
Fast and Secure Updatable Encryption

Colin Boyd1, Gareth T. Davies2[0000−0002−5935−5725], Kristian Gjøsteen1, and
Yao Jiang1

1 Norwegian University of Science and Technology, NTNU
2 Bergische Universität Wuppertal

Abstract. Updatable encryption allows a client to outsource cipher-
texts to some untrusted server and periodically rotate the encryption
key. The server can update ciphertexts from an old key to a new key
with the help of an update token, received from the client, which should
not reveal anything about plaintexts to an adversary.
We provide a new and highly efficient suite of updatable encryption
schemes that we collectively call SHINE. In the variant designed for short
messages, ciphertext generation consists of applying one permutation
and one exponentiation (per message block), while updating ciphertexts
requires just one exponentiation. Variants for longer messages provide
much stronger security guarantees than prior work that has comparable
efficiency. We present a new confidentiality notion for updatable encryp-
tion schemes that implies prior notions. We prove that SHINE is secure
under our new confidentiality definition while also providing ciphertext
integrity.

1 Introduction

The past decades have demonstrated clearly that key compromise is a real threat
for deployed systems. The standard technique for mitigating key compromise
is to regularly rotate the encryption keys – generate new ones and switch the
ciphertexts to encryption under the new keys. Key rotation is a well-established
technique in applications such as payment cards [9] and cloud storage [16].

For a local drive or server, key rotation is feasible by decrypting and re-
encrypting with a new key, since symmetric encryption operations are fast and
parallelizable and bandwidth is often plentiful. When ciphertext storage has been
outsourced to some (untrusted) cloud storage provider, bandwidth is often con-
siderably more expensive than computation, and even for small volumes of data
it may be prohibitively expensive to download, re-encrypt and upload the entire
database even once. This means that key rotation by downloading, decrypting,
re-encrypting and reuploading is practically infeasible.

An alternative approach to solving this problem is to use updatable encryption
(UE), first defined by Boneh et al. [3] (henceforth BLMR). The user computes a
token and sends it to the storage server. The token allows the server to update
the ciphertexts so that they become encryptions under some new key. Although
the token clearly depends on both the old and new encryption keys, knowledge

of the token alone should not allow the server to obtain either key. In a typical
usage of UE, the cloud storage provider will receive a new token on a periodic
basis, and the provider then updates every stored ciphertext. The time period
for which a given key is valid for is called an epoch.

In the past few years there has been considerable interest in extending the
understanding of UE. A series of prominent papers [3,12,21,17] have provided
both new (typically stronger) security definitions and concrete or generic con-
structions to meet their definitions. (We make a detailed comparison of related
work in Section 1.1 next.) An important distinction between earlier schemes is
whether or not the token (and in particular its size) depends on the ciphertexts
to be updated (and in particular the number of ciphertexts). Schemes for which
a token is assigned to each ciphertext are ciphertext-dependent and were stud-
ied by Everspaugh et al. [12] (henceforth EPRS). If the token is independent
of the ciphertexts to be updated, such as in BLMR [4], we have a ciphertext-
independent3 scheme. A clear and important goal is to limit the bandwidth
required and so, in general, one should prefer ciphertext-independent schemes.
Thus, as with the most recent work [21,17], we focus on such schemes in this
paper. The ciphertext update procedure, performed by the server, may be de-
terministic or randomized – note that in the latter case the server is burdened
with producing (good) randomness and using it correctly.

Despite the considerable advances of the past few years, there remain some
important open questions regarding basic properties of UE. In terms of security,
various features have been added to protect against stronger adversaries. Yet it is
not obvious what are the realistic and optimal security goals of UE and whether
they have been achieved. In terms of efficiency, we only have a few concrete
schemes to compare. As may be expected, schemes with stronger security are
generally more expensive but it remains unclear whether this cost is necessary.
In this paper we make contributions to both of these fundamental questions by
defining new and stronger security properties and showing that these can
be achieved with more efficient concrete UE schemes.

Security. The main security properties that one would expect from updatable
encryption are by now well studied; however the breadth of information that is
possible to protect in this context is more subtle than at first glance. Consider,
for example, a journalist who stores a contact list with a cloud storage provider.
At some point, the storage is compromised and an adversary recovers the cipher-
texts. At this point, it may be important that the cryptography does not reveal
which of the contacts are recent, and which are old. That is, it must be hard to
decide if some ciphertext was recently created, or if it has been updated from a
ciphertext stored in an earlier epoch.

So how do we define realistic adversaries in this environment? A natural
first step for security in updatable encryption is confidentiality of ciphertexts –

3 Note that Boneh et al. [[4], § Definition 7.6] use ciphertext-independence to mean
that the updated ciphertext should have the same distribution as a fresh ciphertext
(i.e. independent of the ciphertext in the previous epoch) – we follow the nomencla-
ture of Lehmann and Tackmann [21].

2

given a single ciphertext, the adversarial server should not be able to determine
anything about the underlying plaintext. The security model here must take
into account that this adversary could be in possession of a number of prior
keys or update tokens, and snapshot access to the storage database in different
epochs. The next step is to consider unlinkability between different epochs arising
from the ciphertext update procedure: given a ciphertext for the current epoch,
the adversary should not be able to tell which ciphertext (that existed in the
previous epoch) a current ciphertext was updated from. Both of these properties
can be naturally extended to chosen-ciphertext (CCA) security via provision of
a decryption oracle.

These steps have been taken by prior work, but unfortunately even a combi-
nation of these properties is not enough to defend against our motivating exam-
ple. Previous security definitions cannot guarantee that the adversary is unable
to distinguish between a ciphertext new in the current epoch and an updated
ciphertext from an earlier epoch. We give a single new security property that
captures this requirement and implies the notions given in prior work. There-
fore we believe that this definition is the natural confidentiality property that is
required for updatable encryption.

An additional factor to consider is integrity: the user should be confident that
their ciphertexts have not been modified by the adversarial server. While prior
work has shown how to define and achieve integrity in the context of updatable
encryption, a composition result of the style given by Bellare and Namprempre
for symmetric encryption [2] – the combination of CPA security and integrity of
ciphertexts gives CCA security – has been missing. We close this gap.

Efficiency and Functionality. Although UE is by definition a form of symmet-
ric key cryptography, techniques from asymmetric cryptography appear to be
needed to achieve the required functionality in a sensible fashion. All of the
previous known schemes with security proofs use exponentiation in both the en-
cryption and update functions, even for those with limited security properties.
Since a modern database may contain large numbers of files, efficiency is critical
both for clients who will have to encrypt plaintexts initially and for servers who
will have to update ciphertexts for all of their users.

To bridge the gap between the academic literature and deployments of en-
crypted outsourced storage, it is crucial to design fast schemes. We present three
novel UE schemes that not only satisfy our strong security definitions (CCA and
ciphertext integrity), but in the vast majority of application scenarios are also at
least twice as fast (in terms of computation each message block) as any previous
scheme with comparable security level.

The ciphertext expansion of a scheme says how much the size of a ciphertext
grows compared to the size of the message. For a cloud server that stores vast
numbers of files, it is naturally crucial to minimize the ciphertext expansion rate.
It is also desirable to construct UE schemes that can encrypt arbitrarily large
files, since a client might want to upload media files such as images or videos.
Prior schemes that have achieved these two properites have only been secure
in comparatively weak models. Our construction suitable for long messages –

3

enabling encryption of arbitrarily large files with almost no ciphertext expansion
– is secure in our strong sense and is thus the first to bridge this gap.

1.1 Related Work

Security Models for UE. We regard the sequential, epoch-based corruption
model of Lehmann and Tackmann [21] (LT18) as the most suitable execution
environment to capture the threats in updatable encryption. In this model, the
adversary advances to the next epoch via an oracle query. It can choose to sub-
mit its (single) challenge when it pleases, and it can later update the challenge
ciphertext to the ‘current’ epoch. Further, the adversary is allowed to adaptively
corrupt epoch (i.e. file encryption) keys and update tokens at any point in the
game: only at the end of the adversary’s execution does the challenger deter-
mine whether a trivial win has been made possible by some combination of the
corruption queries and the challenge.

LT18 introduced two notions: IND-ENC asks the adversary to submit two
plaintexts and distinguish the resulting ciphertext, while possibly having cor-
rupted tokens (but of course not keys) linking this challenge ciphertext to prior
or later epochs. Further, they introduced IND-UPD: the adversary provides two
ciphertexts that it received via regular encryption-oracle queries in the previ-
ous epoch, and has to work out which one has been updated. They observed
that plaintext information can be leaked not only through the encryption pro-
cedure, but also via updates. For schemes with deterministic updates, the ad-
versary would trivially win if it could acquire the update token that takes the
adversarially-provided ciphertexts into the challenge epoch, hence the definition
for this setting, named detIND-UPD, is different from that for the randomized
setting, named randIND-UPD.

LT18’s IND-UPD definition was not the first approach to formalizing the
desirable property of unlinkability of ciphertexts, which attempts to specify that
given two already-updated ciphertexts, the adversary cannot tell if the plaintext
is the same. Indeed EPRS (UP-REENC) and later KLR19 (UP-REENC-CCA) also
considered this problem, in the ciphertext-dependent update and CCA-secure
setting respectively. KLR19 [[17], § Appendix A] stated that “an even stronger
notion [than IND-UPD] might be desirable: namely that fresh and re-encrypted
ciphertexts are indistinguishable... which is not guaranteed by UP-REENC” – we
will answer this open question later on in our paper.

In the full version of their work [4], BLMR introduced a security definition for
UE denoted update – an extension of a model of symmetric proxy re-encryption.
This non-sequential definition is considerably less adaptive than the later work of
LT18, since the adversary’s key/token corruption queries and ciphertext update
queries are very limited. Further, they only considered schemes with determin-
istic update algorithms.

EPRS [12] provided (non-sequential) definitions for updatable authenticated
encryption, in the ciphertext-dependent setting. Their work (inherently) covered
CCA security and ciphertext integrity (CTXT). These definitions were ambigu-
ous regarding adaptivity: these issues have since been fixed in the full version [13].

4

KLR19 attempted to provide stronger security guarantees for ciphertext-
independent UE than LT18, concentrating on chosen-ciphertext security (and
the weaker replayable CCA) in addition to integrity of plaintexts and ciphertexts.
We revisit these definitions later on, and show how a small modification to their
INT-CTXT game gives rise to natural composition results.

