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Abstract. We study the concrete security of high-performance imple-
mentations of half-gates garbling, which all rely on (hardware-accelerated)
AES. We find that current instantiations using k-bit wire labels can be
completely broken—in the sense that the circuit evaluator learns all the
inputs of the circuit garbler—in time O(2k/C), where C is the total
number of (non-free) gates that are garbled, possibly across multiple
independent executions. The attack can be applied to existing circuit-
garbling libraries using k = 80 when C ≈ 109, and would require 267
machine-months and cost about $3500 to implement on the Google Cloud
Platform. Since the attack can be fully parallelized, it could be carried
out in about a month using ≈ 250 machines.

With this as our motivation, we seek a way to instantiate the hash func-
tion in the half-gates scheme so as to achieve better concrete security.
We present a construction based on AES that achieves optimal security
in the single-instance setting (when only a single circuit is garbled). We
also show how to modify the half-gates scheme so that its concrete secu-
rity does not degrade in the multi-instance setting. Our modified scheme
is as efficient as prior work in networks with up to 2 Gbps bandwidth.

1 Introduction

Roughly 35 years ago, Yao proposed the idea of garbled circuits for constant-
round (semi-honest) secure two-party computation [44]. Over the past 15 years,
spurred by initial implementations demonstrating its practicality [33,37,20], cir-
cuit garbling has received a considerable amount of attention and Yao’s initial
scheme has been significantly improved. Notable examples of such improvements



include the point-and-permute technique [1], garbled row reduction [35], free-
XOR [26], fleXOR [25], and half-gates garbling [46], as well as optimizations in-
volving AES when modeled as a pseudorandom function [17] or when used with
a fixed key and modeled as a random permutation [5]. Overall, these improve-
ments have not only decreased the computational requirements of garbling, but
have also—perhaps more importantly—reduced the communication complexity
of garbled circuits. (Indeed, in current implementations of semi-honest secure
two-party computation the overall running time is dominated by the communi-
cation time, and network bandwidth is the primary bottleneck.)

As these improvements to circuit garbling have been developed, however,
there has been—perhaps somewhat surprisingly—a relative lack of attention on
the concrete security [4] of these proposals.1 Understanding concrete security
here is important for at least two reasons. First, as is well understood in the
context of both public-key (e.g., [7,12]) and symmetric-key (e.g., [4]) cryptogra-
phy, when comparing the efficiency of different schemes it is important to take
into account the concrete-security bound they each achieve; otherwise, the com-
parison may be inaccurate or misleading. Moreover, concrete security is critical
for constructions based on symmetric-key primitives (such as AES), where there
is no “security parameter” that can be arbitrarily adjusted as in the public-key
world. (In particular, for AES the block size is fixed at 128 bits, and the maxi-
mum available key length is 256 bits.) There is thus the risk that a scheme that
is only proven asymptotically secure—but has a poor concrete-security bound—
may be insecure in practice for the available range of parameters.

When evaluating the concrete security of garbling, one can consider the “stan-
dard,” single-instance setting where a single circuit is garbled, but it is also
natural to consider a multi-instance setting where multiple circuits, for possibly
different functions, are (independently) garbled—whether by the same user or
distinct users—and, informally, the attacker succeeds if it is able to violate the
security of any of those garbled circuits. Concrete security in the multi-instance
setting has received a lot of attention in the context of both public-key [3,24]
and symmetric-key [40,2,8,19,9] cryptography, but to the best of our knowledge
it has not been previously considered in the setting of secure computation.2

1.1 Our Contributions

We study the concrete security of garbling. We begin by examining the concrete
security of existing, state-of-the-art implementations of the half-gates scheme
(which is the most efficient garbling scheme currently known), and showing that
it is worse than perhaps previously thought. We then propose a new way to
instantiate the half-gates scheme that achieves better concrete-security bounds.
Our results are described in further detail in what follows.
1 This is even more surprising compared to the extensive research on the statistical

security of circuit-garbling protocols in the malicious setting [29,30,39,21,28,47].
2 Work on amortized complexity of circuit garbling [22,31] is close in spirit, but again

focuses on statistical security of the overall protocol in the malicious setting rather
than the concrete (computational) security of the garbling itself.



