
Fiat-Shamir for Repeated Squaring with
Applications to PPAD-Hardness and VDFs

Alex Lombardi? and Vinod Vaikuntanathan??

MIT, Cambridge, MA

Abstract. The Fiat-Shamir transform is a methodology for compiling
a (public-coin) interactive proof system for a language L into a non-
interactive argument system for L. Proving security of the Fiat-Shamir
transform in the standard model, especially in the context of succinct
arguments, is largely an unsolved problem. The work of Canetti et al.
(STOC 2019) proved the security of the Fiat-Shamir transform applied to
the Goldwasser-Kalai-Rothblum (STOC 2008) succinct interactive proof
system under a very strong “optimal learning with errors” assumption.
Achieving a similar result under standard assumptions remains an im-
portant open question.
In this work, we consider the problem of compiling a different succinct
interactive proof system: Pietrzak’s proof system (ITCS 2019) for the it-
erated squaring problem. We construct a hash function family (with eval-
uation time roughly 2λ

ε

) that guarantees the soundness of Fiat-Shamir
for this protocol assuming the sub-exponential (2−n

1−ε
)-hardness of the

n-dimensional learning with errors problem. (The latter follows from the
worst-case 2n

1−ε
hardness of lattice problems.) More generally, we extend

the “bad-challenge function” methodology of Canetti et al. for proving
the soundness of Fiat-Shamir to a class of protocols whose bad-challenge
functions are not efficiently computable.
As a corollary (following Choudhuri et al., ePrint 2019 and Ephraim et
al., EUROCRYPT 2020), we construct hard-on-average problems in the
complexity class CLS ⊂ PPAD under the 2λ

ε

-hardness of the repeated
squaring problem and the 2−n

1−ε
-hardness of the learning with errors

problem. Under the additional assumption that the repeated squaring
problem is “inherently sequential”, we also obtain a Verifiable Delay
Function (Boneh et al., EUROCRYPT 2018) in the standard model. Fi-
nally, we give additional PPAD-hardness and VDF instantiations demon-
strating a broader tradeoff between the strength of the repeated squaring
assumption and the strength of the lattice assumption.

? Email: alexjl@mit.edu. Research supported in part by an NDSEG fellowship and
by the second author’s grants listed below.

?? Email: vinodv@mit.edu. Research was supported in part by NSF Grants CNS-
1350619 and CNS-1414119, an NSF-BSF grant CNS-1718161, the Defense Advanced
Research Projects Agency (DARPA) and the U.S. Army Research Office under con-
tracts W911NF-15-C-0226 and W911NF-15-C-0236, an IBM-MIT grant and a Mi-
crosoft Trustworthy and Robust AI grant.

mailto:alexjl@mit.edu
mailto:vinodv@mit.edu

2 Alex Lombardi and Vinod Vaikuntanathan

1 Reference to Full Version

The full version of this paper [LV20] is freely available on the Cryptology ePrint
Archive. We refer the reader to this version for a complete description of our
results and proofs.

2 Introduction

The Fiat-Shamir transform [FS86] is a methodology for compiling a public-coin
interactive proof (or argument) system for a language L into a non-interactive
argument system for L. While originally developed in order to convert 3-message
identification schemes into signature schemes, the methodology readily general-
ized [BR93] to apply to a broad, expressive class of interactive protocols, with
applications including non-interactive zero knowledge for NP [BR93], succinct
non-interactive arguments for NP [Mic00,BCS16], and widely used/practically
efficient signature schemes [Sch89].

However, these constructions and results come with a big caveat: the secu-
rity of the Fiat-Shamir transformation is typically heuristic. While the trans-
formation has been proved secure (in high generality) in the random oracle
model [BR93,PS96,Mic00,BCS16], it is known that some properties that hold
in the random oracle model – including the soundness of Fiat-Shamir for certain
contrived interactive arguments – cannot be instantiated at all in the standard
model [CGH04,DNRS99,Bar01,GK03,BBH+19].

Given these negative results, security in the random oracle model is by no
means the end of the story. Indeed, the question of whether Fiat-Shamir can be
instantiated for any given interactive argument system (and under what compu-
tational assumptions this can be done) has been a major research direction over
the last twenty years [DNRS99,Bar01,GK03,BLV06,CCR16,KRR17,CCRR18,
HL18,CCH+19,PS19,BBH+19,BFJ+19,JJ19,LVW19]. After much recent work,
some positive results are known, falling into three categories (in the decreasing
order of strength of assumptions required):

1. We can compile arbitrary (constant-round, public-coin) interactive proofs un-
der extremely strong assumptions [KRR17,CCRR18] that are non-falsifiable
in the sense of [Nao03].

2. We can compile certain succinct interactive proofs [LFKN92,GKR08] – and
variants of other interactive proofs not captured in item (3) below, such
as [GMW91] – under extremely strong but falsifiable assumptions [CCH+19].

3. We can compile variants of some classical 3-message zero knowledge proof
systems [GMR85,Blu86,FLS99] under standard cryptographic assumptions
[CCH+19,PS19].

Elaborating on item (2) above, what is currently known is that the sum-
check protocol [LFKN92] and the related Goldwasser-Kalai-Rothblum (GKR)
[GKR08] interactive proof system can be compiled under an “optimal security

Fiat-Shamir for Repeated Squaring 3

assumption” related to (secret-key) Regev encryption. Roughly speaking, an op-
timal hardness assumption is the assumption that some search problem cannot
be solved with probability significantly better than repeatedly guessing a solu-
tion at random. This is an extremely strong assumption that (in the context of
Regev encryption) requires careful parameter settings to avoid being trivially
false.

In this work, we focus on improving item (2); in particular, we ask:

Under what computational assumptions can we instantiate Fiat-Shamir
for an interesting succinct interactive proof?

Instead of considering the [LFKN92,GKR08] protocols, we work on compiling
a protocol of Pietrzak [Pie18] for the “repeated-squaring language” [RSW96].
At a high level, Pietrzak constructs a “sumcheck-like” succinct interactive proof
system for the computation fN,g(T) = g2T (mod N) over an RSA modulus N =
pq. Compiling this protocol turns out to have applications related to verifiable
delay functions (VDFs) [BBBF18] and hardness in the complexity class PPAD
[CHK+19a,CHK+19b,EFKP19], which we elaborate on below.