In practice, LT18’s randIND-UPD definition insists that the ciphertext update
procedure Upd requires the server to generate randomness for updating each
ciphertext. Further, a scheme meeting both IND-ENC and IND-UPD can still leak
the epoch in which the file was uploaded (the ‘age’ of the ciphertext). While it is
arguable that metadata is inherent in outsourced storage, the use of updatable
encryption is for high-security applications, and it would not be infeasible to
design a system that does not reveal meta-data, which is clearly impossible if
the underlying cryptosystem reveals the meta-data.

Recent work by Jarecki et al. [15] considers the key wrapping entity as a
separate entity from the data owner or the storage server. While this approach
seems promising, their security model is considerably weaker than those consid-
ered in our work or the papers already mentioned in this section: the adversary
must choose whether to corrupt the key management server (and get the epoch
key) or the storage server (and get the update token) for each epoch, and thus
it cannot dynamically corrupt earlier keys or tokens at a later stage.

Constructions of Ciphertext-Independent UE. The initial description
of updatable encryption by Boneh et al. [3] was motivated by providing a
symmetric-key version of proxy re-encryption (see below). BLMR imagined do-
ing this in a symmetric manner, where each epoch is simply one period in which
re-encryption (rotation) has occurred. Their resulting scheme, denoted BLMR,
deploys a key-homomorphic PRF, yet the nonce attached to a ciphertext ensures
that IND-UPD cannot be met (the scheme pre-dates the IND-UPD notion).

The symmetric-Elgamal-based scheme of LT18, named RISE, uses a random-
ized update algorithm and is proven to meet IND-ENC and randIND-UPD under
DDH. These proofs entail a seemingly unavoidable loss – a cubic term in the
total number of epochs – our results also have this factor. LT18 also presented
an extended version of the scheme by BLMR, denoted BLMR+, where the nonce
is encrypted: they showed that this scheme meets a weak version of IND-UPD.

The aim of KLR19 was to achieve stronger security than BLMR, EPRS
and LT18 in the ciphertext-independent setting: in particular CCA security and
integrity protection. They observed that the structure of RISE ensures that ci-
phertext integrity cannot be achieved: access to just one update token allows the
storage provider to construct ciphertexts of messages of its choice. Their generic
constructions, based on encrypt-and-MAC and the Naor-Yung paradigm, are
strictly less efficient than RISE. We show how to achieve CCA security and in-
tegrity protections with novel schemes that are comparably efficient with RISE.

Related Primitives. Proxy re-encryption (PRE) allows a ciphertext that is
decryptable by some secret key to be re-encrypted such that it can be decrypted

5

by some other key. Security models for PRE are closer to those for encryption
than the strictly sequential outsourced-storage-centric models for UE, and as
observed by Lehmann and Tackmann [21] the concepts of allowable corruptions
and trivial wins for UE need considerable care when translating to the (more
general) PRE setting. Unlinkability is not necessarily desired in PRE – updating
the entire ciphertext may not be essential for a PRE scheme to be deemed secure
– thus even after conversion to the symmetric setting, prior schemes [1,7] cannot
meet the indistinguishability requirements that we ask of UE schemes. Recent
works by Lee [20] and Davidson et al. [10] have highlighted the links between
the work of BLMR and EPRS and PRE, and in particular the second work
gives a public-key variant of the (sequential) IND-UPD definition of LT18. Myers
and Shull [22] presented security models for hybrid proxy re-encryption, and
gave a single-challenge version of the UP-IND notion of EPRS. While the models
are subtly different, the techniques for achieving secure UE and PRE are often
similar: in particular rotating keys via exponentiation to some simple function of
old and new key. Further, the symmetric-key PRE scheme of Sakurai et al. [25]
is at a high level similar to SHINE (their all-or-nothing-transform as an inner
layer essentailly serves the same purpose as the ideal cipher in SHINE), but in a
security model that does not allow dynamic corruptions.

Tokenization schemes aim to protect short secrets, such as credit card num-
bers, using deterministic encryption and deterministic updates: this line of work
reflects the PCI DSS standard [9] for the payment card industry. Provable se-
curity of such schemes was initially explored by Diaz-Santiago et al. [11] and
extended to the updatable setting by Cachin et al. [6]. While much of the for-
malism in the model of Cachin et al. has been used in recent works on UE (in
particular the epoch-based corruption model), the requirements on ciphertext in-
distinguishability are stronger in the UE setting, where we expect probabilistic
encryption of (potentially large) files.

1.2 Contributions

Our first major contribution is defining the xxIND-UE-atk security notion, for
(xx, atk) ∈ {(det,CPA), (rand,CPA), (det,CCA)}, and comprehensively analyzing
its relation to other, existing4 security notions (xxIND-ENC-atk, xxIND-UPD-atk).
Our single definition requires that ciphertexts output by the encryption algo-
rithm are indistinguishable from ciphertexts output by the update algorithm.
We show that our new notion is strictly stronger even than combinations of
prior notions, both in the randomized- and deterministic-update settings under
chosen-plaintext attack and chosen-ciphertext attack. This not only gives us the
unlinkability desired by prior works, but also answers the open question posed

4 The notions IND-ENC, randIND-UPD and detIND-UPD (which we denote
as IND-ENC-CPA, randIND-UPD-CPA and detIND-UPD-CPA, resp.) are from
LT18. The notions UP-IND-CCA and UP-REENC-CCA (detIND-ENC-CCA and
detIND-UPD-CCA, resp.) are from KLR19. LT18 and KLR19 both build upon the
definitions given by EPRS.

6

IND INT |M| |C| Enc (Upd)

BLMR [3] (det,ENC,CPA) 8 l|G| (l+1)|G| lE

BLMR+ [3,21]
(weak,ENC,CPA)
(weak,UPD,CPA)

8 l|G| (l+1)|G| lE

RISE [21] (rand,UE,CPA) 8 1|G| 2|G| 2E

SHINE0[CPA] § 5.1 (det,UE,CPA) 8 (1-γ)|G| 1|G| 1E

NYUE [17]
(rand,ENC,RCCA)
(rand,UPD,RCCA)

8 1|G1| (34|G1|, 34|G2|) (60E,70E)

NYUAE [17]
(rand,ENC,RCCA)
(rand,UPD,RCCA)

PTXT 1|G1| (58|G1|, 44|G2|) (110E,90E)

E&M [17]
(det,ENC,CCA)
(det,UPD,CCA)

CTXT 1|G| 3|G| 3E

SHINE0 § 5.1 (det,UE,CCA) CTXT (1-2γ)|G| 1|G| 1E

MirrorSHINE [5] (det,UE,CCA) CTXT (1-γ)|G| 2|G| 2E

OCBSHINE § 5.1 (det,UE,CCA) CTXT l|G| (l+2)|G| (l+2)E

Fig. 1. Comparison of security, ciphertext expansion and efficiency for updatable en-
cryption schemes. (xx, yy, atk) represents the best possible xxIND-yy-atk notion that
each scheme can achieve. E represents the cost of an exponentiation, for encryption
Enc and ciphertext update Upd. γ represents the bit-size of the used nonce as a propor-
tion of the group element bit-size. For NYUE and NYUAE, size/cost is in pairing groups
G1,G2. SHINE0[CPA] is SHINE0 with a zero-length integrity tag. BLMR, BLMR+ and
OCBSHINE support encryption of arbitrary size messages (of l blocks), with |M| ≈ l|G|.

by KLR19 mentioned on page 4. Fig. 13 describes the relationship between our
new notion xxIND-UE-atk and prior notions.

We slightly tweak KLR19’s definition of CTXT and CCA for UE and prove
that detIND-yy-CPA + INT-CTXT ⇒ detIND-yy-CCA for yy ∈ {UE,ENC,UPD}.
Combining this result with the relations from detIND-UE-atk above, we thus show
that the combination of detIND-UE-CPA and INT-CTXT yields detIND-yy-CCA
for all yy ∈ {UE,ENC,UPD}.

Our second major contribution is in designing a new, fast updatable encryp-
tion scheme SHINE. Our scheme is based on a random-looking permutation com-
bined with the exponentiation map in a cyclic group, and comes in a number of
variants: SHINE0, MirrorSHINE (in our full version [5]) and OCBSHINE, for small
messages, medium-sized messages and abitrarily large messages respectively. In
Fig. 1, we provide a comparison of security, ciphertext expansion and efficiency
between our new schemes and those from prior literature. We also further the
understanding of schemes with deterministic update mechanisms. In particular,
we identify the properties that are necessary of such schemes to meet a general-
ized version of our detIND-UE-atk notion. Another important contribution is that
we further improve on the existing epoch insulation techniques that have been
used to create proofs of security in the strong corruption environment we pur-
sue. These have been shown to be very useful for studying updatable encryption
schemes, and we expect our new techniques to be useful in the future.

7

1.3 Further Discussion

We have had to make a number of practical design decisions for our new UE
scheme SHINE. The main idea is to permute the (combination of nonce and)
message and then exponentiate the resulting value, with different mechanisms
for enforcing ciphertext integrity depending on the flavor that is being used
(which is in turn defined by the desired message length). In this subsection we
give some motivation for why we believe that these choices are reasonable.

Deterministic updates. Since we will require indistinguishability of ciphertexts,
we know that the UE encryption algorithm should be randomized. The update
algorithm may or may not be randomized, however. All known schemes indicate
that randomized updates are more expensive than deterministic updates, but
there is a small, well-understood security loss in moving to deterministic up-
dates: an adversary with an update token in an appropriate epoch can trivially
distinguish between an update of a known ciphertext and other ciphertexts in
the next epoch. As a result, in the detIND-UE-CPA case the adversary is only
forbidden from obtaining one token compared to randIND-UE-CPA. Furthermore,
UE schemes with randomized updates cannot achieve CTXT and CCA security,
which is possible for the deterministic-update setting. We believe that the minor
CPA security loss is a small price to pay for stronger security (CTXT and CCA)
and efficiency gain, in particular to reduce computations in the UE encryption
and update algorithms and also improve ciphertext expansion.

Limited number of epochs. In many applications that we would like to consider,
the user of the storage service will control when updates occur (perhaps when an
employee with access to key material leaves the organisation, or if an employee
loses a key-holding device): this indicates that the total number of key rotations
in the lifetime of a storage system might be numbered in the thousands, and in
particular could be considerably smaller than the number of outsourced files.