Concrete security of current half-gates garbling. The half-gates scheme
is a technique for circuit garbling that is compatible with free-XOR (so uses no
communication and negligible computation for XOR gates) and requires only 2k
bits of communication for non-XOR gates, where k denotes the length of the
wire labels. The half-gates scheme is based, abstractly, on a hash function H.
Zahur et al. [46], motivated by JustGarble [5], propose to instantiate H using
fixed-key AES in a particular way. Their suggestion was adopted by many ex-
isting implementations [43,38,45,42,41,15,13] since it is much more efficient than
instantiating H with a cryptographic hash function such as SHA-256 or SHA-3.

Let C be the number of (non-free) gates garbled. We show an attack on the
half-gates scheme that results in a complete break (that is, the circuit evaluator
learns all the inputs of the circuit garbler) in time O(2k/C). The attack works
in the claimed time even when C denotes the total number of gates garbled
across multiple, independent circuits. (In this case the attack completely violates
privacy for at least one of the garbled circuits.)

We experimentally verify the feasibility of our attack against existing imple-
mentations of garbling that use “short” wire labels. In particular, we show that
garbling 1 billion gates3 (i.e., C = 109) with existing implementations of half-
gates garbling that use wire labels of length k = 80 is vulnerable to an attack
that can be carried out in 267 machine-months at a cost of $3500. Since the
attack can be fully parallelized, it can be carried out in about a month using
≈ 250 machines. Due to our attack, we urge users of the half-gates scheme to no
longer use 80-bit wire labels (unless the scheme is modified as discussed below).

Better concrete security for half-gates garbling. Looking more closely at
our attack, we observe that it does not arise due to any weakness in the half-
gates scheme itself, but instead is possible because of the way H is instantiated.
In particular, we show that the half-gates scheme has a tight security reduction
(namely, requires time Θ(2k) to attack) if the hash function H being used is
modeled as a random oracle. (See Appendix B.) As noted earlier, however, in
existing implementations H is instantiated using (fixed-key) AES for better per-
formance; this instantiation is not indifferentiable from a random oracle and our
attack can be viewed as exploiting that gap.

The fact that the proposed instantiation of H is not indifferentiable from a
random oracle was also observed by Guo et al. [18]. They define a property called
tweakable circular correlation robustness (TCCR) for hash functions, show that
using a TCCR hash function suffices for security of the half-gates scheme, and
give a provably secure construction of a TCCR hash function based on fixed-
key AES. They did not focus on obtaining better concrete security, and indeed,
in Appendix C we show that using their hash function in the half-gates scheme
would admit an attack with complexity similar to the one described above.

We thus turn to constructing a TCCR hash function with tight concrete
security. In this context, the hash function H is evaluated on both a tweak
and an input and, with our eventual application to garbling in mind, we use a

3 Note that secure computation of 1 billion gates is now commonplace [27,20,32], and
circuits with as many as 237 gates have been garbled for some applications [14].



fine-grained notion of concrete security that separately bounds the total number
of calls the adversary makes to H as well as the maximum number of times
µ the adversary repeats any particular tweak. As our main result, we show
a construction of a TCCR hash function based on AES (modeled as an ideal
cipher) that has tight concrete security when µ is small.

Importantly, µ = 1 when a single circuit is garbled using the half-gates
scheme, and so when our new hash function is used to instantiate the half-gates
approach we immediately obtain a garbling scheme with tight security in the
single-instance setting. In the multi-instance setting, however, µ can potentially
be as large the number of circuits being garbled; thus, absent any changes, we
would obtain a poor concrete-security bound, even when using our hash function,
when many circuits are independently garbled. To address this, we show a simple
way to randomize the tweaks used in the half-gates scheme in order to avoid
significant degradation in the concrete security.

In contrast to the prior work of Guo et al. [18], the hash function we pro-
pose involves re-keying AES (and modeling AES as an ideal cipher) rather than
relying on fixed-key AES (and modeling the result as a random permutation).
Nevertheless, we show in Section 6 that by incorporating state-of-the-art opti-
mizations for AES key scheduling [17], our hash function is almost as efficient
as the one proposed by Guo et al. when used for circuit garbling.

1.2 Practical Implications

We show that existing implementations of half-gates garbling are much less se-
cure than previously thought, and puts forth an improved way to instantiate
half-gates garbling with better concrete security. Our work has already had an
impact on existing libraries for secure computation. For example, OblivC [45]
changed the length of their labels from 80 bits to 128 bits due to our work, and
our new method for instantiating the half-gates scheme is being used in the lat-
est implementations (e.g., [11]). We are also aware of industry implementations
(that we are unable to disclose) that have changed because of our work.

