the adversary can interact with the issuer at most ` times, and
at the end must output ` + 1 valid tokens. The adversary has also access to a
verification oracle for tokens of its choice. In the private metadata bit variant,
the adversary can interact with the issuer ` times for each private metadata bit,
but should not be able to generate ` + 1 valid tokens with the same private
metadata.

Definition 1 (One-more unforgeability). An anonymous token scheme AT
is one-more unforgeable if for any PPT adversary A, and any ` ≥ 0:

Advomuf
AT,A,`(λ) := Pr

[
OMUFAT,A,`(λ) = 1

]
= negl(λ) ,

11



Game OMUFAT,A,`(λ)

(crs, td)← AT.Setup(1λ)

(pp, sk)← AT.KeyGen(crs)

for b = 0, 1 : qb := 0

(ti, σi)i∈[`+1] ← ASign,Verify,Read(crs, pp)

return
(
∀b = 0, 1 qb ≤ ` and
∀i 6= j ∈ [`+ 1] ti 6= tj and

∀i ∈ [`+ 1] AT.Verify(sk, ti, σi) = true and

∃b ∈ {0, 1} : ∀i ∈ [`+ 1] AT.ReadBit(sk, ti, σi) = b
)

Oracle Sign(b,msg)

qb := qb + 1

return AT.Sign0(sk, b,msg)

Oracle Verify(t, σ)

return AT.Verify(sk, t, σ)

Oracle Read(t, σ)

return AT.ReadBit(sk, t, σ)

Fig. 3. One-more unforgeability game for the anonymous token scheme AT.

where OMUFAT,A,`(λ) is defined in Figure 3.

Unlinkability. This security property is concerned with user anonymity, and
guarantees that a malicious issuer cannot link the redemption of a token with
a particular execution of the token issuance protocol. More precisely, in κ-
unlinkability, if m tokens were issued but not yet redeemed, the adversary cannot
link the relative issuance session of a token with probability better than κ/m,
even after seeing the remaining m− 1 tokens in a random order.

Definition 2 (Unlinkability). An anonymous token scheme AT is κ-unlink-
able if for any PPT adversary A, and any m > 0:

AdvunlinkAT,A,m(λ) := Pr
[
UNLINKAT,A,m(λ) = 1

]
≤ κ

m
+ negl(λ) ,

where UNLINKAT,A,m(λ) is defined in Figure 4.

Private metadata bit. The last security property protects the private metadata
bit in the issued tokens.9 It guarantees that the private metadata embedded
in a token is entirely hidden from anyone who does not possess the private key
including the user. More precisely, we require that, even if the adversary corrupts
a large number of users, it cannot guess with probability non-negligibly bigger
than 1/2 if newly issued tokens have private metadata 0 or 1.

Formally, this is modeled as an indistinguishability game where the adversary
has access to two signing oracles: one where it can provide both the message to
be signed and the private metadata bit to be used, and one where the adversary
chooses only the message (the metadata bit is fixed), and a verification oracle for
the validity of the tokens. The adversary’s goal is to guess the challenge private
metadata bit used.

9 Consider, e.g., the following practical scenario: the issuer is suspecting that it is
targeted by a DoS attack, and decides to tag users that it believes are controlled by
a bot using the private metadata bit. The private metadata bit property ensures it
is difficult for anyone, but the issuer, to learn how malicious traffic is classified.

12



Game UNLINKAT,A,m(λ)

(crs, td)← AT.Setup(1λ)

(st, pp)← A(crs)

q0 := 0; q1 := 0; Q := ∅
(st, (msgi)i∈Q)← AUser0,User1(st)

if Q = ∅ then return 0

// compute a challenge token

j ←$Q; Q := Q \ {j}
σj ← AT.User1(stj ,msgj)

// compute and permute other tokens

for i ∈ Q : σi ← AT.User1(sti,msgi)

φ←$SQ
j′ ← A(st, (tj , σj), (tφ(i), σφ(i))i∈Q)

return q0 − q1 ≥ m and j′ = j

Oracle User0()

q0 := q0 + 1 // session id

tq0 ←$ {0, 1}λ

(msgq0 , stq0)← AT.User0(pp, tq0)

Q := Q∪ {q0} // open sessions

return (q0,msgq0)

Oracle User1(j,msg)

if j /∈ Q then

return ⊥
σ ← AT.User1(stj ,msg)

if σ 6=⊥ then

Q := Q \ {j}
q1 := q1 + 1

return σ

Fig. 4. Unlinkability game for the anonymous token scheme AT. For a set X, SX
denotes the symmetric group of X.

Game PMBβAT,A(λ)

(crs, td)← AT.Setup(1λ)

(pp, sk)← AT.KeyGen(crs)

β′ ← ASign,Sign′,Verify(crs, pp)

return β′

Oracle Sign(msg)

return AT.Sign0(sk, β,msg)

Oracle Sign′(b,msg)

return AT.Sign0(sk, b,msg)

Oracle Verify(t, σ)

return AT.Verify(sk, t, σ)

Fig. 5. Private metadata bit game for the anonymous token scheme AT.

