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Abstract. Classical definitions for secure multiparty computation as-
sume the existence of a single adversarial entity controlling the set of
corrupted parties. Intuitively, the definition requires that the view of the
adversary, corrupting t parties, in a real-world execution can be simu-
lated by an adversary in an ideal model, where parties interact only via
a trusted-party. No restrictions, however, are imposed on the view of
honest parties in the protocol, thus, if honest parties obtain information
about the private inputs of other honest parties — it is not counted as
a violation of privacy. This is arguably undesirable in many situations
that fall into the MPC framework. Nevertheless, there are secure proto-
cols (e.g., the 2-round multiparty protocol of Ishai et al. [CRYPTO 2010]
tolerating a single corrupted party) that instruct the honest parties to
reveal their private inputs to all other honest parties (once the malicious
party is somehow identified).

In this paper, we put forth a new security notion, which we call FaF-
security, extending the classical notion. In essence, (¢, h*)-FaF-security
requires the view of a subset of up to h™ honest parties to also be sim-
ulatable in the ideal model (in addition to the view of the malicious
adversary, corrupting up to ¢ parties). This property should still hold,
even if the adversary leaks information to honest parties by sending them
non-prescribed messages. We provide a thorough exploration of the new
notion, investigating it in relation to a variety of existing security notions.
We further investigate the feasibility of achieving FaF-security and show
that every functionality can be computed with (computational) (¢, h*)-
FaF full-security, if and only if 2t + h* < m. Interestingly, the lower-
bound result actually shows that even fair FaF-security is impossible in
general when 2t+h* > m (surprisingly, the view of the malicious attacker
is not used as the trigger for the attack).

We also investigate the optimal round complexity for (¢, h*)-FaF-secure
protocols and give evidence that the leakage of private inputs of honest
parties in the protocol of Ishai et al. [CRYPTO 2010] is inherent.

1 Introduction

In the setting of secure multiparty computation (MPC), the goal is to allow a set
of m mutually distrustful parties to compute some function of their private inputs
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in a way that preserves some security properties, even in the face of adversarial
behavior by some of the parties. Classical security definitions (cf., [25]) assume
the existence of a single adversarial entity controlling the set of corrupted parties.
The two most common types of adversaries are malicious adversaries (which may
instruct the corrupted parties to deviate from the prescribed protocol in any
possible way), and semi-honest adversaries (which must follow the instructions
of the protocol, but may try to infer additional information based on the joint
view of the corrupted parties).

Classical security definition. Some of the most basic security properties that
may be desired are correctness, privacy, independence of inputs, fairness, and
guaranteed output delivery. A general paradigm for defining the desired security
of protocols is known as the ideal vs. real paradigm. This paradigm avoids the
need to specify a list of desired properties. Rather, security is defined by describ-
ing an ideal functionality, where parties interact via a trusted party to compute
the task at hand. A real-world protocol is then deemed secure (against a class
C of adversaries), if no adversary A € C can do more harm than an adversary
in the ideal-world. In some more detail, the definition requires that the view of
the adversary, corrupting ¢ parties, in a real-world execution can be simulated
by an adversary (corrupting the same ¢ parties) in the ideal-world.

Classical instantiations of this paradigm, however, pose no restrictions on the
view of honest parties in the protocol. Hence, such definitions do not count it
as a violation of privacy if honest parties learn private information about other
honest parties. This is arguably undesirable in many situations that fall into
the MPC framework. Furthermore, when considering MPC solutions for real-life
scenarios, it is hard to imagine that possible users would agree to have their
private inputs revealed to honest parties (albeit not to malicious ones). Indeed,
there is no guarantee that an honest party would not get corrupted at some later
point in the future. If that honest party has learned some sensitive information
about another party’s input during the protocol’s execution (say, the password
to its bank account), then this information may still be used in a malicious
manner. Furthermore, as most of us are reluctant to reveal the password to our
bank account even to our own friends, it is natural to consider a model, where
every uncorrupted party is honest-but-curious by itself, operating simultaneously
to the malicious adversary.*

There are two manners in which honest parties may come to learn some
private information about other parties (in a secure protocol). The first is if
the protocol itself instructs the honest parties to reveal some information about
their private inputs (which is not implied by the output) to all other honest
parties (once all malicious parties are somehow identified). An example of such
a protocol is the 2-round m-party protocol (with m > 5) of Ishai et al. [32],
tolerating a single malicious party.

! This is indeed the origin of the term FaF-security (protecting one’s privacy from
friends and foes alike).



Alternatively, honest parties may also be exposed to the private information
of other parties if the adversary sends them parts of its view during the execution
(although, not instructed to do so by the protocol). We stress that such an attack
is applicable to many classical results in MPC that assume an upper bound of
t malicious parties and rely on (¢ 4+ 1)-out-of-m secret sharing. Consider, for
example, the BGW protocol [11], which is secure against t < m/3 corruptions.
In the first round of the protocol, the parties share their inputs in a (¢ + 1)-out-
of-m Shamir’s secret sharing scheme [39]. If an adversary, controlling ¢ parties,
sends all its ¢ shares to an honest party, then this honest party can reconstruct
the inputs of all other parties.

It may be natural to try to overcome the second type of information leakage
by simply instructing honest parties to disregard and erase unsolicited messages
sent to them by the adversary. However, in many settings assuming that the
parties are able to reliably erase parts of their state might be unrealistic, due to
e.g., physical limitations on erasures. Moreover, it is not even always clear how
to define what should be erased in the first place. Consider, for example, the
case that the adversary has some room for action or some redundancy in the
messages it is instructed to send by the protocol. In such a case, the adversary
can implant additional non-prescribed information about other parties into these
messages. Thus, the honest parties receiving these messages are not able to detect
the leakage of information. If, say, the adversary implanted a sharing of some
private information among a subset of honest parties, then, a ‘semi-honest’ entity
can reconstruct this information by taking control over the parties in this subset
and seeing their internal states.

In this paper, we investigate the following question that arises from the above
discussion.

Can the classical notion of security for malicious adversaries be extended
to also prevent leakage of private information to (possibly colluding) sub-
sets of (semi)-honest parties?

The issue of honest parties being able to obtain information (not available
to them from their inputs and from the output of the functionality) was already
shortly mentioned in [38]. They showed how to construct verifiable secret shar-
ing (and thus compute any functionality) with unconditional security, assuming
broadcast and an honest majority. Their solution for preventing from honest par-
ties learning additional information was to increase the threshold for the secret
sharing used in the protocol. However, this came at the expense of the bound
on the number of corrupted parties.

The solution of [38] may seem as a natural answer to the above question,
and it may further seem that any secure protocol could be turned into one that
prevents leakage to honest parties by increasing the bound on the number of
corrupt parties. Say, for example that the protocol should withstand ¢ malicious
parties and we wish to avoid leakage to sets of size h* semi-honest parties. In
this case, taking a protocol that is secure (by classical definition) against ¢ + h*
malicious parties may seem to suffice for the desired security. However, now one
must consider the efficiency toll incurred by increasing the security threshold.



Furthermore, it could be the case that increasing the threshold would render the
protocol altogether insecure. Indeed, in Section 4.1, we give such an example of
a functionality that cannot be computed in the face of ¢ + h* malicious parties,
but can be computed with full security in the face of ¢ malicious, while avoiding
leakage to any subset of A* honest parties.

Quite surprisingly, we further show that the approach of increasing the
threshold simply does not work in general. In particular, there exist protocols
with standard full security against ¢+ 1 malicious parties, yet ¢ malicious parties
could leak information to an honest party.?

1.1 Owur Contribution

In this paper, we address the above question by putting forth a new security
notion, which we call FaF-security, extending standard (static, malicious) MPC
security (in the stand-alone model). We give a full-security variant as well as
a security-with-abort variant for the new notion. In essence, (t, h*)-FaF-security
requires that for every malicious adversary A corrupting ¢ parties, and for any
disjoint subset of h* parties, both the view of the adversary and the joint view
of the additional h* parties can be simulated (separately) in the ideal model. A
more elaborate summary of the various definitions is given in Section 1.1.1. A
comprehensive discussion appears in Section 3.

We accompany the new security notion with a thorough investigation of
its feasibility and limitations in the various models of interest. Most notably,
we discuss the feasibility of achieving full FaF-security against computational
adversaries, and show that it is achievable for any functionality if and only if 2t +
h* < m. Interestingly, the lower-bound result actually shows that any protocol
admits a round in which the adversary can leak the output to some parties
without learning it, however, not allowing other honest parties to learn it. Hence,
even fair FaF-security is impossible in general when 2t +h* > m. In Section 1.1.2
we elaborate on these results. We also investigated the optimal round-complexity
of FaF-secure protocols, and the feasibility of obtaining statistical /perfect FaF-
security. A summary of these also appears in Section 1.1.2.