1.3 Overview of the Paper

In Section 2 we establish notation and review relevant definitions for garbling
schemes, including concrete security definitions for garbling in a multi-instance
setting. We also describe the half-gates garbling scheme based on an abstract
hash function H. In Section 3 we describe the instantiation of H based on fixed-
key AES that was proposed by Zahur et al. and that is used in existing imple-
mentations; we then show an attack with running time O(2k/C) that completely
violates the privacy of that instantiation. We define the notion of multi-instance
tweakable circular correlation robustness (miTCCR) for hash functions in Sec-
tion 4.1, and show that the concrete security of the half-gates scheme when
instantiated with a hash function H can be reduced to the concrete security
of H in the sense of miTCCR. As our main positive result, we then show in



Section 4.2 how to construct a hash function from an ideal cipher with tight se-
curity in that sense. In Section 5 we show how to slightly modify the half-gates
scheme so as to also achieve good concrete security in the multi-instance setting.
We discuss the performance of the resulting garbling scheme in Section 6.

2 Circuit Garbling

We adapt the definitions of garbling by Bellare et al. [6] to our setting. We
consider boolean circuits containing AND and XOR gates with fan-in 2. (NOT
gates can be handled by XORing with 1.) We represent any such circuit by a
tuple f = (n,m, `,Gates), where n ≥ 2 denotes the number of input wires, m ≥ 1
is the number of output wires, and ` is the number of gates. Such a circuit has
exactly n+` wires that we number starting from 1; we let Inputs = {1, . . . , n} and
Outputs = {n+ `−m+ 1, . . . , n+ `}. The set Gates = {(a, b, c, T )}, containing
` tuples, specifies the wiring of the circuit; a tuple (a, b, c, T ) ∈ Gates with
a, b, c ∈ {1, . . . , n + `} represents a gate of type T ∈ {XOR,AND} with input
wires a, b and output wire c. For a circuit f we let |f | = C denote the number of
AND gates in f . With slight abuse of notation, we let f also denote the function
f : {0, 1}n → {0, 1}m computed by the circuit.

We consider a restricted class of garbling schemes in which garbling involves
assigning two k-bit labels to each wire of the circuit, and evaluation involves
computing one label for each output wire. (Our definition is thus similar to the
one considered by Katz and Ostrovsky [23].) While this is less general than the
class of garbling schemes considered by Bellare et al., this formulation suffices
for analyzing the half-gates construction that is the focus of this paper.

Definition 1. A circuit-garbling scheme G = (Garble,Eval,Decode) is a tuple of
algorithms where:

– Garble takes as input a circuit f , and returns (GC, {W 0
i ,W

1
i }i∈Inputs, d), where

GC denotes a garbled circuit, W 0
i ,W

1
i ∈ {0, 1}k are the labels for the ith input

wire, and d represents decoding information.
– Eval takes as input a garbled circuit GC and input-wire labels {Wi}i∈Inputs. It

returns output-wire labels {Wi}i∈Outputs.
– Decode takes as input output-wire labels {Wi}i∈Outputs and decoding infor-

mation d, and returns either ⊥ or a string y ∈ {0, 1}m.

Correctness requires that for any circuit f and any x ∈ {0, 1}n, if we compute

(GC, {W 0
i ,W

1
i }i∈Inputs, d)← Garble(f)

and {Wi}i∈Outputs ← Eval(GC, {W xi
i }), then Decode({Wi}i∈Outputs, d) = f(x).

When we work in the ideal-cipher model (ICM), all algorithms (including

any adversary) are given access to a random keyed permutation E : {0, 1}L ×
{0, 1}L → {0, 1}L as well as its inverse E−1; i.e., for every key ∈ {0, 1}L and



input x ∈ {0, 1}L it holds that E−1(key, E(key, x)) = x. We require correctness
to hold for all such E. We sometimes also consider the random-permutation
model (RPM) in which all parties have access to a random permutation π and
its inverse. The RPM can be obtained from the ICM by setting π(x) = E(0L, x).

Security notions for garbling are considered in the following section.

