
Handling Adaptive Compromise for
Practical Encryption Schemes

Joseph Jaeger1 and Nirvan Tyagi2

1 Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, USA

jsjaeger@cs.washington.edu
2 Cornell Tech, New York City, USA

tyagi@cs.cornell.edu

Abstract. We provide a new definitional framework capturing the multi-
user security of encryption schemes and pseudorandom functions in the
face of adversaries that can adaptively compromise users’ keys. We pro-
vide a sequence of results establishing the security of practical symmetric
encryption schemes under adaptive compromise in the random oracle or
ideal cipher model. The bulk of analysis complexity for adaptive compro-
mise security is relegated to the analysis of lower-level primitives such as
pseudorandom functions.
We apply our framework to give proofs of security for the BurnBox sys-
tem for privacy in the face of border searches and the in-use searchable
symmetric encryption scheme due to Cash et al. In both cases, prior
analyses had bugs that our framework helps avoid.

Keywords: Symmetric cryptography, ideal models, adaptive security,
searchable symmetric encryption

1 Introduction

A classic question in cryptography has been dealing with adversaries that adap-
tively compromise particular parties, thereby learning their secrets. Consider
a setting where parties use keys k1, . . . , kn to encrypt messages m1, . . . ,mn to
derive ciphertexts Enc(k1,m1), . . . ,Enc(kn,mn). An adversary obtains the ci-
phertexts and compromises a chosen subset of the parties to learn their keys.
What can we say about the security of the messages encrypted by the keys that
remain secret? Surprisingly, traditional approaches to formal security analysis,
such as using encryption schemes that provide semantic security [19], fail to suf-
fice for proving these messages’ confidentiality. This problem was first discussed
in the context of secure multiparty computation [10], and it arises in a variety
of important cryptographic applications, as we explain below.

In this work, we introduce a new framework for formal analyses when se-
curity in the face of adaptive compromise is desired. Our approach provides a
modular route towards analysis using idealized primitives (such as random or-
acles or ideal ciphers) for practical and in-use schemes. This modularity helps

2 Jaeger, Tyagi

us sidestep the pitfalls of prior ideal-model analyses that either invented new
(less satisfying) ideal primitives, omitted proofs, or gave detailed but incorrect
proofs. We exercise our framework across applications including searchable sym-
metric encryption (SSE), revocable cloud storage, and asymmetric password-
authenticated key exchange (aPAKE). In particular, we provide full, correct
proofs of security against adaptive adversaries for the Cash et al. [12] searchable
symmetric encryption scheme that is used often in practice and the BurnBox
system [33] for dealing with compelled-access searches. We show that our new
definitions imply the notion of equivocable encryption introduced to prove se-
curity of the OPAQUE [24] asymmetric password-authenticated key exchange
protocol. More broadly, our framework can be applied to a wide variety of con-
structions [1, 2, 9, 13,17,20,21,25–29,34].

Current approaches to the “commitment problem”. Our motivating ap-
plications have at their core an adaptive simulation-based model of security.
Roughly speaking, they ask that no computationally bound adversary can dis-
tinguish between two worlds. In the first world, the adversary interacts with the
scheme whose security is being measured. In the second world, the “ideal” world,
the adversary’s queries are instead handled by a simulator that must make do
with only limited information which represents allowable “leakage” about the
queries the adversary has made so far. The common unifying factor between
varying applications we consider is that the adversary can make queries result-
ing in being given a ciphertexts encrypting messages of its choosing, then with
future queries adaptively choose to expose the secret keys underlying some of
the ciphertexts. The leakage given to the simulator will not include the messages
encrypted unless a query has been made to expose the corresponding key.

Proving security in this model, however, does not work based on standard
assumptions of the underlying encryption scheme. The problem is that the simu-
lator must commit to ciphertexts, revealing them to the adversary, before know-
ing the messages associated to them. Hence the commitment problem. Several
prior approaches for proving positive security results exist.

One natural approach attempts to build special non-committing encryption
schemes [10] that can be proven (in the standard model) to allow opening some
a priori fixed ciphertext to a message. But these schemes are not practical, as
they require key material at least as long as the underlying message. Another
unsatisfying approach considers only non-adaptive security in which an attacker
specifies all of its queries at the beginning of the game. This is one of the two
approaches that were simultaneously taken by Cash et al. [12]. Here the simulator
is given the leakage for all of these queries at once and generates a transcript of
all of its response. This is unsatisfying because more is lost when switching from
adaptive to non-adaptive security than just avoiding the commitment problem.
It is an easy exercise to construct encryption schemes which are secure when
all queries to it must be chosen ahead of time but are not secure even against
key-recovery attacks when an adversary may adaptively choose its queries.

The primary approach used to avoid this is to use idealized models, which
we can again split into two versions. The first is to use an idealized model of

Handling Adaptive Compromise for Practical Encryption Schemes 3

PRF1 PRF2 PRF3 Mode1 Mode2 Mode3

App2App1 App3

Fig. 1. Old state of affairs. Red dashed lines correspond to implications proved through
programming in an ideal model proof. A different programming proof is needed to prove
an application secure for each pair of PRF and symmetric encryption mode.

PRF1 PRF2 PRF3

SIM-AC-PRF Mode1 Mode2 Mode3

SIM-AC-CPA/CCA

App2App1 App3

Fig. 2. New state of affairs. Red dashed lines correspond to implications proved through
programming in an ideal model proof. New definitions are in bold boxes. Programming
proofs are only needed to show each low level PRF construction meets SIM-AC-PRF.

encryption. Examples of this include indifferentiable authenticated encryption [3]
(IAE) or the ideal encryption model (IEM) of Tyagi et al [33]. Security analyses
in these models might not say much when one uses real encryption schemes, even
when one is willing to use more established idealized models such as the ideal
cipher model (ICM) or the random oracle model (ROM). One hope would be to
use approaches such as indifferentiability [30] to modularly show that symmetric
schemes sufficiently “behave like” ideal encryption, but this approach is unlikely
to work for most encryption schemes used in practice [3].

The final approach, which is by far the most common in searchable symmet-
ric encryption [1,2,9,12,13,17,20,21,25–29,34], is to fix a particular encryption
scheme and prove security with respect to it in the ICM or ROM. Typically
encryption schemes are built as modes of operations of an underlying pseudo-
random function (PRF) and this function (or its constituent parts) is what is
modeled as an ideal function. The downside of this is represented in Fig. 1. On
the top, we have the applications one would like to prove secure, and on the

4 Jaeger, Tyagi

bottom, we have the different modes of operation and PRFs that one might
use. Using this approach means that for each application, we have to provide a
separate ideal model proof for each different choice of a mode of operation and
a PRF (represented by dotted red arrows in Fig. 1). If there are A applications,
P PRFs, and M modes of operation one might consider using, then this requires
A · P ·M ideal model proofs in total, an unsatisfying state of affairs.

Moreover, the required ideal analysis can be tedious3 and error-prone. This is
presumably why only a few of the papers we found actually attempt to provide
the full details of the ROM proof. We have identified bugs in all of the proofs that
did provide the details. The lack of a full, valid proof among the fifteen papers we
considered indicates the need for a more modular framework to capture this use
of the random oracle. Our work provides such a framework, allowing the random
oracle details to be abstracted away as a proof that only needs to be provided
once. This framework provides definitions for use by other cryptographers that
are simple to use, apply to practical encryption schemes, and allow showing
adaptive security in well-studied models.

Examples of the “commitment problem”. We proceed by discussing the
example applications where we will apply our framework.

Revocable cloud storage and the compelled access setting. We start with the re-
cently introduced compelled access setting (CAS) [33]. Here one wants encryp-
tion tools that provide privacy in the face of an authority searching digital de-
vices, e.g., government searches of mobile phones or laptops at border crossings.
To protect against compelled access searches, the BurnBox tool [33] uses what
they call revocable encryption. At its core, this has the system encrypt a user’s
files m1, . . . ,mn with independent keys k1, . . . , kn. Ciphertexts are stored on
(adversarially visible) cloud storage. Before a search occurs, the user instructs
the application to delete the keys corresponding to files that the user wishes to
hide from the authority, thereby revoking their own access to them. The other
keys and file contents are disclosed to the authority.

The formal security definition introduced by Tyagi et al. captures confiden-
tiality for revoked files even in the face of adversarial choice of which files to
revoke, meaning they want security in the face of adaptive compromises. This
very naturally results in the commitment problem because the simulator can be
forced to provide ciphertexts for files, but only later learn the contents of these
files at the time of key revelation. At which point, it is supposed to give keys
which properly decrypt these ciphertexts.

To address the commitment problem they introduced the IEM. This models
symmetric encryption as perfect: every encryption query is associated to a freshly
chosen random string as ciphertext, and decryption is only allowed on previously
returned ciphertexts. Analyses in the IEM can commit to ciphertexts (when the
adversary doesn’t know the key) and later open them to arbitrary messages.
In their implementation, they used AES-GCM for encryption which cannot be

3 Even more-so because SSE protocols often also run into the commitment problem
with a PRF and need to model that using a random oracle as well.

Handling Adaptive Compromise for Practical Encryption Schemes 5

thought of as indifferentiable from the IEM. Hence their proof can ultimately
only provide heuristic evidence for the security of their implemenation.

Symmetric searchable encryption. Our second motivating setting is symmetric
searchable encryption (SSE), which has similar issues as that discussed above
for BurnBox, but with added complexity. SSE handles the following problem: a
client wants to offload storage of a database of documents to an untrusted server
while maintaining the ability to perform keyword searches on the database. The
keyword searches should not reveal the contents of the documents to the server.
To enable efficient solutions, we allow queries to leak some partial information
about documents. Security is formalized via a simulation-based definition [15],
in which a simulator given only the allowed leakage must trick an adversary
into believing it is interacting with the actual SSE construction. An adaptive
adversary can submit keyword searches as a function of prior returned results.
Proving security here establishes that the scheme only leaks what is allowed
and nothing more. While the leakage itself has been shown to be damaging in
various contexts [11, 22], our focus here is on the formal analyses showing that
leakage-abuse attacks are the best possible ones.

A common approach for SSE can be summarized at a high level as follows.
The client generates a sequence of key pairs (k1, k

′
1), . . . , (kn, k

′
n) for keywords

w ∈ {1, . . . , n} represented as integers for simplicity. The first key kw in each pair
is used to encrypt the identifiers of documents containing w. The latter key k′w is
used as a pseudorandom function (PRF) key to derive pseudorandom locations
to store the encryption of the document identifiers. When the client later wants
to search for documents containing w it sends the associated (kw, k

′
w) keys to

the server. The server then uses k′w to re-derive the pseudorandom locations of
the ciphertexts and uses kw to decrypt them.