Applications. We consider two apparently different questions: the first is that
of establishing the hardness of the complexity class PPAD (“polynomial parity
arguments on directed graphs”) [Pap94] that captures the hardness of finding
Nash equilibria in bimatrix games [DGP09,CDT09]; the second is that of con-
structing verifiable delay functions (VDFs), a recently introduced cryptographic
primitive [BBBF18] which gives us a way to introduce delays in decentralized
applications such as blockchains.

The Hardness of PPAD. Establishing the hardness of PPAD [Pap94], possibly
under cryptographic assumptions, is a long-standing question in the foundations
of cryptography and computational game theory. After two decades of little
progress on the question, a recent sequence of works [BPR15,HY17,CHK+19a,
CHK+19b,EFKP19] has managed to prove that there are problems in PPAD
(and indeed a smaller complexity class, CLS [DP11]) that are hard (even on
average) under strong cryptographic assumptions. The results so far fall roughly
into two categories, depending on the techniques used.

1. Program Obfuscation. Bitansky, Paneth and Rosen [BPR15], inspired
by an approach outlined in [AKV04], showed that PPAD is hard assum-
ing the existence of subexponentially secure indistinguishability obfusca-
tion (IO) [BGI+01, GGH+13] and one-way functions. This was later im-
proved [GPS16,HY17] to rely on polynomially-secure functional encryption
and to give hardness in CLS ⊂ PPAD.

2. Unambiguously Sound Incrementally Verifiable Computation. The
recent beautiful work [CHK+19a] constructs a hard-on-average CLS in-
stance assuming the existence of a special kind of incrementally verifiable
computation (IVC) [Val08]. Instantiating this approach, they show that

4 Alex Lombardi and Vinod Vaikuntanathan

CLS ⊂ PPAD is hard-on-average if there exists a hash function family
that soundly instantiates the Fiat-Shamir heuristic [FS86] for the sumcheck
interactive proof system for #P [LFKN92]. Two follow-up works [CHK+19b,
EFKP19] show the same conclusion if Fiat-Shamir for Pietrzak’s interactive
proof system [Pie18] can be soundly instantiated (and if the underlying “re-
peated squaring language” is hard).

Regarding the first approach [BPR15,GPS16,HY17], secure indistinguishability
obfuscators have recently been constructed based on the veracity of a num-
ber of non-standard assumptions (see, e.g., [AJL+19,BDGM20]). Regarding the
second approach [CHK+19a,CHK+19b,EFKP19], the hash function can be in-
stantiated in the random oracle model, or under “optimal KDM-security” as-
sumptions [CCRR18,CCH+19].

In summary, despite substantial effort, there are no known constructions of
hard PPAD instances from standard cryptographic assumptions (although see
Section 2.3 for a recent independent work [KPY20] that shows such a result
under a new assumption on bilinear groups).

Verifiable Delay Functions. A Verifiable Delay Function (VDF) [BBBF18] is a
function f with the following properties:

– f can be evaluated in some (moderately large) time T .
– Computing f (on average) requires time close to T , even given a large amount

of parallelism.
– There is a time T + o(T) procedure that computes y = f(x) on an input
x along with a proof π that y = f(x) is computed correctly. This proof
(argument) system should be verifiable in time� T (ideally poly(λ, log T)))
and satisfy standard (computational) soundness.

Since their introduction [BBBF18], there have been a few proposed candidate
VDF constructions [BBBF18,Pie18,Wes19,dFMPS19,EFKP19]. There are cur-
rently no constructions based on standard cryptographic assumptions, but this
is somewhat inherent to the primitive: a secure VDF implies the existence of a
problem which can be solved in time T and also requires (sequential) time close
to T . Nonetheless, one can ask1 whether VDFs can be constructed from “more
standard-looking” assumptions, a question partially answered by [Pie18,Wes19].
In particular, each of their constructions relies on two assumptions:

(1) The T -repeated squaring problem [RSW96] requires sequential time close to
T .

(2) The Fiat-Shamir heuristic for some specific public-coin interactive proof/
argument2 can be soundly instantiated.

1 [BBBF18] explicitly suggested this.
2 The two works [Pie18,Wes19] consider qualitatively different interactive argument
systems. In this work, we focus on the [Pie18] protocol since (1) it has unconditional
soundness and therefore is more conducive to provable Fiat-Shamir compilation, and
(2) it is more closely related to PPAD-hardness.

Fiat-Shamir for Repeated Squaring 5

The techniques used in both the construction of hard PPAD instances and
the construction of VDFs are similar, and so are the underlying assumptions
(this is due to the connection between PPAD and incrementally verifiable com-
putation [Val08, CHK+19a]). In particular, the works of [CHK+19b, EFKP19]
construct hard PPAD (and even CLS) instances under two assumptions:

(1′) The T -repeated squaring problem [RSW96] requires super-polynomial (stan-
dard) time for some T = λω(1).

(2′) The Fiat-Shamir heuristic for a variant of the [Pie18] interactive proof sys-
tem can be soundly instantiated.

The assumption (1) (and its weakening, assumption (1′)) is the foundation of
the Rivest-Shamir-Wagner time-lock puzzle [RSW96] and has been around for
over 20 years. In particular, breaking the RSW assumption has received renewed
cryptanalytic interest recently [Riv99,Fab19].

On the other hand, as previously discussed, the assumptions (2, 2′) are not
well understood. Indeed, our main question about Fiat-Shamir for succinct argu-
ments (if specialized to the [Pie18] protocol) is intimately related to the following
question.

Can we construct hard PPAD instances and VDFs
under more well-studied assumptions?

2.1 Our Results

We show how to instantiate the Fiat-Shamir heuristic for the [Pie18] protocol
under a quantitatively strong (but relatively standard) variant of the Learning
with Errors (LWE) assumption [Reg09]. We give a family of constructions of hash
functions that run in subexponential (or even quasi-polynomial or polynomial)
time, and prove that they soundly instantiate Fiat-Shamir for this protocol under
a sufficiently strong LWE assumption.

More generally, we extend the “bad-challenge function” methodology of
[CCH+19] for proving the soundness of Fiat-Shamir to a class of protocols whose
bad-challenge functions are not efficiently computable. We elaborate on this be-
low in the technical overview (Section 2.4).

As a consequence, we obtain CLS-hardness and VDFs from a pair of quan-
titatively related assumptions on the [RSW96] repeated squaring problem and
on the learning with errors (LWE) problem [Reg09]; the latter can in turn be
based on the worst-case hardness of the (approximate) shortest vector problem
(GapSVP) on lattices. In particular, we can base the hardness of CLS ⊂ PPAD,
as well as the security of a VDF, on the hardness of two relatively well-studied
problems.