2 Preliminaries

Pseudocode return b′
?
= b is used as shorthand for if b′ = b then return 1

// else return 0, with an output of 1 indicating adversarial success. We use
the concrete security framework, defining adversarial advantage as probability
of success in the security game, and avoid statements of security with respect to
security notions. In the cases where we wish to indicate that notion A implies no-
tion B (for some fixed primitive), i.e. an adversary’s advantage against B carries
over to an advantage against A, we show this by bounding these probabilities.

We follow the syntax of prior work [17], defining an Updatable Encryption
(UE) scheme as a tuple of algorithms {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd}
that operate in epochs, these algorithms are described in Fig. 2. A scheme is
defined over some plaintext space MS, ciphertext space CS, key space KS and
token space T S. We specify integer n + 1 as the (total) number of epochs over

8

Algorithm Rand/Det Input Output Syntax

UE.KG Key Gen Rand λ ke ke
$←− UE.KG(λ)

UE.TG Token Gen Det ke, ke+1 ∆e+1 ∆e+1 ← UE.TG(ke, ke+1)

UE.Enc Encryption Rand M, ke Ce Ce
$←− UE.Enc(ke,M)

UE.Dec Decryption Det Ce, ke M′ or ⊥ {M′/ ⊥} ← UE.Dec(ke,Ce)

UE.Upd Update Ctxt Rand/det Ce,∆e+1 Ce+1 Ce+1
$←− UE.Upd(∆e+1,Ce)

Fig. 2. Syntax of algorithms defining an Updatable Encryption scheme UE.

which a UE scheme can operate, though this is only for proof purposes. Cor-
rectness [17] is defined as expected: fresh encryptions and updated ciphertexts
should decrypt to the correct message under the appropriate epoch key.

In addition to enabling ciphertext updates, in many schemes the token al-
lows ciphertexts to be ‘downgraded’: performing some analog of the UE.Upd
operation on a ciphertext C created in (or updated to) epoch e yields a valid
ciphertext in epoch e-1. Such a scheme is said to have bi-directional ciphertext
updates. Furthermore, for many constructions, the token additionally enables
key derivation, given one adjacent key. If this can be done in both directions –
i.e. knowledge of ke and ∆e+1 allows derivation of ke+1 AND knowledge of ke+1

and ∆e+1 allows derivation of ke – then such schemes are referred to by LT18
as having bi-directional key updates. If such derivation is only possible in one
‘direction’ then the scheme is said to have uni-directional key updates. Much of
the prior literature on updatable encryption has distinguished these notions: we
stress that all schemes and definitions of security considered in this paper have
bi-directional key updates and bi-directional ciphertext updates.

3 Security Models for Updatable Encryption

We consider a number of indistinguishability-based confidentiality games and
integrity games for assessing security of updatable encryption schemes. The en-
vironment provided by the challenger attempts to give as much power as possible
to adversary A. The adversary may call for a number of oracles, and after A
has finished running the challenger computes whether or not any of the actions
enabled a trivial win. The available oracles are described in Fig. 3. An overview
of the oracles A has access to in each security game is provided in Fig. 4.

Confidentiality. A generic representation of all confidentiality games described
in this paper is detailed in Fig. 5. The current epoch is advanced by an adversar-
ial call to O.Next – simulating UE.KG and UE.TG – and keys and tokens (for the
current or any prior epoch) can be corrupted via O.Corr. The adversary can en-
crypt arbitrary messages via O.Enc, and update these ‘non-challenge’ ciphertexts
via O.Upd. In CCA games, the adversary can additionally call decryption oracle
O.Dec (with some natural restrictions to prevent trivial wins). At some point A
makes its challenge by providing two inputs, and receives the challenge cipher-
text – and in later epochs can receive an updated version by calling O.UpdC̃

9

Setup(λ)
k0 ← UE.KG(λ)
∆0 ←⊥; e, c← 0; phase, twf ← 0
L, L̃, C,K, T ← ∅

O.Enc(M) :
C← UE.Enc(ke,M)
c← c + 1; L ← L ∪ {(c,C, e)}
return C

O.Dec(C) :

if phase = 1 and C ∈ L̃∗ then
twf ← 1

M′ or ⊥ ← UE.Dec(ke,C)
return M′ or ⊥

O.Next() :
e← e + 1

ke
$←− UE.KG(λ); ∆e

$←− UE.TG(ke-1, ke)
if phase = 1 then

C̃e ← UE.Upd(∆e, C̃e-1)

O.Upd(Ce−1) :
if (j,Ce−1, e− 1) /∈ L then
return ⊥

Ce ← UE.Upd(∆e,Ce−1)
L ← L ∪ {(j,Ce, e)}
return Ce

O.Corr(inp, ê) :
if ê > e then
return ⊥

if inp = key then
K ← K ∪ {ê}
return kê

if inp = token then
T ← T ∪ {ê}
return ∆ê

O.UpdC̃ :
C ← C ∪ {e}
L̃ ← L̃ ∪ {(C̃e, e)}
return C̃e

O.Try(C̃) :

if phase = 1 then

return ⊥
phase← 1

twf ← 1 if :
e ∈ K∗ or C̃ ∈ L∗

M′ or ⊥ ← UE.Dec(ke, C̃)
if M′ 6= ⊥then
win← 1

Fig. 3. Oracles in security games for updatable encryption. The shaded statement in
O.Try only applies to INT-CTXTs: in this game the adversary is allowed to query the
O.Try oracle only once. Computing L̃∗ is discussed in Section 3.2.

(computing this value is actually done by O.Next, a call to O.UpdC̃ returns it).
A can then interact with its other oracles again, and eventually outputs its guess
bit. The flag phase tracks whether or not A has made its challenge, and we al-
ways give the epoch in which the challenge happens a special identifier ẽ. If A
makes any action that would lead to a trivial win, the flag twf is set as 1 and A’s
output is discarded and replaced by a random bit. We follow the bookkeeping
techniques of LT18 and KLR19, using the following sets to track ciphertexts and
their updates that can be known to the adversary.

– L: List of non-challenge ciphertexts (from O.Enc or O.Upd) with entries of
form (c,C, e), where query identifier c is a counter incremented with each
new O.Enc query.

– L̃: List of updated versions of challenge ciphertext (created via O.Next, re-
ceived by adversary via O.UpdC̃), with entries of form (C̃, e).

10

Further, we use the following lists that track epochs only.

– C: List of epochs in which adversary learned updated version of challenge
ciphertext (via CHALL or O.UpdC̃).

– K: List of epochs in which the adversary corrupted the encryption key.
– T : List of epochs in which the adversary corrupted the update token.

All experiments necessarily maintain some state, but we omit this for read-
ability reasons. The challenger’s state is S ← {L, L̃, C,K, T }, and the system
state in the current epoch is given by st← (ke, ∆e,S, e).

An at-a-glance overview of CHALL for various security definitions is given in
Fig. 7. For security games such as LT18’s IND-UPD notion, where the adversary
must submit as its challenge two ciphertexts (that it received from O.Enc) and
one is updated, the game must also track in which epochs the adversary has up-
dates of these ciphertexts. We will later specify a version of our new xxIND-UE-atk
notion that allows the adversary to submit a ciphertext that existed in any epoch
prior to the challenge epoch, not just the one immediately before: this introduces
some additional bookkeeping (discussed further in Section 3.2).

A note on nomenclature: the adversary can make its challenge query to
receive the challenge ciphertext, and then acquire updates of the challenge ci-
phertext via calls to O.UpdC̃, and additionally it can calculate challenge-equal
ciphertexts via applying tokens it gets via O.Corr queries.

When appropriate, we will restrict our experiments to provide definitions of
security that are more suitable for assessing schemes with deterministic update
mechanisms. For such schemes, access to the update token for the challenge epoch
(∆ẽ) allows the adversary to trivially win detIND-UPD-atk and detIND-UE-atk
for atk ∈ {CPA,CCA}. Note however that the definitions are not restricted to
schemes with deterministic updates: such schemes are simply insecure in terms
of randIND-UPD-CPA and randIND-UE-CPA.

Ciphertext Integrity. In ciphertext integrity (CTXT) game, the adversary is
allowed to make calls to oraclesO.Enc,O.Next,O.Upd andO.Corr. At some point
A attempts to provide a forgery viaO.Try; as part of this query the challenger will
assess if it is valid. We distinguish between the single-O.Try case (INT-CTXTs)
and the multi-O.Try case (INT-CTXT). Here, “valid” means decryption outputs
a message (i.e. not ⊥). In the single-O.Try case, A can continue making oracle
queries after its O.Try query, however this is of no benefit since it has already

Notion O.Enc O.Dec O.Next O.Upd O.Corr O.UpdC̃ O.Try
detIND-yy-CPA X × X X X X ×
randIND-yy-CPA X × X X X X ×
detIND-yy-CCA X X X X X X ×
INT-CTXT X × X X X × X

Fig. 4. Oracles the adversary is allowed to query in different security games, where
yy ∈ {ENC,UPD,UE}. X indicates the adversary has access to the corresponding oracle.

11

ExpxxIND-yy-atk-b
UE, A

do Setup
CHALL← AO.Enc,(O.Dec),O.Next,O.Upd,O.Corr(λ)
phase← 1; ẽ← e
Create C̃ with CHALL; L̃ ← L̃ ∪ {(C̃e, e)}
b′ ← AO.Enc,(O.Dec),O.Next,O.Upd,O.Corr,O.UpdC̃(C̃)
twf ← 1 if :
K∗ ∩ C∗ 6= ∅ or
xx = det and I∗ ∩ C∗ 6= ∅

if twf = 1 then
b′

$←− {0, 1}
return b′

Fig. 5. Generic description of confidential-
ity experiment ExpxxIND-yy-atk-b

UE, A for scheme
UE, for xx ∈ {det, rand}, yy ∈ {ENC,UPD,UE}
and atk ∈ {CPA,CCA}. We do not
consider (and thus do not formally de-
fine) randIND-yy-CCA; only in detIND-yy-CCA
games does A have access to O.Dec.

ExpINT-CTXT
UE, A

do Setup; win← 0
AO.Enc,O.Next,O.Upd,O.Corr,O.Try(λ)
if twf = 1 then
win← 0

return win

Fig. 6. INT-CTXT security no-
tion for updatable encryption scheme
UE.Deciding twf and computing L∗
are discussed in Section 3.2.

won or lost. In the multi-O.Try case, A can make any number of O.Try queries:
as long as it wins once, it wins the ciphertext integrity game. Formally, the
definition of ciphertext integrity is given in Definition 1.