Definition 3 (Private metadata bit). An anonymous token scheme AT pro-
vides private metadata bit if for any PPT adversary A:

Advpmb
AT,A(λ) :=

∣∣Pr
[
PMB0

AT,A(λ)
]
− Pr

[
PMB1

AT,A(λ)
]∣∣ = negl(λ) ,

where PMBβAT,A(λ) is defined in Figure 5.

Token hijacking. In our formalization, we do not consider man-in-the-middle
adversaries that can steal tokens from honest users. This attack vector, called
token hijacking, can be mitigated with the use of message authentication codes
(MACs). Roughly speaking, instead of sending the entire token (t, σ) over the
wire, the user can derive a symmetric key k := H(σ) to MAC a shared message
(e.g., the resource or the URL she’s trying to access). The resulting message
authentication code is sent together with t to the issuer (and any supplementary
randomness that the user needs to recompute σ). We discuss in detail such
concerns in the full version of this paper [KLOR20].
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PP.User(X, t) PP.Sign(x)

PP.User0(X, t)

r←$Z∗p
T := Ht(t)

T ′ := r−1T

return (T ′, (X, r, t))

T ′

W ′, π

PP.Sign0(x, T ′)

W ′ := xT ′

π ← ΠDLEQ.Prove((X,T ′,W ′), x)

return (W ′, π)

PP.User1((X, r, t), (W ′, π))

if not ΠDLEQ.Verify((X,T ′,W ′), π) then

return ⊥
return W := rW ′

Fig. 6. Token issuance for PP (Construction 1).

4 Review: Privacy Pass

We start by recalling, using the notation from Section 3, the anonymous token
scheme proposed in [DGS+18] (under the name Privacy Pass) and built on top
of the verifiable oblivious PRF (VOPRF) “2HashDH-NIZK” [JKK14]. Privacy
Pass uses a Schnorr proof in the issuance phase, that we generalize here to any
NIZK. Differently from the initial proof of Goldberg et al. [DGS+18], our proof
takes into account the presence of a verification oracle, and the knowledge error
of the proof system.

Construction 1 (Privacy Pass). Let ΠDLEQ be a proof system for relation
RDLEQ; let Ht be a random oracle {0, 1}∗ → G. The anonymous token scheme
PP [DGS+18] is composed of the following algorithms:

– (crs, td) ← PP.Setup(1λ): invoke the group generator Γ ← GrGen(1λ) and
the CRS generation algorithm of the underlying proof system (pcrs, ptd) ←
ΠDLEQ.Setup(Γ ). Return crs := (Γ, pcrs) and td := ptd.

– (X,x) ← PP.KeyGen(crs): sample a uniformly random element x←$Z∗p, that
will constitute the secret key. Let X := xG be the public parameter. Return
(X,x).

– W ← 〈PP.User(X, t),PP.Sign(x)〉: illustrated in Figure 6.

– bool← PP.Verify(x, t,W ): return true if W = xHt(t); else, return false.

Note that this anonymous token protocol is deterministic, i.e., there will exist
a unique value W ∈ G corresponding to a string t ∈ {0, 1}λ that verifies. This
property will make difficult to directly extend the construction to support private
metadata bit.
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Correctness. By correctness of the underlying proof system, at the end of the
protocol the user returns ⊥ only with negligible probability. If the user returns
W ∈ G, then W always satisfies the verification equation, since: W = rW ′ =
r(xT ′) = xT = xHt(t).

Security. PP satisfies both unforgeability and 1-unlinkability.

Theorem 4. If CTGDH holds for GrGen and ΠDLEQ is a zero-knowledge proof
system for relation RDLEQ, then PP[GrGen,ΠDLEQ] is one-more unforgeable with
advantage:

Advomuf
PP,` (λ) ≤ AdvctgdhGrGen,`(λ) + AdvzkΠDLEQ,RDLEQ

(λ).

The proof can be found in the full version, and follows directly from chosen-
target gap Diffie–Hellman for GrGen, and zero-knowledge of ΠDLEQ. Consider an
adversary A in the game OMUFPP,A(λ). To win the game, A must return ` + 1
tokens (ti,Wi)i∈[`+1] such that, for all i ∈ [`+ 1]:

(a) xHt(ti) = Wi, (b) ∀j 6= i : tj 6= ti (8)

During its execution, the adversary A can query at most ` times the signing
oracle, which given as input T ∗ ∈ G computes the Diffie–Hellman W = xT ∗, and
sends it together with a proof π that W was correctly computed; additionally,
A can query the oracle Verify(t∗,W ∗) that returns 1 if W ∗ = xHt(t

∗), that is,
if (X,Ht(t

∗),W ∗) is a DH tuple. Since ΠDLEQ is zero-knowledge, it is possible to
simulate the proof π. We are thus left with the game CTGDH (Fig. 1), where
Verify can be replaced by the oracle Ddh, Ht by Target, and Sign by the
oracle Help (together with ΠDLEQ.Sim).

Theorem 5. Let GrGen be a group generator algorithm. If ΠDLEQ is a knowledge-
sound proof system for relation RDLEQ, then PP[GrGen,ΠDLEQ] is 1-unlinkable.