Finally, we provide an thorough exploration of how the new notion relates to a
variety of existing security notions. Specifically, we show some counter intuitive
facts on how FaF-security relates to standard malicious security and mixed-
adversaries security. See Section 1.1.3 for more on that.

1.1.1 FaF-Security — A Generalization of Classical Security

Before moving on to describe our new security notion in more detail, we first
recall the notion of static, malicious, stand-alone security. We stress that while
there are stronger security notions, some of which we mention below, this is
arguably the most standard notion, serving much of the works on secure multi-
party computation. Security is defined via the real vs. ideal paradigm. Here, the

2 Tt remains open whether preventing leakage using a different protocol is possible.



security is described as an ideal functionality, where all parties (including the
adversary) interact with a trusted entity. A malicious adversary is, thus, limited
to selecting the inputs of the subset of corrupted parties.

A real-world protocol (for the functionality at hand) is deemed secure if it
emulates the ideal setting. In a bit more detail, the protocol is t-secure, for
a class C of adversaries, if for every adversary A € C, corrupting at most ¢
parties and interacting with the remaining parties, there exists an ideal-world
adversary (called simulator) that outputs a view for the real-world adversary
that is distributed closely to its view in an actual random execution of the real
protocol. A static adversary is one that chooses which parties to corrupt before
the execution of the protocol begins. A formal definition of security is given
in Section 3 as a special case of FaF-security.

The notion of FaF-security. We now give a more detailed overview of the new
notion of security. As above, we follow the real vs. ideal paradigm, and strengthen
the requirements of standard security. We say that a protocol IT computes a func-
tionality f with (¢, h*)-FaF security (with respect to a class C of adversaries),
if for any adversary A € C (statically) corrupting at most ¢ parties, the follow-
ing holds: (i) there exists a simulator S that can simulate (in the ideal-world)
A’s view in the real-world (so far, this is standard security), and (ii) for any
subset H (of size at most h*) of the uncorrupted parties, there exists a “semi-
honest” simulator Sy, such that, given the parties’ inputs and S’s ideal-world
view (i.e., its randomness, inputs, auxiliary input, and output received from the
trusted party), Sy, generates a view that is indistinguishable form the real-world

view of the parties in H, i.e., (VIEW%EAL, OutREAL) is indistinguishable from

(VIEWIS?{EAR Out!PEALY

The reason for giving Sy, the ideal-world view of S is that in the real-world,
nothing prevents the adversary from sending its view to honest parties. Observe
that since the definition requires that the adversary is simulatable according to
the standard definition, it also protects the parties in H from the adversary.
This condition is in agreement with our motivation, where the parties in H are
honest but might later collude in a different protocol. The universal quantifier
on H yields, for example, that the definition also captures the model where every
uncorrupted party is honest-but-curious by itself. The formal definition appears
in Section 3.

FoF full-security and FaF security-with-abort. So far, we left vague the way that
outputs are being distributed to parties by the trusted party in the ideal-world.
The first option is that the trusted party sends the appropriate output to each
of the parties. This captures the notion of full-security, as it guarantees that
the honest parties always receive the output of the computation (in addition
to other properties, such as correctness and privacy). Cleve [16] showed that
(standard) full-security is not generally achievable. This led to a relaxed notion of
security, called security-with-abort. This notion is captured very similarly to the
above full-security, with the difference being that in the ideal-world, the trusted



party first gives the output to the adversary, which in turn decides whether the
honest parties see the output or not. This notion is naturally augmented with
identifiability, by requiring the adversary to identify at least one malicious party
in case the output is not given to all honest parties.

In this work, we appropriately define and consider a full-security variant
and a security with (identifiable) abort variant of FaF-security. To define FaF
security-with-identifiable-abort, we need to account for scenarios, where some of
the uncorrupted parties learn their output in the real-world while others do not.
Therefore, in the ideal execution, we explicitly allow the “semi-honest” simulator
S# to receive the output from the trusted party. The formal definition appears
in Section 3.1.

It is also natural to consider a stronger security notion, where the joint view
of the malicious adversary is simulatable together with the view of parties in H.
In Section 5.3, we show that this variant is strictly stronger than the variant
defined above. In fact, we show that the GMW protocol [26] satisfies the weaker
notion of FaF-security, but not the stronger notion. In the following, we will
sometimes refer to the weaker notion as weak FaF-security, and refer to the
stronger notion as strong FaF-security.

A natural property that is highly desirable from any definition is to allow
(sequential) composition. We show that both the weak variant and the strong
variant of FaF-security satisfy this property. Due to space limitations, the proof
is given in the full-version [1].

1.1.2 Feasibility and Limitations of FaF-Secure Computation

Our main theorem provides a characterization of the types of adversaries, for
which we can compute any multiparty functionality with computational FaF
full-security.

Theorem 1 (informal). Let t,h*,m € N. Assuming OT and OWP exist, any
m-party functionality f can be computed with (weak) computational (t, h*)-FaF
full-security, if and only if 2t + h* < m.

For the positive direction, we first show that the GMW protocol admits
FaF security-with-identifiable-abort. Then, we reduce the computation to FaF
security-with-identifiable-abort, using a player elimination technique. That is,
the parties compute a functionality whose output is an (m — t)-out-of-m secret
sharing of f. Since the joint view of the malicious and semi-honest parties contain
t + h* < m — t shares, they learn nothing from the output. We stress that the
adversary itself cannot see the output unless all honest parties see it, and hence,
cannot bias the output.

We now turn to the negative direction. Interestingly, we essentially show that
for m < 2t + h*, any m-party protocol admits a round in which an adversary
(corrupting ¢ parties) can leak the output to some h* uncorrupted parties, while,
not allowing other honest parties to learn the output.

Somewhat surprisingly, for the case where t < m/2, there are protocols where
the adversary’s view consists of only random values throughout the execution.



Indeed, in our attack, the adversary learns nothing about the output, and fur-
thermore, the view of the adversary is not used as a trigger for the attack.

We next give an overview of the proof. First, by a simple player partitioning
argument, we reduce the general m-party case to the 3-party case, where t =
h* = 1. Let A, B, and C be three parties. Let f be a one-way permutation. We
consider the following functionality. Party A holds a string a, party C holds a
string ¢, and party B holds ya, yc. The output of all parties is (a,¢) if f(a) = ya
and f(¢) = yc, and L otherwise. We assume the strings ¢ and ¢ are sampled
uniformly, and that ya = f(a),yc = f(c).

An averaging argument yields that there must exists a round i, where two
parties, say A together with B, can recover (a, ¢) with significantly higher prob-
ability than C together with B. Our attacker corrupts A, acts honestly (using
its original input a) until round 4 and then aborts (regardless of its view so far).
Finally, as the protocol terminates, A will send its entire view to B. This allows
B it to recover (a, c¢) with significantly higher probability than C.

Intuitively, in order to have the output of the honest party C in the ideal
world distributed as in the real world (where it is with noticeable probability L),
the malicious simulator have to change its input (sent to the trusted party) with
high enough probability. However, in this case, the semi-honest simulator for B,
receives L from the trusted party. Since the only information it has on cis f(c),
by the assumed security of f, the simulator for B will not be able to recover ¢
with non-negligible probability. Hence, B’s simulator will fail to generate a valid
view for B.

We stress that since A aborts at round ¢, independently of its view, our attack
works even if the parties have a simultaneous broadcast channel. The detailed
proof appears in Section 4.2.

Low round complexity. Optimal round complexity of protocols is a well studied
question for classical MPC (see, e.g., [7, 8, 24, 32]). Here, we explore the optimal
number of rounds required for general computation with (1, 1)-FaF full-security.
Our motivation for investigating this question comes from the two-round protocol
of Ishai et al. [32], tolerating a single malicious party. In the second round, the
honest parties can either complete the computation or are able to detect the
malicious party. If a party was detected cheating, then the honest parties reveal
their inputs to some of the other honest parties.

Clearly, this is not considered secure according to FaF-security. Indeed, we
prove that there are functionalities that cannot be computed with (1,1)-FaF
security in less than three round. We interpret this as evidence that some kind
of leakage on the inputs of honest parties is necessary in order to achieve a
two-round protocol.? The next theorem completes the picture, asserting that for
m > 9 parties, the optimal round for (1, 1)-FaF full-security is three.

3 Naturally, we do not claim that the protocol must instruct honest parties to leak
information. Rather, we prove that a malicious adversary can leak the private infor-
mation of honest parties.



