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Abstract. Efficiently sampling a quantum state that is hard to distin-
guish from a truly random quantum state is an elementary task in quan-
tum information theory that has both computational and physical uses.
This is often referred to as pseudorandom (quantum) state generator, or
PRS generator for short.
In existing constructions of PRS generators, security scales with the num-
ber of qubits in the states, i.e. the (statistical) security parameter for an
n-qubit PRS is roughly n. Perhaps counter-intuitively, n-qubit PRS are
not known to imply k-qubit PRS even for k < n. Therefore the question
of scalability for PRS was thus far open: is it possible to construct n-
qubit PRS generators with security parameter λ for all n, λ. Indeed, we
believe that PRS with tiny (even constant) n and large λ can be quite
useful.
We resolve the problem in this work, showing that any quantum-secure
one-way function implies scalable PRS. We follow the paradigm of first
showing a statistically secure construction when given oracle access to
a random function, and then replacing the random function with a
quantum-secure (classical) pseudorandom function to achieve computa-
tional security. However, our methods deviate significantly from prior
works since scalable pseudorandom states require randomizing the am-
plitudes of the quantum state, and not just the phase as in all prior
works. We show how to achieve this using Gaussian sampling.

1 Introduction

Quantum mechanics asserts that the state of a physical system is characterized
by a vector in complex Hilbert space, whose dimension corresponds to the num-
ber of degrees of freedom of the system. Specifically, a system with 2n possible
degrees of freedom (such as an n-qubit system, the quantum analogue to an n
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bit system) is represented as a unit vector over C2n . The ability to sample a
random state of a system is a fundamental task when attempting to provide a
computational description of the physical world.

Since the description length of a quantum state is infinite (and very long even
when taken to a finite precision), relaxed notions for random state sampling are
considered in the literature. Most commonly (and in this work) we consider
restricting the number of copies of the sampled state that are given to the ad-
versary.3 The notion of quantum t-designs [AE07] considers computationally un-
bounded adversaries that are given t copies of the sampled state, and the require-
ment is that this input is (statistically) indistinguishable from t copies of a true
random state. The resources of generating t-designs scale at least linearly with t,
and therefore if efficient generation is sought, t designs can only be constructed
for polynomial t.4 Recently, a computational variant known as Pseudorandom
Quantum State (PRS) was proposed by Ji, Liu and Song [JLS18]. In a PRS,
the adversary is allowed to request an a-priori unbounded polynomial number of
samples t, but the guarantee of indistinguishability only holds against computa-
tionally bounded adversaries. PRS have applications in quantum-cryptography
(e.g. quantum money [JLS18]) and computational physics (e.g. simulation of
thermalized quantum states [PSW06]).

It was shown in [JLS18,BS19] that PRS can be constructed from any quantum-
secure one-way function. The design paradigm in both works is as follows. First,
assume you are given (quantum) oracle access to a (classical) random function,
and show how to efficiently construct a PRS which is secure even against com-
putationally unbounded adversaries, a notion that [BS19] calls Asymptotically
Random State (ARS). Then, replace the random function with a post-quantum
pseudorandom function (PRF) to obtain computational security. Since only a
fixed number of calls to the PRF is required in order to generate each PRS copy,
this paradigm also leads to new constructions of t-designs, as observed in [BS19].

The previous works [JLS18,BS19] showed how to construct an n-qubit PRS,
which is secure against any poly(n) time adversary. To be more precise, they
constructed ARS whose distinguishing advantage is bounded by 4t2 · 2−n, and
converted it into a PRS using a PRF as described above. We can therefore say
that the statistical security parameter of the scheme is (essentially) n, and there
is an additional computational security parameter that comes from the hardness
of the PRF. Indeed, a security parameter of n seems quite sufficient since the
complexity of the construction is poly(n) so it is possible to choose n as large as
needed in order to provide sufficient security. Alas it is not possible to convert
an n-qubit state generator into one that produces a random state over a smaller

3 Recall that in the quantum setting, due to the no-cloning property, providing ad-
ditional copies of the same state allows to recover more information about it. In
utmost generality, any additional copy provides additional information, and a com-
plete recovery of a quantum state requires infinitely many copies.

4 As usual, we use the notion of security parameter λ that indicates the power of honest
parties and of adversaries. We assume that honest parties run in time poly(λ) for
a fixed polynomial, whereas the advantage of the adversary needs to scale super-
polynomially, and preferably exponentially, with λ.
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number of qubits, say k < n. This may be quite surprising as one would imagine
that we can simply generate an n-qubit state, and just take its k-qubit prefix.
However, recall that the n-qubits are in superposition, and taking a prefix is
equivalent to measurement of the remaining (n − k) qubits. For each of the t
copies, this measurement has a different outcome and therefore each of the t
copies will produce a different k-qubit states, as opposed to t copies of the same
state as we wanted.

This peculiar state of affairs means that prior to this work it was not known,
for example, how to construct ARS/PRS of n qubits, but with adversarial ad-
vantage bounded by 2−2n. This issue is also meaningful when considering the
concrete (non-asymptotic) security guarantees of PRS, where we wish to obtain
for example 128 bits of security against an adversary that obtains at most 220

copies of a PRS over 70 qubits.

This Work: Scalable ARS/PRS. In this light, it is desirable to introduce
ARS/PRS constructions where the security parameter is in fact a parameter
which is tunable independently of the length of the generated state. We call
this notion scalable ARS/PRS. We notice that the approaches of [JLS18,BS19]
are inherently not scalable since they can only generate states in which all
computational-basis elements have the same amplitude, and the randomness
only effects the phase. Such vectors are inherently distinguishable from uniform
unless the dimension is very large (hence their dependence between length and
security). In this work, we present new techniques for constructing ARS/PRS
and in particular present a scalable construction under the same cryptographic
assumptions as previous works.

1.1 Our Results

Our main technical result, as in all previous works, is concerned with construct-
ing an ARS generator which is efficient given oracle access to a random function.5

Lemma 1.1 (Main Technical Lemma). There exists a scalable ARS gener-
ator.

Furthermore, for every length n of a quantum state and security parameter
λ, running the generator t times (for any t) produces an output distribution that
is O

(
t
eλ

)
-indistinguishable from t copies of a random quantum state of n qubits.

We note that in previous works that construct ARS generators [JLS18,BS19]
the dependence on t in the bound on the trace distance is quadratic, that is, pre-

vious ARS generators are known to achieve a bound of t2

2n on the trace distance
between t-copies of the ARS and a random quantum (n-qubit) state, whereas in
this work the trace distance bound only scales up linearly with t.

As immediate corollaries and similarly to [JLS18, BS19], we derive the exis-
tence of a scalable PRS generator (assuming post-quantum one-way functions)

5 Note that this is not the quantum random oracle model since the random oracle is
“private” and the adversary does not get access to it.
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and scalable t-design generators (unconditionally). Unlike scalable PRS gener-
ators, scalable state t-design generators were known to exist before this work,
however their depth was known to scale up linearly with t (and polynomially in
n), and in our construction the depth scales logarithmically with t (and polyno-
mially in n, λ).

Corollary 1.2. If post-quantum one-way functions exist, then scalable PRS gen-
erators exist.

Corollary 1.3. For any polynomial t(·) : N → N, scalable state t(λ)-design
generators exist where the circuit depth is poly(n, λ, log t).