2.1 (Multi-Instance) Security of Garbling

The canonical security definition for garbling schemes, which suffices for semi-
honest secure computation, is privacy. As Bellare et al. [6] note, however, some
other applications of garbling require alternate definitions. For completeness, we
thus also consider the notions of obliviousness and authenticity in Appendix A.
In contrast to prior work, here we provide concrete-security definitions in a
multi-instance setting in which an attacker may be given values produced by
the (independent) garbling of u ≥ 1 circuits.

Roughly speaking, privacy requires that the information needed to evaluate a
garbled circuit (namely, GC, {W xi

i }, and d) reveals nothing other than y = f(x).
This is formalized by requiring the existence of a simulator Sim that takes the
circuit f and a value y as input, and outputs values that are indistinguishable
from GC, {W xi

i }, d. In the multi-instance setting, we compare the output of
Sim to the outputs obtained from independently garbling u circuits. The fol-
lowing definition is specialized to the ICM for concreteness and since our main
construction is in that model; it can be naturally adapted to the RPM.

Definition 2. Garbling scheme G is (p, u, C, ε)-private if there is a simulator
Sim so that for any distinguisher D making p queries to E and any {(f i, xi)}i∈[u]

with
∑
i |f i| = C, we have∣∣∣∣∣ Pr

{(GCi,{W i,0
j ,W i,1

j },di)←GarbleE(fi)}i∈[u]

[
DE

(
{(GCi, {W i,xij

j }, di)}i∈[u]

)
= 1

]

− Pr
{(GCi,{W i

j },d
i)←SimE(fi,fi(xi))}i∈[u]

[
DE

(
{(GCi, {W i

j}, di)}i∈[u]

)
= 1
]∣∣∣∣∣ ≤ ε,

where both probabilities are also over choice of E.

In the definition above, D may be unbounded so long as the number of
queries it makes to E is bounded. The definition does not explicitly consider the
running time of the simulator Sim, but one can verify that the running time of
the simulator for our construction is O(C). We remark further that while the
distinguisher is given the circuits/inputs used in all the instances, we require the
simulator to simulate each instance independently. (That is, when simulating the
ith instance the simulator is only given f i, f i(xi).)

2.2 The Half-Gates Garbling Scheme

The half-gates scheme HalfGates [46] is an approach for garbling that is compat-
ible with the free-XOR technique, and only requires communicating 2k bits per



AND gate. As the most efficient garbling scheme currently known, it is widely
used in existing implementations of secure two-party computation in both the
semi-honest and malicious settings. HalfGates is based on an abstract hash func-
tion H : {0, 1}k × {0, 1}L → {0, 1}k. We describe the scheme generically here,
and discuss specific instantiations of H later.

We provide a high-level description, and refer to Figure 1 for details. To
garble a circuit, the half-gates scheme begins by choosing a k-bit string R that
is uniform subject to its least-significant bit being 1. For the ith wire of the circuit
with associated labels W 0

i ,W
1
i , it will always be the case that W 0

i ⊕W 1
i = R.

The garbler next chooses uniform 0-labels {W 0
i }i∈Inputs for each input wire of

the circuit. (This defines the 1-labels {W 1
i = W 0

i ⊕ R} for the input wires as
well.) The garbled circuit is then generated gate-by-gate in topological order.
For each XOR gate in the circuit, with ingoing wires a, b and outgoing wire c,
the garbler simply sets W 0

c := W 0
a ⊕W 0

b (and nothing is included in the garbled
circuit for this gate). Each AND gate in the circuit is numbered topologically
with a unique gate identifier gid ranging from 1 to C. For each AND gate in the
circuit, with ingoing wires a, b and outgoing wire c, the garbler uses W 0

a ,W
0
b ,

R, and the gate’s identifier gid to compute the garbled table (TG, TE) as well
as the 0-label W 0

c . This is done using a complicated procedure GbAnd that is
defined in Figure 1. The garbled circuit consists of all the garbled AND gates.
The correctness of the garbling scheme can be easily verified given that

W 0
c = H(W pa

a , j)⊕H(W pb
b , j′)⊕ (pa ∧ pb) ·R.