To prove adaptive security, the simulator for such a protocol runs into the
commitment problem because it must commit to ciphertexts of the document
identifiers before knowing what the identifiers are. Perhaps less obviously, a sim-
ulator also runs into a commitment issues with the PRF. To ensure security the
simulated locations of ciphertexts must be random, but then when responding
to a search query the simulator is on the hook to find a key for the PRF that
“explains” the simulated locations. Papers on SSE typically address these issue
by modeling the PRF as a random oracle and fixing a specific construction of an
encryption scheme based on a random oracle. As noted earlier, this has resulted
in a need for many tedious and error-prone proofs.

Asymmetric password-authenticated key exchange and equivocable encryption.
In independent and concurrent work, Jarecki et al. updated the ePrint ver-
sion of [24] to introduce the notion of equivocable encryption and use it to
prove security of their asymmetric password-authenticated key exchange proto-
col OPAQUE. The definition of equivocable encryption is essentially a weakened
version of our confidentiality definition, considering only single-user security and
allowing only a single encryption query; whereas we consider multi-user security
and arbitrarily many adaptively chosen queries. Since their definition is implied

6 Jaeger, Tyagi

by ours, our results will make rigorous their claim that “common encryption
modes are equivocable under some idealized assumption”.

A new approach. We introduce a new framework for analyzing security in
adaptive compromise scenarios. Our framework has a simple, but powerful recipe:
augment traditional simulation-based, property-based security definitions to em-
power adversaries with the ability to perform adaptive compromise of secret keys.
For symmetric encryption, for example, we convert the standard simulation-
based, multi-user indistinguishability under chosen plaintext attack (mu-IND-
CPA) [4] to a game that includes the same adversarial powers, but adds an ad-
ditional oracle for adaptively compromising individual user secret keys. Critical
to our approach is (1) the use of simulators, which allows handling corruptions
gracefully, and (2) incorporating handling of idealized models (e.g., the ROM or
ICM). The latter is requisite for analyzing practical constructions.

We offer new definitions for multi-user CPA and CCA security of symmetric
encryption, called SIM-AC-CPA (simulation-based security under adaptive cor-
ruption, chosen plaintext attack) and SIM-AC-CCA (chosen ciphertext attack).
By restricting the classes of allowed simulators we can obtain stronger definitions
(e.g., SIM-AC-$ which requires that ciphertexts look like random strings).

Symmetric encryption under adaptive compromise. We then begin exercising
our framework by first answering the question: Are practical, in-use symmetric
encryption schemes secure in the face of adaptive compromises? We give positive
results here, in idealized models. Taking an encrypt-then-MAC scheme such as
AES in counter mode combined with HMAC [5] as an example, we could directly
show SIM-AC-CCA security while modeling AES as an ideal cipher and HMAC
as a random oracle (c.f., [16]). But this would lead to a rather complex proof,
and we’d have to do similarly complex proofs for other encryption schemes.

Instead, we provide simple, modular proofs by lifting the underlying assump-
tions made about primitives (AES and HMAC) to hold in adaptive compromise
scenarios. Specifically, we introduce a new security notion for pseudorandom
functions under adaptive compromise attacks (SIM-AC-PRF). This adapts the
standard multi-user PRF notion to also give adversaries the ability to adaptively
compromise particular keys. Then we prove that AES and HMAC each achieve
this notion in the ICM and ROM, respectively. The benefit is that these proofs
encapsulate the complexity of ideal model programming proofs in the simpler
context of SIM-AC-PRF (as opposed to SIM-AC-CCA).

The workflow when using our framework is represented by Fig. 2. Here PRFs
are individually shown to achieve SIM-AC-PRF security in an ideal model. Then
modes of operation are proven secure under the assumption that they use a
SIM-AC-PRF secure PRF. Then each application is proven secure under the
appropriate assumption of the encryption scheme used. This decreases the total
number of proofs required to A + P + M , significantly fewer than the A · P ·
M required previously. Moreover, the complicated ideal model programming
analysis (represented by red dashed arrows) is restricted to only appearing in
the the simplest of these proofs (analyzing of PRFs); it can then simply be
“passed along” to the higher level proofs.

Handling Adaptive Compromise for Practical Encryption Schemes 7

We can then show that for most CPA modes of operation (e.g., CBC mode
or CTR mode), one can prove SIM-AC-CPA security assuming the underlying
block cipher is SIM-AC-PRF. The core requirement is that the mode of operation
enjoys a property that we call extraction security. This is a technical condition
capturing the key security properties needed to prove that a mode of operation
is SIM-AC-CPA assuming the underlying block cipher is SIM-AC-PRF. More-
over, we show that most existing (standard) proofs of IND-CPA security show,
implicitly, the extraction security of the mode. Thus, we can easily establish
adaptive compromise proofs given existing (standard) ones.

The above addresses only confidentiality. Luckily, integrity is inherited es-
sentially for free from existing analysis. We generically show that SIM-AC-CPA
security combined with the standard notion of ciphertext integrity implies SIM-
AC-CCA security. Thus, one can prove encrypt-then-MAC is SIM-AC-CCA se-
cure assuming the SIM-AC-CPA security of the encryption and the standard
unforgeability security of the MAC. This is an easy adaptation of the standard
proof [8] of encrypt-then-MAC.

Applying the framework to high-level protocols. Equipped with our new SIM-AC-
CCA and SIM-AC-PRF security notions, we can return to our motivating task:
providing positive security analyses of BurnBox and the Cash et al. SSE scheme.

We give a proof of BurnBox’s CAS security assuming the SIM-AC-CPA se-
curity of the underlying symmetric encryption scheme. Our proof is significantly
simpler than the original analysis, avoiding specifically the nuanced program-
ming logic that led to the bug in the original analysis. For the Cash et al. scheme
we apply our SIM-AC-PRF definition and a key-private version of our SIM-AC-
CPA definition. Their adaptive security claim was accompanied only by a brief
proof sketch which fails to identify an important detail that need to be consid-
ered in the ROM analysis (see the full version of this paper [23]). Our proof
handles this detail cleanly while being ultimately of comparable complexity to
their non-adaptive security proof.

Unfortunately, these settings and constructions are inherently complicated.
So even with the simplification provided by our analysis techniques there is not
space to fit their analysis in the body of our paper; it has instead been relegated
to the full version of this work. We choose this organization because our main
contribution is the definition abstraction which we believe will be of use for
future work, rather than the particular applications we chose to exhibit its use.

Treatment of symmetric encryption. In this work, we focus on randomized en-
cryption, over more modern nonce-based variants because this was the form of
encryption used by the applications we identified. In the full version of this pa-
per [23], we extend our definitions to nonce-based encryption. The techniques
we introduce for analyzing randomized symmetric encryption schemes should
extend to nonce-based encryption schemes.

Related works. A related line of work is that of selective-opening attacks [7]
which studies the security of asymmetric encryption schemes against compro-
mises in a multi-sender setting (where coins underlying encryption may be com-
promised) or multi-receiver setting (where secret decryption keys may be com-

8 Jaeger, Tyagi

promised). Selective-opening definitions are typically formulated to aim for stan-
dard model (or non-programmable random oracle model) achievability and hence
do not suffice for the applications we consider in this work.

The full version of this paper is available on ePrint [23].

2 Preliminaries

A list T of length n ∈ N specifies an ordered sequence of elements T [1], T [2],
. . . , T [n]. The operation T.add(x) appends x to this list by setting T [n+1]← x.
This making T a list of length n + 1. We let |T | denote the length of T . The
operation x ← T.dq() sets x equal to the last element of T and removes this
element from T . In pseudocode lists are assumed to be initialized empty (i.e.
have length 0). An empty list or table is denoted by [·]. We sometimes use set
notation with a list, e.g. x ∈ T is true if x = T [i] for any 1 ≤ i ≤ |T |.

Let S and S′ be two sets with |S| ≤ |S′|. Then Inj(S, S′) is the set of all injec-
tions from S to S′. We will sometimes abuse terminology and refer to functions
with co-domain {S : S ⊆ {0, 1}∗ } as sets. For n ∈ N we define [n] = {1, . . . , n}.

The notation y←$A(x1, x2, · · · : σ) denotes the (randomized) execution of
A with state σ. Changes that A makes to its input variable σ are maintained
after A’s execution. For given x1, x2, . . . and σ we let [A(x1, x2, · · · : σ)] denote
the set of possible outputs of A given these inputs.

We define security notions using pseudocode-based games. The pseudocode
“Require bool” is shorthand for “If not bool then return ⊥”. We will sometimes
use infinite loops defining variable xu for all u ∈ {0, 1}∗. Such code is executed
lazily; the code is initially skipped, then later if a variable xu would be used, the
necessary code to define it is first run. The pseudocode “∃x ∈ X s.t. p(x)” for
some predicate p evaluates to the boolean value

∨
x∈X p(x). If this is true, the

variable x is set equal to the lexicographically first x ∈ X for which p(x) is true.
We use an asymptotic formalism. The security parameter is denoted λ. Our

work is generally written in a way to allow concrete security bounds to be ex-
tracted easily. In security proofs we typically explicitly state how we will bound
the advantage of an adversary by the advantages of reduction adversaries we
build (and possibly other terms). Reduction adversaries and simulators are ex-
plicitly given in code (from which concrete statements about their efficiency can
be obtained by observation).

Let f : N → N. We say f is negligible if for all polynomials p there exists a
λp ∈ N such that f(λ) ≤ 1/p(λ) for all λ ≥ λp. We say f is super-polynomial if
1/f is negligible. We say f is super-logarithmic if 2f is super-polynomial.

Ideal primitives. We will make liberal use of ideal primitives such as random
oracles or ideal ciphers. An ideal primitive P specifies algorithms P.Init and
P.Prim. The initialization algorithm has syntax σP←$ P.Init(1λ). The stateful
evaluation algorithm has syntax y←$ P.Prim(1λ, x : σP). We sometimes us AP as
shorthand for giving algorithm A oracle access to P.Prim(1λ, · : σP). Adversaries
are often given access to P via an oracle Prim.