Our ARS construction requires a random oracle with n bits of input (where
n is the length of the generated state) and poly(λ) bits of output, it therefore
follows that if n = O(log λ), then it is possible to instantiate the construction
with a completely random string of length 2n · poly(λ) = poly(λ), and obtain
statistically secure PRS. We view this consequence as not very surprising in
hindsight.

Recently Alagic, Majenz and Russell [AMR19] proposed the notion of random
state simulators. Simulators are stateful, and their local state grows with the
number of copies t, however, there is no a-priori bound on the number of copies
that the simulator can produce, and the guarantee is information-theoretic rather
than computational. One can observe that a scalable ARS generator also implies
efficient state simulators, by using the random-oracle simulation technique of
Zhandry [Zha19]. The state simulators of [AMR19] follow a different approach,
which is not known to imply ARS, and achieve simulators with perfect security
(and thus straightforwardly scalable), but our ARS provides a different avenue
for scalable random quantum state simulators as well.

1.2 Paper Organization

We provide a detailed technical overview of our results in Section 2. Preliminaries
appear in Section 3, and in particular we formally state the derivation of the
corollaries from the main theorem (which were implicit in previous work) in
Section 3.3. Our technical results are presented in the following two sections.
In Section 4 we present quantum information-theoretic tools which are required
for our construction but may also find other uses. Then Section 5 contains our
actual construction.
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2 Technical Overview

We now provide a technical outline of how we achieve our main result in Lemma 1.1.
Deriving the corollaries is straightforward using known techniques.6

As Lemma 1.1 states, we design an algorithm that has oracle access to a
random function f , takes as input a bit length n and a security parameter λ,
runs in time poly(n, λ), and produces a quantum state over n-qubits |ψf,n,λ〉
(note that even though our algorithm is randomized, it can either output the
state |ψf,n,λ〉 or ⊥ and will never output the “wrong” state). It furthermore holds
that the distribution that samples a random function f and outputs |ψf,n,λ〉⊗t
(i.e. t copies of the state |ψf,n,λ〉), is within trace distance at most poly(t)/2λ

from the distribution that produces t copies of a truly randomly sampled n-qubit
state.

We recall the standard Dirac notation for vectors in Hilbert space. An n-
qubit state is generically denoted by a unit vector in C2n of the form |α〉 =∑
x∈{0,1}n αx|x〉. Throughout this overview we wish to refer to normalized as

well as non-normalized vectors. We will use the convention that a vector |α〉 is
not necessarily normalized unless explicitly noted that it represents a quantum
state (or a unit vector), and will denote its normalization

|α̂〉 =
∑

x∈{0,1}n
α̂x|x〉 :=

1√
〈α|α〉

∑
x∈{0,1}n

αx|x〉 ,

where 〈α|α〉 =
∑
x |αx|

2
.

As explained above, prior works generated quantum states where in the stan-
dard basis all coefficients had the same amplitude, i.e. their ARS could be rep-
resented by |α〉 s.t. |αx| = 1 for all x. We abandon this approach, which as we
explained cannot lead to a scalable ARS construction. Instead, we will show how
to interpret a random function f as an implicit representation of a random unit
vector in C2n . Moreover, we want this interpretation to be locally computable in
the sense that the value αx only depends on f(x). Our approach, therefore, is
more direct and also more involved than the approach taken in previous works,
since we will try to sample from a space that most closely resembles the uniform
distribution over quantum states.

2.1 Our Approach: Implicit Random Gaussian Vector

Assume that we had an efficiently computable classical function g(·) s.t. if we
set vx = g(f(x)) and consider the vector |v〉 =

∑
x vx|x〉, then the distribution

on |v〉 (induced by sampling the function f randomly) is spherically symmetric,
i.e. invariant to unitary transformations (“rotations” in C2n). In this case, the
normalized vector |v̂〉 is a uniform unit vector. In other words, we will show how

6 We note that this standard transition from ARS with oracle to PRS and to t-designs
was not formally stated in its generic form in previous works. In this work we also
provide the generic derivations in Section 3.3.
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to use the random function f as an implicit representation of a vector |v〉 such
that for all x, vx can be efficiently locally computed given x (and oracle access
to f).

Our solution, therefore, needs to address two challenges. The first is to prop-
erly define a locally efficiently computable function g with the desirable prop-
erties. The second is to efficiently generate the quantum state |v̂〉 given oracle
access to the values vx. Let us describe how we handle each one of these chal-
lenges at a high level, and then expand on the parts that contain the bulk of
technical novelty.

First Technique: Multivariate Gaussian Sampling. For the first challenge,
we use the multivariate Gaussian distribution, whose spherical symmetry has
proven useful for many applications in the literature. Our function g will simply
be a Gaussian sampler (or more accurately, a two-dimensional Gaussian sam-
pler, for the real and imaginary parts of vx). That is, we use the entries of the
random function f as random tape for a Gaussian sampling procedure g. Since
the Gaussian distribution is spherically symmetric, such a g has the properties
that we need.

This approach indeed seems quite suitable but achieving (perfect) spherical
symmetry is at odds with achieving computational efficiency, simply because
the Gaussian distribution is continuous and has infinite support. Indeed, we will
need to show a truncated discretized Gaussian distribution which on one hand
can be sampled efficiently, and on the other hand provides approximate spherical
symmetry. Note that the notion of approximation we are interested in here is
with respect to the trace distance between the quantum state |v̂〉⊗t and a t-
repetition of a random unit vector. This requires us to develop tools in order to
relate this notion to standard notions such as Euclidean distance. These tools are
not particularly complicated but we view them as fundamental and of potential
to be used elsewhere.7 We elaborate more on this in Section 2.2 below, and the
full details appear in Section 4.

Second Technique: Rejection Sampling. The second challenge is addressed
using a quantum analog of the rejection sampling technique. Recall that in stan-
dard probability theory, if it is possible to sample from a distribution p where
Pr[x] = px, then we can consider the experiment of first sampling from p, and
then either outputting the sample received x with probability qx, or aborting and
restarting the process with probability 1 − qx. This process constitutes a sam-
pler for the distribution pxqx∑

x pxqx
. The probability of not aborting is

∑
x pxqx,

and therefore the expected running time of the new sampler is 1∑
x pxqx

. In the

quantum setting, a similar technique can be used for superpositions (Indeed,
extensions of these technique were used e.g. in [ORR13]).

In this work we use quantum rejection sampling to generate quantum states
from scratch. To create our state |v〉 we will start with the uniform superposition
|u〉 =

∑
x |x〉, and via a rejection process we can obtain (not necessarily with

7 We will not be surprised if they were already discovered and used in the literature,
but we were unable to find a relevant reference.

6



good pobability), any desired superposition |v〉. The probability of success in the

quantum case is 1
d2 ·

〈v|v〉
〈u|u〉 , where d is an a-priori bound on maxx |vx| that needs

to be given as a parameter to the rejection sampling procedure. (The algorithm
and success probability are analogous to the classical version described above,
when replacing qx with vx

d and considering `2 norm instead of `1.)