We remark that the i-th message sent by PP.User0 is T ′i = r−1Ti, for a
uniformly random ri ∈ Z∗p. Therefore, T ′i contains no information about Ti or
ti. Additionally, by knowledge soundness of ΠDLEQ, it is possible to extract the
witness x ∈ Zp used to compute the signatures. With it, the user can compute Wi

herself, without ever using the responses from the issuer. It follows that the view
of the adversary is limited to random group elements and PP is 1-unlinkable, as
long as the proof system is knowledge-sound.

5 Okamoto–Schnorr Privacy Pass

In this section, we describe a novel anonymous token scheme that generalizes
PP (Section 4) and allows for randomized tokens, which will be an important
property when we extend the construction to support private metadata bit (Sec-
tion 6). Roughly speaking, while in PP we issue tokens (and DLEQ proofs) using
one generator G of G, in this construction we will issue tokens under two genera-
tors (G,H), in a similar way to Okamoto–Schnorr [Oka92] signatures. Similarly
to Okamoto–Schnorr, it is important here that the discrete logarithm of H base
G is unknown. Fixing y = 0 in the protocol below, we obtain PP (cf. Section 4).
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OSPP.User(X, t) OSPP.Sign((x, y))

OSPP.User0(X, t)

r←$Z∗p
T := Ht(t)

T ′ := r−1T

return (T ′, (X, r, t, T ′))

T ′

s,W ′, π

OSPP.Sign0((x, y), T ′)

s←$ {0, 1}λ

S′ := Hs(T
′, s)

W ′ := xT ′ + yS′

π ← ΠDLEQ2.Prove((X,T ′, S′,W ′), (x, y))

return (s,W ′, π)

OSPP.User1((X, r, t, T ′), (s,W ′, π))

S′ := Hs(T
′, s)

if not ΠDLEQ2.Verify((X,T ′, S′,W ′), π) then

return ⊥
S := rS′

W := rW ′

return σ := (S,W )

Fig. 7. Token issuance for OSPP (Construction 2).

Construction 2 (Okamoto–Schnorr Privacy Pass). Let GrGen be a group
generator algorithm; let ΠDLEQ2 be a proof system for relation RDLEQ2; let Ht,Hs
be two random oracles {0, 1}∗ → G. We construct an anonymous token scheme
OSPP defined by the following algorithms:

– (crs, td) ← OSPP.Setup(1λ): invoke the group generator Γ ← GrGen(1λ) and
the CRS generation algorithm of the underlying proof system (pcrs, ptd) ←
ΠDLEQ2.Setup(Γ ). Return crs := (Γ, pcrs) and td := ptd.

– (X, (x, y)) ← OSPP.KeyGen(crs): sample the secret key (x, y)←$ (Z∗p)2. Let
X := xG+ yH be the public parameter. Return (X, (x, y)).

– σ ← 〈OSPP.User(X, t),OSPP.Sign((x, y))〉: illustrated in Figure 7.

– bool ← OSPP.Verify((x, y), t, σ): read (S,W ) := σ. Return true if W =
xHt(t) + yS; else, return false.

Correctness. By correctness of the underlying proof system, the protocol aborts
only with negligible probability. If the user returns σ := (S,W ) ∈ G2, then σ
always satisfies the verification equation, since W = rW ′ = r(xT ′ + yS′) =
xT + yS = xHt(t) + yS.

Security. OSPP satisfies both unforgeability and 1-unlinkability.

Theorem 6. If CTGDH holds for GrGen, and ΠDLEQ2 is a zero-knowledge proof
system for relation RDLEQ2, then OSPP[GrGen,ΠDLEQ2] is one-more unforgeable
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with advantage:

Advomuf
OSPP,`(λ) ≤ AdvctgdhGrGen,`(λ) + AdvzkΠDLEQ2,RDLEQ2

(λ).

The proof of unforgeability is essentially the same argument of the previous
section, with a slightly more careful analysis to deal with the additional element
s ∈ {0, 1}λ. The reduction for CTGDH receives a challenge A ∈ G, that is now
embedded in the public parameters as X = A+yH for some y←$Zp; the signing
oracle computes W ′ = Help(T ′) + yS′, and the read oracle Ddh(W − yS). The
tokens returned by the adversary can be converted in CDH solutions computing
Wi − ySi, for all i ∈ [`+ 1].

Theorem 7. If DDH holds for GrGen and ΠDLEQ2 is an argument of knowledge
for relation RDLEQ2, then OSPP[GrGen,ΠDLEQ2] is 1-unlinkable.

Similarly to the previous proof, we first notice that in the i-th message, T ′i
contains no information about t; additionally, by knowledge soundness of the
proof system, Wi must be computed with the same “witness” (x, y) satisfying
X = xG + yH (if there exists (x′, y′) 6= (x, y), then it is possible to construct
an adversary for discrete log for GrGen). The core difference now is that we use
the same blinding factor r both on S′ and W ′. The proof hence proceeds in
two steps: first, W := rW ′ is computed as W := xT + yS with the extracted
witness, and next S := rS′ is replaced by S←$G. This last step can be reduced
to DDH: if the adversary manages to distinguish (T ′, T = rT ′, S′, S = rS′) from
(T ′, T = rT ′, S′, U) for U ←$G, then it is possible to construct an adversary B

for game DDHβ
GrGen,B(λ).