Handling Adaptive Compromise for Practical Encryption Schemes 9

Ideal primitives should be stateless. By this we mean that after σP is out-
put by P.Init, it is never modified by P.Prim (so we could have used the syntax
y←$ P.Prim(1λ, x, σP)). However, when written this way, ideal primitives are typ-
ically inefficient, e.g., for the random oracle model σP would store a huge random
table. Our security results will necessitate that P be efficiently instantiated so
we have adopted the stateful syntax to allow ideal primitives to be written in
their efficient “lazily sampled” form. Despite this notational convenience, we will
assume that any ideal primitive we reference is essentially stateless. By this, we
mean that it could have been equivalently written to be stateless (if inefficient).4

The standard model is captured by the primitive Psm for which Psm.Init(1
λ)

and Psm.Prim(1λ, x : σP) always returns the empty string ε.
We define a random oracle that takes arbitrary input and produce variable

length outputs. It is captured by the primitive Prom defined as follows.

Prom.Init(1
λ)

Return [·]
Prom.Prim(1λ, x : T)

(x, l)← x
If T [x, l] = ⊥ then T [x, l]←$ {0, 1}l
Return T [x, l]

The ideal-cipher model is parameterized by a block-length n : N → N and
captured by Pnicm defined as follows.5

Pn
icm.Init(1

λ)

Return ([·], [·])
Pn
icm.Prim(1λ, x : (E,D))

(op,K, y)← x
If op = + then

If E[K, y] = ⊥ then
z←$ {0, 1}n(λ) \ { E[K, a] : a ∈ {0, 1}n(λ) }
E[K, y]← z ;D[K, z]← y

Return E[K, y]
Else

If D[K, y] = ⊥ then
z←$ {0, 1}n(λ) \ {D[K, a] : a ∈ {0, 1}n(λ) }
D[K, y]← z ; E[K, z]← y

Return D[K, y]

It stores tables E and D which it uses to lazily sample a random permutation for
each K, with E[K, ·] representing the forward evaluation and D[K, ·] its inverse.
It parses its input as a tuple (op,K, y) where op ∈ {+,−} specifies the direction
of evaluation and K ∈ {0, 1}∗ and y ∈ {0, 1}n(λ) specify the input.

Sometimes we construct a cryptographic primitive from multiple underlying
cryptographic primitives which expect different ideal primitives. To capture this
it will be useful to have a notion of combining ideal primitives. Let P′ and P′′

be ideal primitives. We define their cross product P = P′ × P′′ as follows.

4 Without this restrictions an ideal primitive could behave in undesirable, contrived
ways (e.g., on some special input outputting all prior inputs it has received).

5 We will implicitly assume n(λ) can be computed in time polynomial in λ. We make
similar implicit assumptions for other functions that parameterize constructions of
cryptographic primitives.

10 Jaeger, Tyagi

P.Init(1λ)

σ′P←$ P′.Init(1λ)
σ′′P←$ P′′.Init(1λ)
Return (σ′P, σ

′′
P)

P.Prim(1λ, x : σP)

(σ′P, σ
′′
P)← σP

(d, x)← x
If d = 1 then y←$ P′.Prim(1λ, x : σ′P)
Else y←$ P′′.Prim(1λ, x : σ′′P)
σP ← (σ′P, σ

′′
P)

Return y

By our earlier convention AP′×P′′
is shorthand for giving algorithm A ora-

cle access to P.Prim(1λ, · : σP). In A’s code, BP′
denotes giving B oracle ac-

cess to P.Prim(1λ, (1, ·) : σP) and BP′′
to denote giving B oracle access to

P.Prim(1λ, (2, ·) : σP).

2.1 Standard Cryptographic Definitions

We recall standard cryptographic syntax and security notions.

Symmetric encryption syntax. A symmetric encryption scheme SE specifies
algorithms SE.Kg, SE.Enc, and SE.Dec as well as sets SE.M, SE.Out, and SE.K
representing the message, ciphertext, and key space respectively. The key gen-
eration algorithm has syntax K←$ SE.Kg(1λ). The encryption algorithm has
syntax c←$ SE.EncP(1λ,K,m), where c ∈ SE.Out(λ, |m|) is required. The deter-
ministic decryption algorithm and has syntax m← SE.DecP(1λ,K, c). Rejection
of c is represented by returning m = ⊥. Informally, correctness requires that
encryptions of messages in SE.M(λ) decrypt properly. We assume the boolean
(m ∈ SE.M(λ)) can be efficiently computed.

Integrity of ciphertexts. Integrity of ciphertext security is defined by the
game Gint-ctxt

SE,Actxt
shown in Fig. 3. In the game, the attacker interacts with one of

two “worlds” (determined by the bit b) via its oracles Enc, Prim, Exp, and
Dec. The attacker’s goal is to determine which world it is interacting with.

Game Gint-ctxt
SE,P,Actxt

(λ)

For u ∈ {0, 1}∗ do

Ku←$ SE.Kg(1λ)

σP←$ P.Init(1λ)

b←$ {0, 1}
b′←$AEnc,Dec,Exp,Prim

ctxt (1λ)

Return (b = b′)

Prim(x)

y←$ P.Prim(1λ, x : σP)

Return y

Enc(u,m)

Require m ∈ SE.M(λ)

c←$ SE.EncP(1λ,Ku,m)

Cu.add(c)

Return c

Exp(u)

X.add(u)

Return Ku

Dec(u, c)

Require u 6∈ X
Require c 6∈ Cu

m1 ← SE.DecP(1λ,Ku, c)

m0 ← ⊥
Return mb

Fig. 3. Game defining multi-user CTXT security of SE in the face of exposures.

Handling Adaptive Compromise for Practical Encryption Schemes 11

The Prim oracle gives the attacker access to the ideal primitive P. The
encryption oracle Enc takes as input a user u and message m, then returns
the encryption of that message using the key of that user, Ku. Recall that by
our convention each Ku is not sampled until needed. The exposure oracle Exp
takes in u and then returns Ku to the attacker. The decryption oracle Dec is
the only oracle whose behavior depends on the bit b. It takes as input a user u
and ciphertext c. When b = 1, it will return the decryption of c using Ku while
when b = 0 it will always return ⊥. Thus, the goal of the attacker it to forge a
ciphertext which will decrypt to a non-⊥ value.

To prevent trivial attacker, we disallow querying a ciphertext to Dec(u, ·)
if it came from Enc(u, ·) or if u was already exposed. This is captured by the
“Require” statements in Dec using lists Cu and X (which store the ciphertexts
returned by Enc(u, ·) and the users that have been exposed, respectively).

We define the advantage function Advint-ctxtSE,P,Actxt
(λ) = 2 Pr[Gint-ctxt

SE,P,Actxt
(λ)] − 1.

We say SE is INT-CTXT secure with P if for all PPT Actxt, the advantage
Advint-ctxtSE,P,Actxt

(·) is negligible. INT-CTXT security is typically defined to only con-
sider a single user and no exposures. Using a hybrid argument one can show that
our definition of INT-CTXT security is implied by the more standard definition.

Function family. A family of functions F specifies algorithms F.Kg and F.Ev
together with sets F.Inp and F.Out. The key generation algorithm has syntax
K←$ F.KgP(1λ). The evaluation algorithm is deterministic and has the syntax
y ← F.Ev(1λ,K, x). It is required that for all λ ∈ N and K ∈ [F.Kg(1λ)] that
F.Ev(1λ,K, x) ∈ F.Out(λ) whenever x ∈ F.Inp(λ). It is assumed that random
elements of F.Out(λ) can be efficiently sampled.

Game Gow
F,P,A(λ)

K←$ F.Kg(1λ) ; σP←$ P.Init(1λ)

x←$ F.Inp(λ) ; y ← F.EvP(λ,K, x)

x′←$APrim(1λ,K, y)

Return (F.EvP(1λ,K, x′) = y)

Prim(x)

y←$ P.Prim(1λ, x : σP)

Return y

Fig. 4. Game defining one-wayness of F.

One-wayness. The one-wayness of a family of functions F is given by the game
Gow shown in Fig. 4. The adversary is given a key K to F and the image y of a
random point x in the domain. Its goal is to find a point with the same image.
We define the advantage function AdvowF,P,A(λ) = Pr[Gow

F,P,A(λ)] and say F is OW
secure with P if AdvowF,P,A(·) is negligible for all PPT A.

Security definitions. In the body of this paper we sometimes informally refer-
ence other security notions for symmetric encryption schemes (IND-CPA, IND-
CCA, IND-KP, IND-$) and function families (PRF, UF-CMA). These definitions
are recalled in the full version of this paper [23].

12 Jaeger, Tyagi

3 New Security Definitions for Symmetric Primitives

In this section we provide our definitions for the security of symmetric crypto-
graphic primitives (namely randomized encryption and pseudorandom functions)
against attackers able to adaptively compromise users’ keys.

3.1 Randomized Symmetric Encryption

We describe our security definitions for randomized symmetric encryption. We
refer to them as SIM-AC-CPA and SIM-AC-CCA security. The definition of
SIM-AC-CPA (resp. SIM-AC-CCA) security is a generalization of IND-CPA
(IND-CCA) security to a multi-user setting in which some users’ keys may be
compromised by an attacker.

Consider game Gsim-ac-cpa shown in Fig. 5. It is parameterized by a symmetric
encryption scheme SE, simulator S, ideal primitive P, and attacker Acpa. The
attacker interacts with one of two “worlds” via its oracles Enc, Exp, and Prim.
The attacker’s goal is to determine which world it is interacting with.

In the real world (b = 1) the encryption oracle Enc takes (u,m) as input and
returns an encryption of m using u’s key Ku. Oracle Prim returns the output of
the ideal primitive on input x. Oracle Exp returns u’s key Ku to the attacker.

In the ideal world (b = 0), the return values of each of these oracles are
instead chosen by a simulator S. In Prim it is given the input provided to the
oracle. In Enc it is given the name of the current user u and some leakage `
about the message m. If u has not yet been exposed (u 6∈ X) this leakage is
just the length of the message. Otherwise the leakage is the message itself. The
inputs and outputs of this oracle for a user u are stored in the lists Mu and Cu

so they can be leaked to the simulator when Exp(u) is called.

We define Advsim-ac-cpa
SE,S,P,Acpa

(λ) = 2 Pr[Gsim-ac-cpa
SE,S,P,Acpa

(λ)] − 1. We say SE is SIM-
AC-CPA secure with P if for all PPT Acpa there exists a PPT S such that

Advsim-ac-cpa
SE,S,P,Acpa

(·) is negligible. Intuitively, this definition captures that ciphertexts
reveal nothing about the messages encrypted other than their length unless the
encryption key is known to the attacker. In the full version of this paper [23],
we show that SIM-AC-CPA security is impossible in the standard model. The
proof is a simple application of the ideas of Nielsen [31].