To evaluate a garbled circuit, starting with labels {Wi}i∈Inputs (where the
evaluator does not necessarily know if Wi = W 0

i or Wi = W 1
i ), the evaluator

proceeds as follows. For an XOR gate with ingoing wires a, b and outgoing wire c,
the evaluator computes Wc := Wa⊕Wb. For an AND gate with ingoing wires a, b
and outgoing wire c, the evaluator computes Wc from Wa,Wb, and the gate’s
identifier gid using the corresponding garbled table (see Figure 1). The final
output is obtained using the least-significant bits of the output-wire labels.

3 Attacking Implementations of the Half-Gates Scheme

Inspired by earlier work of Bellare et al. [5], Zahur et al. [46] proposed to instan-
tiate the hash function H in the half-gates schemes with a construction based on
fixed-key AES (modeled as a random permutation π). Namely, they suggested
to implement H as H(x, i) = π(2x⊕ i)⊕ 2x⊕ i.

Here, we show an attack that violates privacy when H is implemented in
this way. Our attack succeeds with probability O(p ·C/2k), where p denotes the
number of queries the attacker makes to π, and C denotes the number of AND
gates garbled. Importantly, the attack also extends to the multi-instance setting,
where C then denotes the total number of AND gates garbled. Our attack does
not contradict the security proof by Zahur et al. (or the later proof of Guo et
al. [18]), who only claim that an attacker’s success probability cannot exceed
this bound. Here we show an attack meeting that bound.



HalfGatesH

function Garble(f)

R← {0, 1}k−1‖1
gid := 1
for i ∈ Inputs do
W 0
i ← {0, 1}

k

W 1
i := W 0

i ⊕ R
for (a, b, c, T ) ∈ Gates do

if T = XOR then
W 0
c := W 0

a ⊕W
0
b

else
(GC[gid],W 0

c ) := GbAnd(W 0
a ,W

0
b , R, gid)

gid := gid + 1

for i ∈ Outputs do
di := lsb(W 0

i )

return (GC, {(W 0
i ,W

1
i )}i∈Inputs, d)

function GbAnd(W 0
a ,W

0
b , R, gid)

j := 2× gid, j′ := 2× gid + 1
pa := lsb(W 0

a ), pb := lsb(W 0
b )

TG := H(W 0
a , j)⊕H(W 1

a , j)⊕ pbR
TE := H(W 0

b , j
′)⊕H(W 1

b , j
′)⊕W 0

a

W 0
G := H(W 0

a , j)⊕ paTG
W 0
E := H(W 0

b , j
′)⊕ pb(TE ⊕W 0

a )

W 0
c := W 0

G ⊕W
0
E

return ((TG, TE),W 0
c )

function Eval(GC, {Wi}i∈Inputs)
gid := 1
for (a, b, c, T ) ∈ Gates do

if T = XOR then
Wc := Wa ⊕Wb

else
(TG, TE) := GC[gid]
j := 2× gid, j′ := 2× gid + 1
sa := lsb(Wa), sb := lsb(Wb)
WG := H(Wa, j)⊕ saTG
WE := H(Wb, j

′)⊕ sb · (TE ⊕Wa)
Wc := WG ⊕WE

gid := gid + 1

return {Wi}i∈Outputs

function Decode({Wi}i∈Outputs, d)
for i ∈ Outputs do
yi := lsb(Wi)⊕ di

return y

Fig. 1: The half-gates scheme based on a hash function H.

Note that Guo et al. [18] have previously shown an attack on the above in-
stantiation of H that violates (tweakable) correlation robustness with probability
O(pC/2k) using p queries to π and C queries to a keyed version of H (i.e., the
oracle). However, their attack explicitly relies on the attacker’s ability to make
arbitrary H-queries and to obtain the full responses to those queries. Neither
condition holds in our case, where the H-oracle queries are made by the honest
garbler (and so are outside the control of the attacker) and the attacker is given
the resulting garbled circuit but is not directly given the output of the oracle.

3.1 Attack Details

We describe the intuition behind the attack here, and give the details in Figure 2.
The attack works by recovering the hidden global shift R used by the circuit
garbler; note that once this value is obtained, the evaluator can use R along
with the rest of the garbled circuit to learn, for each wire of the circuit, which
labels are associated with which bits and thus, using the input labels it was
sent, determine the actual input of the garbler. We focus on showing how to
learn R. Observe that for each AND gate in the circuit with ingoing wires a, b
and outgoing wire c, the circuit evaluator learns one of the two wire labels



Wa ∈ {W 0
a ,W

1
a } as well as the value

TG = H(W 0
a , j)⊕H(W 1

a , j)⊕ pbR

from the garbled gate. (Note that j depends on the gate identifier gid of the
gate but we leave that implicit.) Recall further that W 1

a = W 0
a ⊕R. The circuit

evaluator can thus compute

Ha
def
= TG ⊕H(Wa, j) = H(Wa ⊕R, j)⊕ pbR.