6 Private metadata bit tokens

In this section, we present PMBTokens, an extension of the anonymous token
construction from Section 5 that supports a private metadata bit. The high-level
idea is that we use two different secret keys, one for each private metadata bit.
In order to hide which bit is associated with the token, we will use OR proofs
(i.e., ΠDLEQOR2 of Eq. (5)).

Construction 3 (PMBTokens). Let GrGen be a group generator algorithm;
let ΠDLEQOR2 be a proof system for relation RDLEQOR2; let Ht,Hs be two random
oracles {0, 1}∗ → G. We construct an anonymous token scheme PMBT defined
by the following algorithms:

– (crs, td)← PMBT.Setup(1λ): invoke the group generator Γ ← GrGen(1λ) and
the CRS generation algorithm of the underlying proof system (pcrs, ptd) ←
ΠDLEQOR2.Setup(Γ ). Return crs := (Γ, pcrs) and td := ptd.

– (X, (x,y)) ← PMBT.KeyGen(crs): let (x,y)←$ (Z∗p)2 × (Z∗p)2 be the secret
key. Define the public parameters as:

X :=

X0

X1

 :=

x0G+ y0H

x1G+ y1H

 ;
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PMBT.User(X, t) PMBT.Sign((x,y), b)

PMBT.User0(X, t)

r←$Z∗p
T := Ht(t)

T ′ := r−1T

return (T ′, (X, r, t, T ′))

T ′

s,W ′, π

PMBT.Sign0((x,y), b, T ′)

s←$ {0, 1}λ

S′ := Hs(T
′, s)

W ′ := xbT
′ + ybS

′

π ← ΠDLEQOR2.Prove((X, T ′, S′,W ′), (xb, yb))

return (s,W ′, π)

PMBT.User1((X, r, t, T ′), (s,W ′, π))

S′ := Hs(T
′, s)

if not ΠDLEQOR2.Verify((X, T ′, S′, W ′), π) then

return ⊥
S := rS′

W := rW ′

return σ := (S,W )

Fig. 8. Token issuance for PMBT (Construction 3).

restart if X0 = X1. Return (X, (x,y)).

– σ ← 〈PMBT.User(pp, t),PMBT.Sign(sk, b)〉: illustrated in Figure 8.

– bool← PMBT.Verify((x,y), t, σ): return true.

– ind← PMBT.ReadBit((x,y), t, σ): read (S,W ) := σ. Then:
(a) if W = x0Ht(t) + y0S and W 6= x1Ht(t) + y1S, return 0;

(b) if W 6= x0Ht(t) + y0S and W = x1Ht(t) + y1S, return 1;

(c) else, return ⊥.

Our construction does not provide a (meaningful) implementation of Verify,
but only a ReadBit functionality. We elaborate this point in Section 6.1; this con-
struction can be combined with OSPP to provide an actual verification procedure
(described in the full version).

Correctness. Validity of honestly-generated tokens (cf. Equation (6)) holds per-
fectly because PMBT.Verify always returns true; we focus here on proving that
the bit embedded is read correctly with overwhelming probability (Equation (7)).
By correctness of the underlying proof system, the protocol aborts only with neg-
ligible probability. If the user returns (S,W ) ∈ G2, then there exists b ∈ {0, 1}
such that W = rW ′ = r(xbT

′ + ybS
′) = xbT + xbS = xbHt(t) + ybS. The prob-

ability that the above equation holds for both b = 0 and b = 1 (in which case,
PMBT.ReadBit returns ⊥), is statistically negligible. In fact, if:

W = x0Ht(t) + y0S = x1Ht(t) + y1S,
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then we have two possibilities:

(a) y0 = y1, which in turn implies that x0Ht(t) = x1Ht(t). Because x0 6= x1 (by
construction of PMBT.KeyGen), this happens only if Ht(t) is the identity
element. This event happens with probability 1/p;

(b) y0 6= y1, which in turn means that: Ht(t) = x0−x1

y0−y1 S. However, the left-
hand side of the equation is distributed uniformly at random in G and
independently from the terms on the right-hand side. This event happens
with probability 1/p.

Security. In the full version, we prove the one-more unforgeability and 2-unlink-
ability of PMBT.

Theorem 8. If CTGDH holds for GrGen and ΠDLEQ2 is a zero-knowledge proof
system for relation RDLEQ2, then PMBT[GrGen,ΠDLEQ2] is one-more unforgeable
with advantage:

Advomuf
PMBT,`(λ) ≤ 2AdvctgdhGrGen,`(λ) + AdvzkΠDLEQ2,RDLEQ

(λ).