SIM-AC-CCA security extends SIM-AC-CPA security by giving Acca access
to a decryption oracle which takes as input (u, c). In the real world, it returns
the decryption of c using Ku. In the ideal world, the simulator simulates this.
To prevent trivial attacks, the attacker is disallowed from querying (u, c) if c
was returned from an earlier query Enc(u,m). We define Advsim-ac-cca

SE,S,P,Acca
(λ) =

2 Pr[Gsim-ac-cca
SE,S,P,Acca

(λ)]−1. We say SE is SIM-AC-CCA secure with P if for all PPT

Acca there exists a PPT S such that Advsim-ac-cca
SE,S,P,Acca

(·) is negligible.

Simplifications. It will be useful to keep in mind simplifications we can make
to restrict the behavior of the adversary or simulator without loss of generally.
They are applicable to all SIM-AC-style definitions we provide in this paper.

Handling Adaptive Compromise for Practical Encryption Schemes 13

Game Gsim-ac-cpa
SE,S,P,Acpa

(λ)

For u ∈ {0, 1}∗ do

Ku←$ SE.Kg(1λ)

σP←$ P.Init(1λ)

σ←$ S.Init(1λ)

b←$ {0, 1}
b′←$AEnc,Exp,Prim

cpa (1λ)

Return (b = b′)

Prim(x)

y1←$ P.Prim(1λ, x : σP)

y0←$ S.Prim(1λ, x : σ)

Return yb

Enc(u,m)

Require m ∈ SE.M(λ)

If u 6∈ X then `← |m| else `← m

c1←$ SE.EncP(1λ,Ku,m)

c0←$ S.Enc(1λ,u, ` : σ)

Mu.add(m) ; Cu.add(cb)

Return cb

Exp(u)

K1 ← Ku

K0←$ S.Exp(1λ, u,Mu, Cu : σ)

X.add(u)

Return Kb

Game Gsim-ac-cca
SE,S,P,Acca

(λ)

For u ∈ {0, 1}∗ do

Ku←$ SE.Kg(1λ)

σP←$ P.Init(1λ)

σ←$ S.Init(1λ)

b←$ {0, 1}
b′←$AEnc,Dec,Exp,Prim

cca (1λ)

Return (b = b′)

Dec(u, c)

Require c 6∈ Cu

m1 ← SE.DecP(1λ,Ku, c)

m0←$ S.Dec(1λ, u, c : σ)

Return m

Fig. 5. Games defining SIM-AC-CPA and SIM-AC-CCA security of SE.

• If an oracle is deterministic in the real world, then we can assume that the
adversary never repeats a query to this oracle or that the simulator always
provides the same output to repeated queries.

• We can assume the adversary never makes a query to a user it has already
exposed or that for such queries the simulator just runs the code of the real
world (replacing calls to P with calls to S.Prim).

• We can assume the adversary always queries with u ∈ [uλ] for some polyno-
mial u(·) or that the simulator is agnostic to the particular strings used to
reference users.

• We can assume that adversaries never make queries that fail “Require” state-
ments. (All requirements of oracles we provide will be efficiently computable
given the transcripts of queries the adversary has made.)

Proving these are slightly more subtle to establish than analogous simplifi-
cations would be in non-simulation-based games because of the order that algo-
rithms are quantified in our security definitions. They all follow the same pattern
though, so we sketch the second of these.

Suppose SE is SIM-AC-CPA secure for all adversaries that never make a call
Enc(u,m) after having made a call Exp(u), then we claim SE is SIM-AC-CPA
secure. Let A be an arbitrary adversary. Then we build a wrapper adversary
A′ that simply forwards all of A’s queries except for encryption queries made

14 Jaeger, Tyagi

for a user that has already been exposed. In these cases B responds with the
output of SE.EncPrim(·)(1λ,Ku,m) (or ⊥ if m 6∈ SE.M(λ)), where Ku is the key
last returned from Exp(u). Let S′ be a simulator for A′. Then we construct S for
A which responds exactly as S′ would except in response to encryption queries
made for a user that has already been exposed. In these cases S′ responds with

the output of SE.EncS
′.Prim(1λ,·:σ)(1λ,Ku,m), where Ku is the key it last returned

for Exp(u). It is clear that Advsim-ac-cpa
SE,S,P,A (λ) = Advsim-ac-cpa

SE,S′,P,A′(λ) because the view
of A is identical in the corresponding games.

Stronger security notions. It is common in the study of symmetric encryption
primitives to study stronger security definitions than IND-CPA security. Most
schemes instead aim directly for their output to be indistinguishable from ran-
dom bits (IND-$). This implies IND-CPA security and additional nice properties
such as forms of key-privacy.

We can capture such notions by placing restrictions on the behavior of the
simulator. Let S be a simulator (for which we think of S.Enc as being undefined)
which additionally defines algorithms S.Enc1 and S.Enc2 as well as set S.Out.
Then we define simulators Sk[S] and S$[S] to be identical to S except for the
following encryption simulation algorithms.

Sk[S].Enc(1λ,u, ` : σ)

If ` ∈ N then c←$ S.Enc1(1λ, ` : σ)
Else c←$ S.Enc2(1λ,u, ` : σ)
Return c

S$[S].Enc(1λ,u, ` : σ)

If ` ∈ N then c←$ S.Out(λ, `)
Else c←$ S.Enc2(1λ,u, ` : σ)
Return c

Checking ` ∈ N acts as a convenient way of verifying if the user being queried
has been exposed yet. Because S.Enc1(1λ, ` : σ) is not given u in Sk, the output of
Sk is distributed identically for any unexposed users. The class of key-anonymous
simulators Sk is the set of all Sk[S] for some S. Similarly, S$ always outputs a
random bitstring as the ciphertext for any unexposed user. The class of random-
ciphertext simulators S$ is the set of all S$[S] for some S. Note that S$ ⊂ Sk.

We say SE is SIM-AC-KP secure with P if for all PPT Acpa there exists a PPT

S ∈ Sk such that Advsim-ac-cpa
SE,S,P,Acpa

(·) is negligible. We say that SE is SIM-AC-$ secure

with P if for all PPT Acpa there exists a PPT S ∈ S$ such that Advsim-ac-cpa
SE,S,P,Acpa

(·)
is negligible. It is straightforward to see that SIM-AC-$ security implies SIM-
AC-KP security which in turn implies SIM-AC-CPA security. Standard counter-
examples will show that these implications do not hold in the other direction.

It is sometimes useful to define security in an all-in-one style, introduced by
Rogaway and Shrimpton [32], which simultaneously requires IND-$ security and
INT-CTXT security. In our framework we can define S⊥ as the class of IND-
CCA simulators which always return ⊥ for decryption queries to unexposed
users. Then we say SE is SIM-AC-AE secure with P if for all PPT Acca there
exists a PPT S ∈ S$ ∩ S⊥ such that Advsim-ac-cca

SE,S,P,Acca
(·) is negligible.

Handling Adaptive Compromise for Practical Encryption Schemes 15

3.2 Pseudorandom Functions

Typically a symmetric encryption scheme will use a PRF as one of their basic
building blocks. For modularity, it will be useful to provide a simulation-based
security definition for PRFs in the face of active compromises. In Section 6, we
show our PRF definition can be applied to construct a SIM-AC secure symmetric
encryption scheme. Additionally, in the full version of this paper [23], we show
that our definition is of independent use by using it to prove the adaptive security
of a searchable symmetric encryption scheme introduced by Cash et al. [12].

Game Gsim-ac-prf
F,S,P,Aprf

(λ)

For u ∈ {0, 1}∗ do

Ku←$ F.Kg(1λ)

σP←$ P.Init(1λ)

σ←$ S.Init(1λ)

b←$ {0, 1}
b′←$AEv,Exp,Prim

prf (1λ)

Return b = b′

Prim(x)

y1←$ P.Prim(1λ, x : σP)

y0←$ S.Prim(1λ, x : σ)

Return yb

Ev(u, x)

y1 ← F.EvP(1λ,Ku, x)

If u 6∈ X then

If Tu[x] = ⊥ then y0←$ F.Out(λ)

Else y0 ← Tu[x]

Else

y0 ← S.Ev(1λ, u, x : σ)

Tu[x]← y0
Return yb

Exp(u)

K1 ← Ku

K0←$ S.Exp(1λ, u, Tu : σ)

X.add(u)

Return Kb

Fig. 6. Game defining multi-user PRF security of F in the face of exposures.

The game Gsim-ac-prf
F,S,P,Aprf

is shown in Fig. 6. In the real world, Ev gives adversary
Aprf the real output of F. In the ideal world, Ev’s output is chosen at random
(and stored in the table Tu), unless u has already been exposed in which case
simulator S chooses the output. The table Tu is given to S when an exposure of
u happens so it can output a key consistent with prior Ev queries; we assume
it is easy to iterate over all (x, Tu[x]) pairs for which Tu[x] is not ⊥. We define

Advsim-ac-prf
F,S,P,Aprf

(λ) = 2 Pr[Gsim-ac-prf
F,S,P,Aprf

(λ)]− 1. We say F is SIM-AC-PRF secure with

P if for all PPT Aprf there exists a PPT S such that Advsim-ac-prf
F,S,P,Aprf

(·) is negligible.

4 Applications

The value of our definitions stems from their usability in proving the security of
protocols constructed from symmetric encryption and pseudorandom functions.
In this section, we discuss the application our definitions to simplify and modu-
larize existing security results of Cash et al. [12] and Tyagi et al. [33], and how
they imply the notion of equivocable encryption introduced by Jarecki et al. [24].

16 Jaeger, Tyagi

4.1 Asymmetric Password-Authenticated Key Exchange: OPAQUE

Password-authenticated key exchange (PAKE) protocols allow a client and a
server with a shared password to establish a shared key resistant to offline guess-
ing attacks. Asymmetric PAKE (aPAKE) further considers security in the case
of server compromise, meaning that the server must store some secure represen-
tation of the password, rather than the password itself.

OPAQUE [24] is an aPAKE protocol currently being considered for standard-
ization by the IETF. At a high level, OPAQUE is constructed from an oblivious
pseudorandom function (OPRF) and an authenticated key exchange protocol
(AKE). User key material for the AKE protocol is stored encrypted under an
password-derived key from an OPRF. Key exchange proceeds in two steps: (1)
the user rederives the encryption key by running the OPRF protocol with the
server on their password, then (2) retrieves and decrypts the AKE keys from the
server-held ciphertext and proceeds with the AKE protocol. The “commitment
problem” arises when an adversary comprises the server state and then later
compromises a user password.