Definition 1. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an up-
datable encryption scheme. Then the INT-CTXT advantage of an adversary A
against UE is defined as

AdvINT-CTXT
UE, A (λ) = Pr[ExpINT-CTXT

UE, A = 1]

where the experiment ExpINT-CTXT
UE, A is given in Fig. 3 and Fig. 6. Particularly, if

A is allowed to ask only one O.Try query, denote such notion as INT-CTXTs.

Note that INT-CTXT trivially implies INT-CTXTs. In the full version [5] we
prove that INT-CTXTs implies INT-CTXT too, with loss upper-bounded by the
number of O.Try queries. KLR19 define ciphertext integrity with one O.Try

CHALL Output of “ Create C̃ with CHALL”(in ẽ)

xxIND-ENC-atk M̄0, M̄1 UE.Enckẽ(M̄0) or UE.Enckẽ(M̄1)

xxIND-UPD-atk C̄0, C̄1 UE.Upd∆ẽ
(C̄0) or UE.Upd∆ẽ

(C̄1)

xxIND-UE-atk M̄, C̄ UE.Enckẽ(M̄) or UE.Upd∆ẽ
(C̄)

Fig. 7. Intuitive description of challenge inputs and outputs in confidentiality games
for updatable encryption schemes, for (xx, atk) ∈ {(det,CPA), (rand,CPA), (det,CCA)}.

12

query plus access to O.Dec, and the game ends when the O.Try query happens.
It is hard to prove the generic relation among CPA, CTXT and CCA using
this formulation. Notice that decryption oracles give the adversary power to win
the CTXT game even it only has one O.Try query. The adversary can send its
forgery to the decryption oracle to test if it is valid (if O.Dec outputs a message
and not ⊥) – thus A can continue to send forgeries to O.Dec until a valid one is
found, and then send this as a O.Try query (and win the game). So intuitively, a
decryption oracle is equivalent to multiple O.Try queries. Proving that all these
variants of CTXT definitions are equivalent to each other is straightforward, with
the loss upper-bounded by the sum of O.Try queries and decryption queries.

Remark 1. The definition of INT-CTXT is more natural for defining ciphertext
integrity, however, it is easier to use INT-CTXTs notion to prove ciphertext in-
tegrity for specific UE schemes. As INT-CTXT ⇐⇒ INT-CTXTs, we use both
definitions in this paper.

3.1 Existing Definitions of Confidentiality

Here we describe existing confidentiality notions given by LT18 and KLR19,
including formal definitions for their IND-yy-CPA and IND-yy-CCA notions, re-
spectively. (Note that KLR19 used UP-REENC to refer to the the unlinkability
notion that we and LT18 call IND-UPD). We will define our new security notion
in Section 4.1 and compare the relationship between all notions in Section 4.2.

Definition 2. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an up-
datable encryption scheme. Then the xxIND-ENC-atk advantage, for (xx, atk) ∈
{(det,CPA), (rand,CPA), (det,CCA)}, of an adversary A against UE is defined as

AdvxxIND-ENC-atk
UE, A (λ) =

∣∣∣∣Pr[ExpxxIND-ENC-atk-1
UE, A = 1]−Pr[ExpxxIND-ENC-atk-0

UE, A = 1]

∣∣∣∣,
where the experiment ExpxxIND-ENC-atk-b

UE, A is given in Fig. 3, Fig. 5 and Fig. 8.

Definition 3. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an up-
datable encryption scheme. Then the xxIND-UPD-atk advantage, for (xx, atk) ∈
{(det,CPA), (rand,CPA), (det,CCA)}, of an adversary A against UE is defined as

AdvxxIND-UPD-atk
UE, A (λ) =

∣∣∣Pr[ExpxxIND-UPD-atk-1
UE, A = 1]−Pr[ExpxxIND-UPD-atk-0

UE, A = 1]
∣∣∣,

where the experiments ExpxxIND-UPD-atk-b
UE, A are given in Fig. 3, Fig. 5 and Fig. 9.

We do not define randIND-ENC-CCA or randIND-UPD-CCA – these notions
were formalized by KLR19. Note that trivial win via direct update (see Sec-
tion 3.2) is never triggered in the detIND-ENC-CPA game. Thus, randIND-ENC-CPA
is equivalent to detIND-ENC-CPA. For simplicity, we will often denote the notion
xxIND-ENC-CPA as IND-ENC-CPA.

13

ExpxxIND-ENC-atk-b
UE, A (λ) :

(M̄0, M̄1)← A
Create C̃ with (M̄0, M̄1) :

if |M̄0| 6= |M̄1| then
return ⊥

C̃
$←− UE.Enc(kẽ, M̄b)

return C̃

Fig. 8. Challenge call definition for
xxIND-ENC-atk security experiment;
the full experiment is given in combi-
nation with Fig. 3 and Fig. 5.

ExpxxIND-UPD-atk-b
UE, A (λ) :

(C̄0, C̄1)← A
Create C̃ with (C̄0, C̄1) :

if |C̄0| 6= |C̄1| or (C̄0, ẽ-1) /∈ L
or (C̄1, ẽ-1) /∈ L then
return ⊥

C̃
$←− UE.Upd(∆ẽ, C̄b)

return C̃

Fig. 9. Challenge call definition for
xxIND-UPD-atk security experiment;
the full experiment is given in combi-
nation with Fig. 3 and Fig. 5.

Remark 2. LT18 defined weakIND-ENC-CPA and weakIND-UPD-CPA for analyz-
ing BLMR+, a modification of BLMR’s scheme where the nonce is encrypted
using symmetric encryption. In this notion, the adversary trivially loses if it ob-
tains an update token linking the challenge epoch to the epoch before or after.

3.2 Trivial Win Conditions

Trivial Win Conditions in Confidentiality Games

Trivial wins via keys and ciphertexts. The following is for analyzing all confiden-
tiality games. We again follow LT18 in defining the epoch identification sets C∗,
K∗ and T ∗ as the extended sets of C, K and T in which the adversary has learned
or inferred information via its acquired tokens. These extended sets are used to
exclude cases in which the adversary trivially wins, i.e. if C∗∩K∗ 6= ∅, then there
exists an epoch in which the adversary knows the epoch key and a valid update
of the challenge ciphertext. Note that the challenger computes these sets once
the adversary has finished running. We employ the following algorithms of LT18
(for bi-directional updates):

K∗ ← {e ∈ {0, ..., n}|CorrK(e) = true}
true← CorrK(e) ⇐⇒ (e ∈ K) ∨ (CorrK(e-1) ∧ e ∈ T) ∨ (CorrK(e+1) ∧ e+1 ∈ T)

T ∗ ← {e ∈ {0, ..., n}|(e ∈ T) ∨ (e ∈ K∗ ∧ e-1 ∈ K∗)}
C∗ ← {e ∈ {0, ..., n}|ChallEq(e) = true}
true← ChallEq(e) ⇐⇒

(e = ẽ) ∨ (e ∈ C) ∨ (ChallEq(e-1) ∧ e ∈ T ∗) ∨ (ChallEq(e+1) ∧ e+1 ∈ T ∗)

Trivial wins via direct updates. The following is for analyzing detIND-yy-atk
security notions, for yy ∈ {UE,UPD} and atk ∈ {CPA,CCA}, where the adversary

14

provides as its challenge one or two ciphertexts that it received from O.Enc. The
challenger needs to use L to track the information the adversary has about these
challenge input values.

Define a new list I as the list of epochs in which the adversary learned an
updated version of the ciphertext(s) given as a challenge input. Furthermore,
define I∗ to be the extended set in which the adversary has learned or inferred
information via token corruption. We will use this set to exclude cases which the
adversary trivially wins, i.e. if I∗ ∩ C∗ 6= ∅, then there exists an epoch in which
the adversary knows the updated ciphertext of C̄ and a valid challenge-equal
ciphertext. For deterministic updates, the adversary can simply compare these
ciphertexts to win the game. In particular, if C̄ is restricted to come from ẽ− 1
(recall the challenge epoch is ẽ), then the condition I∗ ∩ C∗ 6= ∅ is equivalent to
the win condition that LT18 used for IND-UPD: ∆ẽ ∈ T ∗ or A did O.Upd(C̄) in
ẽ. Our generalization is necessary for a variant of xxIND-UE-atk that we define
later in which the challenge ciphertext input can come from any prior epoch, and
not just the epoch immediately before the one in which the challenge is made.

To compute I, find an entry in L that contains challenge input C̄. Then
for that entry, note the query identifier c, scan L for other entries with this
identifier, and add into list I all found indices: I ← {e ∈ {0, ..., n}|(c, ·, e) ∈ L}.
Then compute I∗ as follows:

I∗ ← {e ∈ {0, ..., n}|ChallinputEq(e) = true}
true← ChallinputEq(e) ⇐⇒

(e ∈ I) ∨ (ChallinputEq(e-1) ∧ e ∈ T ∗) ∨ (ChallinputEq(e+1) ∧ e+1 ∈ T ∗)

Additionally, if the adversary submits two ciphertexts C̄0, C̄1 as challenge
(as in xxIND-UPD-atk), we compute Ii, I∗i , i ∈ {0, 1} first and then use I∗ =
I∗0 ∪ I∗1 to check the trivial win condition. An example of trivial win conditions
K∗ ∩ C∗ 6= ∅ and I∗ ∩ C∗ 6= ∅ is provided in the full version [5].

We do not consider this trivial win condition for the ENC notion, as there
is no ciphertext in the challenge input value, i.e. I∗ = ∅. Thus, the assessment
I∗ ∩ C∗ 6= ∅ in experiment ExpdetIND-ENC-atk-b

UE, A (see Fig. 5) will never be true.

Trivial wins via decryptions. The following is for analyzing detIND-yy-CCA no-
tions, for yy ∈ {UE,ENC,UPD}, where the adversary has access to O.Dec. We
follow the trivial win analysis in KLR19: suppose the adversary knows a chal-
lenge ciphertext (C̃, e0) ∈ L̃ and tokens from epoch e0 + 1 to epoch e, then the
adversary can update the challenge ciphertext from epoch e0 to epoch e. If A
sends the updated ciphertext to O.Dec this will reveal the underlying message,
and A trivially wins the game: we shall exclude this type of attack.