On the face of it, the rejection sampling procedure can work to create any
state |v〉 when a bound d is known. However, the probability of success can still
be very small (e.g. negligible), so if we wish to use repetition to obtain |v〉, the
expected running time will become very large (e.g. super-polynomial). Fortu-
nately, our vectors |v〉 are (approximately) Gaussian, which means that they
have strong concentration properties that guarantee that with high probability
two properties are satisfied. The first is that all entries vx have roughly the same
magnitude, up to a factor of poly(n, λ).8 This allows us to choose the value d
in such a way that the rejection sampling algorithm will operate correctly. The
second property is that 〈v|v〉 ≈ 2n (formally, 〈v|v〉 is a constant factor away
from 2n), this makes the probability of success noticeable (i.e. 1/poly(n, λ)). We
informally call a vector that maintains the combination of these two properties
”balanced”. By running in time poly(n, λ) and repeating the process as needed
we can amplify the success probability to 1 − 2−λ. We generalize these proper-
ties and provide a state generator for any oracle vx which satisfied the balance
property, see Section 4.

Lastly, we note that while the first property above (bound on d) can be made
to hold for any n, the second one (lower bound on 〈v|v〉) might not hold with
high enough probability. Special care needs to be taken in the case where n is
very small, since in that case concentration properties are insufficient to imply
that 〈v|v〉 does not fall far below its expected value with small yet significant
probability (we wish to succeed with all but 2−λ probability, so anything higher
than that is already significant). In such a case, the success probability of the
rejection sampler might become negligibly small, which will lead to failure in
generating a state.9 Luckily, since the dimension of the vector |v〉 is 2n, good
concentration kicks in already at n & log(λ), so we only need to worry about this
issue when n < log(λ). For such small n, the sampling algorithm can store the
vector |v〉 in its entirety, and check whether the norm 〈v|v〉 is sufficiently close to
its expectation (which happens with constant probability). If the norm is not in
the required range, we sample a new Gaussian.10 Repeating this roughly λ times

8 Note that, e.g. tail bounds on the norm of a Gaussians asserts that the probability

that its amplitude is beyond k times standard deviation is at most e−c·k
2

for some
constant c. This means that if we want to find a tail bound that applies to all 2n

components of the vector |v〉 at the same time via union bound, it suffices to use
k ≈
√
n+ λ.

9 We stress again that if the success probability becomes negligible with only negligible

probability, e.g. 2−
√
λ, this is still a problem since the state generator will simply

fail with this probability and therefore we cannot hope to be 2−λ close to uniform.
10 Recall that we think of the values of the function f(x) as the random tape of a

Gaussian sampler g. We can consider a function f with output length which is λ
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guarantees that we generate a “balanced” vector from a spherically symmetric
distribution with all but 2−λ probability.

2.2 Approximate Gaussians Under Tensored Trace Distance

We wish to do approximate sampling from the continuous Gaussian distribution
using an efficiently locally sampleable distribution. If we wish to be fully precise,
we need to consider Gaussian distributions over the complex regime. However,
for the purpose of sampling, one can think of each complex coordinate just as two
real-valued coordinates. For the purpose of this overview we will simplify things
even further and assume that we wish to sample from a real-valued Gaussian,
i.e. a vector in R2n instead of C2n . Everything we discuss here be extended to
the complex regime in a natural manner. From this point and on, our goal is
to find an efficient sampler g s.t. when sampling vx i.i.d from the distribution
generated by g, and sampling wx from a continuous Gaussian, it holds that
the trace distance (quantum optimal distinguishing probability) between the
quantum states |v̂〉⊗t and |ŵ〉⊗t, is at most poly(t) ·2−λ for all t. For any vectors
|v〉, |w〉, we refer to the trace distance between |v̂〉⊗t and |ŵ〉⊗t as the “t-tensored
trace distance” between |v〉 and |w〉.

An efficiently sampleable distribution is necessarily discrete and supported
over a finite segment, whereas the Gaussian distribution is continuous and sup-
ported over (−∞,∞). Indeed, even in the classical setting Gaussian samplers
need to handle this discrepancy. Usually, when one says that it is efficient to
sample from the Gaussian distribution, they mean that it is possible to sample
to within any polynomial precision and from a Gaussian truncated far enough
away from the standard deviation that the probability mass that is chopped off
is negligible.11 We adopt a similar approach here. Formally, sampling to within
a fixed precision is equivalent to sampling from a rounded Gaussian distribution,
i.e. the distribution obtained by sampling from a continuous Gaussian and then
rounding the result to the nearest multiple of ε, where ε indicates the required
precision. Truncation means that we sample from the distribution obtained by
sampling a Gaussian, and if the absolute value of the sampled value x is at most
some bound B, then return x, otherwise return 0. Setting B to be sufficiently
larger than the standard deviation, say by roughly a factor of k, would imply that
the resulting distribution only distorts the Gaussian by e−k

2

in total variation
distance. We set our sampler g therefore to be a sampler from the B-truncated ε-
rounded Gaussian distribution. It is possible to sample from a distribution that’s
within ε statistical distance from this distribution in time poly(log(1/ε), log(B))
by standard Gaussian sampling techniques, and therefore we can set 1/ε to be a
sufficiently large exponential function in λ, n and maintain the efficient sampling
property.

times the number of random bits used by the sampler g, so that we have sufficient
randomness to re-run g as needed.

11 An alternative to chopping the ends of the distribution is to construct a sampler that
runs only in expected polynomial time and might run for a very long superpolynomial
time with small probability. This approach is less suitable for our purposes.
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The challenge, as already mentioned above, is to translate this intuitive no-
tion of “approximate Gaussian” to one that is provable under tensored trace
distance. In fact, we present a general analysis of the effects of truncation and
rounding on tensored trace distance. We do this using a two-phase proof.

Part I: Tensored Trace Distance Respects Statistical Distance. We show
that truncating a continuous Gaussian introduces negligible trace distance for
any number of copies t. This follows quite straightforwardly from the classical
total variation distance bound between the distributions. In fact, we show a more
general claim (Lemma 4.3): Let |v〉 and |w〉 be distributions over n-qubit states,
such that their classical distributions as 2n-dimensional vectors are within clas-
sical statistical distance (total variation distance) δ. Then their t-tensored trace
distance is at most δ for all t. The intuition here (which can also be translated
to a formal proof), is that even given an infinite number of repetitions, a quan-
tum state does not contain more information than its 2n-dimensional coefficient
vector. Therefore, a (computationally unbounded) adversary that attempts to
distinguish |v̂〉⊗t and |ŵ〉⊗t as quantum states cannot do better than a classi-
cal (computationally unbounded) adversary which receives |v〉, |w〉 as explicit
vectors.

Part II: Tensored Trace Distance Respects Rounding. We say that a
distribution |v〉 is a rounding of a distribution |w〉 if |v〉 can be described as first
sampling an element from |w〉 and then applying some mapping ϕ s.t. for all w,
‖ϕ(w)− w‖ is bounded (say be some value δ).12 We wish to show that if |v〉 is
a rounding of |w〉 then these vectors are close under tensored trace distance.