Theorem 2 (informal). Let m > 9. There exists an m-party functionality that
has no 2-round protocol that computes it with (weak) (1,1)-FaF full-security. On
the other hand, assuming that pseudorandom generators exist, for any m-party
functionality, there exists a 3-round protocol that computes it with strong (1,1)-
FaF full-security.

We now present an overview of the proof. For the negative direction, we
rely on the proof by Gennaro et al. [24] of the impossibility to compute
(1,22, L,...,1) = @1 A 29 in two rounds against two corrupted parties. We
observe that the adversary they proposed corrupts one party maliciously and
another semi-honestly. Moreover, the semi-honest corrupted party has no input,
hence the actions of the adversary can be adopted into our setting. More con-
cretely, we show that an adversary corrupting Ps, can force all of the parties
to gain specific information on z1, yet by sending its view (at the end of the
interaction) to a carefully chosen honest party, it can “teach” that party some
information about x; that no other party has (not even the adversary itself).
This proof, in fact, works for any m > 3.

For the positive direction, we consider the protocol of Damgard and Ishai
[18]. Using share conversion techniques ([17]) and the 2-round verifiable secret
sharing (VSS) protocol of [23], they were able to construct a 3-round protocol
that tolerates ¢ < m/5 corruptions. We follow similar lines as [18]. First we show
how to slightly modify the VSS protocol so it will admit FaF-security. Then, by
making the observation that the parties in the protocol of [18] hold only shares
of the other parties’ input, we are able to show that by increasing the threshold
of the sharing scheme, the protocol admits FaF-security. The construction of the
VSS protocol follows similar lines as in [23]. We further show that the protocol
can be generalized to admit (¢, h*)-FaF full-security, whenever 5t + 3h* < m.

Information theoretic FaF-security. Information theoretic security have been
studied extensively in the MPC literature, see e.g., [11, 38, 21] . We further
generalize the corruption model to allow non-threshold adversaries (for both
the malicious and the semi-honest adversaries). We consider the same adversar-
ial structure as Fitzi et al. [21], called monotone mized adversarial structure.
Roughly, it states that turning a malicious party to being semi-honest does not
compromise the security of the protocol. As discussed previously, this is not
generally the case.

We prove the following theorem, characterizing the types of adversaries, for
which we can compute any multiparty functionality with information theoretic
security.

Theorem 3 (informal). Let R C {(Z,H) : ZNH =0} be a monotone mized
adversarial structure over a set of parties P. Then:

1. Any m-party functionality f can be computed with R-FaF full-security, as-
suming an available broadcast channel, if and only if

IlUHl UIQUHQ #Pv
for every (I1, H1), (Z2, Hz2) € R.



2. Any m-party functionality f can be computed with R-FaF full-security (with-
out broadcast), if and only if

TIUH UL, UHs #P and Iy ULy UZ3 # P,

for every (I1, H1), (Zo, Ha), (I3, H3) € R.
8. Any m-party functionality f can be computed with R-FaF full-security, if
and only if
TWUHL ULy UHy U 7é P,

for every (I1, H1), (Z2, H2), (Z3,H3) € R.

Interestingly, the positive direction holds with respect to strong FaF-security,
and the negative holds with respect to weak FaF-security. Additionally, as Fitzi
et al. [21] showed that the same conditions hold with respect to mixed adver-
saries, this yields an equivalence between all three notions of security, as far as
general MPC goes for monotone adversarial structures.

The proof follows similar lines as [21]. For the positive direction we show
how the parties can securely emulate a 4-party BGW protocol tolerating a sin-
gle malicious party. The negative direction is done by reducing the computation
to a functionality known to be impossible to compute securely (according to
the standard definition), using a player partitioning argument. The full treat-
ment of information theoretic FaF-security with respect to monotone adversarial
structures is deferred to the full-version of the paper [1].

1.1.3 The Relation Between FaF Security and Other Definitions

The relation between FaF-security and standard full-security. It is natural to
explore how the new definition relates to classical definitions both in the com-
putational and in the information-theoretic settings.

We start by comparing FaF-security to the standard definition (for static
adversaries). It is easy to see that standard ¢-security does not imply in general
(t,h*)-FaF full-security, even for functionalities with no inputs (see Section 5.1
for a simple example showing this). Obviously, (¢, h*)-FaF-security readily im-
plies its classical ¢-security counterpart. One might expect that classical (¢4 h*)-
security must imply (¢, h*)-FaF-security. We show that this is not the case in
general. Specifically, in Example 1, we present a protocol that admits tradi-
tional (static) malicious security against ¢ corruptions, however, it does not ad-
mit (¢ — 1, 1)-FaF-security.

In contrast to the above, we claim that adaptive (¢t + h*)-security implies
strong (t, h*)-FaF full-security. Recall that an adaptive adversary is one that can
choose which parties to corrupt during the execution and after the termination
of the protocol and depending on its view. Indeed, strong FaF-security can be
seen as a special case of adaptive security. We do believe, however, that the
FaF model is of special interest, and specifically, that in many scenarios, the full
power of adaptive security is an overkill.



The relation between FaF-security and mized-adversaries security. The notion
of “mixed adversaries” was introduced in [21]. It considers a single entity that
corrupts a subset Z maliciously, and another subset H semi-honestly. Similarly,
the simulator for a mixed adversary is a single simulator controlling the parties
in Z U H, with the restriction of only being able to change the inputs of the
parties in Z.

It is instructive to compare the mixed-adversary notion to that of FaF-
security, which in turn, can be viewed as if there are two distinct adversaries
(which do not collude) — one malicious and one semi-honest. One might expect
that (¢, h*)-mixed full-security would imply (¢, h*)-FaF full-security. However,
similarly to the case with standard security, we show the that this is not gener-
ally the case in the computational setting (cf., Example 2).

1.2 Related Works

Definitions of standard MPC where the subject of much investigation in the area
of MPC. Notable works introducing various definitions are [37, 5, 6, 13, 25]. The
question of achieving (standard) full-security was given quite some attention.
See, e.g., [4, 16, 19, 28, 36] for two parties, [4, 11, 27] in the multiparty setting.

The definition we propose can also be viewed as if there where two different
adversaries, one is corrupting actively and the second is corrupting passively,
while the adversaries cannot exchange messages outside of the environment.
Some forms of “decentralized” adversaries were considered in [2, 3, 14, 34], with
the motivation of achieving collusion-free protocols. However, unlike our defini-
tion, the definitions they proposed were both complicated, and did not allow an
external entity to corrupt more than a single party.

Fitzi et al. [21] where the first to consider the notion of mixed adversaries. In
their model, an adversary can corrupt a subset of the parties actively, and an-
other subset passively. Moreover, their work considered general non-threshold ad-
versary structures. They gave a complete characterization of the adversary struc-
tures for which general unconditional MPC is possible, for four different models:
Perfect security with and without broadcast, and statistical security (with negli-
gible error probability) with and without broadcast. Beerliova-Trubiniové et al.
[9], Hirt et al. [31] further studied adversaries that can additionally fail-corrupt
another subset of parties. They give the exact conditions for general secure func-
tion evaluation (SFE) and general MPC to be possible for perfect security, sta-
tistical security, and for computational security, assuming a broadcast channel.
In all these settings they confirmed the strict separation between SFE and MPC.
Koo [35] considered adversaries that can maliciously corrupt certain parties, and
in addition omission corrupt others. Omission corruptions allow the adversary
to either block incoming and outgoing messages. Zikas et al. [41] further refined
this model by introducing the notions of send-omission corruptions, where the
adversary can selectively block outgoing messages, and receive-omission corrup-
tion, where the adversary can selectively block incoming messages. For a full
survey of works on those notions of mixed adversaries see Zikas [40].
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1.3 Organization

In Section 2 we present the required preliminaries. In Section 3 we formally define
our new notion of FaF-security. Then, in Section 4 we characterize computational
FaF full-security. In Section 5 we compare the new definition to other existing
notions of security.

2 Preliminaries

We use calligraphic letters to denote sets, uppercase for random variables, low-
ercase for values, and we use bold characters to denote vectors. For n € N, let
[n] = {1,2...n}. For a set S we write s + S to indicate that s is selected
uniformly at random from S. Given a random variable (or a distribution) X,
we write < X to indicate that x is selected according to X. A PPTM is a
polynomial time Turing machine.

A function p(-) is called negligible, if for every polynomial p(-) and all suffi-
ciently large n, it holds that p(n) < 1/p(n). For a vector v of dimension n, we
write v; for its i-th component, and for S C [n] we write vs = (v;);c5. For a
randomized function (or an algorithm) f we write f(z) to denote the random
variable induced by the function on input z, and write f(x;r) to denote the
value when the randomness of f is fixed to r. Other preliminaries are standard
and for space considerations are deferred to the full version [1].