Fiat-Shamir for Pietrzak’s Protocol. For our main result, we show that for any
ε > 0, an LWE assumption of quantitative strength 2n1−ε allows for a Fiat-Shamir
instantiation with verification runtime 2Õ(nε) on a repeated squaring instance

6 Alex Lombardi and Vinod Vaikuntanathan

with security parameter λ = O(n logn). Such a result is meaningful as long as
the verification runtime is smaller than the time it takes to solve the repeated
squaring problem; the current best known algorithms for repeated squaring run
in heuristic time 2Õ(λ1/3) = 2Õ(n1/3) [LLMP90].

Here and throughout the paper, we will use (t, δ)-hardness to denote that a
cryptographic problem is hard for t-time algorithms to solve with δ probability
(or distinguishing advantage).

Theorem 2.1. Let ε > 0 be arbitrary. Assume that (decision) LWE is
(

2Õ(n1/2),

2−n1−ε
)
-hard (or alternatively,

(
2Õ(nε), 2−n1−ε

)
-hard for non-uniform algorithms).

Then, there exists a hash family H that soundly instantiates the Fiat-Shamir
heuristic for Pietrzak’s interactive proof system [Pie18]. When the proof sys-
tem is instantiated for repeated squaring over groups of size 2O(λ) with λ =
O(n logn), the hash function h from the family H can be evaluated in time
2Õ(λε).

Under the assumption that (decision) LWE is
(

2Õ(n1/2), 2−
n

logc n

)
-hard for

some constant c > 0 (or alternatively,
(

quasipoly(n), 2−
n

logc n

)
-hard for non-

uniform algorithms), there exists such a hash family H with quasi-polynomial
evaluation time.

Moreover, the LWE assumption that we make falls into the parameter regime
where we know worst-case to average-case reductions [Reg09,BLP+13,PRS17],
so we obtain the following corollary.

Corollary 2.1. The conclusions of Theorem 2.1 (with parameter ε < 1
2) follow

from the assumption that the worst case problem poly(n)-GapSVP for rank n
lattices requires time 2ω(n1−ε). Similarly, the protocol with quasi-polynomial ver-
ification time is sound under the assumption that poly(n)-GapSVP requires time
2

n
log(n)c for some c > 0.

The Shortest Vector Problem (SVP) on integer lattices is a well-studied prob-
lem (see discussion in [Pei16,ADRS15]); despite a substantial effort, all known
poly(n)-approximation algorithms for the problem have exponential run-time
2Ω(n). As a result, our current understanding of the approximate-SVP landscape
is consistent with the following conjecture.

Conjecture 2.1 (Exponential Time Hypothesis for GapSVP). For any fixed γ(n) =
poly(n), the γ(n)-GapSVP problem cannot be solved in time 2o(n).

Assuming Conjecture 2.1, the conclusion of Theorem 2.1 holds for every ε > 0;
moreover, the variant of the Theorem 2.1 protocol with quasi-polynomial time
evaluation is sound as well.

Fiat-Shamir for Repeated Squaring 7

What about polynomial-time verification? Given a non-interactive protocol for
repeated squaring with 2Õ(λε) verification time (or quasi-polynomial evaluation
time), one can always define a new security parameter κ = 2Õ(λε) (or κ =
2log(λ)c) to obtain a protocol with polynomial-time verification. However, this
makes use of complexity leveraging [CGGM00], so (i) this requires making the
assumption that repeated squaring (on instances with security parameter λ) is
hard for poly(κ(λ))-time adversaries, and (ii) the resulting protocol cannot have
security subexponential in κ.

If one does not wish to use complexity leveraging, we give an alternative
construction that has (natively) polynomial-time verification, at the cost of a
stronger LWE assumption.

Theorem 2.2. Let δ > 0 be arbitrary and q(n) = poly(n) be a fixed (sufficiently
large) polynomial in n. Assume that (decision) LWE is

(
poly(n), q−δn

)
-hard for

non-uniform distinguishers (or
(

2Õ(n1/2), q−δn
)
-hard for uniform distinguish-

ers). Then, there exists a hash family H that soundly instantiates the Fiat-
Shamir heuristic for Pietrzak’s interactive proof system [Pie18] with poly(λ) =
poly(n logn)-time verification. More specifically, the verification time is λO(1/δ).

Moreover, this strong LWE assumption still falls into the parameter regime
with a meaningful worst-case to average-case reduction:

Corollary 2.2. The conclusion of Theorem 2.2 follows from the assumption
that worst-case γ(n)-GapSVP (for a fixed γ(n) = poly(n)) cannot be solved in
time no(n) with poly(n) space and poly(n) bits of nonuniform advice (indepen-
dent of the lattice).

Polynomial-space algorithms for GapSVP have themselves been an object of
study for over 25 years [Kan83, KF16, BLS16, ABF+20], but the current best
(poly-space) algorithms for this problem run in time nΩ(εn) for approximation
factor n1/ε. Therefore, under a sufficiently strong (and plausible) worst-case
assumption about GapSVP, we have a polynomial-time Fiat-Shamir compiler
without complexity leveraging.

By combining Theorems 2.1 and 2.2 with the results of [CHK+19b,EFKP19],
we obtain the following construction of hard-on-average CLS instances.

Theorem 2.3. For a constant ε > 0, suppose that

– n-dimensional LWE (with polynomial modulus) is
(

2Õ(n1/2), 2−n1−ε
)
-hard,

and
– The repeated squaring problem on an instance of size 2λ requires 2λε log(λ)ω(1)

time.

Then, there is a hard-on-average problem in CLS ⊂ PPAD. The same conclu-
sion holds if for some c > 0,

– LWE is
(

2Õ(n1/2), 2−
n

log(n)c
)
-hard, and

8 Alex Lombardi and Vinod Vaikuntanathan

– The repeated squaring problem is hard for quasi-polynomial time algorithms.

The same conclusion also holds if for some δ > 0,

– LWE is
(
poly(n), q−δn

)
-hard for non-uniform distinguishers, and

– The repeated squaring problem is hard for polynomial time algorithms.

We obtain Theorem 2.3 by plugging our standard model Fiat-Shamir instan-
tiation into the complexity-theoretic reduction of [CHK+19b].3 For use in this
reduction, our non-interactive protocol must satisfy a stronger security notion
called (adaptive) unambiguous soundness [RRR16,CHK+19a], which we show is
indeed the case.