Let us start by considering the case t = 1, i.e. the distinguisher needs to
distinguish between the quantum states |v̂〉 and |ŵ〉. It is well established that
if |v̂〉 and |ŵ〉 are close in Euclidean distance, then they are also close in trace
distance. However, this does not complete the proof since we only have a bound
on the Euclidean distance between the unnormalized vectors |v〉 and |w〉. In-
deed, the notion we care about is the Euclidean distance when projected onto
the unit sphere, or in other words the angular distance induced by ϕ. In our
case, our distribution |w〉 (the Gaussian) is such that the norm is quite regular
with high probability, and this is preserved also for the rounded version (some
straightforward yet fairly elaborate calculation is required in order to establish
the exact parameters).13

Once we formalize the right notion of approximation (i.e. angular distance),
it is possible to state a general lemma (Lemma 4.4) that shows that if ϕ is
s.t. the angular distance between its input and output (over the support of
|v〉) is bounded, then the t-tensored trace distance degrades moderately with t.

12 Note that we call this “rounding” but in general this can be applied in other situa-
tions.

13 This introduces an additional layer of complication into our proof, as we will need
to apply the rounding tool to a restriction of the Gaussian distribution for which the
norm is well behaved. Since the “regular norm” variant is close in statistical distance
to the standard Gaussian, this can be handled by our first technique above.
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Therefore, if we start with a short enough angular distance, our trace distance
will indeed be bounded by poly(t)/2λ.

3 Preliminaries

3.1 Standard Notions and Notations

During this paper we use standard notations from the literature. For n ∈ N,

– We denote [n] := {1, · · · , n}.
– We denote by [n]2 the dlog2(n)e-bit binary representation of n.

– We denote by ωn the complex root of unity of order n: ωn := e
2πi
n .

– We denote by S(n) the set of n-qubit pure quantum states, by D(n) the set
of n-qubit mixed quantum states and by U(n) the set of n-qubit quantum
unitary circuits.

– We sometimes denote 2n with N , when we do that, we explicitly note it.

Vectors and Quantum States. We use standard Dirac notation throughout
this paper, vectors are not assumed to be normalized unless explicitly mentioned.
Specifically, for a column vector u ∈ Cm, we denote |u〉 := u, 〈u| := u†, where
u† is the conjugate transposed of u. We usually let û denote the normalized
version of the vector u, namely: û := 1

‖u‖ · u (where u is a nonzero complex

vector). Vectors that represent quantum states have unit norm and therefore are
normalized by default.

We make a distinction between a vector in a Hilbert space, and the quantum
state corresponding to this vector. The two objects are related as a complete
characterization of a (pure) quantum state over n-qubits is characterized by a
vector in a 2n-dimensional Hilbert space (up to normalization and global phase).
However, the vector is not necessarily (and almost always is not) recoverable
given the n-qubit state, and quantum states that correspond to different vec-
tors can be indistinguishable (even perfectly).14 In terms of vector notation, the
symbol |u〉 can refer either to the vector in the Hilbert space of to the quantum
state that corresponds to this vector, we will explicitly mention which of the two
we refer to when using this notation.

Distributions Over Quantum States as Density Matrices. Density matri-
ces are a mathematical tool to describe mixed quantum states, that is, distribu-
tions over quantum states. Formally, let µ a (possibly continuous) probability dis-
tribution over n-qubit quantum states, µ : S(2n)→ [0, 1],

∫
|ψ〉∈S(2n) 1dµ(|ψ〉) =

1, then the density matrix induced by µ is denoted ρµ and defined as:

ρµ = E|ψ〉←µ
[(
|ψ〉〈ψ|

)]
:=

∫
|ψ〉∈S(2n)

(
|ψ〉〈ψ|

)
dµ(|ψ〉) . (1)

14 Information theoretically, in the general case, one requires an infinite number of
copies of a quantum state in order to precisely recover the vector in the Hilbert
space that characterizes this state.
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Statistical Distance. We use basic properties of the statistical distance metric
(also known as total variation distance). Statistical distance can be described in
terms of operations, that is, for two (possibly continuous) distributions D1, D2

with corresponding supports S1, S2, the statistical distance between D1, D2 is
the maximal advantage,∣∣∣∣ Pr

x←D1

[A(x) = 1]− Pr
x←D2

[A(x) = 1]

∣∣∣∣
taken over all functions A : S1 ∪ S2 → {0, 1}. We note that we can allow A
to be randomized and obtain an equivalent definition. The statistical distance
between two random variables is the statistical distance between their associated
distributions.

Additionally, throughout the proof of Theorem 5.1 we will use the follow-
ing fact about the statistical distance between a distribution and a conditional
version of it.

Fact 3.1 Let X be a random variable and E some probabilistic event. Denote
Y = X|Ē, i.e. the conditional variable of X conditioned on E not happening.
Then

SD(X,Y ) ≤ Pr[E] .

Trace Distance. The trace distance, defined below, is a generalization of statis-
tical distance to the quantum setting and represents the maximal distinguishing
probability between distributions over quantum states.

Definition 3.2 (Trace Distance). Let ρ0, ρ1 ∈ D(2n) be two density matrices
of n-qubit mixed states. For a projective measurement A with output in {0, 1}
define

∆A,ρ0,ρ1 :=
∣∣∣Pr
[
A
(
ρ0
)

= 0
]
− Pr

[
A
(
ρ1
)

= 0
]∣∣∣ .

The trace distance between ρ0, ρ1 is

TD(ρ0, ρ1) := max
{0,1} projective measurement A

∆A,ρ0,ρ1 .

We note that the trace distance is often equivalently defined as 1
2 ‖ρ0 − ρ1‖1,

where ‖·‖1 refers to the `1 norm of the vector of eigenvalues of the operand
matrix.

A standard fact about trace distance is the following.

Fact 3.3 Let D0, D1 be two distributions over n-qubit states and let ρ0, ρ1 ∈
D(2n) be the corresponding density matrices. For a projective measurement A
with output in {−1, 1} define

∆̃A,ρ0,ρ1 :=

∣∣∣∣E |ψ〉←D0,
Measurement

[
A
(
|ψ〉
)]
− E |ψ〉←D1,

Measurement

[
A
(
|ψ〉
)]∣∣∣∣ .

Then,
2 · TD(ρ0, ρ1) = max

{−1,1} projective measurement A
∆̃A,ρ0,ρ1 .

11



The trace distance between pure states is given by the following expression.

Fact 3.4 For n-qubit pure quantum states |ψ〉, |φ〉, the trace distance between
them is:

TD
(
|ψ〉〈ψ|, |φ〉〈φ|

)
=

√
1− |〈ψ|φ〉|2 .

Trace distance is an operator on density matrices. In this work we will some-
times use it directly on distributions, that is we denote TD(D1, D2), where
D1, D2 are distributions over n-qubit quantum states. This notation refers to
the trace distance between the two density matrices induced by D1 and D2 (as
per Eq. (1)). That is,

TD(D1, D2) := TD(ρD1 , ρD2) = TD

(
E|ψ〉←D1

[(
|ψ〉〈ψ|

)]
, E|ψ〉←D2

[(
|ψ〉〈ψ|

)])
.

Quantum Unitary for a Classical Function. Let f : {0, 1}n → {0, 1}m be
a function. The unitary of f is denoted by Uf , it is a unitary over n+m qubits
defined as

∀x ∈ {0, 1}n, y ∈ {0, 1}m : Uf |x, y〉 := |x, y ⊕ f(x)〉 .