3 The New Definition — FaF Full-Security

In this section, we present our new security notion, aiming to strengthen the
classical definition of security in order to impose privacy restrictions on (subsets
of) honest parties, even in the presence of malicious behavior by other parties.
Crucially, we wish to prevent the adversary from leaking private information of
one subset of parties to another subset of parties, even though neither subset is
under its control. The definition is written alongside the classical definition.

We follow the standard ideal vs. real paradigm for defining security. Intu-
itively, the security notion is defined by describing an ideal functionality, in
which both the corrupted and non-corrupted parties interact with a trusted en-
tity. A real-world protocol is deemed secure if an adversary in the real-world
cannot cause more harm than an adversary in the ideal-world. In the classical
definition, this is captured by showing that an ideal-world adversary (simula-
tor) can simulate the full view of the real world adversary. For FaF security, we
further require that the view of any subset of the uncorrupted parties can be
simulated in the ideal-world (including the interaction with the adversary).

To shed some light on some of the subtleties in defining the proposed notion,
inthe full-versionwe review several possible approaches for capturing the desired
security notion (avoiding leakage to honest parties), and demonstrate why they
fall short in doing so. In Section 5, we compare the actual definition we put
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forth with the standard full-security definition, and with the mixed-adversaries
definition.

To make the above intuition more formal, fix a (possibly randomized) m-ary
function f = {fp: AP x -+ x A = VP x --- x Y}, o and let IT be a protocol
for computing f. We further let A" = A" x --- x A.

The FaF Real Model

An m-party protocol IT for computing the function f is defined by a set of m
interactive probabilistic polynomial-time Turing machines P = {Py,...,P,,}.
Each Turing machine (party) holds the security parameter 1" as a joint input and
a private input z; € X*. The computation proceeds in rounds. In each round,
the parties either broadcast and receive messages over a common broadcast
channel, or send messages to an individual party over a secure channel. The
number of rounds in the protocol is expressed as some function r(n) in the
security parameter (where r(n) is bounded by some polynomial). At the end of
the protocol, the (honest) parties output a value according to the specifications of
the protocol. When the security parameter is clear from the context, we remove it
from the notations. The view of a party consists of the party’s input, randomness,
and the messages received throughout the interaction.

We consider two adversaries. The first is a malicious adversary A that controls
a subset Z C P. The adversary has access to the full view of all corrupted parties.
Additionally, the adversary may instruct the corrupted parties to deviate from
the protocol in any way it chooses. We make explicit the fact that the adversary
can send messages (even if not prescribed by the protocol) to any uncorrupted
party — in every round of the protocol, and can do so after all messages for
this round were sent (see Remark 1 for more on this). The adversary is non-
uniform, and is given an auxiliary input z4. The second adversary is a semi-
honest adversary Ay, that controls a subset H C P \ Z of the remaining parties
(for the sake of clarity, we will only refer to the parties in Z as corrupted).
Similarly to A, this adversary also has access to the full view of its parties.
However, Ay cannot instruct the parties to deviate from the prescribed protocol
in any way, but may try to infer information about non-corrupted parties, given
its view in the protocol (which includes the joint view of parties in H). This
adversary is also non-uniform, and is given an auxiliary input z;. When we say
that the adversary is computationally bounded, we mean it is a PPTM. Both
adversaries are static, that is, they choose the subset to corrupt prior to the
execution of the protocol. For a subset of parties S C P, we let xs be the vector
of inputs of the parties in S, specifically, x7 and x4, denote the vector of inputs
of the parties controlled by A and A3 respectively.

We next define the real-world global view for security parameter n € N, an
input sequence x = (z1,...,Ty), and auxiliary inputs z4,234 € {0,1}* with
respect to adversaries A and Ay, controlling the parties in Z C P and H C P\Z
respectively. Let OUTiI’EII%L (1™, x) denote the outputs of the uncorrupted parties
(those in P\ Z) in a random execution of IT, with A corrupting the parties in Z.

Further let VIEWE”EI%L (1™, x) be the adversary’s view during an execution of IT,
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which contains its auxiliary input, its random coins, the inputs of the parties in
7, and the messages they see during the execution of the protocol. In addition,
we let VIEWE(%i ;7 (1", x) be the view of Ay during an execution of IT when
running alongside A (this view consists of their random coins, their inputs, and
the messages they see during the execution of the protocol, and specifically, those
non-prescribed messages sent to them by the adversary).

We denote the global view in the real model by

I,A,A
REALD o, = (view i (17, %), viewSERL (17 %), our{t (17,%)) .

It will be convenient to denote
,ALA
REAL AN () = (view SR (17, %), our A (17, )

i.e., the projection of REAL{YTL’Q’?”ZH to their view of the adversary and the

uncorrupted parties’ output (t’h7ose7 in P\ ), and denote

R,EALﬁﬁ:?zZH (Az) = (viewil ; (17,x), outifpt (17, %)) .

When I7 is clear from the context, we will remove it for brevity.

Remark 1. A subtlety in the proposed model is how to deal with messages sent
by the adversary at a later point in time, after the protocol execution terminated.
Specifically, if honest parties need to react to such messages, then the protocol
has no predefined termination point. It is possible to incorporate a parameter
of time to the security definition, asserting that the protocol is secure until time
7. To keep the definition clean and simple, we overcome this subtlety by only
allowing the real-world adversary to communicate with other (non-corrupted)
parties until the last round of the protocol.

The FaF Ideal Model

We next describe the interaction in the FaF full-security ideal model, which
specifies the requirements for fully secure FaF computation of the function f
with security parameter n. Let A be an adversary in the ideal-world, which
is given an auxiliary input z4 and corrupts the subset Z of the parties called
corrupted. Further let A3, be a semi-honest adversary, which is controlling a set
of parties denoted H and is given an auxiliary input zy. We stress that the
classical formulation of the ideal model assumes H = 0.

The FaF ideal model — full-security.

Inputs: Each party P; holds 1" and z; € X/*. The adversaries A and Ay are
given each an auxiliary input z4, 2z € {0, 1}* respectively, and z; for every
P; controlled by them. The trusted party T holds 1.

Parties send inputs: Each uncorrupted party P; € P\Z sends x; as its input
to T. The malicious adversary A sends a value z} € X" as the input for party
P, € Z. Write (zf,...,},) for the tuple of inputs received by the trusted

party.
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The trusted party performs computation: The trusted party T selects a
random string r and computes y = (y1,...,Ym) = f (2} ..., 2},;7) and sends
y; to each party P;.

The malicious adversary sends its (ideal-world) view: A sends to Ay
its randomness, inputs, auxiliary input, and the output received from T.
Outputs: Each uncorrupted party (i.e., not in Z) outputs whatever output it
received from T, the parties in Z output nothing. A and Ay output some

function of their respective view.

Note that we gave Ay the ideal-world view of A. This is done due to the fact
that in the real-world, we cannot prevent the adversary from sending its entire
view to the uncorrupted parties. Consider the following example. Suppose three
parties computed a functionality (L, L, L)+~ (r, L,7), where r is some random
string. A corrupted P; can send r to Py at the end of the interaction, thereby
teaching it the output of an honest party. In the ideal-world described above,
Ap, will receive r as well, allowing us to simulate this interaction.

We next define the ideal-world global view for security parameter n € N,
an input sequence x = (x1, ..., %), and auxiliary inputs z4, z¢ € {0,1}* with
respect to adversaries A and Ay, controlling the parties in Z C P and H C P\Z
respectively. Let OUTE&I}:AL (1™, x) denote the outputs of the uncorrupted parties
(those in P\ Z) in a random execution of the above ideal-world process, with A
corrupting the parties in Z. Further let VIEWB&?AL (1™, x) be the (simulated, real-
world) view description being the output of A in such a process. In addition, we
let VIEW_IBE?‘E}« (1™, x) be the view description being the output of Az in such
a process, when running alongside A. We denote the global view in the ideal
model by

AA ;
DEALL S L = (viewREAL (17, x) |, view AL (17 %), ourPEAN (17, x))

As in the real model, it will be convenient to denote

EALL A L (A) = (view AL (17 %), ouTlREAR (17, %))

and

IDEAL]AY | (Ay) = (viewREAL (17 %), ourPEAN (17, x)) .

s XK ZAGZH

When f is clear from the context, we will remove it for brevity. We first define
correctness.

Definition 1 (correctness). We say that a protocol II computes a function f
if for allm € N and for all x € X™, in an honest execution, the joint output of
all parties is identically distributed to a sample of f(x).