Consider an adversary A in the game OMUFPMBT,A(λ). A wins the game if
it returns ` + 1 tokens (ti, (Si,Wi))i∈[`+1] such that there exists a b ∈ {0, 1}
satisfying:

(a) ∀i ∈ [`+ 1] : xbHt(ti) + ybSi = Wi, (b) ∀j 6= i : tj 6= ti. (9)

During its execution, A can query ` + 1 times the signing oracle for b = 0, and
`+1 times for b = 1. We claim (in a similar way to Eq. (8)), that A can be used to
construct an adversary B that solves CTGDH. We embed the CTGDH challenge
A ∈ G in one of the two keys: we sample b∗←$ {0, 1}, and set Xb∗ := A+ yb∗H,
where yb∗ ←$Zp. We construct X1−b∗ following the key generation algorithm.
Queries by A to the oracle Sign are responded in the following way: if the
adversary demands issuance for hidden metadata b∗, we use the Help oracle to
return W ′ = Help(t, T ′) + yb∗S

′; otherwise B just follows the signing protocol
and computes W ′ using (x1−b∗ , y1−b∗). The zero-knowledge proof is simulated.
Queries to the oracle Read can still be answered by B with the help of the
oracle Ddh available in the game CTGDHGrGen,B,`(λ). Queries to Verify are
trivially dealt with, by answering true. If at the end of its execution A presents
forgeries for the bit b = b∗, then by winning condition (a) (cf. Eq. (9)), for all
i ∈ [` + 1], (Wi − yb∗Si) is the CDH of the challenge A with Ht(ti), which we
replace with the CTGDH oracle Target thus presenting ` + 1 CDH solutions
for the challenge A ∈ G. If the guess b∗ was not correct, then B outputs ⊥, and
we consider the game lost. It follows that B wins the game CTGDHGrGen,B,`(λ)
half the time that A wins OMUFPMBT,A,`(λ).

Theorem 9. If DDH holds for GrGen and ΠDLEQOR2 is a knowledge-sound proof
system for relation RDLEQOR2, then PMBT[GrGen,ΠDLEQOR2] is 2-unlinkable.
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The key idea is that adversary can now embed different private metadata
bits at issuance time, at most halving the anonymity set. We use the knowledge
extractor to partition the sessions in two buckets: U0, those associated to the bit
0, and U1, those with bit 1. We sample a biased b ∈ {0, 1} (depending on the
distribution of the private metadata bit in the tokens) and select two sessions
coming from the same bucket Ub. The probability of success of the adversary
will be upper bounded by 2/m+ negl(λ).

Theorem 10. If DDH holds for the group generator GrGen, and ΠDLEQOR2 is a
zero-knowledge proof system for relation RDLEQOR2 then PMBT[GrGen,ΠDLEQOR2]
provides private metadata bit with advantage:

Advpmb
PMBT(λ) ≤ O(q2)

2λ
+ 2AdvddhGrGen(λ) + 2AdvzkΠDLEQOR2,RDLEQOR2

(λ),

where q is the number of queries the adversary makes to Hs or Sign.

The proof is done by means of a hybrid argument, where the first hybrid is
PMB0

A,PMBT(λ) and the last hybrid is PMB1
A,PMBT(λ). In the first hybrid, instead

of generating the proof using the prover ΠDLEQOR2.Prove in the Sign′ oracle, we
use the zero-knowledge simulator ΠDLEQOR2.Sim. The advantage in distinguishing
is trivially AdvzkΠDLEQOR2,RDLEQOR2,B(λ). Then, instead of computing the signature as
W ′ = x0T

′ + y0S
′, it computes W ′ := x0T

′ + y′S′, for some y′←$Zp sampled
after the key generation phase. This hybrid can be shown indistinguishable from
the previous one under DDH assumption: (X−x0G,S′,W ′−x0T ′) ∈ G is in fact
a DDH triple in the previous hybrid, and a random triple now. Using random
self-reducibility of DDH we can answer all queries to Sign′ using a single DDH
challenge. At this point, we remark that W ′ is distributed uniformly at random
(because y′S′ is so) and we can therefore swap x0 with x1. A final sequence
of hybrid replaces y′ with y1 (again indistinguishable from DDH) and then the
simulator with the honest prover. The full proof is available in the full version
of this paper [KLOR20].

6.1 Enabling token verification

The anonymous token scheme PMBT (Construction 3) does not provide a mean-
ingful verification algorithm, as it always output true. Indeed, we note that,
given two tokens (t0, (S0,W0)) and (t1, (S1,W1)), if t0 = t1, then

(
t∗ = t0 =

t1, (S
∗ = 2S0 − S1,W

∗ = 2W0 −W1)
)

is a triple of random elements satisfying
W ∗ = xbH(t∗)+ybS

∗ only if the same metadata bit b was used. Henceforth, hav-
ing a verification oracle that checks for the above relation allows an adversary
in the game PMBβPMBT,A(λ) to check if two tokens corresponding to the same t
were issued with the same private metadata bit.

Instead, we propose to enable such a functionality by combining the PMBT
scheme with Okamoto–Schnorr Privacy Pass, into one token that has two parts: a
token that has no private metadata and can be used for validity verification, and
a second token, which provides a private metadata bit. It is important that these
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two parts could not be separated (they will depend on the same Ht(t), S values)
and used independently for the purpose of reading the metadata bit. We present
in details the design combining Constrs. 2 and 3 in the full version [KLOR20].

Jumping ahead, we can also instantiate this design by combining Constrs. 4
and 5 that do not use NIZK during issuance. In the later case the unlinkability
will degrade to 6-unlinkability since the issuer can cause each of the two token
to be invalid independently.