Quantum Rejection Sampling. Quantum Rejection Sampling (QRS) is a
known efficient procedure for taking one quantum state |α〉 and outputting with
some probability a different quantum state |β〉, given black box access to a circuit
that describes their closeness. Formally, the algorithm QRS gets as input an n-
qubit quantum state |α〉 and quantum oracle access to a unitary U on n+k qubits
(where k is related to the binary description length for complex numbers that is
being used) and have the following correctness and time complexity guarantees.

Theorem 3.5 (Quantum Rejection Sampling). Let |α〉, |β〉 be two n-qubit
quantum states and let U be an (n + k)-qubit unitary. Assume there exists a
positive real number d such that the following hold

– d ≥ maxx∈{0,1}n

∣∣∣ βxαx ∣∣∣.
– ∀x ∈ {0, 1}n, the complex number (βx/αx)

d can be described with full precision
in k bits.

– U is the unitary of the classical function f : {0, 1}n → {0, 1}k such that

f(x) := (βx/αx)
d .

Then QRSU (|α〉) outputs (success, |β〉) with probability at least 1
d2 and otherwise

outputs (fail, |0n〉).
The algorithm makes a single query to U , and assuming this query takes a

single time step, the time complexity of QRSU (|α〉) is poly(n, k).

12



3.2 Pseudorandom Functions and m-Wise Independent Functions

We define pseudorandom functions with quantum security (QPRFs).

Definition 3.6 (Quantum-Secure Pseudorandom Function (QPRF)).
Let K = {Kn}n∈N be an efficiently samplable key distribution, and let PRF =
{PRFn}n∈N, PRFn : Kn × {0, 1}n → {0, 1}poly(n) be an efficiently computable
function, where poly(·) is some polynomial. We say that PRF is a quantum-
secure pseudorandom function if for every efficient non-uniform quantum algo-
rithm A = {An}n∈N (with quantum advice) that can make quantum queries there
exists a negligible function negl(·) s.t. for every n ∈ N,∣∣∣∣ Pr

k←Kn
[APRFk
n = 1]− Pr

f←({0,1}n)({0,1}n)
[Afn = 1]

∣∣∣∣ ≤ negl(n) .

In [Zha12], QPRFs were proved to exist under the assumption that post-quantum
one-way functions exist.

We define m-wise independent functions as keyed functions s.t. when the key
is sampled from the key distribution, then any m different inputs to the function
generate m-wise independent random variables.

Definition 3.7 (m-Wise Independent Function). Let n,m, p ∈ N, let K be
a key distribution, and let f , f : K × {0, 1}n → {0, 1}p a function. (f,K) is an
m-wise independent function if for every distinct m input values x1, · · · , xm ∈
{0, 1}n,

∀y1, · · · , ym ∈ {0, 1}p : Pr
k←K

[f(k, x1) = y1 ∧ · · · ∧ f(k, xm) = ym] = 2−p·m .

Based on m-wise independent functions we define efficiently samplable m-
wise independent function families.

Definition 3.8 (Efficient m(n)-Wise Independent Function). Let m(n), p(n) :
N → N be functions, let K = {Kn}n∈N be an efficiently samplable key distribu-
tion, and let f = {fn}n∈N, fn : Kn × {0, 1}n → {0, 1}p(n) be an efficiently
computable function. Then, if for every n ∈ N, (fn,Kn) is an m(n)-independent
function, then (f,K) is an efficient m(n)-wise independent function.

3.3 Quantum Randomness and Pseudorandomness

The Haar Measure The Haar measure on quantum states is the quantum
analogue of the classical uniform distribution over classical bit strings. That is,
it is the uniform (continuous) probability distribution on quantum states. Recall
that an n-qubit quantum state can be viewed as a unit vector in C2n , thus the
Haar measure on n qubits is the uniform distribution over all unit vectors in
C2n . In this work we denote the n-qubit Haar distribution with µn. From this
point forward we refer to the uniform distribution over quantum states simply
as “random”, and don’t mention specifically that it is with respect to the Haar
distribution.
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Scalable Asymptotically Random State Generators We propose a scal-
able variant to the notion of Asymptotically Random State (ARS) generators
which was implicitly defined in [JLS18] and explicitly in [BS19]. Previous works
consider an ARS generator to be an efficient quantum algorithm Gen that gets
quantum oracle access to Uf : |x, y〉 → |x, y ⊕ f(x)〉 for a random classical func-
tion f , along with a parameter n ∈ N that denotes the number of desired output
qubits. The guarantee of the ARS generator is that for any polynomial t(n) in
n, t(n) outputs from GenUf (executed with the same function f) have negligible
trace distance (in n) from t(n)-copies of a random n-qubit state This means
that n plays two roles, it denotes the number of qubits in the output state but
also the security parameter that determines the quality of randomness (i.e. how
indistinguishable it is from random).

A Scalable ARS generator is one that gets two parameters n, λ instead of one.
n, as before, denotes the number of wanted output qubits, and λ is a security
parameter, thus a scalable ARS generator eliminates the dependence between
state size and security.

Definition 3.9 (Asymptotically Random State (ARS) Generator). A
quantum polynomial-time algorithm Gen with input (1n, 1λ) for n, λ ∈ N and
quantum oracle access to Uf : |x, y〉 → |x, y ⊕ f(x)〉 for f : {0, 1}n → {0, 1}poly(n,λ),
is an ARS generator if there exists a negligible function negl(·) s.t. for every poly-
nomial t : N→ N, for all natural numbers n, λ,

TD
(
D1, D2

)
≤ negl(λ) ,

where the distributions D1, D2 are defined as follows.

– D1 : Sample f ←
(
{0, 1}poly(n,λ)

){0,1}n
, perform t(λ) independent executions

of GenUf (1n, 1λ) and output the t(λ) output quantum states.
– D2 : Sample |ψ〉 ← µn a random n-qubit quantum state, and output t(λ)

copies of it: |ψ〉⊗t(λ). Recall that µn is the Haar measure on n qubits.

We next define (scalable) quantum state t-design generators and (scalable)
pseudorandom quantum state (PRS) generators. After defining these, we briefly
describe a general and simple reduction structure that shows how to construct
t-designs and PRS generators from any ARS generator.

Approximate Quantum State t-Designs A quantum state t-design [AE07]
is a distribution over quantum states that mimics the uniform distribution over
quantum states when the number of output copies is restricted to t. A (scalable,
approximate) quantum state t-design generator consists of two quantum algo-
rithms K,G. The key sampler algorithm K samples a classical key k given two
parameters 1n, 1λ where n denotes the number of qubits and λ denotes the se-
curity parameter. The state generation algorithm G gets a key k and outputs an
n-qubit state |ψ〉. Informally, the randomness gaurantee of a t-design generator
is that if we sample a key k once from K(1n, 1λ) and then execute G(k) t times
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and output the t outputs, then this output distribution is going to be indistin-
guishable from t copies of an n-qubit quantum state, for unbounded quantum
distinguishers. The formal definition follows.

Definition 3.10 (ε(λ)-Approximate State t(λ)-Design Generator). Let
ε(λ) : N → [0, 1], t(λ) : N → N be functions. We say that a pair of quan-
tum algorithms (K,G) is an ε(λ)-approximate state t(λ)-design generator if the
following holds:

– Key Generation. For all n, λ ∈ N, K(1n, 1λ) always outputs a classical
key k.