We next give the definition for the classical definition of computational se-
curity alongside FaF-security.

Definition 2 (classical malicious and FaF security). Let II be a protocol
for computing f. We say that II computes f with computational (¢, h*)-FaF
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full-security, if the following holds. For every non-uniform PPTM adversary A,
controlling a set T C P of size at most t in the real-world, there exists a non-
uniform PPTM adversary Sy, controlling T in the ideal model; and for every
subset of the remaining parties H C P\ I of size at most h*, controlled by
a non-uniform semi-honest PPTM adversary Ay, there exists a non-uniform
PPTM adversary S a3, controlling H in the ideal-world, such that

SASAmH
{IDEALl" JX,ZALZH (SA) }

A Ay }
REALT Y
{ 1z (A) XEX,z4,21€{0,1}* neN’

XEX,z 4,214 €{0,1}*,nEN

IR

and
SaA,San
IDEALIR 5 SAn
{ 1 ”"Z*"Z”( ) XEX,2.4,210€{0,1}* ,neN

< AA
= {REALln’xj{ZAyzH (AH)}

: (2)
x€EX,z 4,214 €{0,1}*,nEN
We say that II computes f with computational t-security if it computes it with
computational (t,0)-FaF full-security.

Finally, we say that II computes f with strong computational (t,h*)-FaF
full-security if

Sa,Sa,m }
IDEAL
{ %2429 xEX,z 4,21 €{0,1}*,nEN

{REALfn"i?éA ZH} .
e XEX,z4,211€{0,1}*,n€EN

IR

3)

To abbreviate notations, whenever H = {P} we denote its simulator by S 4 p.

The statistical /perfect security variants of the above definitions are obtained
naturally from the above definition by replacing computational indistinguisha-
bility with statistical distance.

Remark 2. Observe that for the two-party case, since we also protect H from
A, (weak) (1,1)-FaF-security is equivalent to the security considered by Beimel
et al. [10]. There, security holds if and only if no malicious adversary and no
semi-honest adversary can attack the protocol.

Remark 3. Observe that according to the definition, we first need to describe a
malicious simulator before fixing the semi-honest parties in . This should be
considered in regard to the definition of the ideal-model, where the malicious
simulator S 4 sends to the semi-honest simulator S 4 4 its ideal-world view, im-
plying that S 4 should know the identities of H. Formally, we let the malicious
simulator have an additional tape, where it writes its ideal-world view on it, and
then the semi-honest simulator reads from it.

f-Hybrid Model. Let f be a m-ary functionality. The f-hybrid model is identical
to the real model of computation discussed above, but in addition, each m-size
subset of the parties involved, has access to a trusted party realizing f.
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3.1 FaF Security-With-Identifiable-Abort

We also make use of protocols admitting security-with-identifiable-abort. In terms
of the definition, the only requirement that is changed, is to have the ideal-world
simulator operate in a different ideal model. We next describe the interaction
in the FaF-secure-with-identifiable-abort ideal model for the computation of the
function f with security parameter n. Unlike the full-security ideal model, here
the malicious adversary can instruct the trusted party to not send the output to
the honest parties, however, in this case the adversary must publish the identity
of a corrupted party. In addition, since there is no guarantee that in the real-
world the semi-honest parties won’t learn the output, we always let the semi-
honest parties to receive their output in the ideal execution.

Let A be a malicious adversary in the ideal-world, which is given an auxiliary
input z4 and corrupts the subset Z of the parties. Further let A3 be a semi-
honest adversary, which is controlling a set of parties denoted H and is given
an auxiliary input zy. Just like in the full-security ideal-world, the standard
formulation of security-with-identifiable-abort assumes H = 0.

The FaF ideal model — security-with-identifiable-abort.

Inputs: Each party P; holds 1" and z; € X[*. The adversaries A and Ay are
given each an auxiliary input z4, 2z € {0,1}* respectively, and z; for every
P; controlled by them. The trusted party T holds 1™.

Parties send inputs: Each uncorrupted party P; € P\Z sends x; as its input
to T. The malicious adversary sends a value z} € X" as the input for party
P, € Z. Write (zf,...,},) for the tuple of inputs received by the trusted
party.

The trusted party performs computation: The trusted party T selects a
random string r and computes y = (y1,...,ym) = f (2} ..., 2),;7) and sends
vz to A and yy, to Ay.

The malicious adversary sends its (ideal-world) view: A sends to Ay
its randomness, inputs, auxiliary input, and the output received from T.

Malicious adversary instructs trusted party to continue or halt: the
adversary A sends either continue or (abort,P;) for some P; € Z to T. If
it sent continue, then for every honest party P; the trusted party sends
y;. Otherwise, if A sent (abort,P;), then T sends (abort,P;) to the each
honest party P;.

Outputs: Each uncorrupted party outputs whatever output it received from T
(the parties in H output (abort,P;) if they received it in the last step), the
parties in Z output nothing. The adversaries output some function of their
respective view.

4 Characterizing Computational FaF-Security

In this section we prove our main theorem regarding FaF-security. We give a
complete characterization the types of adversaries, for which we can compute
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any multiparty functionality with computational FaF full-security. We prove
the following result.

Theorem 4. Let t,h*,m € N. Then under the assumption that OT and OWP
exist, any m-party functionality f can be computed with (weak) computational
(t,h*)-FaF full-security, if and only if 2t + h* < m. Moreover, the negative
direction holds even assuming the availability of simultaneous broadcast.

In Section 4.1 we show the positive direction, while in Section 4.2 we prove
the negative direction.

4.1 Feasibility of FaF-Security

In this section, we prove the positive direction of Theorem 4. In fact, we show
how to reduce FaF full-security to FaF security-with-identifiable-abort whenever
2t + h* < m. In addition, we explore the feasibility of both FaF full-security
and FaF security-with-identifiable-abort, and provide interesting consequences
of these results. We first show that the GMW protocol [26] admits FaF security-
with-identifiable-abort, for all possible threshold values of ¢t and h*, and admits
FaF full-security assuming t+h* < m/2. In Section 4.1.2 we show that, assuming
an uncorrupted majority (i.e., t < m/2), residual FaF full-security is (perfectly)
reducible to FaF-security-with-identifiable-abort. The notion of residual security
[30], intuitively allows an adversary to learn the output of the function on many
choices of inputs for corrupted parties. A formal definition and some motivation
for using residual security variant appear in Section 4.1.2.

4.1.1 Feasibility of FaF Security-With-Identifiable-Abort

We next show that the GMW protocol admits FaF security-with-identifiable-
abort, and admits FaF full-security in the presence of an honest majority (i.e.,
t+h* <m/2).

Theorem 5. Let m,t,h* € N be such thatt +h* < m and Let f be an m-party
functionality. Then, assuming OT exists, there exists a protocol for computing f
with (weak) computational (t, h*)-FaF security-with-identifiable-abort. Moreover,
if t+h* < m/2 then the protocol admits computational (t, h*)-FaF full-security.

Proof Sketch. We will show that a slight variation on the GMW protocol [26],
setting the secret sharing (for sharing the inputs) to a (¢ + h* + 1)-out-of-m
scheme, admits FaF-security.

Fix an adversary A corrupting Z of size at most ¢, and let H C P \ Z be of
size at most h*. The semi-honest simulator S 4 7 will work very similarly to the
malicious simulator S 4. The only difference is that the messages it sends to the
adversary on behalf of the parties in #, are the real message that the protocol
instruct them to send (e.g., in the input commitment phase it will commit to the
real input unlike S 4, which commits to 0). Additionally, if the adversary did not
abort, for every output wire held by a party in Z U H, set the message received
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from the honest parties (i.e., from P\ (ZUH)) as the XOR of the output of that
wire and the shares of the wire held by the corrupted and semi-honest parties.
Security follows from the fact that the messages S, 4 sends to A are consis-

tent with the inputs of the malicious and the semi-honest parties.
O

4.1.2 Reducing Residual FaF Full-Security to FaF Security-With-
Identifiable-Abort

In this section, we present a reduction from residual FaF full-security to
FaF security-with-identifiable-abort, in the uncorrupted majority setting. This
reduction further has the property that if 2t + A* < m then FaF full-security
is obtained (i.e., not residual). We first formally define the residual function.
Intuitively, the residual of an m-ary function with respect to a subset S of the
indexes, fixes the inputs on the indexes [m] \ S. More formally, it is defined as
follows.