Game Geqv
SE,S,P,A(λ)

σP←$ P.Init(1λ)

σ←$ S.Init(1λ)

b←$ {0, 1}
(m,σA)← APrim

1 (1λ)

K1←$ SE.Kg(1λ)

c1←$ SE.EncP(1λ,K1,m)

c0←$ S.Enc(1λ, |m| : σ)

K0←$ S.Exp(1λ,m : σ)

b′←$APrim
2 (1λ, cb,Kb, σA)

Return (b = b′)

Prim(x)

y1←$ P.Prim(1λ, x : σP)

y0←$ S.Prim(1λ, x : σ)

Return yb

Fig. 7. Game defining EQV security of SE.

Comparison to equivocable encryption. To prove security of their scheme,
Jarecki et al. independently propose a weaker version of SIM-AC-CPA that they
call equivocable encryption (EQV). Consider game Geqv defined in Fig. 7. An
encryption scheme SE is equivocable if for any PPT adversary A = (A1,A2),
there exists a simulator S, such that the advantage function AdveqvSE,S,P,A(λ) =

2 Pr[Geqv
SE,S,P,A(λ)] − 1 is negligible. The [24] definition does not specify how to

incorporate the ideal model, so we make a reasonable assumption.

Note that EQV is a weaker version of SIM-AC-CPA in that it allows for
only one user and only one encryption query. Showing SIM-AC-CPA implies
EQV can be done with a simple wrapper reduction in which the output of
A1 from EQV is forwarded to the encryption oracle of SIM-AC-CPA. Since

Handling Adaptive Compromise for Practical Encryption Schemes 17

EQV allows for only one encryption query, we can further show that EQV does
not imply SIM-AC-CPA. Consider a scheme that uses a key K = (K1,K2)
and constructs ciphertexts as (K1,EncK2(m)) unless m = K1, in which case it
is formed as (K2,EncK2(m)). Such a scheme could be secure with respect to
EQV but will not be secure in a game that allows multiple encryption queries.
Interestingly, showing that our multi-user SIM-AC-CPA notion is implied by
its single-user version through a hybrid argument is not straightforward due to
managing inconsistencies in simulator state between hybrid steps. We have not
been able to prove this result and leave it open for future work. Thus, even
if EQV was extended to allow multiple encryption queries, it still may not be
widely applicable to situations that require multiple users.

Ultimately, our work fills in the claim of Jarecki, et al. that “common en-
cryption modes are equivocable under some idealized assumption”.

4.2 Searchable Symmetric Encryption

In the full version of this paper [23], we show that our symmetric encryption
and PRF security definitions are useful for proving the security of searchable
searchable symmetric encryption (SSE) schemes. An SSE scheme allows a client
with a database of documents to store them in encrypted form on a server while
still being able to perform keyword searches on these documents.

As a concrete example, we consider Cash et al. [12] which proved non-
adaptive security of an SSE scheme when using a PRF and an IND-$ secure
encryption scheme and claimed adaptive security when the PRF is replaced
with a random oracle and the encryption scheme is replaced with a specific
random-oracle-based scheme. We will prove their adaptive result, this time as-
suming the family of functions is SIM-AC-PRF secure and the encryption scheme
is SIM-AC-KP secure. This makes the result more modular because one is no
longer restricted to use their specific choices of a PRF and encryption scheme
constructed from a random oracle. As a concrete benefit of this, their choice of
encryption scheme does not provide INT-CTXT security. To replace the scheme
with one that does would require a separate proof while our proof allows the
user to choice their favorite INT-CTXT secure scheme without requiring any
additional proofs (assuming that scheme is SIM-AC-CPA secure).

Our proof is roughly as complex as their non-adaptive proof; it consists of
three similar reductions to the security of the underlying primitives. Without our
definitions, a full adaptive proof would have been a technically detailed (though
“standard” and not conceptually difficult) proof because it would have to deal
with programming the random oracle. Perhaps because of this, the authors of [12]
only provided a sketch of the result, arguing that it follows from the same ideas
as their non-adaptive proof plus programming the random oracle to maintain
consistency. They claim, “[t]he only defects in the simulation occur when an
adversary manages to query the random oracle with a key before it is revealed”.
This is technically insufficient; a defect also occurs if the same key is sampled
multiple times by the simulator (analogously to parts of our proofs for Theorem 3
and Theorem 4). In our SSE proof, we need not address these details because

18 Jaeger, Tyagi

programming the ideal primitive is handled by the assumed simulation security
of the underlying primitives.

A large number of other works on SSE have used analogous techniques of
constructing a PRF and/or encryption scheme from a random oracle to achieve
adaptive security [1, 2, 9, 12, 13, 17, 20, 21, 25–29, 34]. As we discuss in the full
version of this paper [23], these papers all similarly elided the details of the
random oracle programming proof and/or made mistakes in writing these details.
The mistakes are individually small and not difficult to fix, but their prevalence
indicates the value our definitions can provide to modularize and simplify the
proofs in these works. We chose to analyze the Cash et al. scheme to highlight the
application of our definitions because it was the simplest construction requiring
both SIM-AC-PRF and SIM-AC-KP secure and because their thorough non-
adaptive proof served as a useful starting point from which to build our proof.

4.3 Self-Revocable Encrypted Cloud Storage: BurnBox

In the full version of this paper [23], we consider the BurnBox construction of
a self-revocable cloud storage scheme proposed by Tyagi et al. [33]. Its goal is
to help provide privacy in the face of an authority searching digital devices,
e.g., searches of mobile phones or laptops at border crossings. In their proposed
scheme a user stores encrypted version of their files on cloud storage. At any
point in time they are able to temporarily revoke their own access to these files.
Thereby an authority searching their device is unable to learn the content of
these files despite their possession of all the secrets stored on the user’s device.

Proving security of their scheme in their security model necessitates solving
the “commitment problem.” A simulator is forced to simulate the attacker’s view
by providing ciphertexts for files that it does not know the contents of, then later
produce a plausible looking key which decrypts the files properly when told the
contents. To resolve this issue in their security they modeled the symmetric
encryption scheme in the ideal encryption model (which they introduced for
this purpose). We are able to recover their result assuming the SIM-AC-CPA
security of the encryption scheme. This provides rigorous justification for the use
of practically-used encryption schemes which cannot necessarily be thought of
as well modeled by the ideal encryption model (e.g. AES-GCM which they used
in their prototype implementation). Moreover, the proof we obtain is simpler
than the original proof of Tyagi et al. because we do not have to reason about
the programming of the ideal encryption model. The original proof has a bug in
this programming which we discuss in the full version of this paper [23].

5 Symmetric Encryption Security Results

In this section, we show that important existing results about the security of
symmetric encryption schemes “carry over” to our new definitions. These results
(together with our results in the next section) form the foundation of our claim

Handling Adaptive Compromise for Practical Encryption Schemes 19

that encryption schemes used in practice can be considered to achieve SIM-AC-
AE security when their underlying components are properly idealized. First, we
show that SIM-AC-CPA and INT-CTXT security imply SIM-AC-CCA security.
Then we show that the classic Encrypt-then-MAC scheme achieves SIM-AC-
CCA security. Each of these results are, conceptually, a straightforward extension
of their standard proof. Finally, we show that random oracles and ideal ciphers
are SIM-AC-PRF secure and ideal encryption [33] is SIM-AC-AE secure.

CPA and CTXT imply CCA. The following theorem captures that SIM-AC-
CPA and INT-CTXT security imply SIM-AC-CCA security. Bellare and Nam-
prempre [8] showed the analogous result for IND-CPA and IND-CCA security.

Theorem 1. If SE is SIM-AC-CPA and INT-CTXT secure with P, then SE is
SIM-AC-CCA secure with P.

Proof (Sketch). Here we sketch the main ideas of the proof. The full details are
provided in the full version of this paper [23].

The SIM-AC-CCA simulator we provide is parameterized by a SIM-AC-CPA
simulator Scpa. As state it stores σ of Scpa and keeps each Ku that is has returned
to exposure queries. For Prim, Enc, and Exp queries it simply runs Scpa. For
Dec queries it does one of two things. If u has already been exposed it uses the
key it previously returned to run the actual decryption algorithm (with oracle
access to Scpa’s emulation of P) and returns the result. Otherwise it assumes the
adversary has failed at producing a forgery and simply returns ⊥. (Note this
means we have SIM-AC-AE security if SE is SIM-AC-$ secure.)

The SIM-AC-CPA security of SE ensures that the adversary cannot differ-
entiate between the real and ideal world queries to Prim, Enc, and Exp. The
INT-CTXT security of SE does the same for the Dec queries. In the full proof
we show that Advsim-ac-cca

SE,Scca,P,Acca
(λ) ≤ Advint-ctxtSE,P,Actxt

(λ) + Advsim-ac-cpa
SE,Scpa,P,Acpa

(λ). ut

Encrypt-then-MAC. Let SE be an encryption scheme. Let F be a family of
functions for which F.Inp(λ) = {0, 1}∗. Then the Encrypt-then-MAC encryption
scheme using SE and F is denoted EtM[SE,F]. Its message space is defined as
EtM[SE,F].M(λ) = SE.M(λ). If SE expects access to ideal primitive P1 and F
expects access to ideal primitive P2 then EtM[SE,F] expects access to P1 × P2.
The key-generation algorithm EtM[SE,F].Kg returns K = (KSE,KF) where KSE

was sampled with SE.Kg(1λ) and KF was sampled with F.Kg(1λ). Algorithms
EtM[SE,F].Enc, and EtM[SE,F].Dec are defined as follows.

EtM[SE,F].EncP1×P2(1λ,K,m)

(KSE,KF)← K

cSE←$ SE.EncP1(1λ,KSE,m)

τ ← F.EvP2(1λ,KF, cSE)
Return (cSE, τ)

EtM[SE,F].DecP1×P2(1λ,K, (cSE, τ))

(KSE,KF)← K

If τ 6= F.EvP2(1λ,KF, cSE) then return ⊥
m← SE.DecP1(1λ,KSE, cSE)
Return m

The following theorem establishes that the generic composition result of Bel-
lare and Namprempre [8] holds with our simulation-based definitions of security.
We sketch its straightforward proof in the full version of this paper [23].

20 Jaeger, Tyagi

Theorem 2. Let SE be an encryption scheme. Let F be a family of functions
for which F.Inp(λ) = {0, 1}∗. If SE is SIM-AC-CPA secure with P1 and F is
UF-CMA secure with P2, then EtM[SE,F] is SIM-AC-CCA secure with P1×P2.