– State Generation. Given k in the support of K(1n, 1λ) the algorithm
G(1n, 1λ, k) will always output an n-qubit quantum state.

– Approximate Quantum Randomness. For all n, λ ∈ N,

TD
(
D1, D2

)
≤ ε(λ) ,

where the distributions D1, D2 are defined as follows.
• D1 : Sample k ← K(1n, 1λ), perform t(λ) independent executions of
G(1n, 1λ, k) and output the t(λ) output quantum states.

• D2 : Sample |ψ〉 ← µn a random n-qubit quantum state, and output t(λ)
copies of it: |ψ〉⊗t(λ).

It is not part of the standard definition, but it is usually the case that the
algorithms K,G execute in time poly(n, λ), which is going to be the case in this
work as well.

Pseudorandom Quantum States We define scalable Pseudorandom State
(PRS) generators. Compared to t-designs, Quantum Pseudorandom State Gen-
erators have a slight difference, and formally incomparable randomness guaran-
tee. Mainly, with a PRS we are guaranteed that the output state is going to be
indistinguishable for any polynomial number of copies t(λ) without knowing in
advance t(λ), however this indistinguishability is only computational. That is, it
is only guaranteed that computationally bounded distinguishers will be unable
to tell the difference between t(λ) executions of the generator and t(λ) copies of
a random quantum state. The scalability property maintains the ability to in-
crease security without increasing the state size n. We remind that the notion of
scalability in PRS generators was not considered in previous works [JLS18,BS19]
and thus the following definition differs a bit from the previous definition of a
PRS, we view this as the more proper definition.

Definition 3.11 (Scalable Pseudorandom Quantum State (PRS) Gen-
erator). We say that a pair of polynomial-time quantum algorithms (K,G) is a
Pseudorandom State (PRS) Generator if the following holds:

– Key Generation. For all n, λ ∈ N, K(1n, 1λ) always outputs a classical
key k.
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– State Generation. Given k in the support of K(1n, 1λ) the algorithm
G(1n, 1λ, k) will always output an n-qubit quantum state.

– Quantum Pseudorandomness. For any polynomial t(·) and a non-uniform
polynomial-time quantum algorithm A = {Aλ}λ∈N (with quantum advice)
there exists a negligible function negl(·) such that for all n, λ ∈ N,∣∣Pr[Aλ

(
D1

)
= 1]− Pr[Aλ

(
D2

)
= 1]

∣∣ ≤ negl(λ) ,

where the distributions D1, D2 are defined as follows.

• D1 : Sample k ← K(1n, 1λ), perform t(λ) independent executions of
G(1n, 1λ, k) and output the t(λ) output quantum states.

• D2 : Sample |ψ〉 ← µn a random n-qubit quantum state, and output t(λ)
copies of it: |ψ〉⊗t(λ).

Scalable PRS and Quantum State t-Design Generators from Scalable
ARS Generators We recall a generic transformation from previous works that
explain how to construct PRS generators and quantum state t-designs from any
ARS generator. We start with the paradigm from [JLS18,BS19] that explains a
simple way to turn any ARS generator into a PRS generator.

Lemma 3.12. If there exists a scalable ARS generator and post-quantum one-
way functions exist, then there exists a scalable PRS generator.

Proof (Proof Sketch.). The proof follows the same lines as the proof of [BS19,
Claim 4, Section 3.1], with the additional scalability property. The key generator
K(1n, 1λ) of the PRS is the key generator of some quantum-secure pseudoran-
dom function PRF with security parameter n + λ. For a sampled PRF key k,
the state generator algorithm G simply executes the ARS generator with the
pseudorandom function instead of the truly random function, G(1n, 1λ, k) :=
GenUPRFk (1n, 1λ). For a polynomial t(·), t(λ) copies of the generated distribu-
tion are computationally indistinguishable (by quantum adversaries) from t(λ)
copies of the standard output distribution of the ARS generator, by the security
guarantee of the PRF. Additionally, t(λ) copies of the output distribution of the
ARS is already known to be indistinguishable (by unbounded distinguishers)
from t(λ) copies of a random quantum state, and our proof is concluded.

Also, we follow the observation from [BS19] that explains how an ARS gen-
erator implies the existence of t-designs (with depth that has logarithmic depen-
dence on t).

Lemma 3.13. Assume there exists a scalable ARS generator with the following
properties:

– The generator is implemented by a circuit of depth T (n, λ).
– For all n, λ, t its output is ε(n, λ, t)-indistinguishable from a t-tensor of a

random n-qubit state.
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Then there exists an ε(n, λ, t)-approximate scalable t-design generator, which is
implementable by circuits of depth

T (n, λ) · log(n) · log(2 · t · T (n, λ)) .

Proof (Proof Sketch.). The proof is similar to the explanation in [BS19, Sec-
tion 3.2], with slight differences and an additional consideration of the scalabil-
ity property. The key generator K(1n, 1λ) of the t-design samples an efficient
m-wise independent function f̃ , where m := 2t · T (n, λ). The state generator
algorithm G executes the ARS generator with the function f̃ instead with the
truly random function, G(1n, 1λ, f̃) := GenUf̃ (1n, 1λ). By [Zha12, Fact 2], The
behavior of any quantum algorithm making at most m quantum queries to a
2m-wise independent function is identical to its behavior when the queries are
made to a random function. Therefore if we make t executions of G(1n, 1λ, f̃),
each of which makes at most T (n, λ) queries to Uf̃ , then the output distribution

of the algorithm G(1n, 1λ, f̃) is the same as that produced by the ARS generator
(when it uses a truly random function). Since the classical depth of an m-wise
independent function on n bits is log(n) · log(m), the proof follows (see elabo-
ration on the classical depth of m-wise independent functions in [BS19, Section
3.2]).

3.4 The Continuous Gaussian and Rounded Gaussian Distributions

In this work we will work with distributions related to the Gaussian distribution
over R denoted N (0, 1), also known as the normal distribution having a mean
of 0 and variance of 1. More specifically we will consider the complex Gaussian
distribution over C, denoted NC(0, 1), where both real and imaginary parts of
a complex number are sampled independently from N (0, 1).

Rounded Gaussian Distribution. The true Gaussian distribution is contin-
uous and we cannot exactly sample from it. Instead, we will use a discrete dis-
tribution that we can efficiently sample from. There are quite a few versions of
distributions that are discretezations of the Gaussian distribution. In this work
we use the rounded Gaussian distribution, which we denote by NC

R(ε,B)(0, 1).

This distribution is parameterized by ε = 2−m > 0 (for some m ∈ N) and by
B ∈ N, where B is some integer multiple of ε.

To define the distribution NC
R(ε,B)(0, 1) we first define the rounding function

R(ε,B)(·). For a number x ∈ R, if |x| > B then R(ε,B)(x) := 0, and otherwise
R(ε,B)(x) rounds x up (in absolute value) to the nearest multiple of ε. Formally,
if |x| ≤ B then R(ε,B)(x) is the number y ∈ R that has minimal absolute value
and s.t. both |x| ≤ |y|, ∃k ∈ Z : y = k ·ε. For a complex number z ∈ C, R(ε,B)(z)
is just applying R(ε,B)(·) to both real and imaginary parts of z.