Definition 3 (Residual Function [30, 29]). Let f : X — Y be an m-ary
functionality, let x = (x1,...,%my) be an input to f, and let S = {i1,...,im } C
[m] be a subset of size m’. The residual function of f for S and x is an m’-
ary function fsx @ Xy X ... x Xy, = Vi X ... x Y, obtained from f by
restricting the input variables indexed by [m]\ S to their values in x. That is,
fsx (@, ...,x,) = f(x1,...,2m), where for k ¢ S we have x} = x), while for
k=1i; €S we have z) = x;.

Residual FaF full-security is defined similarly to FaF full-security, with the only
exception being in the ideal-world, the two adversaries receive the residual func-
tion fr x instead of a single output (all the uncorrupted parties still receive an
output from T, which they output).

Before stating the result, we first define the functionalities to which we reduce
the computation. For an m-party functionality f, and for m’ € {m —t¢,...,m},
we define the m/-party functionality f],(x) in the security-with-identifiable-
abort model as follows. Let y = (y1,...,¥m) be the output of f(x). Share each
y; in an (m — t)-out-of-m’ secret sharing scheme, so that party P, is required
for the reconstruction (this can be done by first sharing in a 2-out-of-2 secret
sharing, and then give one of the shares to P; and share the other among m’ — 1
parties). The output of party P is its respective shares of each y;, i.e., P; receives
(yil4])i~,. We next present the statement. The proof is given in Section 4.1.3.

Lemma 1. Let m,t,h* € N be such that t + h* < m(n) and that t < m/2, and
let f be an m-party functionality. Then there exists a protocol Il that computes f
with strong perfect (t, h*)-residual FaF full-security in the (f,’nﬂh cee f,’n) -hybrid
model. Moreover, the protocol satisfies the following.

1. Standard malicious security achieved is standard security (i.e., not residual)
2. If 2t+h* < m then IT admits (t,h*)-FaF full-security in the (f},_;, ..., fl,)-
hybrid model.
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Remark 4. Note that in general, classical generic protocols, such as the GMW
protocol, will not achieve FaF full-security, even if we increase the threshold for
the secret sharing scheme to ¢ + h* + 1. As an example, consider the 3-party
functionality (a, L,¢) — a & b & ¢, where b + {0,1}, and let ¢t,h* = 1. Using
a 2-out-of-3 secret sharing scheme, would allow a corrupted P; to help Ps to
learn c¢. Using a 3-out-of-3 secret sharing scheme, would allow the adversary to
withhold information on the output.

We stress that even standard techniques, such as having the parties compute
a functionality whose output is a secret sharing of the original output, fail to
achieve security. This is due to the fact that an adversary can abort the execution
forcing the parties in H to (possibly) learn an output. Then, after executing the
same protocol with one party labeled inactive, the parties in H will learn an
additional output, which cannot be simulated. In Section 4.1.3 we show that
such protocol can achieve residual security, namely the parties in H will not
learn more than the function on many choices of inputs for corrupted parties.

Assuming that OT exists, we can apply the composition theorem to combine
Lemma 1 with Theorem 5 and get as a corollary that whenever an uncorrupted
majority is present (i.e., t < m/2), any functionality can be computed with
(weak) computational residual FaF full-security.

Corollary 1. Let m,t,h* € N be such that t+h* < m and thatt < m/2, and let
f be an m-party functionality. Then, assuming OT exists, there exists a protocol
IT that computes f with (weak) computational (t, h*)-residual FaF full-security.

1. Standard malicious security achieved is standard security (i.e., not residual)
2. If 2t + h* < m then IT admits (t,h*)-FaF full-security.

Ttem 2 of the above corollary concludes the positive direction of Theorem 4.
The proof of Lemma 1 is given in Section 4.1.3. Before providing a proof, we first
discuss some interesting consequences. One interesting family of functionalities
to consider in the corollary, is the family of no-input functionalities (e.g., coin-
tossing). Since there are no inputs, it follows that such functionalities can be
computed with FaF full-security (i.e., not residual).

Corollary 2. Let m,t,h* € N be such that t+h* < m and thatt < m/2, and let
f be an m-party no-input functionality. Then, assuming OT exists, there exists a
protocol IT that computes [ with (weak) computational (t,h*)-FaF full-security.

As a result, in the computational setting, we claim that we have separation
between (weak) FaF-security and mixed-security. Recall that a mixed adver-
sary is one that controls a subset of the parties maliciously and another subset
semi-honestly. Consider the 3-party functionality f(L,Ll, 1) = (b, L,b), where
b «+ {0,1}. As we proved in Corollary 2, this functionality can be computed
with computational (1,1)-FaF full-security. However, we claim that f cannot be
computed with computational (1,1)-mixed security.

Theorem 6. No protocol computes [ with (1,1)-mized full-security.
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The proof follows from a simple observation on a result by Ishai et al. [33].
They showed that for any protocol computing the functionality g(a, L,c) =
(a®c,L,a®c), where a and ¢ are chosen uniformly at random, there exists
a mixed adversary successfully attacking the protocol. Consequently, the same
attack would work on any protocol computing f. As a result, we conclude that
for no-input functionalities, the definition of security against mixed adversaries
is strictly stronger than FaF security.

Even for various functionalities with inputs, Lemma 1 implies FaF full-
security for interesting choices of parameters. For example, consider the 3-party
XOR functionality. Then it can be computed with (1, 1)-FaF full-security since
the input of the honest party can be computed by the semi-honest party’s sim-
ulator.

4.1.3 Proof of Lemma 1

We next provide the proof of Lemma 1. Recall that for an m-party function-
ality f and for m’ € {m — ¢, ..., m}, we define the m/-party functionality f/ ,(x)
in the security-with-identifiable-abort model as follows. Let y = (y1,...,ym) be
the output of f(x). Share each y; in an (m — t)-out-of-m’ secret sharing scheme,
so that party P; is required for the reconstruction. The output of party P; is its
respective shares of each y;, i.e., P; receives (y;[j])i~,.

Proof (of Lemma 1). The protocol IT in the real world is described as follows:

Protocol 7
Input: Party P; holds an input x; € X;.
Common input: Security parameter 1™.

1. The parties call the functionality f| ., where m' is the number of active
parties, and the inputs of the inactive parties is set to a default value.

2. If the computation followed through, then the parties broadcast their shares,
reconstruct the output, and halt.*

3. Otherwise, they have the identity of a corrupted party. The parties then go
back to Step 1 without said party (updating m' in the process and setting its
input to a default value).

Intuitively, the protocol works since there is an honest majority, so the parties
can always reconstruct the output in case the computation in Step 1 followed
through. Moreover, the only information the parties receive in case of an abort
during Step 1, is an output of f that is consistent with their inputs. In particular

4 For this step to work, we need to assume that the adversary does not change its
shares. We can force it to send the correct shares using standard techniques. One
way to do so is to sign each output of each f,, using a MAC and give the other
parties the key for verification. For the sake of clarity of presentation, however, we
decide to skip this and assume that the corrupted parties are using correct shares.
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the adversary cannot add additional information to any subset of the honest
parties. We next present the formal argument.

Fix an adversary A corrupting a set of parties Z C P of size at most ¢, and
let # C P\ Z be a subset of the uncorrupted parties of size at most h*. We first
construct the simulator S 4 for the adversary. To prove Item 1 of the “moreover”
part, we will construct the simulator S 4 assuming that receives a single output
from the trusted party. This is indeed a stronger result, since a simulator with
the residual function can always simulate the simulator that received a single
output. With an auxiliary input z4, the simulator S 4 does the following:

1. Let m’ be the number of active parties. Share some garbage value m times
independently as follows. Denote y; = (9; [j])i~, the shares held by P;, where
9; is a garbage value, shared in a (m — t)-out-of-m’ Shamir’s secret sharing
scheme with respect to party P;.

2. Send y7 to A to receive the message it sends to f/ ,.

. If Areplied with (abort, P;), then go back to Step 1 with P; labeled inactive.

4. Otherwise, A sent some vector of inputs Xz. Pass Xz to the trusted party to
receive an output y;. Complete the ¢ shares held by A to a sharing of the
real output y; (recall that ¢ < m/2 so this is possible by the properties of
the secret sharing scheme).

5. Output all of the y’’s generated and the completed shares, and halt.

w

We next describe the simulator S4 4 for the adversary Ay controlling the
parties in H interacting with 4. The idea is to have the simulator use the shares
generated by S 4 to ensure consistencies between their views. Additionally, for
the last iteration, where the shares should be reconstructed to the output, we
modify the shares not held by A so the output will also be consistent with
generated view. In addition, for every abort occurred, the simulator will use the
residual function to hand over to H the output of that iteration. Formally, given
an auxiliary input zg;, S operates as follows.