Note that the two hardness assumptions in the theorem statement are in op-
position to each other. As ε becomes smaller, the repeated squaring assumption
becomes weaker, but the LWE assumption becomes stronger. In particular, we
cannot set ε ≥ 1/3 as there are known algorithms [LLMP90] solving repeated
squaring in (heuristic) time 2Õ(λ1/3).

Additionally, as a direct consequence of Theorem 2.1, we obtain VDFs in the
standard model as long as the underlying repeated squaring problem is suffi-
ciently (sequentially) hard. Recall that the repeated squaring problem [RSW96]
is the computation of the function fN,g(T) = g2T (mod N), for the appropriate
distribution on N = pq and g.

Theorem 2.4. For a constant ε > 0, suppose that

– LWE is
(

2Õ(n1/2), 2−n1−ε
)
-hard, and

– The repeated squaring problem [RSW96] over groups of size 2O(λ) requires
T (1− o(1)) sequential time for T � 2Õ(λε).

Then, the repeated squaring function fN,g can be made into a VDF with verifi-
cation time 2Õ(λε) on groups of size 2O(λ) (with λ = O(n logn)). Similarly, if
for some c > 0,

– LWE is
(

2Õ(n1/2), 2−
n

log(n)c
)
-hard, and

– The repeated squaring problem requires T (1− o(1)) sequential time for T �
2Õ(log(λ)c+1),

Then, fN,g can be made into a VDF with verification time 2Õ(log(λ)c+1). Finally,
if for some δ > 0,

– LWE (with modulus q) is
(
poly(n), q−δn

)
-hard for non-uniform distinguish-

ers, and
– The repeated squaring problem requires T (1 − o(1)) sequential time for all
T = poly(λ).

3 Our protocol differs very slightly from the formulation in [CHK+19b], but the dif-
ference is irrelevant to the reduction.

Fiat-Shamir for Repeated Squaring 9

Then, fN,g can be made into a VDF with λO(1/δ)-time verification.

Theorem 2.4 follows immediately from Theorem 2.1 along with the construc-
tion of Pietrzak [Pie18]. While many of the VDFs in Theorem 2.4 have super-
polynomial verification time (and therefore do not fit the standard definition),
they can be converted into (standard) VDFs with polynomial verification time
via complexity leveraging; however, the leveraged VDFs will only support quasi-
polynomial (respectively, 22poly log logκ) time computation (and soundness of the
VDF will only hold against adversaries running in time quasi-polynomial in the
new security parameter κ). Because of this, we consider the formulation in terms
of super-polynomial time verification to be more informative.

2.2 Comparison with Prior Work

Cryptographic Hardness of PPAD. As described in the introduction, prior works
on the cryptographic hardness of PPAD fall into two categories – those based on
obfuscation and ones based on incrementally verifiable computation (IVC). The
obfuscation-based constructions all make cryptographic assumptions related to
the existence of indistinguishability obfuscation or closely related primitives that
we currently do not know how to instantiate based on well-studied assumptions.
(For the latest in obfuscation technology, we refer the reader to [JLMS19,JLS19].)
We therefore focus on comparing to the previous IVC-based constructions.

– [CHK+19a] constructs hard problems in CLS under the polynomial hard-
ness of #SAT with poly-logarithmically many variables along with the as-
sumption that Fiat-Shamir can be soundly instantiated for the sumcheck pro-
tocol [LFKN92]. The latter follows either in the random oracle model or un-
der the assumption that a LWE-based fully homomorphic encryption scheme
is “optimally circular-secure” [CCH+18,CCH+19] for quasi-polynomial time
adversaries.
While the hardness of #SAT (with this parameter regime) is a weaker
assumption than the subexponential hardness of repeated squaring, the
[CHK+19a] (standard model) result has the drawback of relying on an opti-
mal hardness assumption. Roughly speaking, an optimal hardness assump-
tion is the assumption that some search problem cannot be solved with
probability significantly better than repeatedly guessing a solution at ran-
dom. This is an extremely strong assumption that requires careful parameter
settings to avoid being trivially false.
In contrast, our main LWE assumption is subexponential (concerning dis-
tinguishing advantage 2−n1−ε) and follows from the worst-case hardness of
poly(n)-GapSVP for time 2n1−ε algorithms. Even our most optimistic LWE
assumption (as in Theorem 2.2) follows from a form of worst-case hardness
quantitatively far from the corresponding best known algorithms.

– [CHK+19b,EFKP19] construct hard problems in CLS assuming the poly-
nomial hardness of repeated squaring along with a generic assumption that
the Fiat-Shamir heuristic can be instantiated for round-by-round sound

10 Alex Lombardi and Vinod Vaikuntanathan

(see [CCH+18, CCH+19]) public-coin interactive proofs. The latter can be
instantiated either in the random oracle model, or under the assumption
that Regev encryption (or ElGamal encryption) is “optimally KDM-secure”
for unbounded KDM functions [CCRR18].
The [CCRR18] assumption is (up to minor technical details) stronger than
the optimal security assumption used in [CHK+19a] (because the secu-
rity game additionally involves an unbounded function), so the [CHK+19b,
EFKP19] are mostly framed in the random oracle model. In this work, we
give a new Fiat-Shamir instantiation to plug into the [CHK+19b,EFKP19]
framework.

VDFs. We compare our construction of VDFs to previous constructions [BBBF18,
Pie18,Wes19,dFMPS19,EFKP19].
– [BBBF18] and [dFMPS19] give constructions of VDFs from new crypto-

graphic assumptions related to permutation polynomials and isogenies over
supersingular elliptic curves, respectively. These assumptions are certainly
incomparable to ours, but we rely on the hardness of older, more well-studied
problems.

– [Pie18,EFKP19] have the same basic VDF construction as ours; the main
difference is that they use a random oracle to instantiate their hash function,
while we use a hash function in the standard model and prove its security
under a quantitatively strong variant of LWE.

– [Wes19] also builds a VDF based on the hardness of repeated squaring,
but by building a different interactive argument for computing the func-
tion and assuming that Fiat-Shamir can be instantiated for this argument.
Again, this assumption holds in the random oracle model, but we know of
no instantiation of this VDF in the standard model.