7 Removing the NIZKs during issuance

In this section, we present a general technique for removing the NIZK sent at
issuance time in the previous schemes, and replace it with a proof of possession
sent only once. We present a formal analysis of it for PP and PMBT (Construc-
tions 1 and 3). We recall that the role of the NIZK is to provide unlinkability
for the user, as they can check that the tokens received are consistent with the
issuer’s public parameters. In particular they prevent the issuer from fingerprint-
ing users by using a unique key per user. In this section, we consider a weaker
notion of unlinkability, which guarantees that the user either receives a valid
token, or a completely random value (unpredictable by the issuer). This implies
that the issuer can distinguish valid tokens from invalid tokens since the user
cannot verify herself whether they have a valid token or not. In other words, the
issuer can partition the users into two sets: one that receives valid tokens, and
one that receives invalid tokens. The issuer will be able to identify which of these
sets a user belongs to, at redemption time. For a more careful analysis on how
this affect the success probability of the adversary in the unlinkability game, we
refer the reader to the full version [KLOR20].

7.1 PP without issuance NIZK

We start with our new construction for the functionality of Privacy Pass. The
change that we make is that the user blinds her token hash Ht(t) using both
multiplicative and additive blinding. The additive part can be removed during
the unblinding if the issuer used the correct secret key. Otherwise, the generated
token (t,W ) ∈ {0, 1}λ ×G will be invalid and distributed uniformly at random.

Construction 4 (Privacy Pass without issuance NIZK). Let GrGen be a
group generator algorithm; let ΠDLOG be a proof system for relation RDLOG; let
Ht be a random oracle {0, 1}∗ → G. We construct an anonymous token scheme
PPB defined by the following algorithms:

– (crs, td) ← PPB.Setup(1λ): invoke the group generator Γ ← GrGen(1λ) and
the CRS generation algorithm of the underlying proof system (pcrs, ptd) ←
ΠDLOG.Setup(Γ ). Return crs := (Γ, pcrs) and td := ptd.

– ((X,π), x) ← PPB.KeyGen(crs): sample the secret key x←$Z∗p. Define π ←
ΠDLOG.Prove(pcrs, X, x). Return the public parameters (X,π), and the secret
key x.
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PPB.User((X,π), t) PPB.Sign(x)

PPB.User0((X,π), t)

// Check once: ΠDLOG.Verify(X,π)

r, ρ←$Z∗p
T := Ht(t)

T ′ := r−1 · (T − ρG)

return (T ′, (X, r, ρ, t, T ′))

T ′

W ′
PPB.Sign0(x, T ′)

W ′ := xT ′

return W ′

PPB.User1((X, r, ρ, t, T ′),W ′)

W := rW ′ + ρX

return W

Fig. 9. Token issuance for PPB (Construction 4).

– W ← 〈PPB.User((X,π), t),PPB.Sign(x)〉: illustrated in Figure 9.

– bool← PPB.Verify(x, t,W ): return true if W = xHt(t); else, return false.

Correctness. By correctness of ΠDLOG, at the end of the protocol the user returns
⊥ only with negligible probability. If the user returns W ∈ G, then W always
satisfies the verification equation, since: W = rW ′+ρX = rxr−1(T−ρG)+ρX =
xT − ρ(xG) + ρX = xT.

Security. PPB satisfies unforgeability and 2-unlinkability.

Theorem 11. If CTGDH holds for GrGen, and ΠDLEQ is a zero-knowledge proof
system for realtion ΠDLOG, then PPB is one-more unforgeable with advantage:

Advomuf
PPB,`(λ) ≤ AdvctgdhGrGen,`(λ) + AdvzkΠDLOG,RDLOG

(λ).

The proof can be found in the full version. Intuitively, unforgeability must
hold because the issuer is sending strictly less information than in PP. The
adversary A in game OMUFPPB,A(λ) takes as input the pair (X,π), where X ∈
G is the CTGDH challenge, and π is a DLOG proof. By zero-knowledge of
ΠDLOG, the proof can be simulated; the adversary is now asked to return ` + 1
pairs (ti,Wi), all different, such that Wi is the CDH of (X,Ht(ti)). During its
execution, the adversary has at disposal the random oracle Ht (which behaves
exactly as the Target oracle), the Verify oracle, which given as input (Y,W ) ∈
G2 returns 1 if (X,Y,W ) is a DH tuple (just as the Ddh oracle in the game for
CTGDH), and the Sign oracle, which computes at most ` times the CDH with
an arbitrary group element (just as the Help oracle in the game for CTGDH).
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Theorem 12. Let GrGen be a group generator. If ΠDLOG is a knowledge-sound
proof system for relation RDLOG, then PPB is 2-unlinkable with advantage:

AdvunlinkPPB,m(λ) ≤ 2

m
+ AdvksndΠDLOG,RDLOG

(λ).

First of all, we note that by knowledge soundness of ΠDLOG, for any adversary
A that produces th public parameters (X,π) with X ∈ G, it is possible to
extract a witness x ∈ Zp such that xG = X, except with negligible probability

AdvksndΠDLOG,RDLOG,A(λ). We use this witness to partition the sessions in two sets,
U0 where W is correctly computed, and U1 where W isn’t. In the latter case,
we remark that because the additive blinding ρ ∈ Zp is sampled uniformly at
random, in U1 all tokens are distributed uniformly at random. In a similar way to
Theorem 7, we select two sessions k and j from the same Ub (for a b ∈ {0, 1} that
sampled at random, following the distribution of the open sessions) and swap
them. If k and j are in U0, unlinkability follows the same reasoning used for
proving unlinkability of PP. If k and j are in U1, then both tokens are uniformly
random elements in G independent from the elements used at issuance time.