Random oracles are good PRFs. We show that a SIM-AC-PRF secure family
of functions can be constructed simply in the random oracle model. Consider R
defined as follows. It is parameterized by a key-length function R.kl : N→ N and
output length function R.ol : N → N. It has input set R.Inp(λ) = {0, 1}∗ and
output set R.Out(λ) = {0, 1}R.ol(λ).

R.Kg(1λ)

K←$ {0, 1}R.kl(λ)
Return K

R.EvP(1λ,K, x)

y ← P((K ‖x,R.ol(λ)))
Return y

Theorem 3. R is SIM-AC-PRF secure with Prom if R.kl is super-logarithmic.

Concretely, in our proof we provide a simulator Sprf for which we show that,

Advsim-ac-prf
R,Sprf ,Prom,Aprf

(λ) ≤ u2λ + pλuλ
2R.kl(λ)

where uλ is an upper bound on the number of users that Aprf queries to and pλ
is an upper bound on the number of Prim queries that Aprf makes.

This theorem captures the random oracle programming implicit in the adap-
tive security claims of the numerous SSE papers we have identified that used a
random oracle like a PRF to achieve adaptive security [1, 2, 9, 12, 13, 17, 20, 21,
25–29, 34]. Of these works, most chose to elide the details of establishing that
the adversary cannot detect the random oracle programming, likely considering
them simple and/or standard. Despite this, we have identified bugs in all of the
proofs that did provide more details. We discuss these bugs in more detail in the
full version of this paper [23].

To be clear, we do not claim that any of the SSE schemes studied in these
works are insecure. The prevalence of this issue speaks to the difficulty of properly
accounting for the details in an ideal model programming proof. Our SIM-AC-
PRF notion provides a convenient intermediate definition via which these higher-
level protocols could have been proved secure without having to deal with the
tedious details of a random oracle programming proof.

Proof (Sketch). Here we sketch the main ideas of the proof. The full details
are provided in the full version of this paper [23]. The SIM-AC-PRF simulator
works are follows. For Prim queries it just emulates Prom using a table T . For
Ev queries, it just runs R.Ev honestly with the key it previously returned for the
given user. For Exp queries (on an unexposed user) it picks a random key for
this user and sets T to be consistent with values in the table Tu it is given. This
simulation is only detectable by an attacker that makes a query to the random
oracle with some key that is later chosen by the simulator in response to an

Handling Adaptive Compromise for Practical Encryption Schemes 21

exposure or if the simulator happened to chose the same key for two different
users.6 These events happen with negligible probability. ut

Ideal ciphers are good PRFs. One of the most commonly used PRFs is AES
so it would be useful to think of it as being SIM-AC-PRF secure; however, due
to its invertible nature we cannot realistically model it as a random oracle and
refer to the above theorem. Instead, AES is often modeled as an ideal cipher.
Let B.kl : N → N be given and consider B defined as follows. It has input set
B.Inp(λ) = {0, 1}n(λ) and output set B.Out(λ) = {0, 1}n(λ).

B.Kg(1λ)

K←$ {0, 1}B.kl(λ)
Return K

B.EvP(1λ,K, x)

y ← P((+,K, x))
Return y

The following establishes that an ideal cipher is SIM-AC-PRF secure.

Theorem 4. B is SIM-AC-PRF secure with Pnicm if B.kl, n are super-logarithmic.

Concretely, in our proof we provide a simulator Sprf for which we show that,

Advsim-ac-prf
B,Sprf ,Pnicm,Aprf

(λ) ≤ u2λ + pλuλ
2B.kl(λ)

+
q2λ

2n(λ)+1

where uλ is an upper bound on the number of users that Aprf queries to, pλ is
an upper bound on the number of Prim queries that Aprf makes, and qλ is an
upper bound on the number of Ev queries that Aprf makes.

The proof of this theorem follows the same general pattern as the proof that
a random oracle is SIM-AC-PRF secure (Theorem 3). It only needs to extend
the ideas of this prior result slightly to apply a birthday bound so that we can
treat the values of Pnicm as being sampled with replacement. It works best to
process this step last so we do not have to consider the order in which queries
are made. The proof is given in the full version of this paper [23].

Ideal encryption model. In the full version of this paper [23], we recall the
ideal encryption model used in the analysis of Tyagi et al. [33] and show that it
gives a SIM-AC-AE secure encryption scheme. While doing so, we identify and
show how to fix a bug in their proof which used this model.

6 Security of Modes of Operation

In the previous section, we showed that existing analysis of the integrity of a
symmetric encryption scheme carries over to our simulation setting to lift SIM-
AC-CPA security to SIM-AC-CCA security. It would be convenient to be able to
similarly prove that existing IND-CPA security of an encryption scheme suffices

6 The latter of these points is the subtle issue that does not have appear to have been
identified in any of the SSE papers that were (implicitly) using a random oracle as
a SIM-AC-PRF.

22 Jaeger, Tyagi

to imply SIM-AC-CPA security. Unfortunately, we cannot possibly hope for this
to be the case. We know that IND-CPA security can be achieved in the standard
model (assuming one-way functions exist), but SIM-AC-CPA security necessarily
requires the use of ideal models.

For any typical encryption scheme we could figure out the appropriate way
to idealize its underlying components and then write a programming proof to
establish security. This would likely be detail intensive and prone to mistakes.
We can improve on this by noting that typical symmetric encryption schemes are
built as modes of operation using an underlying PRF. We can aim to prove se-
curity more modularly by assuming the SIM-AC-PRF security of the underlying
family of functions. This alleviates the detail-intensiveness of the proof because
the ideal model programming has already been handled in the assumption of
SIM-AC-PRF security; it can simply be “passed” along to the new analysis.

In this section, we will show that we can do even better than that. We will
restrict attention to modes of operation which are IND-$ secure when built from
a PRF and satisfy a special extractability property we define in Section 6.1
(which standard examples of models of operation do). Then, in Section 6.2, we
establish a generic proof framework to elevate an existing IND-$ security proof
to a SIM-AC-$ security proof, by showing that existing proofs of IND-$ security
security tend to (implicitly) prove that the scheme satisfies our extractability
property. Finally, in Section 6.3 we discuss how the techniques of this section
can be extended to other constructions not captured by our formalism, but also
note the existence of a (contrived) mode of operation which is IND-$ secure with
any secure PRF, but is never SIM-AC-$ secure.

6.1 Modes of Operation and Extractability

We first need to have a formalism capturing what a mode of operation is. Our
formalism does not capture all possible modes of operation, but does seem to
capture most constructions that are of practical interest and would not be hard
to modify to capture other constructions.

A mode of operation SE specifies efficient algorithms SE.Kg, SE.Enc, and
SE.Dec as well as sets SE.M, SE.Out, SE.FInp, and SE.FOut. For any family of
functions F with F.Inp = SE.FInp and F.Out = SE.FOut, it defines a symmetric
encryption scheme SE[F] as follows.

SE[F].Kg(1λ)

KF←$ F.Kg(1λ)
KSE←$ SE.Kg(1λ)
Return (KSE,KF)

SE[F].EncP(1λ,K,m)

(KSE,KF)← K

c←$ SE.EncF
P
KF (1λ,KSE,m)

Return c

SE[F].DecP(1λ,K, c)

(KSE,KF)← K

m← SE.DecF
P
KF (1λ,KSE, c)

Return m

The superscript FP
KF

is shorthand for oracle access to F.EvP(1λ,KF, ·). It is re-
quired that SE[F].M = SE.M. Moreover, for a given λ ∈ N the encryption of a
message m ∈ SE.M(λ) must always be in SE.Out(λ, |m|).

Suppose we want to prove that SE is SIM-AC-$ whenever F is SIM-AC-PRF.
The natural way to do so is to build our simulator S from the encryption scheme

Handling Adaptive Compromise for Practical Encryption Schemes 23

from the given simulator SF for F. In Prim we can simply have S.Prim run
SF.Prim. In Enc the ciphertext is chosen at random if the user has not been
exposed, otherwise we can simply run SE.Enc but use SF.Ev in place of FKF

.
This just leaves Exp, here we are given a list of ciphertexts for the user and
need to output a key to “explain” them. A natural approach is to randomly pick
our own KSE and use SF.Exp to chose KF. Doing so requires giving SF a list of
input and outputs to the family of function. Intuitively, it seems we want to be
able to “extract” a list of input-outputs pairs for F that explain our ciphertexts.

Extractability. A mode of operation is extractable if it additionally speci-
fies an efficient extraction algorithm SE.Ext satisfying a correctness and uni-
formity property we now define. The extraction algorithm SE.Ext has syntax
(y, r)←$ SE.Ext(1λ,KSE, c,m). The goal of this algorithm is to “extract” a se-
quence of responses y by F and a string of randomness r that explains how
message m could be encrypted to ciphertext c when using key KSE. We formally
define correctness by the following game. It is assumed that SE.Ext provides
outputs of the appropriate lengths to make this code well-defined. Extraction
correctness of SE requires that Pr[Gcorr

SE,m(1λ)] = 1 for all λ ∈ N and m ∈ SE.M(λ).

Game Gcorr
SE,m(1λ)

KSE←$ SE.Kg(1λ)
c←$ SE.Out(λ, |m|)
(y, r)←$ SE.Ext(1λ,KSE, c,m)
i← 0

c′ ← SE.EncRf(1λ,KSE,m; r)
Return c = c′

Rf(x)

i← i+ 1
Return y[i]

Distribution 1
c←$ SE.Out(λ, |m|)
(y, r)←$ SE.Ext(1λ,KSE, c,m)
Return (y, r)

Distribution 2
For i = 1, . . . , q(λ, |m|) do

y[i]←$ SE.Out(λ)
r←$ {0, 1}l(λ,|m|)
Return (y, r)

We will also require a uniformity property of SE.Ext. Specifically we require
that its output be uniformly random whenever c is. Formally, there must exist
q, l : N×N→ N such that the two distributions on the right above are equivalent
for all λ ∈ N, m ∈ SE.M(λ), and KSE ∈ [SE.Kg(1λ)].7

Extraction security. A core step in our proof will require an additional prop-
erty of SE which we will now define. Roughly, the desired property is that if
SE.Ext is repeatedly used to explain randomly chosen ciphertexts an adversary
cannot notice if it causes inconsistent values to be returned to SE.Enc.

Formally, consider the game Gind-ac-ext shown in Fig. 8. In it, a key is chosen
for each user and then the adversary is given access to an encryption oracle. In
this oracle a random ciphertext is sampled. Then SE.Ext is run to provide vector
y and coins r which explain this ciphertext with respect to the queried message.
Finally, SE.Enc is run with coins r and access to an oracle Rf whose behavior
depends on the chosen y. The ciphertext it outputs is returned to the adversary.