1. Receive the residual function fzx from the trusted party, and receive
(xz,7,24) — Sa’s input, randomness, and the auxiliary input, respectively.

2. Apply S to receive its view, which consists of y% — shares of some values,
held by the adversary.

3. Query A on each y7 to receive the messages it sends to H, and in case of an
abort, get the identity of a corrupted party.

4. Complete each y’ to shares of an output § computed using the residual
function fzx (fixing the input of the inactive parties to be a default value,
and input of the active corrupted parties according to the choice of A), so
that the last y% is completed to shares of the real output. Note that by the
properties of the secret sharing scheme, this can be done efficiently.

5. Output all of the completed shares and the messages sent by A, and halt.

In every iteration, the view generated by S4,% is consistent with the view
generated by the malicious simulator S 4. Moreover, they send to A the exactly
the same messages, hence they will receive the same identities of the aborting
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parties, and inputs given to the functionalities f; ,. Since this is generated with
the same distribution as in the real-world, we conclude that joint view of the
two adversaries with the output of the honest parties, is identically distributed
in both worlds.

Finally, in order to see why Item 2 of the “moreover” part is true, observe
that if 2t + h* < m then ¢t + h* < m — ¢, implying that the number of shares
that can be held by the A and H is smaller than the secret sharing threshold.
Thus, S4,% can use random shares for each iteration (except the last iteration),
without using the output.

4.2 Impossibility Result

In this section, we prove the negative direction of Theorem 4. Specifically, we
prove the following lemma.

Lemma 2. Let m,t,h* € N be such that 2t + h* = m. Then there exists an
m-party functionality that no protocol computes it with (weak) computational
(t, h*)-FaF full-security. Moreover, the claim holds even assuming the availability
of simultaneous broadcast.

For the proof, we first show that it holds for the 3-party case where t, h* = 1.
Then, using a player-partitioning argument, we generalize the result to more
than three parties. The following lemma states the result for the 3-party case.
Throughout the remainder of the section, we denote the parties by A, B, and C.

Lemma 3. Assume that one-way permutation exists. Then there exists a 3-party
functionality that no protocol computes it with (weak) computational (1,1)-FaF
full-security. Moreover, the following hold

1. The malicious adversary we construct corrupts either A or C, while the re-
maining third party B will be in H.
2. The claim holds even assuming the availability of simultaneous broadcast.

The proof of Lemma 2 is deferred to the full-version. We next give an overview
of the proof of Lemma 3. We assume that each round is composed of 3 broadcast
messages, the first sent by A, the second sent by B, and the third by C (this is
without loss of generality, as we allow the adversary to be rushing). Intuitively,
the proof is done as follows. By an averaging argument there must exists a
round where two parties, say A and B, together can reconstruct the output with
significantly higher probability than C and B. We then have A act honestly
(using the original input it held) and abort at that round. As a result, with high
probability the output of C will change. Finally, A will send its entire view to
B, allowing it to recover the correct entry with significantly higher probability
than C. We show that for an appropriate functionality, the advantage of the pair
(A,B) over (C,B) cannot be simulated.

Proof (of Lemma 3). Let f = {fn:{0,1}" — {0,1}"} .y be a one-
way permutation. Define the symmetric 3-party functionality Swap =
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{Swap,, : {0,1}" x {0,1}*" x {0,1}" > {0,1}*"} _ as follows. Parties A and
C each hold a string a,c € {0,1}" respectively. Party B holds two strings
ya,yc € {0,1}". The output is then defined to be

Swap,, (4, (ya, yc)  ¢) = {“‘"” 1 nla) =ya and fule) = ve
1 otherwise
Assume for the sake of contradiction that there exists a 3-party protocol
IT that computes Swap with computational (1,1)-FaF full-security. We fix a
security parameter n, we let  denote the number of rounds in 17, and consider
an evaluation of Swap with the output being (a,c). Formally, we consider the
following distribution over the inputs.

— a, c are each selected from {0, 1}" uniformly at random and independently.
— ya = fu(a) and yo = fu(c).

For i € {0,...,r} let a; be the final output of A assuming that C aborted after
sending ¢ messages. Similarly, for i € {0, ...,r} we define ¢; to be the final output
of C assuming that A aborted after sending ¢ messages. Observe that a,. and ¢,
are the outputs of A and C respectively. We first claim that there exists a round
where either A and B gain an advantage in computing the correct output, or C
and B gain this advantage.

Claim 8 Either there exists i € {0,...,r} such that

1 —neg(n
Prla; = (a,c)] — Prc; = (a,¢)] > o1 +g£ ),
or there exists i € [r] such that
1 — neg(n
Prlc; = (a,c)] — Prla;—1 = (a,c)] > Tgi)

The probabilities above are taken over the choice of inputs and of random coins
for the parties.

The proof is done using a simple averaging argument, and is proven below. We
first use this fact to show an attack.

Assume without loss of generality that there exists an i € [r] such that the
former equality holds (the other case is done analogously). Define a malicious
adversary A as follows. For the security parameter n, it receives as auxiliary
input the round . Now, A corrupts A and have it act honestly (using the party’s
original input @) up to and including round 4. After receiving the i-th message,
the adversary instructs A to abort. Finally, the adversary sends its entire view to
B. We next show that no pair of simulators S 4 and S 4,5 can produce views for
A and B so that Equations (1) and (2) would hold. For that, we assume towards
contradiction that such simulators do exist. Let a* € {0,1}"™ be the input that
S sent to the trusted party. Additionally, denote ¢ = Pr[c; = (a, ¢)].
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We next separate into two cases. For the first case, let us assume that
Pra* =a] > ¢+ 1/p(n) for some polynomial p(-) for infinitely many n’s. Let
OUTICDEAL be the output of C in the ideal world. Since f,, is a permutation we
have that

Pr [ourd™Al = (a,¢)] = Pra* = a] > ¢+ 1/p(n).

Thus, by comparing the output of C to (a,c) it is possible to distinguish the real
from the ideal with advantage at least 1/p(n).

For the second case, we assume that Pr[a* = a] < ¢ + neg(n). Here we show
how to distinguish between the view of B in the real world from its ideal world
counterpart. Recall that in the real world A sent its view to B. Let M be the
algorithm specified by the protocol, that A and B use to compute their output
assuming C has aborted. Namely, M outputs a; in the real world. By Claim 8 it
holds that Pr[a; = (a,c)] > ¢ + 228U We next consider the ideal world. Let

2r+4+1
V be the view generated by S4 5. We claim that

PrM(V) = (a,¢) A a™ # a] < neg(n).

Indeed, since f,, is a permutation and B does not change the input it sends to T,
the output computed by T will be L. Moreover, as f,, is one-way it follows that
if M(V) did output (a, ¢), then it can be used to break the security of f,,. This
can be done by sampling a + {0,1}", computing f(a), and finally, compute a
view V using the simulators and apply M to it (if a* computed by S4 equals to
a then abort). We conclude that

PrM (V) = (a,0)] = Pr[M(V) = (a,¢c) Na" = a] + Pr[M(V) = (a,c) Aa” # q]
< Prla* = a] + neg(n)
< ¢+ neg(n).

Therefore, by applying M to the view it is possible to distinguish with advantage
1—neg(n)

at least Tl

—neg(n). To conclude the proof we next prove Claim 8.

Proof (of Claim 8). The proof follows by the following averaging argument. By
correctness and the fact that f, is one-way, it follows that

1- neg(n) <Pr [ar = (a,c)] —Pr [CO = (a,c)]

= Z(Pr [a; = (a,c)] = Prle; = (a,¢)]) + Z (Pr[e; = (a,¢)] — Prlai—1 = (a,¢)])
i=0 i=1

Since there are 2r + 1 summands, there must exists an i for which one of the
1—neg(n)

differences is at least 1

Finally, in order to see why Item 2 is true, observe that the attack is not
based on the view of A, hence the same attack works assuming simultaneous
broadcast.
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Remark 5. Intuitively, we showed that in the real world the parties A and B
hold more information on the output, than what B and C hold. To make this
statement formal, observe that the proof in fact shows that Swap cannot be
computed with fairness. Roughly, for fairness to hold we require that either all
parties receive an output, or none of them do. To see this, observe that for
the functionality at hand, aborting in the ideal world is the same as sending
a different input a. Therefore the attack cannot be simulated. We present the
formal definition of fairness in the full-version.

5 Comparison Between FaF-Security and Other
Definitions

In this section, we compare the notion of FaF-security to other existing notions.
In Section 5.1, we investigate how FaF-security relates to classical full-security.
In Section 5.2, we review the differences between our notion and the notion of
mixed adversaries. In the mixed-adversary scenario, a single adversary controls
a set Z of parties, however, within Z different limitations are imposed on the
behavior (deviation) of different parties. In Section 5.3, we show that strong
FaF-security is a strictly stronger notion than (weak) FaF-security.