Define L̃∗ to be the extended set of L̃ in which the adversary has learned or
inferred information via token corruption. Whenever O.Dec receives a ciphertext
located in L̃∗, the challenger will set the trivial win flag twf to be 1. The list L̃∗ is
updated while the security game is running. After the challenge query happens,
the challenger updates L̃∗ whenever an element is added to list L̃ or a token is
corrupted. In Fig. 10 we show how list L̃∗ is updated.

15

Trivial Win Conditions in Ciphertext Integrity Games We again follow
the trivial win analysis in KLR19. In ciphertext integrity games for updatable
encryption, we do not consider the randomized update setting as the adversary
can update an old ciphertext via a corrupted token to provide any number of
new valid forgeries to the Try query to trivially win this game.

Trivial wins via keys. If an epoch key is corrupted, then the adversary can use
this key to forge ciphertexts in this epoch. We exclude this trivial win: if the
adversary provides a forgery in an epoch in list K∗, the challenger sets twf to 1.

Trivial wins via ciphertexts. Suppose the adversary knows a ciphertext (C, e0) ∈
L and tokens from epoch e0 + 1 to epoch e, then the adversary can provide a
forgery by updating C to epoch e. We shall exclude this type of forgeries.

Define L∗ to be the extended set of L in which the adversary has learned or
inferred information via token corruption. If O.Try receives a ciphertext located
in L∗, the challenger will set twf to 1. The list L∗ is updated while the security
game is running. Ciphertexts output by O.Enc and O.Upd are known to the ad-
versary. Furthermore, whenever a token is corrupted, the challenger may update
list L∗ as well. In Fig. 11 we show how list L∗ is updated.

3.3 Firewall Technique

In order to prove security for updatable encryption in the epoch-based model
with strong corruption capabilities, cryptographic separation is required between
the epochs in which the adversary knows key material, and those in which it
knows challenge-equal ciphertexts (acquired/calculated via queries to O.UpdC̃
and O.Corr(∆)). To ensure this, we follow prior work in explicitly defining the
‘safe’ or insulated regions, as we explain below. These regions insulate epoch
keys, tokens and ciphertexts: outside of an insulated region a reduction in a
security proof can generate keys and tokens itself, but within these regions it
must embed its challenge while still providing the underlying adversary with

if challenge query or O.UpdC̃ happens then
L̃∗ ← L̃∗ ∪ {(C̃, ·)}

if phase = 1 and O.Corr(token, ·) happens then
for i ∈ T ∗ and (C̃i−1, i− 1) ∈ L̃∗ do
L̃∗ ← L̃∗ ∪ {(C̃i, i)}

Fig. 10. Updating list L̃∗.

if O.Enc or O.Upd happens then
L∗ ← L∗ ∪ {(·,C, ·)}

if O.Corr(token, ·) happens then
for i ∈ T ∗ do
for (j,Ci−1, i− 1) ∈ L∗ do

Ci ← UE.Upd(∆i,Ci−1)
L∗ ← L∗ ∪ {(j,Ci, i)}

Fig. 11. Updating list L∗.

16

access to the appropriate oracles. A thorough discussion of how we leverage
these insulated regions in proofs is given in Section 5.3.

To understand the idea of firewalls, consider any security game (for bi-
directional schemes) in which the trivial win conditions are not triggered. If
the adversary A corrupts all tokens then either it never corrupts any keys or it
never asks for a challenge ciphertext. Suppose that A does ask for a challenge
ciphertext in epoch ẽ 5. Then there exists an (unique) epoch continuum around
ẽ such that no keys in this epoch continuum, and no tokens in the boundaries
of this epoch continuum are corrupted. Moreover, we can assume that all tokens
within this epoch continuum are corrupted, because once the adversary has fin-
ished corrupting keys, it can corrupt any remaining tokens that do not ‘touch’
those corrupted keys. This observation is first used in the IND-UPD proof of
RISE provided by Lehmann and Tackmann [21], and Klooß et al. [17] provided
an extended description of this ‘key insulation’ technique. We name these epoch
ranges insulated regions and their boundaries to be firewalls.

Definition 4. An insulated region with firewalls fwl and fwr is a consecutive
sequence of epochs (fwl, . . . , fwr) for which:

– no key in the sequence of epochs (fwl, . . . , fwr) is corrupted;
– the tokens ∆fwl and ∆fwr+1 are not corrupted (if they exist);
– all tokens (∆fwl+1, . . . ,∆fwr) are corrupted (if any exist).

We denote the firewalls bordering the special insulated region that contains ẽ
as ˆfwl and ˆfwr – though note that there could be (many, distinct) insulated regions
elsewhere in the epoch continuum. Specifically, when the adversary asks for
updated versions of the challenge ciphertext, the epoch in which this query occurs
must also fall within (what the challenger later calculates as) an insulated region.
In the full version [5] we give an algorithm for computing firewall locations. The
list FW tracks, and appends a label to, each insulated region and its firewalls.
Observe that if an epoch is a left firewall, then neither the key nor the token for
that epoch are corrupted. From the left firewall, since we assume that all tokens
are corrupted, track to the right until either a token is not corrupted or a key is.

4 On the Security of Updates

In this section we present a new notion of security for updatable encryption
schemes, which we denote xxIND-UE-atk. This notion captures both security
of fresh encryptions (i.e. implies xxIND-ENC-atk) and unlinkability (i.e. implies
xxIND-UPD-atk). We first explain the new notion and then describe its relation
to previous notions. Then, we prove a generic relationship among CPA, CTXT
and CCA to complete the picture for security notions for UE schemes.

5 In the situation that the adversary does not corrupt any keys to the left or the right
(or both) of the challenge epoch, the insulated region thus extends to the boundary
(or boundaries) of the epoch continuum.

17

4.1 A New Definition of Confidentiality

In the security game for xxIND-UE-atk, the adversary submits one message and a
ciphertext from an earlier epoch that the adversary received via a call to O.Enc.
The challenger responds with either an encryption of that message or an update
of that earlier ciphertext, in the challenge (current) epoch ẽ.

Definition 5 (xxIND-UE-atk). Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd}
be an updatable encryption scheme. Then the xxIND-UE-atk advantage, for (xx, atk) ∈
{(det,CPA), (rand,CPA), (det,CCA)}, of an adversary A against UE is defined as

AdvxxIND-UE-atk
UE, A (λ) =

∣∣∣Pr[ExpxxIND-UE-atk-1
UE, A = 1]−Pr[ExpxxIND-UE-atk-0

UE, A = 1]
∣∣∣

where the experiment ExpxxIND-UE-atk-b
UE, A is given in Fig. 3, Fig. 5 and Fig. 12.

Note that randIND-UE-CPA is strictly stronger than detIND-UE-CPA, since
the adversary has strictly more capabilities. A generalized version of xxIND-UE-atk,
denoted xxIND-UE∗-atk, is also given in Fig. 12. In this game the input chal-
lenge ciphertext can come from (i.e. be known to A in) any prior epoch, not
just the epoch immediately before ẽ. Note that xxIND-UE-atk is a special case of
xxIND-UE∗-atk. Under some fairly weak requirements (that all schemes discussed
in this paper satisfy) we can prove that xxIND-UE-atk implies xxIND-UE∗-atk –
this analysis is given in the full version [5].

ExpxxIND-UE-atk-b
UE, A (λ) :

(M̄, C̄)← A
Create C̃ with (M̄, C̄) :

if (C̄, ẽ− 1) /∈ L then
return ⊥

if b = 0 then
C̃← UE.Enc(kẽ, M̄)

else
C̃← UE.Upd(∆ẽ, C̄)

return C̃

ExpxxIND-UE∗-atk-b
UE, A (λ) :

(M̄, (C̄, e′))← A
Create C̃ with (M̄, (C̄, e′)) :

if (C̄, e′) /∈ L then
return ⊥

if b = 0 then
C̃ẽ ← UE.Enc(kẽ, M̄)

else
C̃e′ ← C̄
for j ∈ {e′+1, ..., ẽ} do

C̃j ← UE.Upd(∆j , C̃j−1)
return C̃ẽ

Fig. 12. Challenge call definition for xxIND-UE-atk and xxIND-UE∗-atk security exper-
iments, the full experiment is defined in Fig. 3, Fig. 5.

Remark 3. The definition of xxIND-UE-atk is more concise and intuitively easier
to understand than xxIND-UE∗-atk, however in the full version [5] we show that
xxIND-UE-atk ⇐⇒ xxIND-UE∗-atk. This result and our generic proof techniques
mean that all results in this paper that hold for xxIND-UE-atk, also hold for
xxIND-UE∗-atk, and vice versa.

18

randIND-UE-CPA

IND-ENC-CPA

randIND-UPD-CPA

IND-ENC-CPA
+randIND-UPD-CPA

Thm. 1.1

∗

\ ∗

detIND-UE-CPA

detIND-UPD-CPA

IND-ENC-CPA

IND-ENC-CPA
+detIND-UPD-CPA

∗∗

\ ∗
Def. 5

\

∗
detIND-UE-CCA

detIND-UPD-CCA

detIND-ENC-CCA

IND-ENC-CCA
+detIND-UPD-CCA

+CTXT

Thm. 1.2

+CTXT

Thm. 1.2

+CTXT

Thm. 1.2

∗

∗
\ ∗

Fig. 13. Relations among confidentiality notions xxIND-yy-atk for xx ∈ {det, rand}, yy ∈
{UE,ENC,UPD}, atk ∈ {CPA,CCA}, and ciphertext integrity (INT-CTXT). Results
that are given only in the full version [5] are marked with ∗.

Remark 4. In the full version [5] we show that the RISE scheme presented by
LT18 is randIND-UE-CPA secure under DDH. While this result is perhaps un-
surprising, the proof techniques we use are novel. We give an Oracle-DDH-like
game that inherits the epoch-based nature of the updatable encryption security
model, and then use this as a bridge to prove security.

4.2 Relations among Security Notions

In Fig. 13 we show the relationship between the new and existing UE security
notions. Note that our new notion is strictly stronger than the xxIND-ENC-atk
and xxIND-UPD-atk notions presented in prior work, and is in fact stronger than
the combination of the prior notions. Further, we show that the generic rela-
tion among CPA, CTXT and CCA, that CPA security coupled with ciphertext
integrity implies CCA security, also holds for updatable encryption schemes.

Theorem 1 (Informal Theorem). The relationship among the security no-
tions xxIND-UE-atk, xxIND-ENC-atk and xxIND-UPD-atk are as in Fig. 13. The
relationship is proven via Theorems in the full version [5] and due to space con-
straints we show Theorems 1.1 and Theorem 1.2 only.