7 Computational relaxations of our uniformity and correctness property would suffice
for our results, but seem to be unnecessary for any “natural” modes of operation.

24 Jaeger, Tyagi

Game Gind-ac-ext
SE,A (λ)

For u ∈ {0, 1}∗ do

KSE,u←$ SE.Kg(1λ)

b←$ {0, 1}
b′←$AEnc,Exp(1λ)

Return (b = b′)

Exp(u)

X.add(u)

Return (KSE,u, Tu)

Enc(u,m)

Require m ∈ SE.M(λ)

Require u 6∈ X
c←$ SE.Out(λ, |m|)
(y, r)←$ SE.Ext(1λ,KSE,u, c,m)

i← 0

c← SE.EncRf(u,·)(1λ,KSE,u,m; r)

Return c

Rf(u, x) //private

i← i+ 1

If Tu[x] 6= ⊥ then

If b = 1 then

y[i]← Tu[x]

Tu[x]← y[i]

Return Tu[x]

Fig. 8. Game defining IND-AC-EXT security of SE. Note that the adversary is not
given oracle access to the “private” oracle Rf.

When b = 0, this oracle simply returns the entries of y, one at a time.
The value returned for an input x is stored as Tu[x]. The behavior when b = 1
is similar except that if an input x to Rf is ever repeated for a user u, then
the value stored in Tu[x] is used instead of the corresponding entry of y. The
attacker’s goal is to distinguish between these two cases.

The adversary may choose to expose any user u, learning KSE,u and Tu. After
doing so it is no longer able to make Enc queries to that user (as captured by
the second “Require” statement in Enc). Note that by the uniformity of SE.Ext
we could instead think of y and r as simply being picked at random without
SE.Ext being run, but we believe the current framing is conceptually more clear.

We define Advind-ac-extSE,A (λ) = 2 Pr[Gind-ac-ext
SE,A] − 1 and say that SE is IND-AC-

EXT secure if Advind-ac-extSE,A (·) is negligible for all PPT A. This notion will be used
for an important step of the coming security proof. Of the properties required
from an extraction algorithm it is typically the most difficult to verify.

Example Modes. As a simple example, we can consider counter-mode encryp-
tion. Let CTR.ol,CTR.il : N → N be fixed and the latter be super-logarithmic.
Then CTR is defined as follows. Its key generation algorithm, CTR.Kg, always
returns ε. Its sets are defined by

CTR.M(λ) = ({0, 1}CTR.ol(λ))∗, CTR.Out(λ, l) = {0, 1}l+CTR.il(λ)

CTR.FInp(λ) = {0, 1}CTR.il(λ), CTR.FOut(λ) = {0, 1}CTR.ol(λ).

Algorithms CTR.Enc, CTR.Dec, and CTR.Ext are defined below where + is ad-
dition modulo 2CTR.il(λ) with elements of {0, 1}CTR.il(λ) interpreted as integers.

CTR.EncO(1λ,KSE,m)

c0←$ {0, 1}CTR.il(λ)
For i = 1, . . . , |m|CTR.ol(λ)
ci ← mi⊕O(c0 + i)

Return c

CTR.DecO(1λ,KSE, c)

c0 ‖ c′ ← c
For i = 1, . . . , |c′|CTR.ol(λ)
mi ← ci⊕O(c0 + i)

Return m

CTR.Ext(1λ,K, c,m)

r ← c0
For i = 1, . . . , |m|F.ol(λ)

y[i]← mi⊕ci
Return (y, r)

Handling Adaptive Compromise for Practical Encryption Schemes 25

It is clear that CTR.Ext is correct and that its outputs are distributed uni-
formly when c is picked at random. The IND-AC-EXT security of CTR follows
from the probabilistic analysis done in existing proofs of security for CTR, such
as the proof of Bellare, Desai, Jokipii, and Rogaway [6]. The standard analysis
simply bounds the probability that any of the values r1 + 1, . . . , r1 + l1, r2 +
1, . . . , r2 + l2, . . . , rq + 1, . . . , rq + lq collide when the ri’s are picked uniformly
and the li’s are adaptively chosen (before the corresponding ri is chosen).

Other IND-AC-EXT secure modes of operation include cipher-block chaining
(CBC), cipher feedback (CFB), and output feedback (OFB).

6.2 Extractability Implies SIM-AC-$ Security

Finally, we can state the main result of this section, that IND-AC-EXT security
of an extractable mode of operation implies SIM-AC-$ security.

Theorem 5. Let SE be an extractable mode of operation which is IND-AC-EXT
secure. Then SE[F] is SIM-AC-$ secure with P whenever F is SIM-AC-PRF
secure with P and satisfies F.Inp = SE.FInp and F.Out = SE.FOut.

The full proof is given in the full version of this paper [23]. It considers a
sequence of games which transition from the real world of Gsim-ac-cpa to the ideal
world (using a simulator we specify). In the first transition we use the security
of F to replace SE’s oracle access to it with oracle access to a lazily-sampled
random function (or simulation by a given simulator Sprf if the corresponding
user has been exposed). Next we modify the game so that (for unexposed users)
ciphertexts are chosen at random and then explained by SE.Ext. Then SE.Enc is
run with the chosen random coins and oracle access to this explanation (except
for whenever a repeat query is made) to produce a modified ciphertext which
is returned. The uniformity of SE.Ext ensures this game is identical to the prior
game. Then we apply the IND-AC-EXT security of SE so that the oracle given
to SE.Enc is not kept consistent on repeated queries. The correctness of SE.Ext
gives that the output of SE.Enc is equal to the c that was sampled at random. We
provide simulator S$ that simulates this game perfectly. It runs Sprf whenever
the game would. On an exposure it generate the table Tu for Sprf by running
SE.Ext on ciphertexts to obtain explanatory outputs of the PRF.

Concretely, in the proof we construct adversaries Aprf and Aext along with
simulator Scpa for which we show

Advsim-ac-cpa
SE[F],S$[Scpa],P,Acpa

(λ) ≤ Advsim-ac-prf
F,Sprf ,P,Aprf

(λ) + Advind-ac-extSE,Aext
(λ).

In the full version of this paper [23], we show that a variant of IND-AC-EXT
security without exposures (which we call IND-EXT) necessarily holds if SE[F] is
single-user IND-$ secure for all single-user PRF secure F’s. Moreover, we identify
that the typical way that IND-EXT security is shown in security proofs for SE
is by proving a slightly stronger property which will suffice to imply IND-AC-
EXT security. Thereby, one can obtain a SIM-AC-$ security proof from a IND-$
security proof by using the information theoretic core of the existing proof.

26 Jaeger, Tyagi

6.3 Extensions and a Counter-example Construction

Simple extensions. For encryption schemes not covered by our formalism, it
will often be easy to extend the underlying ideas to cover the scheme. Suppose
SE uses two distinct function families as PRFs, one could extend our mode
of operation syntax to cover this by giving two separate PRF oracles to the
encryption and decryption oracles. Then security would follow if there is an
extraction algorithm satisfies analogous properties which explains outputs for
both of the oracles. The proof would just require an additional step in which the
second SIM-AC-PRF is replaced with simulation, as in our transition between
games G0 and G1.

One can analogously prove the SIM-AC-$ security of the Encrypt-then-PRF
construction, where instead of a second SIM-AC-PRF function family we have
a SIM-AC-$ encryption scheme. From random ciphertexts it is straightforward
to extract the required output of the function family and encryption scheme.

We can also extend the analysis to cover GCM when its nonces chosen uni-
formly at random. It is not captured by our current syntax because the encryp-
tion algorithm always applies the PRF to the all-zero string to derive a sub-key
for a hash function. It is straightforward to extend our extraction ideas to allow
consistency on this PRF query while maintaining our general proof technique.

Non-extractable counterexample. We showed our general security result for
extractable modes of operations and described how to extend it for some simple
variants. One might optimistically hope that SIM-AC-$ security would hold for
any IND-$ secure mode of operation (when a SIM-AC-PRF secure function fam-
ily is used). Unfortunately, we can show that this is not the case. We can provide
an example mode of operation which is IND-$ secure when using a PRF, but
not SIM-AC-CPA secure for any choice of function family. It will be clear that
this mode of operation is not extractable, as required by our earlier theorem.

Fix n : N → N. Let G be a function family that is OW secure with Psm and
for which G.Kg(1λ) always returns ε and G.Ev(1λ, ε, ·) is always a permutation
on {0, 1}n(λ). Such a G us a one-way permutation on n-bits. From G we construct
our counterexample CX. It has sets CX.Out(λ, l) = {0, 1}l+n(λ) and CX.M(λ) =
CX.FInp(λ) = CX.FOut(λ) = {0, 1}n(λ). Key generation is given by CX.Kg =
G.Kg. Encryption and decryption are given as follows.

CX.EncO(1λ,KSE,m)

c0←$ {0, 1}n(λ)
y ← G.Evε(1λ, ε, O(c0))
c1 ← y⊕m
Return c

CX.DecO(1λ,KSE, c)

c0 ‖ c1 ← c
y ← G.Evε(1λ, ε, O(c0))
m← y⊕c1
Return m

Above, the superscript ε is used as shorthand for the oracle that always returns
ε. Note that this is exactly the behavior of G’s expected ideal primitive Psm. This
counterexample uses the ideas originally introduced by Fischlin et al. [18] to con-
struct non-programmable random oracles by exploiting a one-way permutation.
The construction is not extractable because doing so would require being able

Handling Adaptive Compromise for Practical Encryption Schemes 27

to invert the one-way permutation. The following theorem formally establishes
that this is a counterexample.

Theorem 6. Fix n : N → N. Let G be a one-way permutation on n-bits. Let
F be a family of functions with F.Out(λ) = F.Inp(λ) = {0, 1}n(λ) and P be an
ideal primitive. Then CX[F] is IND-$ secure with P if F is PRF secure with P.
However, CX[F] is not SIM-AC-CPA secure with P.

Proof (Sketch). That CX[F] is IND-$ secure when F is PRF secure follows from,
e.g., the standard security proof for CTR plus the observation that a permutation
applied to a PRF is still a PRF. For the negative result, let S be any simulator
and consider the following SIM-AC-CPA adversary Acpa and OW adversary A.