We define NC
R(ε,B)(0, 1) to be the output distribution of the following pro-

cess: Sample z ← NC(0, 1) and output R(ε,B)(z). The output of NC
R(ε,B)(0, 1) is

specified by a number between 0 and B with precision ε = 2−m, thus the output
length in bits is bounded by m+ dlog2(B)e.

We use the following standard fact about (classical) Gaussian sampling.
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Fact 3.14 (Efficient Rounded Gaussian Sampling) There is a sampling al-
gorithm GC

R() that takes 1m, B (and random tape) as input, runs in polynomial

time, i.e. poly(m, logB), and samples from a distribution that has statistical
distance at most 2−m from the rounded Gaussian distribution NC

R(2−m,B)(0, 1).

4 General Tools for Quantum Information

4.1 State Generation of Balanced Vectors

In this subsection we describe a simple procedure that given quantum oracle
access to the entries of some general, not necessarily normalized vector v ∈ C2n ,
generates the n-qubit quantum state |v〉 that corresponds to (the normalization
of) v. More formally, the procedure gets two pieces of information about v:

– Quantum oracle access to Uv, the unitary of the classical function v : {0, 1}n →
{0, 1}k (where k is the description size in bits of each entry of v) that de-
scribes the vector v and maps v(x) := vx.

– An upper bound M ∈ N on any entry of v, that is, maxx∈[N ] |vx| ≤M .

The procedure runs in time poly(n, k, logM) and outputs the quantum state |v〉
as follows.

BVSUv (M) :

1. Define the quantum unitary Uṽ which is the unitary of the classical function
ṽ : {0, 1}n → {0, 1}k+log(M) that maps ṽ(x) := vx · 1

M .
It’s trivial to simulate Uṽ given Uv: Given a query |x, y〉, we concatenate an
ancilla of zeros and apply Uv to get |x, y, vx〉, then apply a simple unitary
that multiplies by 1

M (on the last register as input and on the second register
as output) to obtain |x, y ⊕ vx · 1

M , vx〉, and then use Uv again to uncompute
the last register.

2. Execute quantum rejection sampling, (b , |v̂〉) ← QRSUṽ (|+〉⊗n) (see speci-
fication of QRS in Theorem 3.5). If b = fail then output fail, otherwise
output |v̂〉.

Claim 4.1 (BVS Success Probability) If maxi∈[N ] |vi| ≤ M then the execu-

tion BVSUv (M) always outputs either fail or the quantum state v · 1
‖v‖ = |v̂〉,

furthermore the execution succeeds and outputs the quantum state |v̂〉 with prob-

ability at least ‖v‖2
M2·N .

Proof. We need to make sure that we execute the quantum rejection sampling
algorithm QRS with correct parameters (specified in Theorem 3.5), and also
understand what exactly are the parameters for QRS. As the starting state |α〉
we input |+〉⊗n, our target state |β〉 is |v̂〉 = |v〉

‖v‖ . As the state transformation

unitary U we use Uṽ, that is, the unitary of the classical function f(x) := vx · 1
M .

It follows that there exists an upper bound d ≥ maxx∈{0,1}n

∣∣∣ βxαx ∣∣∣ s.t. ∀x ∈

{0, 1}n : f(x) := f(x) := vx · 1
M = βx/αx

d , by taking d := M ·
√
N

‖v‖ .
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– d is indeed an upper bound:

∀x ∈ {0, 1}n :

∣∣∣∣βxαx
∣∣∣∣ =

∣∣∣∣vx/ ‖v‖1/
√
N

∣∣∣∣ =

∣∣∣∣∣vx ·
√
N

‖v‖

∣∣∣∣∣ ≤ M ·
√
N

‖v‖
.

– f(·) indeed computes βx
αx
/d:

∀x ∈ {0, 1}n : f(x) := vx ·
1

M

= vx ·
1

M
·
√
N√
N
· ‖v‖
‖v‖

=

(
vx
‖v‖
·
√
N

)
·
(

1

M
· ‖v‖√

N

)

=

(
vx/‖v‖
1/
√
N

)
(
M ·
√
N

‖v‖

)
=
βx/αx
d

.

The conditions for QRS hold, and thus from the correctness guarantee of
quantum rejection sampling we can be sure that the algorithm BVS will always
output either fail or |β〉 := |v̂〉. As for the probability of success in outputting
|v̂〉, again from the success guarantees of QRS this probability is at least 1

d2 =
‖v‖2
M2·N .

The above procedure tries to generate |v̂〉 once and it will be convenient to
have an amplified version of this algorithm as a black box, this is an option
because we can always re-generate the state |+〉⊗n efficiently and retry. The
amplified version of the algorithm is with the same name and have one more
parameter k ∈ N (amplification parameter), that is, BVSUv (M,k).

The amplified version of BVS executes k (parallel) repetitions of BVSUv (M),
if all fail it outputs fail, and if either succeeds it outputs the generated state |v̂〉.
The probability of BVSUv (M,k) to succeed in generating the state |v̂〉 follows.

Claim 4.2 (Amplified BVS Success Probability) If maxi∈[N ] |vi| ≤M then

the algorithm BVSUv (M,k) always outputs either fail or the quantum state
v · 1
‖v‖ = |v̂〉, furthermore the algorithm succeeds and outputs the quantum state

|v̂〉 with probability at least 1− e−
k·‖v‖2

M2·N .
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Proof.

Pr
[
BVSUv (M,k) = fail

]
= Pr

[
BVSUv (M) failed k times in a row

]
=
(

Pr
[
BVSUv (M) = fail

])k
≤

(
1− ‖v‖2

M2 ·N

)k
≤ e−

k·‖v‖2

M2·N .

4.2 Analytic Tools for Distributions

In this subsection we describe some analytic tools for bounding trace norm be-
tween two distributions, for multiple output copies. We start with an elementary
property of trace distance and classical statistical distance that we will use in
our construction.

Lemma 4.3 (Classical Statistical Distance Implies Trace Distance). Let
n ∈ N and let D1, D2 be two distributions over unit vectors in C2n . Let D̃1, D̃2

be the quantum-state distributions of D1, D2, that is, for b ∈ {0, 1}, a sample
from D̃b is generated by sampling a vector v from Db, and outputting an n-qubit
register in the state described by v.

Then, if SD(D1, D2) ≤ ε, then for every number of copies t ∈ N,

TD
(
E|v〉←D̃1

[
(|v〉〈v|)⊗t

]
,E|v〉←D̃2

[
(|v〉〈v|)⊗t

])
≤ ε .

Proof. Intuitively, the proof follows from the fact that a computationally un-
bounded mapping can always capture the computation of an (even unbounded)
quantum process, along with the fact that when the classical description of a
state is available then there is no advantage in having more than a single copy.
Formally, we assume towards contradiction there is a projective measurement A
(with output in {0, 1}) that distinguishes between a t-tensor of D̃1 and a t-tensor
of D̃2 with advantage bigger than ε, and describe a (randomized) distinguisher
A′ : C2n → {0, 1} that distinguishes between D1, D2 with advantage bigger
than ε. Let A denote the Hermitian matrix that corresponds to the projective
measurement A.

The distinguisher A′ is defined as follows. Given an input v ∈ C2n , consider
the vector |v′〉 = |v〉⊗t, and compute the value p = 〈v′|A|v′〉. We note that
this value is exactly the probability that A outputs 1 when input the quantum
state |v〉⊗t. The distinguisher A′ then outputs 1 with probability p and 0 with
probability 1−p. By definition, the advantage of A′ in distinguishing D1 and D2

is identical to the advantage of A in distinguishing the t-tensored D̃1 and D̃2.