5.1 The Relation Between FaF-Security and Standard Full-Security

We start with comparing FaF-security to the standard definition. It is easy to
see that standard t-security does not imply in general (¢, h*)-FaF full-security,
even for functionalities with no inputs. Consider the following example. Let
f be a 3-party no-input functionality defined as (L, L, 1) — (L, L,r) where
r < {0,1}", and let ¢t,h* = 1. Consider the following protocol: P; and P,
sample 1,79 < {0,1}", respectively and send the random strings to P3. The
output of Pz is then r; @ rs.

It is easy to see that the protocol computes f with perfect full-security tol-
erating a single corruption. However, a malicious P; can send r; to Ps as well,
thereby allowing P to learn P3’s output. Indeed, this protocol is insecure accord-
ing to Definition 2. Obviously, (¢, h*)-FaF-security readily implies the classical ¢-
security counterpart. Conversely, one might expect that classical (¢+h*)-security
must imply (¢, h*)-FaF-security. We next show that this is not the case in general.
We present an example of a protocol that admits traditional malicious security
against ¢ corruptions, however, it does not admit (¢ — 1,1)-FaF-security. Intu-
itively, this somewhat surprising state of affairs is made possible by the fact that
in (t — 1, 1)-FaF-security both the attacker and the two simulators are weaker.

The following example is a simple extension of the known example (cf., [10]),
showing that for standard security, there exists a maliciously secure protocol (for
computing the two-party, one-sided OR function), but none semi-honest secure.

Ezample 1. Let A, B, and C be three parties with inputs a, b, c € {0,1} respec-
tively. Consider the 3-party functionality 30R : {0,1}3 ~ {0,1}® defined as
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30R (a,b,¢) = (L, L, (a®b)V c), with the following protocol for computing it.
In the first round, parties A and B both select shares for their respective inputs
with each other. That is, A selects a; < {0,1} and sends as = a @ a; to B, and
B selects by < {0,1} and sends by = b & by to A. In the second round, A sends
a1 @ b1 to C and B sends as @ by to C. Party C outputs (a1 & b1 @ a2 ® ba) V c.

We first claim that the protocol computes 30R with perfect full-security
tolerating coalitions of size at most 2. Indeed, an adversary that maliciously
corrupts A, B, or both, learns nothing and can be simulated by selecting the
inputs defined by the shared values. An adversary that maliciously corrupts C
can be simulated by sending ¢ = 0 to the trusted party, and as a result, learning
the same information as in the protocol. For example, corrupting A and C and
sending a,0 (resp.) to the trusted party, the adversary learns b.

We argue that although the protocol is 2-secure in the standard definition, it
does not compute 30R with (1,1)-FaF full-security. Specifically, a semi-honest
C cannot be simulated. Take for example, an adversary A that corrupts A ma-
liciously and let H = {C}. In the real-world, A can reveal b to C. However, in
the ideal-world, this cannot be simulated (when ¢ = 1).

Remark 6. Example 1 shows that “moving” a party from being malicious to
being semi-honest (i.e., taking a party from Z and moving it to H) could poten-
tially break the security of the protocol. Similarly to [10], it is arguably natural
to consider a definition that requires the protocol to be (t, h*)-FaF-security if
and only if it is (¢t — 1, h* + 1)-FaF-security. Our definition does not impose this
extra requirement, however, all of our protocols satisfy it.

In contrast to the above example, we claim that adaptive (¢ 4+ h*)-security
does imply strong (¢, h*)-FaF full-security. Intuitively, this follows from the fact
that an adaptive adversary is allowed to corrupt some of the parties after the exe-
cution of the protocol terminated. We formulate the theorem for the full-security
setting, however, we stress that it also holds in the security with (identifiable)
abort setting.

Theorem 9. Let type € {computational, statistical, perfect} and let IT be an
m-party protocol computing some m-party functionality f with type adaptive
(t + h*)-security. Then IT computes f with type (t, h*)-FaF full-security.

A proof sketch of Theorem 9 is given in the full-version.
By applying recent results on adaptive security, we get that there exist
constant-round protocol that are FaF secure-with-abort [15, 12, 22].

5.2 The Relation Between FaF-Security and Mixed-Security

The notion of “mixed adversaries” [21, 40] considers a single entity that corrupts
a subset Z maliciously, and another subset H semi-honestly.”> A simulator for a

5 There are various types of mixed adversaries one can consider. For example, [31]
also gave the adversary the ability to fail-corrupt parties, based on its adversarial
structure. Here, we only consider the notion considered by [21].
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mixed adversary, is a single simulator controlling the parties in Z U #H. This
simulator is restricted so to only be allowed to change inputs for the parties in 7
(i.e., the simulator is not allowed to change the inputs for the parties in H). We
say that a protocol has computational (¢, h*)-mixed full-security, if Equation (2)
is written with respect to a mixed adversary and its simulator.

In comparison, FaF-security can be viewed as if there are two distinct ad-
versaries — one malicious and one semi-honest, making it a natural question to
compare the two definitions. One might expect that (¢, h*)-mixed full-security
would imply (¢, h*)-FaF full-security. However, similarly to the case with stan-
dard security, we show the that this is not generally the case in the computational
setting (note that the protocol from Example 1 is not (1, 1)-mixed secure).

Ezample 2. Consider the 5-party functionality f : ({0,1}™)° x 02 — ({0,1}) x
(? whose output on input (w1, 2,23, L, 1), is defined as follows. If 1 = o,
then P; and P, will each receive a share of a 2-out-of-2 secret sharing of x3,
i.e., Py will receive x3[1] and Py will receive x3[2]. If 21 # x5 then Py and Ps
will each receive a string of length n chosen uniformly at random and indepen-
dently. In both cases, all other 3 parties will receive no output. We next show
a protocol that is secure against any adversary corrupting at most 2 parties
(including mixed adversaries), yet it does not admits (1, 1)-FaF full-security. In
the following we let (Gen, Enc, Dec) be a non-malleable and semantically secure
public-key encryption scheme [20].

Protocol 10

1. The parties will compute a functionality whose output to P; fori € {1,2,3}
is pk, and for party P;, fori € {4,5} is (pk,sk[i]), where the sk[i]s are shares
of sk in a 2-out-of-2 secret sharing, and where (pk,sk) < Gen(1™). This can
be done using, say the GMW protocol [26].

Py sends ¢y < Encpk(x2,2) to Py.

3. The parties compute the following 5-party functionality g. The input of Py
is ¢1 < Encpy (21,1), the input of Pa is ca, and the input of Py is x5. The
input of Py, for i € {4,5}, is the pair (pk,sk[i]).

The output is defined as follows. P3, P4, and Ps receive no output.
— If Decg (¢;) = (x4,1), for every i € {1,2,3} and x1 = o, then Py will
receive x3[1] and Py will receive x3[2].
— Else, if Decg (¢1) = (21,2), Decek (c2) = (x2,2), and x1 = 2, then Py
will receive a random string v € {0,1}"™ and Py will receive (z3[1], x3[2]).
— Otherwise, both Py and Py will receive random strings r1,m9 € {0,1}"
respectively, chosen independently and uniformly.
As in Step 1, this can be done using the GMW protocol [26].

4. P1 output what it received from g. If Py received one random string ro from
g then output ro, and if Py received two random strings from g, then output
the second one.

o
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Claim 11 Protocol 10 computes f with computational 2-security and with com-
putational (1,1)-mized security, yet it does not compute f with computational

(1,1)-FaF full-security.

The proof is deferred to the full-version due space considerations.

5.3 Comparison Between (Weak) FaF-Security and Strong
FaF-Security

In this section, we separate the notion of (weak) FaF-security from strong FaF-
security in the computational setting. Specifically, we show a protocol that ad-
mits (weak) FaF-security, yet it does not admit strong FaF-security. We assume
we have available a commitment scheme. Consider the 3-party functionality f
mapping (L,b, L) — (L, L,b), where b € {0,1}, and let ¢,h* = 1. Consider
the following protocol: Ps broadcasts a commitment to b, and then sends the
decommitment only to Pg.

Claim 12 The above protocol computes [ with (weak) computational (1,1)-FaF
full-security, yet does not provide strong computational (1,1)-FaF full-security.

The proof is deferred to the full-versiondue to space considerations. One conse-
quence of the above claim, is that protocols where the parties commit to their
inputs, e.g., the GMW protocol, will not satisfy strong FaF-security in general.
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