Theorem 1.1 Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updat-
able encryption scheme. For any IND-ENC-CPA adversary A against UE, there
exists an randIND-UE-CPA adversary B1.1 against UE such that

AdvIND-ENC-CPA
UE, A (λ) ≤ 2 ·AdvrandIND-UE-CPA

UE, B1.1
(λ).

19

Proof. We construct a reduction B1.1 running the randIND-UE-CPA experiment
which will simulate the responses of queries made by the IND-ENC-CPA adversary
A. To provide a valid non-challenge ciphertext to its own challenger, B1.1 must
run A out of step with its own game, so epoch 0 as far as A is concerned is
actually epoch 1 for B1.1, and so on.

1. B1.1 chooses b
$←− {0, 1}.

2. B1.1 receives the setup parameters from its randIND-UE-CPA challenger,

chooses M
$←− MS and calls O.Enc(M) which returns some C0. Then B1.1

calls O.Next once and sends the setup parameters to A.
3. (a) Whenever B1.1 receives the queries O.Enc,O.Upd,O.Corr from A, B1.1

sends these queries to its randIND-UE-CPA challenger, and forwards the
responses to A.

(b) Whenever O.Next is called by A, B1.1 randomly chooses a message M
$←−

MS and calls O.Enc(M) to receive some Ce, and then calls O.Next.
4. At some point, in epoch ẽ (for its game), B1.1 receives the challenge query

(M̄0, M̄1) from A. Then B1.1 sends the pair (M̄b,C
ẽ−1) as challenge to its

own randIND-UE-CPA challenger. After receiving the challenge ciphertext,
C̃ẽ, from its challenger, B1.1 sends C̃ẽ to A.

5. B1.1 continues to answer A’s queries using its own oracles, now including the
challenge ciphertext update oracle O.UpdC̃.

6. Finally B1.1 receives the output bit b′ from A. If b = b′ then B1.1 returns 0.
Otherwise B1.1 returns 1.

We now bound the advantage of B1.1. The point is that whenever B1.1 returns
a random encryption to A, B1.1’s probability of winning is exactly 1/2 because
the bit b′ from A is independent of its choice of b. This happens with probability
1/2. However, when B1.1 returns a “correct” value to A (an encryption of M̄0

or M̄1), then B1.1’s probability of winning is the same as the probability that A
wins. First note that, as usual,

AdvrandIND-UE-CPA
UE,B1.1

= |Pr[ExprandIND-UE-CPA-1
UE, B1.1

= 1]−Pr[ExprandIND-UE-CPA-0
UE, B1.1

= 1]|.

We claim that Pr[ExprandIND-UE-CPA-1
UE, B1.1

= 1] = 1/2 because in this case C̃ẽ is
independent of b and so b′ must also be independent of b. Then we have:

AdvrandIND-UE-CPA
UE,B1.1

=

∣∣∣∣12 −Pr[ExprandIND-UE-CPA-0
UE, B1.1

= 1]

∣∣∣∣
=

∣∣∣∣12 −
(

1

2
·Pr[ExpIND-ENC-CPA-0

UE, A = 1] +
1

2
·Pr[ExpIND-ENC-CPA-1

UE, A = 0]

)∣∣∣∣
=

1

2
·AdvIND-ENC-CPA

UE, A .

ut

The three separation arrows at the top of Fig. 13 are all demonstrated in
the same manner. Begin with a scheme UE that meets both of the two notions

20

at the very top of the figure. All algorithms for UE′ are the same as for UE,
except UE′.Enc is defined by modifying UE.Enc to append the epoch number in
which the ciphertext was initially created (and UE′.Dec ignores this appended
value). This does not affect an adversary’s ability to win the IND-ENC-atk or
xxIND-UPD-atk games but trivially breaks xxIND-UE-atk security.

Generic Composition. The following theorem tells the relation among CPA,
CTXT and CCA security. The full proof is given in the full version [5].

Theorem 1.2 Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an up-
datable encryption scheme. For any detIND-yy-CCA adversary A against UE,
there exists an INT-CTXT adversary B1.2a and an detIND-yy-CPA adversary B1.2b
against UE such that

AdvdetIND-yy-CCA
UE, A (λ) ≤ 2AdvINT-CTXT

UE, B1.2a
(λ) + AdvdetIND-yy-CPA

UE, B1.2b
(λ)

where yy ∈ {UE,ENC,UPD}.

Proof sketch. The proof is adapted from the proof of Theorem 3.2 of Bellare
and Namprempre [2]. We modify the detIND-yy-CCA game such that in the new
game the decryption oracle will answer ⊥ if the input is a fresh ciphertext.

In more detail, suppose A is an adversary playing the new game, then we
can then construct a reduction playing detIND-yy-CPA game and simulating the
responses to A. To answer decryption oracle queries made by A, the reduc-
tion performs bookkeeping for ciphertexts and messages to successfully respond
to the decryption of already-existing ciphertexts, or simply replying ⊥ for the
decryption of fresh ciphertexts. So the advantage of winning the new game is
upper-bounded by the detIND-yy-CPA advantage.

Furthermore, notice that two games are identical until a valid fresh ciphertext
is sent to the decryption oracle. Which means the probability of an adversary
these games is upper-bounded by the probability that a valid fresh forgery is
produced: this successful adversary can win the INT-CTXT game. Therefore, the
difference between the new game and the original detIND-yy-CCA game can be
upper-bounded by the INT-CTXT advantage. ut

5 The SHINE Schemes

We now describe our new UE scheme SHINE (Secure Homomorphic Ideal-cipher
Nonce-based Encryption). The encryption algorithm uses a permutation to ob-
fuscate the input to the exponentiation function. Updating a ciphertext simply
requires exponentiation once by the update token, which itself is the quotient of
the current epoch key and the previous epoch key. The scheme comes in three
flavors: SHINE0 is presented in Fig. 14 and takes in short messages and only
uses a single permutation. The second flavor, MirrorSHINE, is provided in the
full version [5] and runs two different permutations with the same input. The

21

SHINE0.KG(λ) :

k
$←− Z∗q

return k

SHINE0.TG(ke, ke+1) :

∆e+1 ← ke+1

ke
return ∆e+1

SHINE0.Enc(ke,M) :

N
$←− N

Ce ← (π(N‖M‖0t))ke

return Ce

SHINE0.Dec(ke,Ce) :

a← π−1(C
1/ke
e)

parse† a as N′‖M′‖Z
if Z = 0t then
return M′

else
return ⊥

SHINE0.Upd(∆e+1,Ce) :

Ce+1 ← (Ce)
∆e+1

return Ce+1

Fig. 14. Updatable encryption scheme SHINE0. †: ‖N′‖ = v, ‖M′‖ = m, ‖Z‖ = t. Note
that there may be an additional embedding step after the permutation π, as discussed
in Section 5.6.

third flavor OCBSHINE is given in Fig. 16 and is for applications with arbitrarily
long messages, using a family of permutations.

We discuss implementation details of the SHINE schemes in Section 5.6. In
particular, for each scheme in the SHINE suite, it is necessary to embed the
output of the permutation (a regular block cipher) into an appropriate DDH-
hard group.

Our proofs of security, given as Theorem 2 (Theorem 3), bound an adversary’s
detIND-UE-CPA (INT-CTXTs) advantage by DDH (CDH), and are provided in
the ideal cipher model. Furthermore, combining the results of Theorem 1.2,
Theorem 2 and Theorem 3, we have that the suite of SHINE schemes (i.e. SHINE0,
MirrorSHINE and OCBSHINE) are detIND-UE-CCA secure.

5.1 Construction of SHINE schemes

SHINE via Zero Block: SHINE0. Suppose a message space ofMS = {0, 1}m
and random nonce space N = {0, 1}v. The encryption algorithm feeds as in-
put to the permutation a nonce, the message, and a zero string. The decryp-
tion algorithm will return ⊥ if the decrypted value does not end with 0t. The
SHINE0 scheme is defined in Fig. 14. If ciphertext integrity is not required
(or file/ciphertext integrity is performed in some other manner), then SHINE0
without the zero block results in a scheme (denoted SHINE0[CPA]) that is still
detIND-UE-CPA secure.

SHINE for Long Messages via Checksum: OCBSHINE. The schemes SHINE0
and MirrorSHINE both require that the message space be smaller than the size of
an element of the exponentiation group. This ciphertext expansion is undesirable
in many practical scenarios, and so we wish to construct a SHINE scheme which

22

gives us (almost) no ciphertext expansion and can be applied to arbitrarily long
messages. We build a new SHINE scheme, OCBSHINE, with these properties.

The construction of OCBSHINE is inspired by the authenticated encryption
scheme OCB [24]. Different from OCB mode, the nonce is encrypted inside the
ciphertext instead of sending it along with the ciphertext. In order to determine
the length of the last message block, the encryption algorithm of OCB mode
removes some bits of the last ciphertext block to reveal this information. However
in our setting, the output of the permutations are (mapped to) the input of the
exponentiation function: thus all bits of permutation outputs must be included.
Therefore, OCBSHINE includes the length of the last message block in the first
ciphertext component. If ciphertext integrity is not required, then OCBSHINE
can be improved by removing the last ciphertext block.

OCBSHINE is formally defined in Fig. 16 and the encryption process is
pictorially represented in Fig. 15; we give an intuitive description here. Sup-
pose the blocksize is m, and assume the encryption algorithm OCBSHINE.Enc
has input message M. By “partition M into M1, ...,Ml” we mean setting l ←
max{d|M|/me, 1} and dividing M into l blocks, i.e. M1, ...,Ml, where |M1| =
... = |Ml−1| = m. The last message block Ml is padded with zeros to make it
length m before computing the permutation output and the checksum, i.e Ml‖0∗
with |Ml‖0∗| = m. Let a = dlog(m)e, so the length of Ml (|Ml| ≤ m) can be
written as an a-bit representation.

N‖|M3| M1 M2 M3‖0∗ Σ

π0 πN‖1‖0 πN‖2‖0 πN‖3‖0 πN‖3‖1

Expke Expke Expke Expke Expke

C0 C1 C2 C3 C4

Fig. 15. Diagram describing how the OCBSHINE encryption algorithm works on mes-
sage M = (M1,M2,M3). Σ = M1⊕M2⊕M3‖0∗. There may be an additional embedding
step after the permutations, as discussed in Section 5.6.