Robustness to Small Shifts. Lemma 4.3 asserts that distributions on quantum
states are indistinguishable if they are induced by indistinguishable distributions
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over vectors in the respective Hilbert space. This is a very strict condition and
in fact in many cases distributions on quantum states can be indistinguishable
even if the the respective distributions over vectors are highly distinguishable.

This will be useful in the context of this work since we wish to show indis-
tinguishability between the Haar random distribution, which corresponds to a
continuous distribution over the sphere, and an efficiently samplable distribution
(with oracle access to a random function), which necessarily produces a discrete
distribution over vectors. Hence, the two distributions over vectors are neces-
sarily distinguishable (with advantage 1), and yet we will be able to bound the
distinguishing gap between the quantum states.

Technically, we rely on the well known property that quantum states that
correspond to vectors with inner product close to 1 are indistinguishable. This
is formalized in Lemma 4.4 below, which considers a distribution over vectors,
and a small perturbation of this distribution, that does not shift the vector by
too much. We show that such perturbation, which in particular captures the
case of rounding a continuous distribution into some discrete domain, would be
indistinguishable in terms of the resulting quantum state.

Lemma 4.4 (Angular Indistinguishability). Let n ∈ N, ε ∈ [0, 1], let D
be a distribution over (not necessarily normalized) vectors in V ⊆ C2n , let ϕ :
V → C2n be a function and let ϕ̂ : V → C2n be the normalized version of ϕ,

ϕ̂(v) := ϕ(v)
‖ϕ(v)‖ . Assume that for every v ∈ V , the normalization of v and its

ϕ̂-image are close on the unit sphere, that is,

|〈v̂|ϕ̂(v)〉| ≥ 1− ε,

then for all t ∈ N,

TD
(
Ev←D

[
(|v̂〉〈v̂|)⊗t

]
, Ev←D

[
(|ϕ̂(v)〉〈ϕ̂(v)|)⊗t

])
≤
√

2tε . (2)

In the original version of this work, the above lemma was proven using a proof
different from the one below. We thank the CRYPTO reviewer for suggesting
the simplified proof presented below.

Proof. The lemma follows since

TD
(
Ev←D

[
(|v̂〉〈v̂|)⊗t

]
,Ev←D

[
(|ϕ̂(v)〉〈ϕ̂(v)|)⊗t

])
≤ Ev←D

[
TD
(

(|v̂〉〈v̂|)⊗t , (|ϕ̂(v)〉〈ϕ̂(v)|)⊗t
)]

≤ Ev←D
[√

1− |〈v̂|ϕ̂(v)〉|2t
]

≤ Ev←D
[√

1− (1− ε)2t
]

≤
√

2tε ,

where the first inequality follows from the convexity of trace distance, the sec-
ond follows from the relation between trace distance and fidelity TD(ρ, σ) ≤
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√
1− F (ρ, σ) and the fact that for pure states |u〉, |v〉 the Fidelity is |〈u|v〉|2, and

the last inequality follows from Bernoulli’s inequality which implies (1− ε)2·t ≥
1− 2tε.

5 Scalable Asymptotically Random State (ARS)
Generator

In this section we describe a procedure that given quantum oracle access to a
random classical function, efficiently samples random quantum states that are
arbitrarily random (i.e. we can scale up the randomness of our sampled state
and make it increasingly harder to distinguish from a random quantum state, for
an increasing number of output copies, without increasing the number of qubits
in the state) and can generate multiple copies of a state when executed multiple
times with oracle access to the same function. More formally, we describe a
sampling procedure with the following inputs:

– 1n: Number of wanted qubits in the output state.
– 1λ: Security parameter that measures ”how random” the output state is

going to be (i.e. how hard will it be to distinguish t copies of the sampled
state from t copies of a random quantum state, as a function of λ, t).

– Quantum oracle access to Uf : For a function f : {0, 1}n → {0, 1}poly(n,λ)
(for some polynomial poly(·), specified later), the sampling procedure gets
oracle access to the unitary mapping Uf of f .

The formal statement that explains how to construct a scalable ARS gener-
ator follows.

Theorem 5.1 (Scalable ARS Generator Construction). There exists a
scalable ARS generator Gen that for every n ∈ N number of qubits, 5 ≤ λ ∈ N
security parameter and t ∈ N number of copies, satisfies the following trace
distance bound,

TD
(
D1, D2

)
≤ (t+ 8) · e−λ +

(
5
√
t+ λ+ 1

)
· 2−λ + 2 ·

(
8

10

)λ
,

where the distributions D1, D2 are defined as follows:

– D1 : Sample f̃ ←
(
{0, 1}poly(n,λ)

){0,1}n
, execute t times the generation algo-

rithm GenUf̃ (1n, 1λ) and output the t output states.
– D2 : Sample |ψ〉 a random n-qubit state and output |ψ〉⊗t.

Proof. We start with describing the procedure of GenUf̃ (1n, 1λ). First, we de-
note ε := 2−n−λ, B :=

⌈
2
√
n+ λ

⌉
and set the polynomial poly(n, λ) that de-

notes the output size of f̃ to be λ · r(ε,B), where r(ε,B) is the randomness
complexity of the rounded Gaussian sampler GC

R(ε,B). Given the oracle access
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to f̃ ∈
(
{0, 1}λ·r(ε,B)

){0,1}n
, the algorithm starts with deciding on a different

function f ∈
(
{0, 1}r(ε,B)

){0,1}n
that it is going to use.

In what follows, denote N := 2n, for a function h ∈
(
{0, 1}r(ε,B)

){0,1}n
denote by vh the vector that is created by rounded Gaussian sampling with h,
that is, ∀x ∈ {0, 1}n, vhx := GC

R(ε,B)(h(x)). We think of f̃ , that has an output

length of λ · r(ε,B), as λ different functions, each having an output length of

r(ε,B). Specifically, for i ∈ [λ] define the function fi ∈
(
{0, 1}r(ε,B)

){0,1}n
as the

function that for input x ∈ {0, 1}n outputs the i-th packet of r(ε,B) bits from
f̃(x).
The procedure of Gen follows.

1. Decide on a function f ∈
(
{0, 1}r(ε,B)

){0,1}n
:

– If N > λ, we actually use only the first r(ε,B) bits of the output of f̃ .
That is, f is simply f1.

– If N ≤ λ, iterate for i ∈ [λ]:
• Compute the vector vfi by applying GC

R(ε,B) to each of the N outputs

of fi. If
∥∥vfi∥∥ ≥ √N2 , denote f := fi and halt the loop.15

If you executed all iterations and did not get a function fi s.t.
∥∥vfi∥∥ ≥

√
N
2 , halt and output |0n〉 (as a sign of failure).

2. Given f execute BVSUvf (
√

2 ·B, 8 · λ ·B2) and output the n-qubit quantum
state generated by BVS.

The full analysis and the rest of the proof, showing why a t-tensor of the
output of the generator (i.e. the distribution D1) and a t-tensor of a random
quantum state (i.e. the distribution D2) are indistinguishable, is in the full ver-
sion of this work16.
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