On the negative side, our main VDF (for the natural choice of security param-
eter) has verification time 2Õ(λε); this can be thought of as polynomial-time via
complexity leveraging, but this results in a VDF that is only quasi-polynomially
secure. Alternatively, based on our optimistic LWE assumption, we only obtain
a VDF with large polynomial (i.e. λ1/δ for small δ) verification time. As a result,
we consider our VDF construction to be a proof-of-concept regarding whether
VDFs can be built based on “more standard-looking assumptions”, in particular,
without invoking the random oracle model.

2.3 Additional Related Work
[BG20] constructs hard instances in the complexity class PLS – which contains

CLS and is incomparable to PPAD – under a falsifiable assumption on bilin-
ear maps introduced in [KPY19] (along with the randomized exponential time
hypothesis (ETH)).

In recent independent work, [KPY20] constructs hard-on-average CLS in-
stances under the (quasi-polynomial) [KPY19] assumption. In fact, they give a
protocol for unambiguous and incrementally verifiable computation for all lan-
guages decidable in space-bounded and slightly super-polynomial time.

Fiat-Shamir for Repeated Squaring 11

2.4 Technical Overview

We now discuss the ideas behind our main result, Theorem 2.1, which is an
instantiation of the Fiat-Shamir heuristic for the [Pie18] repeated squaring pro-
tocol. In obtaining this result, we also broaden the class of interactive proofs for
which we have Fiat-Shamir instantiations under standard assumptions.

The main tool used by our construction is a hash function family H that
is correlation intractable [CGH04] for efficiently computable functions [CLW18,
CCH+19]. Recall that a hash family H is correlation intractable for t-time com-
putable functions if for every function f computable time t, the following com-
putational problem is hard: given a description of a hash function h, find an
input x such that h(x) = f(x). We now know [PS19] that such hash families can
be constructed under the LWE assumption.

Correlation Intractability and Fiat-Shamir. In order to describe our result, we
first sketch the [CCH+19] paradigm for using such a hash family H to instantiate
the Fiat-Shamir heuristic.

For simplicity, consider a three-message (public-coin) interactive proof system
(Σ-protocol)

P (x) V (x)
α

β

γ If Check(x, α, β, γ) = 1, accept.

Fig. 1. A Σ-protocol Π.

as well as its corresponding Fiat-Shamir round-reduced protocol ΠFS,H for a
hash family H.

PFS(x, h) VFS(x, h)

α, β := h(α), γ If β = h(α)
and Check(x, α, β, γ) = 1, accept.

Fig. 2. The Protocol ΠFS,H.

Moreover, suppose that this protocol Π satisfies the following soundness
property (sometimes referred to as “special soundness”): for every x 6∈ L and ev-

12 Alex Lombardi and Vinod Vaikuntanathan

ery prover message α, there exists at most one verifier message β∗(x, α) allowing
the prover to cheat.4

It then follows that if a hash family H is correlation intractable for the
function family fx(α) = β∗(x, α), then H instantiates the Fiat-Shamir heuristic
for Π.5 This is because a cheating prover P ∗FS breaking the soundness of ΠFS,H
must find a first message α such that its corresponding challenge h(x, α) is equal
to the bad challenge fx(α) (or else it has no hope of successfully cheating).

Therefore, using the hash family of [PS19], we can (under the LWE assump-
tion) do Fiat-Shamir for any protocol Π whose “bad-challenge function” fx(α)
is computable in polynomial time; this has the important caveat that the com-
plexity of computing the hash function h is at least the complexity of computing
fx(α).

This paradigm seems to run into the following roadblock: intuitively, for
protocols Π of interest, computing fx(α) appears to be hard rather than easy.
For example,

1. For a standard construction of zero-knowledge proofs for NP such as [Blu86],
computing fx(α) involves breaking a cryptographically secure commitment
scheme.

2. For (unconditional) statistical zero knowledge protocols such as the [GMR85]
Quadratic Residuosity protocol, computing fx(α) involves deciding the un-
derlying hard language L.

3. For doubly efficient interactive proofs such as the [GKR08] interactive proof
for logspace-uniform NC, computing fx(α) again involves deciding the un-
derlying language L; in this case, L is in P, but this Fiat-Shamir compiler
would result in a non-interactive argument whose verifier runs in time longer
than it takes to decide L.

The work [CCH+19] resolves issues (1) and (2) in the following way: in both
cases, we can arrange for fx(α) to be efficiently computable given an appropriate
trapdoor : in the case of [Blu86], the commitment scheme can have a trapdoor
allowing for efficient extraction, while in the case of [GMR85], fx(α) is efficient
given an appropriate NP-witness for the complement language L. However, we
have no analogous resolution to (3), which is the setting of interest to us.6

The bad-challenge function of the [Pie18] protocol. With this context in mind,
we now consider the [Pie18] protocol.7 This protocol (like the [GKR08] protocol
4 The prover can cheat on a pair (α, β) if and only if there exists a third message γ
such that (x, α, β, γ) is accepted by the verifier.

5 To obtain adaptive soundness, we modify the protocol to set β = h(x, α) and instead
consider the function f(x, α) = β∗(x, α).

6 The only current known Fiat-Shamir instantiation for the [GKR08] protocol utilizes
a compact correlation intractable hash family (in the sense that the hash evaluation
time is independent of the time to compute the correlation function/relation) which
we only know how to build from an optimal security assumption [CCH+19].

7 For this overview, we ignore the details of working over the group QRN ⊂ Z×N and
the corresponding technical challenges.

Fiat-Shamir for Repeated Squaring 13

and the related sumcheck protocol [LFKN92]) is not a constant-round protocol,
but is instead composed of up to polynomially many “reduction steps” of the
following form.

– The prover, given (N, g, T), computes and sends u = g2T/2 , the (supposed)
“halfway point” of the computation.

– The message u indicates (to the verifier) two derivative claims: u = g2T/2

and h = u2T/2 .
– The verifier then challenges the prover to prove a random linear combination

of the two statements: h · ur = (u · gr)2T/2 .

Soundness can then be analyzed in a “round-by-round” fashion [CCH+19]: if
you start with a false statement (or if you start with a true statement but send
an incorrect value ũ 6= u), there is at most one8 bad challenge r∗ resulting in a
recursive call on a true statement.

To invoke the [CCH+19] paradigm, we ask: how efficiently can we compute
the function f(N,T, g, h, u) = r∗? To answer this question, let g̃ denote a fixed
group element of order φ(N)/2 such that g, h, u ∈ 〈g̃〉. Letting γ, η, ω denote the
discrete logs of g, h, and u in base g̃, we see that (for corresponding challenge r)
the statement (N,T/2, g′, h′) is true if and only if

η + r · ω ≡ 2T/2(ω + r · γ) (mod φ(N)/2).