User Verifiability. The protocol presented in the previous section does not
enable the user to verify that she has received valid token at the end of an
execution. We can enable such verifiability for any number of tokens at the cost of
one additional issuance interaction between the user and the issuer. In particular,
let (ti,Wi)i∈[m] be m tokens that the user has been issued. She sends a token
issuance request T ′ =

∑
i∈[m] ciHt(ti) where ci←$Zp for i ∈ [m]. Let W be the

issuer’s response after unblinding, then the user checks that W =
∑
i∈[m] ciWi.

If the issuer was honest, then Wi = xHt(ti) and

W = x

( ∑
i∈[m]

ciHt(t)

)
=
∑
i∈[m]

ci(xHt(ti)) =
∑
i∈[m]

ciWi .

Next, we argue that if W =
∑
i∈[m] ciWi, then the issuer could be cheating

on any of the m token executions only with negligible probability. We will prove
this by induction on m. Let m = 1, then we have W = c1W1 and at the same
time W1 6= xHt(t1). By the unlinkability argument above we know that W1 and
hence c1W1 are uniformly distributed. Hence, the adversary has only negligible
probability to guess the value W .

Now, let us assume that the statement holds for m ≤ k and we will be prove
it for m = k+1. We have W =

∑
i∈[m] ciWi and at the same time there exists an

index j such that Wj 6= xHt(tj). If there is an index k such that Wk = xHt(tk),
then W − xHt(tk) =

∑
i∈[m]\{k} ciWi and j ∈ [m]\{k}, which contradicts the

induction assumption. Therefore, it must be the case that Wi 6= xHt(ti) for any
i ∈ [m]. However, by the arguments in the unlinkability proof, we know that all
Wi’s, and hence

∑
i∈[m] ciWi, will be distributed uniformly at random. Hence,

the adversary has only negligible probability in guessing the value of W , which
concludes the inductive step.
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7.2 PMBT without issuance NIZK

The challenge to generalizing the construction of the previous section to the
setting of private metadata is that the user should not find out what metadata bit
value the issuer used and hence which public key it should use when unblinding.
Our solution will be to have the user run the unblinding with both keys where
only one of the resulting values will be a valid token under the corresponding
key for the bit value while the other unblinded value will be completely random.
When we do this we need to be careful that the issuer who also generates the
public keys should not be able to make the two unblinded values correlated,
which would open an avenue for fingerprinting.

To guarantee that the unblinded value with the public key that does not
correspond to the embedded private metadata bit is random and hence it is
independent of the other unblinded value, even in the case when the issuer is
misbehaving, we will need to have that the user generate two independent blinded
values which it sends in its first message. The issuer will be using only one of the
received blinded tokens to sign and embed his metadata bit, however, the user
will be unblinding the message coming from the issuer using two independent
sets of blinding parameters, which would thwart the issuer from embedding
correlations.

Construction 5 (PMBTokens without issuance NIZK). Let GrGen be
a group generator algorithm; let ΠDLOGAND2 be a proof system for the relation
RDLOGAND2; let Ht,Hs be two random oracles {0, 1}∗ → G. We construct an
anonymous token scheme PMBTB defined by the following algorithms:

– (crs, td) ← PMBTB.Setup(1λ): invoke the group generator Γ ← GrGen(1λ)
and the CRS generation algorithm (pcrs, ptd)← ΠDLOGAND2.Setup(Γ ). Return
crs := (Γ, pcrs) and td := ptd.

– ((X, π), (x,y)) ← PMBTB.KeyGen(1λ): let (x,y)←$ (Z∗p)2 × (Z∗p)2 be the se-
cret key. Define:

X :=

X0

X1

 :=

x0G+ y0H

x1G+ y1H

 ,
and let π ← ΠDLOGAND2.Prove(pcrs,X, (x,y)). The public parameters are
(X, π). Return ((X, π), (x,y)).

– σ ← 〈PMBTB.User((X, π), t),PMBTB.Sign((x,y))〉: illustrated in Figure 10.

– bool← PMBTB.Verify((x,y), t, σ): return true.

– ind← PMBTB.ReadBit((x,y), t, σ): read σ as (S0, S1,W0,W1) ∈ G4. Then,

(a) if W0 = x0Ht(t) + y0S0 and W1 6= x1Ht(t) + y1S1, return 0;

(b) if W0 6= x0Ht(t) + y0S0 and W1 = x1Ht(t) + y1S1, return 1;

(c) else, return ⊥.
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PMBTB.User((X, π), t) PMBTB.Sign((x,y), b)

PMBTB.User0((X, π), t)

// Check once: ΠDLOGAND2.Verify(X, π)

T := Ht(t)

for d = 0, 1 :

rd, ρd ←$Z∗p
T ′d := r−1

d · (T − ρdG)

return
(
(T ′0, T

′
1), ((rd, ρd, T

′
d)d∈{0,1}, t)

)
T ′0, T

′
1

s,W ′

PMBTB.Sign0((x,y, b), (T ′0, T
′
1))

s←$ {0, 1}λ

S′b := Hs(T
′
b, s)

W ′ := xbT
′
b + ybS

′
b

return (s,W ′)

PMBTB.User1(
(
(rd, ρd, T

′
d)d∈[2], t

)
, (s,W ′))

for d = 0, 1 :

Sd := rdHs(T
′
d, s) + ρdH

Wd := rdW
′ + ρdXd

return σ := (S0, S1,W0,W1)

Fig. 10. Token issuance for PMBTB (Construction 5).