AEnc,Exp,Prim
cpa (1λ)

m←$ {0, 1}n(λ)
c0 ‖ c1 ← Enc(1,m)
y ← c1⊕m
(KSE,KF)← Exp(1)

x← F.EvPrim(1λ,KF, c0)
If G.Evε(1λ, ε, x) = y then return 1
Return 0

APrim(1λ,K, y)

σ ← S.Init(1λ)
c0 ‖ c1←$ S.Enc(1λ, 1, n(λ) : σ)
m← c1⊕y
M.add(m) ; C.add(c0 ‖ c1)
(KSE,KF)←$ S.Exp(1λ, 1,M,C : σ)

x← F.EvS.Prim(1λ,·:σ)(1λ,KF, c0)
Return x

Adversary Acpa queries for the encryption of a random message. Then it exposes
the corresponding users and uses the given key to calculate the input-output
pair this claims for G. If indeed, this is a valid pair it returns 1, otherwise it
returns 0. When b = 1, note that Acpa will always return 1. Intuitively, when
b = 0, adversary Acpa should almost never return 1 because from the perspective
of the simulator S it looks like y was chosen at random, so finding a pre-image
for it requires breaking the security of G.

This intuition is captured by the adversary A. It simulates the view S would
see when run for A, except instead of picking m at random it waits until after
running S.Enc and sets m← c1⊕y where y is the G image it was given as input.
Note that y is a uniformly random string because G is a permutation and S is
only given the length of the message at this point. Thus, this re-ordering of the
calculation of m does not change the view of S. By asking S for the appropriate
key and running F.Ev, the adversary obtains a potential pre-image for y.

Simple calculations give Advsim-ac-cpa
SE,S,P,Acpa

(λ) = 1 − AdvowG,P,A(λ). The latter ad-
vantage is negligible from the security of G, so the former is non-negligible. ut

Extensions to PRFs. It is often useful to construct a PRF H with large input
domains from a PRF F with smaller input domains. The smaller PRF F is often
thought of as being reasonably modeled by a random oracle or ideal cipher. If the
larger construction H is an indifferentiable construction of a random oracle [14,
30], then we can apply Theorem 3 to obtain the SIM-AC-PRF security of H.

In the case that H is not indifferentiable, one can often use techniques similar
to the above to lift a PRF security proof for H to a SIM-AC-PRF security proof
for H whenever F is SIM-AC-PRF secure. Implicit in the existing security proof

28 Jaeger, Tyagi

there will often be a way of “explaining” a random output of H with random
outputs by F. On exposure queries, the simulator for H would extract these
explanations and feed them to the existing simulator for F to obtain the key to
output. For primitive queries, it would just run the F simulator and for evaluation
queries after exposure it would just run H using the F simulator in place of F.

Acknowledgments. We thank Thomas Ristenpart for insightful discussions
and helpful contributions in the earlier stage of this project. Jaeger was sup-
ported in part by NSF grant CNS-1717640, NSF grant CNS-1719146, and a
Sloan Research Fellowship. Tyagi was supported in part by NSF grant CNS-
1704296.

References

1. G. Asharov, M. Naor, G. Segev, and I. Shahaf. Searchable symmetric encryp-
tion: optimal locality in linear space via two-dimensional balanced allocations. In
D. Wichs and Y. Mansour, editors, 48th ACM STOC, pages 1101–1114, Cambridge,
MA, USA, June 18–21, 2016. ACM Press.

2. G. Asharov, G. Segev, and I. Shahaf. Tight tradeoffs in searchable symmetric
encryption. In H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part I,
volume 10991 of LNCS, pages 407–436, Santa Barbara, CA, USA, Aug. 19–23,
2018. Springer, Heidelberg, Germany.

3. M. Barbosa and P. Farshim. Indifferentiable authenticated encryption. In
H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part I, volume 10991
of LNCS, pages 187–220, Santa Barbara, CA, USA, Aug. 19–23, 2018. Springer,
Heidelberg, Germany.

4. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In B. Preneel, editor, EUROCRYPT 2000,
volume 1807 of LNCS, pages 259–274, Bruges, Belgium, May 14–18, 2000. Springer,
Heidelberg, Germany.

5. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In N. Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages
1–15, Santa Barbara, CA, USA, Aug. 18–22, 1996. Springer, Heidelberg, Germany.

6. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption. In 38th FOCS, pages 394–403, Miami Beach, Florida,
Oct. 19–22, 1997. IEEE Computer Society Press.

7. M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for
encryption and commitment secure under selective opening. In A. Joux, edi-
tor, EUROCRYPT 2009, volume 5479 of LNCS, pages 1–35, Cologne, Germany,
Apr. 26–30, 2009. Springer, Heidelberg, Germany.

8. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In T. Okamoto, editor,
ASIACRYPT 2000, volume 1976 of LNCS, pages 531–545, Kyoto, Japan, Dec. 3–7,
2000. Springer, Heidelberg, Germany.

9. R. Bost. Σoφoς: Forward secure searchable encryption. In E. R. Weippl, S. Katzen-
beisser, C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 2016, pages
1143–1154, Vienna, Austria, Oct. 24–28, 2016. ACM Press.

Handling Adaptive Compromise for Practical Encryption Schemes 29

10. R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party
computation. In 28th ACM STOC, pages 639–648, Philadephia, PA, USA, May 22–
24, 1996. ACM Press.

11. D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks against
searchable encryption. In I. Ray, N. Li, and C. Kruegel, editors, ACM CCS 2015,
pages 668–679, Denver, CO, USA, Oct. 12–16, 2015. ACM Press.

12. D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner. Dynamic searchable encryption in very-large databases: Data struc-
tures and implementation. In NDSS 2014, San Diego, CA, USA, Feb. 23–26, 2014.
The Internet Society.

13. D. Cash and S. Tessaro. The locality of searchable symmetric encryption. In P. Q.
Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
351–368, Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg, Germany.

14. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited:
How to construct a hash function. In V. Shoup, editor, CRYPTO 2005, volume 3621
of LNCS, pages 430–448, Santa Barbara, CA, USA, Aug. 14–18, 2005. Springer,
Heidelberg, Germany.

15. R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric
encryption: improved definitions and efficient constructions. In A. Juels, R. N.
Wright, and S. De Capitani di Vimercati, editors, ACM CCS 2006, pages 79–88,
Alexandria, Virginia, USA, Oct. 30 – Nov. 3, 2006. ACM Press.

16. Y. Dodis, T. Ristenpart, J. P. Steinberger, and S. Tessaro. To hash or not to
hash again? (In)differentiability results for H2 and HMAC. In R. Safavi-Naini and
R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 348–366, Santa
Barbara, CA, USA, Aug. 19–23, 2012. Springer, Heidelberg, Germany.

17. M. Etemad, A. Küpçü, C. Papamanthou, and D. Evans. Efficient dynamic search-
able encryption with forward privacy. PoPETs, 2018(1):5–20, Jan. 2018.

18. M. Fischlin, A. Lehmann, T. Ristenpart, T. Shrimpton, M. Stam, and S. Tessaro.
Random oracles with(out) programmability. In M. Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 303–320, Singapore, Dec. 5–9, 2010. Springer, Hei-
delberg, Germany.

19. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270–299, 1984.

20. F. Hahn and F. Kerschbaum. Searchable encryption with secure and efficient
updates. In G.-J. Ahn, M. Yung, and N. Li, editors, ACM CCS 2014, pages 310–
320, Scottsdale, AZ, USA, Nov. 3–7, 2014. ACM Press.

21. S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren. Searching an encrypted
cloud meets blockchain: A decentralized, reliable and fair realization. In IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications, pages 792–
800, April 2018.

22. M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on search-
able encryption: Ramification, attack and mitigation. In NDSS 2012, San Diego,
CA, USA, Feb. 5–8, 2012. The Internet Society.

23. J. Jaeger and N. Tyagi. Handling adaptive compromise for practical encryption
schemes. Cryptology ePrint Archive, Report 2020/???, 2020. http://eprint.

iacr.org/2020/???

24. S. Jarecki, H. Krawczyk, and J. Xu. OPAQUE: An asymmetric PAKE protocol
secure against pre-computation attacks. In J. B. Nielsen and V. Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 456–486, Tel Aviv,
Israel, Apr. 29 – May 3, 2018. Springer, Heidelberg, Germany.

http://eprint.iacr.org/2020/???
http://eprint.iacr.org/2020/???

30 Jaeger, Tyagi

25. S. Kamara and C. Papamanthou. Parallel and dynamic searchable symmetric
encryption. In A.-R. Sadeghi, editor, FC 2013, volume 7859 of LNCS, pages 258–
274, Okinawa, Japan, Apr. 1–5, 2013. Springer, Heidelberg, Germany.

26. S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric
encryption. In T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS 2012,
pages 965–976, Raleigh, NC, USA, Oct. 16–18, 2012. ACM Press.

27. K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim. Forward secure dynamic
searchable symmetric encryption with efficient updates. In B. M. Thuraisingham,
D. Evans, T. Malkin, and D. Xu, editors, ACM CCS 2017, pages 1449–1463, Dallas,
TX, USA, Oct. 31 – Nov. 2, 2017. ACM Press.

28. J. Li, Y. Huang, Y. Wei, S. Lv, Z. Liu, C. Dong, and W. Lou. Searchable symmetric
encryption with forward search privacy. IEEE Transactions on Dependable and
Secure Computing, pages 1–1, 2019.

29. Q. Liu, Y. Tian, J. Wu, T. Peng, and G. Wang. Enabling verifiable and dynamic
ranked search over outsourced data. IEEE Transactions on Services Computing,
pages 1–1, 2019.

30. U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In
M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages 21–39, Cambridge, MA,
USA, Feb. 19–21, 2004. Springer, Heidelberg, Germany.

31. J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In M. Yung, editor, CRYPTO 2002, vol-
ume 2442 of LNCS, pages 111–126, Santa Barbara, CA, USA, Aug. 18–22, 2002.
Springer, Heidelberg, Germany.

32. P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap
problem. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 373–390, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidelberg,
Germany.

33. N. Tyagi, M. H. Mughees, T. Ristenpart, and I. Miers. BurnBox: Self-revocable
encryption in a world of compelled access. In W. Enck and A. P. Felt, editors,
USENIX Security 2018, pages 445–461, Baltimore, MD, USA, Aug. 15–17, 2018.
USENIX Association.

34. C. Zuo, S. Sun, J. K. Liu, J. Shao, and J. Pieprzyk. Dynamic searchable sym-
metric encryption schemes supporting range queries with forward (and backward)
security. In J. López, J. Zhou, and M. Soriano, editors, ESORICS 2018, Part II,
volume 11099 of LNCS, pages 228–246, Barcelona, Spain, Sept. 3–7, 2018. Springer,
Heidelberg, Germany.

	Handling Adaptive Compromise for Practical Encryption Schemes