As a result, we see that r can be efficiently computed from the following infor-
mation:

– The discrete logarithms η, ω, γ, and
– The factorization of N .

While the factorization of N can be known a priori in the security reduction
(similar to prior work), the discrete logarithms depend on the prover message u
and (adaptively chosen) statement (g, h). We conclude that the “bottleneck” for
computing f is the problem computing a constant number of discrete logarithms
in Z×p .

Since computing discrete logarithms over Z×p is believed to be hard, and is
not known to have a trapdoor, it appears unlikely that this approach would allow
us to rely on the polynomial hardness of the [PS19] hash family. However, it is
plausible that we could use a variant of the [PS19] hash family supporting super-
polynomial time computation (proven secure under a super-polynomial variant
of LWE) to capture the complexity of computing discrete logarithms.

Unfortunately, the naive version of this approach fails: the best known run-
time bounds9 for computing discrete logarithms over Z×p for p = 2O(λ) are of the
8 To guarantee this property, r is selected from a range smaller than either of the
prime factors of N .

9 See [JOP14] for a detailed discussion of the state-of-the-art on discrete logarithm
algorithms.

14 Alex Lombardi and Vinod Vaikuntanathan

form 2Õ(λ1/2) [Adl79,Pom87], and the best known heuristic algorithms (plausi-
bly) run in time 2Õ(λ1/3) [LLMP90]. If we were to instantiate the [PS19] hash
family to support functions of this complexity, we could prove the soundness of
Fiat-Shamir for the [Pie18] protocol, but the resulting non-interactive protocol
would run in time 2Õ(λ1/2) (or in time 2Õ(λ1/3) with a heuristic security proof);
these are the same runtime bounds for the best known algorithms for solving the
repeated squaring problem [Dix81,Pom87,LLMP90] (via factoring the modulus
N). In other words, the verifier would run in enough time to be able to solve
the repeated squaring problem itself. This is a very similar problem to issue (3)
regarding the [LFKN92,GKR08] protocols, so we appear to be stuck.

Computing bad-challenge functions with low probability. We overcome the above
problem with the following idea:

What if we give up on computing the bad-challenge function exactly, and
instead use a faster randomized algorithm with low success probability?

In other words, we consider a new variant of the [CCH+19] framework for in-
stantiating Fiat-Shamir in the standard model, where:

– An interactive protocol Π is characterized by some bad-challenge function
f ,

– f can be computed by a time t algorithm (or size s circuit) with some small
but non-trivial probability δ.

– The hash function H is assumed to be correlation intractable – with suffi-
ciently strong quantitative security – against adversaries running in time t
(or with size s).

Then, it turns out that the resulting non-interactive protocol is sound! Infor-
mally, this is because if f is “approximated” by a time t-computable randomized
function gr (in the sense that gr(x) and f(x) agree with probability δ on a
worst-case input), then an adversary breaking the protocol ΠFS,H will break the
correlation intractability of H with respect to g (rather than f) with proba-
bility δ. More formally, a cheating prover P ∗FS yields an algorithm that breaks
the correlation intractability of H with respect to f , which in turn breaks the
correlation intractability of H with respect to gr (for hard-coded randomness
r) with probability δ · 1

poly(λ) (since gr and f agree on an arbitrary input with
probability at least δ). Therefore, if H is (t, δ · λ−ω(1))-secure, we conclude that
ΠFS,H is sound.

This modification allows us to instantiate Fiat-Shamir for the [Pie18] proto-
col. In particular, we make use of folklore10 [CCRR18] preprocessing algorithms
10 We are not aware of prior work considering this particular time-probability trade-

off, but the necessary smooth number bounds appear in [CEP83,Gra08]. Quite curi-
ously, [CCRR18] considers the poly(λ)-time variant of this algorithm to give evidence
against the optimal hardness of computing discrete logarithms over Z×p . That was
bad for them, but for us, the non-optimal hardness is a feature!

Fiat-Shamir for Repeated Squaring 15

for the discrete logarithm problem over Z×p that run in time 2λε and have suc-
cess probability 2−λ1−ε . More specifically, we consider a computation of the bad
challenge function f(N,T, g, h, u) in the following model:

– Hard-code (1) the factorization N = pq, (2) an appropriately chosen group
element g̃ of high order, and (3) 2Õ(λε) discrete logarithms (of fixed numbers
modulo p and modulo q, respectively) in base g̃.

– Compute a (constant-size) collection of worst-case discrete logarithms by
the standard index calculus algorithm [Adl79] in time 2Õ(λε) with success
probability 2−λ1−ε .

This can be thought of as either a non-uniform 2Õ(λε)-time algorithm, or
a 2Õ(λε)-time algorithm with 2Õ(λ1/2)-time preprocessing.11 By using this al-
gorithm for the computation of the bad-challenge function f(N,T, g, h, u), we
obtain a Fiat-Shamir instantiation with verification time 2Õ(λε) – a meaningful
result as long as this runtime does not allow for solving the repeated squaring
problem. Finally, the required assumption is that the [PS19] hash function is cor-
relation intractable for adversaries that succeed with probability 2−λ1−ε , which
holds under the claimed LWE assumption with parameters (n, q) for λ = n log q.

Generalizations. In this overview, we focused specifically on the [Pie18] protocol,
but our techniques give general blueprints for obtaining Fiat-Shamir instantia-
tions. We believe these blueprints may be useful in future work, so we state them
(as “meta-theorems”) explicitly here:

– Fiat-Shamir for protocols with low success probability bad-challenge
functions. Our approach shows that if an interactive protocol Π is governed
by a bad-challenge function f that is computable by an efficient randomized
algorithm that is only correct with (potentially very) low probability, it is
still possible to instantiate Fiat-Shamir for Π under a sufficiently strong
LWE assumption.

– Fiat-Shamir for discrete-log based bad-challenge functions. Our ap-
proach also shows that if a protocol Π is governed by a bad-challenge func-
tion f that is efficiently computable given oracle access12 to a discrete log
solver (over Z×p for p ≤ 2O(λ)), then it is possible to instantiate Fiat-Shamir
for Π under a sufficiently strong LWE assumption.

We formalize both of these “meta-theorems” in the language of correlation
intractability (rather than Fiat-Shamir) in the full version of this paper.

11 This second variant allows for an invocation of correlation intractability against
uniform adversaries in the security proof.