Let Perm(m) be the set of all permutations on {0, 1}m. Randomly choose

π0
$←−Perm(m), and use this permutation to randomize the concatenation of the

nonce N and an a-bit representation of the last message block length. Then,
index the (random) permutations used to encrypt message blocks by the nonce
and a counter. Let Perm(S,m) be the set of all mappings from S to permutations
on {0, 1}m. Suppose the nonce space is N = {0, 1}m−a, S = N ×N∗×{0, 1}, for

each (N ∈ N , i ∈ N∗, b ∈ {0, 1}), set πN‖i‖b
$←−Perm(N ×N∗ × {0, 1},m), which

23

OCBSHINE.KG(m) :

k
$←− Z∗q

return k

OCBSHINE.TG(ke, ke+1) :

∆e+1 ← ke+1

ke
return ∆e+1

OCBSHINE.Enc(ke,M) :
partition M into M1, ...,Ml

Σ ← ⊕l-1i=1Mi ⊕Ml‖0∗

N
$←− N

C0 ←
(
π0(N‖|Ml|)

)ke
Cl+1 ←

(
πN‖l‖1(Σ)

)ke
for i = 1, ..., l-1 do

Ci ←
(
πN‖i‖0(Mi)

)ke
Cl ←

(
πN‖l‖0(Ml‖0∗)

)ke
Ce ← (C0, ...,Cl,Cl+1)
return Ce

OCBSHINE.Dec(ke,Ce) :

parse Ce = (C0, ...,Cl,Cl+1)

N′‖A′ ← π−1
0 (

(
C0

)1/ke)
Σ′ ← π−1

N′‖l‖1(
(
Cl+1

)1/ke)
for i = 1, ..., l do

M′i ← π−1
N′‖i‖0(

(
Ci

)1/ke)
if Σ′ = ⊕li=1M′i then

M′ ← (M′1, ...,M
′
l[first A′-bit])

return M′

else
return ⊥

OCBSHINE.Upd(∆e+1,Ce) :

parse Ce = (C0, ...,Cl,Cl+1)
for i = 0, ..., l + 1 do

Cie+1 ← (Cie)
∆e+1

return Ce+1

Fig. 16. Updatable encryption scheme OCBSHINE. Note that there may be an addi-
tional embedding step after the permutations, as discussed in Section 5.6.

form a random permutation family: we use these permutations to randomize
message blocks and the checksum.

5.2 Security - SHINE is detIND-UE-CPA, INT-CTXT, detIND-UE-CCA
Secure

All three SHINE schemes, i.e. SHINE0, MirrorSHINE and OCBSHINE, have the
same security properties, and the proofs are very similar for each flavor. We refer
to SHINE to mean the family containing all these three schemes. In Theorem 2,
we show that SHINE is detIND-UE-CPA in the ideal cipher model, if DDH holds.
In Theorem 3, we show that SHINE is INT-CTXTs, and therefore INT-CTXT
(INT-CTXT and INT-CTXTs are equivalent, recall Section 3), in the ideal cipher
model, if CDH holds. The loss incurred by this proof is the normal (n+ 1)3 (or
(n+1)2 for INT-CTXT) and also the number of encryption queries the adversary
makes before it makes its challenge: to avoid the issues described in Section 5.3
we not only need to guess the locations of the challenge firewalls but also the
ciphertext that the adversary will submit as its challenge.

The ideal cipher model, a version of which was initially given by Shannon [26]
and shown to be equivalent to the random oracle model by Coron et al. [8],
gives all parties access to a permutation chosen randomly from all possible key-
permutation possibilities of appropriate length. The SHINE schemes exponenti-

24

ate the output of the permutation by the epoch key to encrypt, so our reduction
can ‘program’ the transformation from permutation outputs to group elements.

In the following two Theorems we detail the security properties met by
SHINE, i.e. detIND-UE-CPA, INT-CTXT and thus detIND-UE-CCA. Note that
this is the strongest known security property for updatable encryption schemes
with deterministic updates. In Section 5.3 we discuss the challenges that arise in
the proofs of these two theorems, and in Section 5.4 and Section 5.5 we describe
the novel techniques and methods used in the proofs. Full proofs are provided
in the full version [5].

Theorem 2 (SHINE is detIND-UE-CPA). Let SHINE ∈ {SHINE0,MirrorSHINE,
OCBSHINE} be the UE scheme described above. For any ideal cipher model ad-
versary A (that makes max QE encryption queries before its challenge), there
exists an adversary B2 such that

AdvdetIND-UE-CPA
SHINE, A (λ) ≤ O(1)(n+ 1)3 ·QE ·AdvDDH

G, B2
(λ).

Theorem 3 (SHINE is INT-CTXTs). Let SHINE ∈ {SHINE0,MirrorSHINE,
OCBSHINE} be the UE scheme described above. For any ideal cipher model ad-
versary A (that makes max QE encryption queries before calling O.Try), there
exists an adversary B3 such that

AdvINT-CTXTs

SHINE, A (λ) ≤ O(1)(n+ 1)2 ·QE ·AdvCDH
B3

+ negligible terms

Remark 5. Combining the results of Theorem 1.2, Theorem 2 and Theorem 3,
we have that SHINE is detIND-UE-CCA.

5.3 Proof Challenges in Schemes with Deterministic Updates

In each variant of SHINE all ciphertext components are raised to the epoch key,
so the update mechanism transforms a ciphertext for epoch e to one for e+ 1 by
raising this value to ke+1

ke
. We now highlight the difficulties in creating security

proofs for such ‘single-component’ updatable encryption schemes. Randomness
is used in creation of the initial ciphertext (via N) but updates are completely
deterministic, and thus in any reduction it is necessary to provide consistent
ciphertexts to the adversary (i.e. the N value must be consistent). The (crypto-
graphic) separation gained by using the firewall technique (see Section 3.3 for
discussion and definition) assists with producing (updates of) non-challenge ci-
phertexts, but embedding any challenge value while also providing answers to
the O.Corr queries of the underlying adversary is very challenging.

The regular key insulation technique as introduced by LT18 – where the
reduction constructs one hybrid for each epoch – does not work. Specifically, in
any reduction to a DDH-like assumption, it is not possible to provide a challenge
ciphertext in a left or right sense (to the left of this challenge ciphertext are
of some form, and to the right of this challenge ciphertext are of some other
form) if the underlying adversary asks for tokens around the challenge epoch:

25

deterministic updates mean that tokens will make these ciphertexts of the same
form and this gap will be easily distinguishable.

We counteract this problem by constructing a hybrid argument across in-
sulated regions. This means that in each hybrid, we can embed at one firewall
of the insulated region, and simulate all tokens within that insulated region to
enable answering queries to both O.Upd and O.UpdC̃. The reduction’s distin-
guishing task is thus ensured to be at the boundaries of the insulated regions,
the firewalls, so any (non-trivial) win for the underlying adversary is ensured to
carry through directly to the reduction.

5.4 Proof Method for Confidentiality: Constructing a Hybrid
argument across Insulated Regions

The confidentiality proof of SHINE0 is extendable to MirrorSHINE and OCBSHINE,
so we only show proof method of SHINE0. We now explain how we bound the
advantage of any adversary playing the detIND-UE-CPA game for SHINE0 by the
advantage of a reduction playing DDH.

We apply the firewall technique to set up hybrid games such that in hybrid i,
we embed within the i-th insulated region: this means that to the left of the i-th
insulated region the game responds with the b = 1 case of the detIND-UE-CPA
experiment, and to the right of the i-th insulated region it gives an encryption
of the challenge input message as output, i.e. b = 0. This means we have one
hybrid for each insulated region, moving left-to-right across the epoch space.

We construct a reduction B playing the DDH experiment in hybrid i. Initially,
B guesses the location of the i-th insulated region. If the underlying adversary
has performed a corrupt query within this insulated region that would lead to
the reduction failing, the reduction aborts the game. In the full version [5] we
detail a dedicated algorithm for checking this event.

In particular, within the insulated region, the reduction can simulate chal-
lenge ciphertexts and non-challenge ciphertexts using its DDH tuple. Further-
more, ciphertexts can be moved around within the insulated region by tokens.

Remark 6. We note that the problem of challenge insulation in schemes with de-
terministic updates was also observed independently by Klooß et al. [[18], § B.2].
Their solution (though in the different context of CCA security of UE with cer-
tain properties) is to form a hybrid argument with a hybrid for each epoch, and
essentially guess an epoch r which is the first token ‘after’ the hybrid index that
the adversary has not corrupted, and use the inherent ‘gap’ in the adversary’s
knowledge continuum to replace challenge updates across this gap with encryp-
tions of just one of the challenge messages. It is not clear if this approach would
work for showing detIND-UE-CPA (or IND-ENC-CPA) of SHINE0. We conjecture
that even if it were possible to construct a reduction in this vein, our approach
enables a more direct proof: in particular we do not need to assume specific
additional properties of the UE scheme in question for it to work.

26

5.5 Proof Method for Integrity

The integrity proof of SHINE0 is extendable to MirrorSHINE and OCBSHINE, so
we only show proof method of SHINE0. In the INT-CTXTs game, the challenger
will keep a list of consistent values for ciphertexts (i.e. the underlying permuta-
tion output π(N‖M‖0l)). Suppose C̃ is a forgery attempt sent to the O.Try query
in epoch ẽ. Let c̃ = (C̃)1/kẽ be the underlying permutation output. We claim that
if c̃ is a new value, then the adversary wins the game with negligible probability;
if c̃ is a value that existed before, then the probability that the adversary wins
the game can be bounded by the CDH advantage.

If c̃ is a new value, since π is a random permutation, then the INT-CTXTs chal-
lenger simulates the preimage of c̃ under π to be a random string. So the proba-
bility that this random string ends with a (fixed length) zero block is negligible,
and this carries over to the probability that the adversary wins the INT-CTXTs

game. If c̃ is an already-existing value, and suppose this event happens with
probability p. We construct a reduction playing the CDH game such that it wins
CDH game with probability p · 1

QE(n+1)2 . Similar to the proof method of confi-

dentiality, we construct a reduction playing the CDH experiment by guessing the
location of the firewalls around the challenge epoch. The reduction embeds the
CDH value and simulates the INT-CTXTs game, using any successfully-forged
ciphertext to compute the CDH output to its CDH challenger.