Correctness. Honestly-generated tokens are always valid, because the verification
algorithm PMBTB.Verify always outputs true. We thus focus on Equation (7).
By correctness of the underlying proof system, the protocol aborts only with
negligible probability. If the user returns a tuple (S0, S1,W0,W1) ∈ G4, then
there exists b ∈ {0, 1} such that:

Wb = rbW
′ + ρbXb = rb(xbT

′
b + ybS

′
b) + ρbXb

= rbxb(r
−1
b (T − ρbG)) + ybrbHs(T

′
b, s) + ρbXb

= xbT + yb(rbHs(T
′
b, s) + ρbH)

= xbT + ybSb.

The probability that the above equation holds for both b = 0 and b = 1 (in
which case, PMBTB.ReadBit returns ⊥) is statistically negligible. In fact, if:

W0 = x0Ht(t) + y0S0 = x1Ht(t) + y1S1 = W1,

we have two possible cases:

(a) x0 = x1, which in turn implies that: S0 = y1
−1y0S1. However, because S0

is distributed uniformly at random in G, this happens with probability 1/p.

(b) x0 6= x1, which in turn implies that Ht(t) = 1
x1−x0

(y0S0 − y1S1), which
happens with probability 1/p.
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Security. We provide the proofs for the security properties of the construction
in the full version.

Theorem 13. If CTGDH holds for the group generator algorithm GrGen and
ΠDLOGAND2 is a zero-knowledge proof system for RDLOGAND2, then PMBTB[GrGen,
ΠDLOGAND2] is one-more unforgeable with advantage:

Advomuf
PMBTB,`(λ) ≤ 2AdvctgdhGrGen,`(λ) + AdvzkΠDLOGAND2,RDLOGAND2

(λ).

Inuitively, unforgeability follows a similar reasoning of Theorem 8 (unforge-
ability of PMBT) except that here, at issuance time, we are sending strictly less
information to the user, since we removed the NIZK at issuance time. The proof
of knowledge of the discrete log, published at the beginning within the public
parameters, can be simulated by zero knowledge.

Theorem 14. If DDH holds for the group generator GrGen and ΠDLOGAND2 is
a knowledge-sound proof system for relation RDLOGAND2, then PMBTB[GrGen,
ΠDLOGAND2] is 3-unlinkabile.

A PPT adversary in the game UNLINKPMBTB,A(λ) can now: compute W ′

using (x0, y0), using (x1, y1), or yet another key. Specifically in the latter case,
the token σ will be distributed at random independently from W ′. In the full
version, we prove that now the adversary can partition the set of open sessions
at most in 3, and that therefore the advantage in the game UNLINKPMBTB(λ) ≤
3/m+ negl(λ).

Theorem 15. If DDH holds for the group generator GrGen and ΠDLOGAND2

is a zero-knowledge proof system for relation RDLOGAND2, then PMBTB[GrGen,
ΠDLOGAND2] provides private metadata bit with advantage:

Advpmb
PMBTB(λ) ≤ O(q2)

2λ
+ 2AdvddhGrGen(λ) + 4AdvzkΠDLOGAND2,RDLOGAND2

(λ),

where q is the number of queries the adversary makes either to Hs or Sign.

As for unforgeability, the proof follows a similar reasoning to the case of
PMBT. We notice that now the issuer is sending strictly less information during
signing, and that the zero-knowledge proof π can be simulated.

8 Implementation

We implemented our construction in pure Rust (stable, version 1.41.0), The
second generator H ∈ G is chosen by hashing into the group the public generator
G. Hashing into the group is done with a Elligator 2 map [Tib14] with SHA-512.
Our implementation is not copyrighted and is released in the public domain.10

10 https://www.di.ens.fr/~orru/anonymous-tokens
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Table 2. Benchmarks for our constructions.

Constructions DLEQ/DLEQOR User Issuer

Prove Verify Token Gen. Unblinding Key Gen. Signing Redemption

PP [DGS+18] 212 µs 181 µs 111 µs 286 µs 84 µs 303 µs 95 µs

PMBT 576 µs 666 µs 135 µs 844 µs 234 µs 845 µs 235 µs

PPB – – 197 µs 164 µs 190 µs 87 µs 95 µs

PMBTB – – 368 µs 678 µs 512 µs 155 µs 247 µs

We benchmarked our own implementation on a single thread of an Intel(R)

Xeon(R) CPU E5-2650 v4 @ 2.20GHz, running Ubuntu 18.04.3 LTS (kernel ver-
sion 4.15.0). They are summarized in Table 2. As expected, Constructions 4 and 5
feature very fast issuance time at a slight increase in the user computation. Our
results are between ten and one thousand faster than the previous implementa-
tion proposed in [DGS+18] due to the different choice11 of elliptic curve (NIST
P-256) as well as the programming language used.
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