12 Crucially, we must also bound the number of calls that can be made to the oracle
to be at most poly log(λ) to get a meaningful result.

16 Alex Lombardi and Vinod Vaikuntanathan

References

ABF+20. Martin Albrecht, Shi Bai, Pierre-Alain Fouque, Paul Kirchner, Damien
Stehlé, and Weiqiang Wen. Faster enumeration-based lattice reduction:
Root hermite factor k1/(2k) in time kk/8+o(k). In CRYPTO, 2020.

Adl79. Leonard Adleman. A subexponential algorithm for the discrete logarithm
problem with applications to cryptography. In 20th Annual Symposium on
Foundations of Computer Science (SFCS 1979), pages 55–60. IEEE, 1979.

ADRS15. Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-
Davidowitz. Solving the shortest vector problem in 2n time using discrete
gaussian sampling. In STOC 2015, pages 733–742, 2015.

AJL+19. Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit
Sahai. Indistinguishability obfuscation without multilinear maps: New
paradigms via low degree weak pseudorandomness and security amplifi-
cation. In CRYPTO, 2019.

AKV04. Tim Abbot, Daniel Kane, and Paul Valiant. On algorithms for nash equi-
libria. Unpublished manuscript, page 1, 2004.

Bar01. Boaz Barak. How to go beyond the black-box simulation barrier. In
Proceedings 42nd IEEE Symposium on Foundations of Computer Science,
pages 106–115. IEEE, 2001.

BBBF18. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable
delay functions. In Annual International Cryptology Conference (EURO-
CRYPT 2018), pages 757–788. Springer, 2018.

BBH+19. James Bartusek, Liron Bronfman, Justin Holmgren, Fermi Ma, and Ron D
Rothblum. On the (in) security of kilian-based snargs. In TCC, pages
522–551. Springer, 2019.

BCS16. Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive or-
acle proofs. In Theory of Cryptography Conference, pages 31–60. Springer,
2016.

BDGM20. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Can-
didate io from homomorphic encryption schemes. In EUROCRYPT 2020,
pages 79–109. Springer, 2020.

BFJ+19. Saikrishna Badrinarayan, Rex Fernando, Aayush Jain, Dakshita Khurana,
and Amit Sahai. Statistical zap arguments. In EUROCRYPT 2020, 2019.

BG20. Nir Bitansky and Idan Gerichter. On the cryptographic hardness of local
search. In 11th Innovations in Theoretical Computer Science Conference
(ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

BGI+01. Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit
Sahai, Salil Vadhan, and Ke Yang. On the (im) possibility of obfuscating
programs. In Annual International Cryptology Conference – CRYPTO
2001, pages 1–18. Springer, 2001. Journal version appears in JACM 2012.

BLP+13. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. Classical hardness of learning with errors. In STOC 2013, pages
575–584. ACM, 2013.

BLS16. Shi Bai, Thijs Laarhoven, and Damien Stehlé. Tuple lattice sieving. LMS
Journal of Computation and Mathematics, 19(A):146–162, 2016.

Blu86. Manuel Blum. How to prove a theorem so no one else can claim it. In
Proceedings of the International Congress of Mathematicians, volume 1,
page 2. Citeseer, 1986.

Fiat-Shamir for Repeated Squaring 17

BLV06. Boaz Barak, Yehuda Lindell, and Salil Vadhan. Lower bounds for non-
black-box zero knowledge. Journal of Computer and System Sciences,
72(2):321–391, 2006.

BPR15. Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hard-
ness of finding a nash equilibrium. In FOCS 2015. IEEE, 2015.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proceedings of the 1st ACM
conference on Computer and communications security, pages 62–73. ACM,
1993.

CCH+18. Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Roth-
blum, and Ron D. Rothblum. Fiat-shamir from simpler assumptions. IACR
Cryptology ePrint Archive, 2018: 1004, 2018.

CCH+19. Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Roth-
blum, Ron D. Rothblum, and Daniel Wichs. Fiat-shamir: From practice
to theory. In STOC 2019. ACM, 2019. Merge of [CCH+18] and [CLW18].

CCR16. Ran Canetti, Yilei Chen, and Leonid Reyzin. On the correlation in-
tractability of obfuscated pseudorandom functions. In Theory of Cryp-
tography Conference, pages 389–415. Springer, 2016.

CCRR18. Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D Rothblum. Fiat-
Shamir and correlation intractability from strong KDM-secure encryption.
In EUROCRYPT 2018, pages 91–122. Springer, 2018.

CDT09. Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity
of computing two-player nash equilibria. Journal of the ACM (JACM),
56(3):1–57, 2009.

CEP83. E Rodney Canfield, Paul Erdös, and Carl Pomerance. On a problem of op-
penheim concerning “factorisatio numerorum”. Journal of Number Theory,
17(1):1–28, 1983.

CGGM00. Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Reset-
table zero-knowledge. In STOC 2000, pages 235–244, 2000.

CGH04. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-
ology, revisited. Journal of the ACM (JACM), 51(4):557–594, 2004.

CHK+19a. Arka Rai Choudhuri, Pavel Hubáček, Chethan Kamath, Krzysztof
Pietrzak, Alon Rosen, and Guy N Rothblum. Finding a nash equilibrium
is no easier than breaking fiat-shamir. In STOC 2019, 2019.

CHK+19b. Arka Rai Choudhuri, Pavel Hubácek, Chethan Kamath, Krzysztof
Pietrzak, Alon Rosen, and Guy N Rothblum. Ppad-hardness via iter-
ated squaring modulo a composite. Cryptology ePrint Archive, Report
2019/667, 2019., 2019.

CLW18. Ran Canetti, Alex Lombardi, and Daniel Wichs. Fiat-shamir: From prac-
tice to theory, part ii (non-interactive zero knowledge and correlation in-
tractability from circular-secure fhe). IACR Cryptology ePrint Archive,
2018: 1248, 2018.

dFMPS19. Luca de Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Ver-
ifiable delay functions from supersingular isogenies and pairings. In In-
ternational Conference on the Theory and Application of Cryptology and
Information Security, pages 248–277. Springer, 2019.

DGP09. Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadim-
itriou. The complexity of computing a nash equilibrium. SIAM Journal
on Computing, 39(1):195–259, 2009.

Dix81. John D Dixon. Asymptotically fast factorization of integers. Mathematics
of computation, 36(153):255–260, 1981.

18 Alex Lombardi and Vinod Vaikuntanathan

DNRS99. Cynthia Dwork, Moni Naor, Omer Reingold, and Larry Stockmeyer. Magic
functions. In FOCS, 1999.