5.6 Implementing the SHINE schemes

In the proofs of Theorem 2 and Theorem 3, we require that π is a random
(unkeyed) permutation which must be followed by a mapping to an appropriate
group for exponentiation by the epoch key. For the permutation we do not need
any specific and strong properties that are provided by modern constructions of
block ciphers and sponges. As far as the proof goes, and in practice, the property
that we want from this permutation is that given a ciphertext and the inverse of
the epoch key ke, the only way to extract useful information about the message
is to apply the inverse permutation π−1. The random permutation model (or
ideal cipher model) is thus the tool we need here to create a simple interface for
this aspect of our proof.

The different members of the SHINE family are suited to different applica-
tion scenarios. The variants SHINE0 and MirrorSHINE are best suited to cases
where messages are of small, fixed size, such as customer credentials (or phone
contact details, to return to the motivating example in the Introduction). For
applications with longer messages (i.e. larger than the size of the exponentiation
group), OCBSHINE is considerably faster and we will assume that these choices
are made in our implementation suggestions. This removes any need for larger
groups in order to encrypt longer messages. Using larger groups would not only
carry a significant performance penalty, but also force us to construct custom
large blocklength block ciphers. Although this can be done (and has been for
RSA groups [14], where our approach would not work), the analysis is tricky.

27

Instantiating the ideal permutation. The message block in SHINE0, MirrorSHINE
and the final message block in OCBSHINE must be appropriately padded to al-
low application of the permutation. The permutation could be deployed using a
variable-output-length sponge construction, a block cipher or an authenticated
encryption scheme with a fixed key and suitably large nonce space. In prac-
tice, we suggest to instantiate the random permutation with a block cipher of
a suitable block length. AES has only 128-bit blocks which does not match the
minimum required size of the group, so we instead suggest block ciphers such as
Threefish, or original Rijndael, allowing block lengths of 256 or 512 bits.

Mapping to elliptic curve group. We would like to instantiate our groups using
elliptic curves. Using modern techniques it is always possible to find a suitable
curve over a field with a size matching the block length of the ideal permutation,
but using standard curves like NIST P-256 or P-521 seems desirable. A standard
approach [19] is to embed bit strings in the X-coordinate of a point as follows.
Note that close to half the field elements are X-coordinates of points. Given a
field of size q, we consider a t-bit block as an integer x0 and find a small integer
u such that u2t +x0 is the X-coordinate of a curve point. If log q− t is between 8
and 9, this will fail to terminate with probability around 2−256 under reasonable
assumptions.

With this approach we could use Threefish with 512-bit blocks together with
NIST P-521 curve. If we want to use 256-bit blocks from Threefish, or original
Rijndael, together with NIST P-256 curve, we can use a standard block cipher
iteration trick [23] to reduce the block length from 256 bits, so that embedding
in the X-coordinate still works, as follows. With block length t+ τ , concatenate
a t-bit block with τ leading zeros and apply the block cipher until the τ leading
bits of the result are all zeros. Discard these zeros to get a t-bit block. This is
fairly cheap as for our purposes 8 or 9 bits will do.

Note that we have constructed an injective embedding of a block into an
elliptic curve, not a bijection as assumed in our proofs. When we sample group
elements in our proof, we must take care to sample points in the image of our
embedding, but this can be done cheaply.

Acknowledgements. This research was funded by the Research Council of Norway
under Project No. 248166. The second author is supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme, grant agreement 802823. We would like to thank Frederik
Armknecht, H̊avard Raddum and Mohsen Toorani for fruitful discussions in the
initial stages of this project, and anonymous reviewers for a number of useful
suggestions for improvement.

References

1. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: Proceedings of NDSS
2005. The Internet Society (2005). https://doi.org/10.1145/1127345.1127346

28

https://doi.org/10.1145/1127345.1127346

2. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. J. Cryptology 21(4), 469–491
(2008). https://doi.org/10.1007/s00145-008-9026-x

3. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomor-
phic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) Pro-
ceedings of CRYPTO 2013 I. LNCS, vol. 8042, pp. 410–428. Springer (2013).
https://doi.org/10.1007/978-3-642-40041-4 23

4. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. IACR Cryptology ePrint Archive, Report 2015/220
(2015), http://eprint.iacr.org/2015/220

5. Boyd, C., Davies, G.T., Gjøsteen, K., Jiang, Y.: Fast and secure updatable
encryption. IACR Cryptology ePrint Archive, Report 2019/1457 (2019), https:
//eprint.iacr.org/2019/1457

6. Cachin, C., Camenisch, J., Freire-Stögbuchner, E., Lehmann, A.: Updatable to-
kenization: Formal definitions and provably secure constructions. In: Kiayias, A.
(ed.) Proceedings of Financial Cryptography and Data Security 2017. LNCS, vol.
10322, pp. 59–75. Springer (2017). https://doi.org/10.1007/978-3-319-70972-7 4

7. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) Proceedings of ACM CCS
2007. pp. 185–194. ACM (2007). https://doi.org/10.1145/1315245.1315269

8. Coron, J., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner, D.A. (ed.) Proceedings of CRYPTO 2008. LNCS,
vol. 5157, pp. 1–20. Springer (2008). https://doi.org/10.1007/978-3-540-85174-5 1

9. Council, P.S.S.: Data security standard (PCI DSS v3.2.1) (2018),
https://www.pcisecuritystandards.org/

10. Davidson, A., Deo, A., Lee, E., Martin, K.: Strong post-compromise secure proxy
re-encryption. In: Jang-Jaccard, J., Guo, F. (eds.) Proceedings of ACISP 2019.
LNCS, vol. 11547, pp. 58–77. Springer (2019). https://doi.org/10.1007/978-3-030-
21548-4 4

11. Diaz-Santiago, S., Rodŕıguez-Henŕıquez, L.M., Chakraborty, D.: A cryptographic
study of tokenization systems. In: Obaidat, M.S., Holzinger, A., Samarati,
P. (eds.) Proceedings of SECRYPT 2014. pp. 393–398. SciTePress (2014).
https://doi.org/10.5220/0005062803930398

12. Everspaugh, A., Paterson, K.G., Ristenpart, T., Scott, S.: Key rotation for authen-
ticated encryption. In: Katz, J., Shacham, H. (eds.) Proceedings of CRYPTO 2017
(III). LNCS, vol. 10403, pp. 98–129. Springer (2017). https://doi.org/10.1007/978-
3-319-63697-9 4

13. Everspaugh, A., Paterson, K.G., Ristenpart, T., Scott, S.: Key rotation for au-
thenticated encryption. IACR Cryptology ePrint Archive, Report 2017/527 (2017),
http://eprint.iacr.org/2017/527

14. Gentry, C., O’Neill, A., Reyzin, L.: A unified framework for trapdoor-permutation-
based sequential aggregate signatures. In: Abdalla, M., Dahab, R. (eds.) Public-
Key Cryptography – PKC 2018. pp. 34–57. Springer International Publishing,
Cham (2018)

15. Jarecki, S., Krawczyk, H., Resch, J.K.: Updatable oblivious key manage-
ment for storage systems. In: Cavallaro, L., Kinder, J., Wang, X., Katz,
J. (eds.) Proceedings of ACM CCS 2019. pp. 379–393. ACM (2019).
https://doi.org/10.1145/3319535.3363196

16. Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., Fu, K.: Plutus: Scalable
secure file sharing on untrusted storage. In: Chase, J. (ed.) Proceedings of FAST
2003. USENIX (2003). https://doi.org/10.5555/1090694.1090698

29

https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/978-3-642-40041-4_23
http://eprint.iacr.org/2015/220
https://eprint.iacr.org/2019/1457
https://eprint.iacr.org/2019/1457
https://doi.org/10.1007/978-3-319-70972-7_4
https://doi.org/10.1145/1315245.1315269
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-030-21548-4_4
https://doi.org/10.1007/978-3-030-21548-4_4
https://doi.org/10.5220/0005062803930398
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-319-63697-9_4
http://eprint.iacr.org/2017/527
https://doi.org/10.1145/3319535.3363196
https://doi.org/10.5555/1090694.1090698

17. Klooß, M., Lehmann, A., Rupp, A.: (R)CCA secure updatable encryp-
tion with integrity protection. In: Ishai, Y., Rijmen, V. (eds.) Proceedings
of EUROCRYPT 2019 (I). LNCS, vol. 11476, pp. 68–99. Springer (2019).
https://doi.org/10.1007/978-3-030-17653-2 3

18. Klooß, M., Lehmann, A., Rupp, A.: (R)CCA secure updatable encryption with
integrity protection. IACR Cryptology ePrint Archive, Report 2019/222 (2019),
https://eprint.iacr.org/2019/222

19. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177),
203–209 (1987)

20. Lee, E.: Improved security notions for proxy re-encryption to enforce access control.
In: Lange, T., Dunkelman, O. (eds.) Proceedings of LATINCRYPT 2017. LNCS,
vol. 11368, pp. 66–85. Springer (2017). https://doi.org/10.1007/978-3-030-25283-
0 4

21. Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise security.
In: Nielsen, J.B., Rijmen, V. (eds.) Proceedings of EUROCRYPT 2018 III. LNCS,
vol. 10822, pp. 685–716. Springer (2018). https://doi.org/10.1007/978-3-319-78372-
7 22

22. Myers, S., Shull, A.: Practical revocation and key rotation. In: Smart, N.P. (ed.)
Proceedings of CT-RSA 2018. LNCS, vol. 10808, pp. 157–178. Springer (2018).
https://doi.org/10.1007/978-3-319-76953-0 9

23. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

24. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode
of operation for efficient authenticated encryption. In: Reiter, M.K., Sama-
rati, P. (eds.) Proceedings of ACM CCS 2001. pp. 196–205. ACM (2001).
https://doi.org/10.1145/501983.502011

25. Sakurai, K., Nishide, T., Syalim, A.: Improved proxy re-encryption scheme for
symmetric key cryptography. In: Proceedings of IWBIS 2017. pp. 105–111. IEEE
(2017). https://doi.org/10.1109/IWBIS.2017.8275110

26. Shannon, C.E.: Communication theory of secrecy systems. Bell system technical
journal 28(4), 656–715 (1949)

30

https://doi.org/10.1007/978-3-030-17653-2_3
https://eprint.iacr.org/2019/222
https://doi.org/10.1007/978-3-030-25283-0_4
https://doi.org/10.1007/978-3-030-25283-0_4
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-319-76953-0_9
https://doi.org/10.1145/501983.502011
https://doi.org/10.1109/IWBIS.2017.8275110

	 Fast and Secure Updatable Encryption