DP11. Constantinos Daskalakis and Christos Papadimitriou. Continuous local
search. In SODA 2011, pages 790–804. SIAM, 2011.

EFKP19. Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Con-
tinuous verifiable delay functions. In EUROCRYPT 2020, 2019.

Fab19. After 20 years, someone finally solved this mit puzzle, 2019.
FLS99. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero

knowledge proofs under general assumptions. SIAM Journal on Comput-
ing, 29(1):1–28, 1999.

FS86. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO 1986, pages 186–194.
Springer, 1986.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate Indistinguishability Obfuscation and Func-
tional Encryption for all Circuits. In FOCS 2013, 2013.

GK03. Shafi Goldwasser and Yael Tauman Kalai. On the (in) security of the
Fiat-Shamir paradigm. In FOCS 2003, pages 102–113. IEEE, 2003.

GKR08. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating
computation: interactive proofs for muggles. In STOC 2008, pages 113–
122. ACM, 2008.

GMR85. S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of
interactive proof-systems. In STOC 1985, pages 291–304. ACM, 1985.

GMW91. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield noth-
ing but their validity or all languages in NP have zero-knowledge proof
systems. Journal of the ACM (JACM), 38(3):690–728, 1991.

GPS16. Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting
the cryptographic hardness of finding a nash equilibrium. In CRYPTO,
pages 579–604. Springer, 2016.

Gra08. Andrew Granville. Smooth numbers: computational number theory and
beyond. Algorithmic number theory: lattices, number fields, curves and
cryptography, 44:267–323, 2008.

HL18. Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong
one-way functions. In FOCS 2018, 2018.

HY17. Pavel Hubáček and Eylon Yogev. Hardness of continuous local search:
Query complexity and cryptographic lower bounds. In SODA 2017, pages
1352–1371. SIAM, 2017.

JJ19. Abhishek Jain and Zhengzhong Jin. Statistical zap arguments from quasi-
polynomial lwe. In EUROCRYPT 2020, 2019.

JLMS19. Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage
hardness of constant-degree expanding polynomials over r to build io. In
Proceedings of EUROCRYPT 2019, 2019.

JLS19. Aayush Jain, Huijia Lin, and Amit Sahai. Simplifying constructions and
assumptions for iO. Cryptology ePrint Archive, Report 2019/1252, 2019.

JOP14. Antoine Joux, Andrew Odlyzko, and Cécile Pierrot. The past, evolving
present, and future of the discrete logarithm. In Open Problems in Math-
ematics and Computational Science, pages 5–36. Springer, 2014.

Kan83. Ravi Kannan. Improved algorithms for integer programming and related
lattice problems. In STOC 1983, pages 193–206, 1983.

KF16. Paul Kirchner and Pierre-Alain Fouque. Time-memory trade-off for lattice
enumeration in a ball. IACR Cryptology ePrint Archive, 2016:222, 2016.

Fiat-Shamir for Repeated Squaring 19

KPY19. Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate com-
putations publicly. In STOC 2019, pages 1115–1124, 2019.

KPY20. Yael Kalai, Omer Paneth, and Lisa Yang. Ppad-hardness and delegation
with unambiguous and updatable proofs. In CRYPTO 2020, 2020.

KRR17. Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From
obfuscation to the security of fiat-shamir for proofs. In CRYPTO, pages
224–251. Springer, 2017.

LFKN92. Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Al-
gebraic methods for interactive proof systems. J. ACM, 39(4):859–868,
1992.

LLMP90. Arjen K Lenstra, Hendrik W Lenstra Jr, Mark S Manasse, and John M
Pollard. The number field sieve. In STOC 1990, pages 564–572, 1990.

LV20. Alex Lombardi and Vinod Vaikuntanathan. Fiat-shamir for repeated
squaring with applications to ppad-hardness and vdfs. IACR Cryptol-
ogy ePrint Archive, Report 2020/772, 2020. https://eprint.iacr.org/
2020/772.

LVW19. Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. 2-message pub-
licly verifiable wi from (subexponential) lwe. Cryptology ePrint Archive,
Report 2019/808, 2019.

Mic00. Silvio Micali. Computationally sound proofs. SIAM Journal on Computing,
30(4):1253–1298, 2000.

Nao03. Moni Naor. On cryptographic assumptions and challenges. In An-
nual International Cryptology Conference – CRYPTO 2003, pages 96–109.
Springer, 2003.

Pap94. Christos H Papadimitriou. On the complexity of the parity argument
and other inefficient proofs of existence. Journal of Computer and system
Sciences, 48(3):498–532, 1994.

Pei16. Chris Peikert. A decade of lattice cryptography. Foundations and Trends
in Theoretical Computer Science, 10(4):283–424, 2016.

Pie18. Krzysztof Pietrzak. Simple verifiable delay functions. In ITCS 2019, 2018.
Pom87. Carl Pomerance. Fast, rigorous factorization and discrete logarithm algo-

rithms. In Discrete algorithms and complexity, pages 119–143. Elsevier,
1987.

PRS17. Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudoran-
domness of ring-lwe for any ring and modulus. In STOC 2017, pages
461–473. ACM, 2017.

PS96. David Pointcheval and Jacques Stern. Security proofs for signature
schemes. In EUROCRYPT, pages 387–398. Springer, 1996.

PS19. Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for np
from (plain) learning with errors. In CRYPTO 2019, 2019.

Reg09. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM), 56(6):34, 2009.

Riv99. Description of the lcs35 time capsule crypto-puzzle, 1999.
RRR16. Omer Reingold, Guy N Rothblum, and Ron D Rothblum. Constant-round

interactive proofs for delegating computation. SIAM Journal on Comput-
ing, (0):STOC16–255, 2016.

RSW96. Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles
and timed-release crypto. 1996.

Sch89. Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In CRYPTO 1989, pages 239–252. Springer, 1989.

https://eprint.iacr.org/2020/772
https://eprint.iacr.org/2020/772

20 Alex Lombardi and Vinod Vaikuntanathan

Val08. Paul Valiant. Incrementally verifiable computation or proofs of knowledge
imply time/space efficiency. In TCC, pages 1–18. Springer, 2008.

Wes19. Benjamin Wesolowski. Efficient verifiable delay functions. In EURO-
CRYPT 2019, pages 379–407. Springer, 2019.

	Fiat-Shamir for Repeated Squaring with Applications to PPAD-Hardness and VDFs