A key observation is that pb = 0 with probability 1/2! Thus, the circuit evaluator
obtains, in expectation, C/2 values of the form H+

a = H(Wa ⊕R, j) with Wa, j
known. (We use H+

a to refer to an Ha-value for which pb = 0.)

We now rely on the specific details of howH is implemented. WhenH(x, i)
def
=

π(2x⊕ i)⊕ 2x⊕ i we have

H+
a = H(Wa ⊕R, j) = π(2(Wa ⊕R)⊕ j)⊕ 2(Wa ⊕R)⊕ j.

If the circuit evaluator chooses a uniform W ∗i , it can check whether

H(W ∗i , 0) = Ha (1)

for some a. If so, then (as we justify below in our discussion of false positives)
with constant probability it will be the case that

2W ∗i = 2(Wa ⊕R)⊕ j. (2)

Once the evaluator finds a W ∗i for which Eq. (2) holds, it can then easily solve
for R. (Note also that it is easy to verify a candidate value R; see the Check
routine in Figure 2.) The time to carry out the attack is therefore dominated by
the time to find a solution to Eq. (2). Assume for simplicity we have exactly C/2
values {H+

a }. Then if p uniform values W ∗1 , . . . ,W
∗
p are chosen, the probability

that Eq. (2) holds for some i, a is p · (C/2) · 2−k = p · C/2k+1, as claimed.

Extension to the multi-instance setting. The above attack readily extends
to the case when multiple circuits are (independently) garbled. In this case, C
is simply the total number of AND gates garbled across all the circuits, and the
attack recovers the shift R used for one of them.

False positives. We now more carefully account for the number of queries to π
made during the course of the attack. We argued above that after p evalua-
tions of H (which requires p evaluations of π) the attack finds R with probabil-
ity pC/2k+1. This analysis, however, does not account for false positives (i.e., a
W ∗ for which Eq. (1) holds but Eq. (2) does not); note that every false positive
incurs additional π-queries because it causes the Check routine to be executed.
We now show that we expect only ≈ 2 false positives for every true positive.

To see this, fix some particular a and associated Ha = H(Wa ⊕R, j)⊕ pbR,
and consider a uniform W ∗. There are three cases in which H(W ∗, 0) = Ha:



Inputs: A garbled circuit, along with input-wire labels {Wi}i∈Inputs.

Main algorithm:

1. Initialize T := ∅. Evaluate the garbled circuit honestly and obtain a label Wa

for each wire a.
2. For each AND gate (a, b, c,AND) with gate identifier gid and garbled table

(TG, TE), set j := 2×gid, computeHa := H(Wa, j)⊕TG, and insert (Ha, j,Wa)
into T .

3. Choose uniform W ∗ ∈ {0, 1}k until there exists (j,Wa) such that
(H(W ∗, 0), j,Wa) ∈ T .

4. Given W ∗, j,Wa from the previous step, compute R := Wa ⊕W ∗ ⊕ 2−1j. If
Check(R) = 1, output R; otherwise go to step 3.

Check(R):

1. For a gate (a, b, c,AND) with gate identifier gid and garbled table (TG, TE),
let Wa,Wb,Wc be the labels computed on the respective wires.

2. If ((TG, TE),Wc ⊕ wR)
?
= GbAnd(W 0

a ⊕ uR,W 0
b ⊕ vR,R, gid) for some values

u, v, w ∈ {0, 1}, output 1; else output 0.

Fig. 2: Attack on the proposed implementation of the half-gates scheme.

– Case 1: pb = 0 and 2W ∗ = 2(Wa ⊕ R) ⊕ j. This occurs with probability
1/2k+1, and is a true positive.

– Case 2: pb = 0 and 2W ∗ 6= 2(Wa ⊕ R) ⊕ j, yet H(W ∗, 0) = Ha. The prob-
ability of the first event is 1/2, and the probability of the second is slightly
less than 1. But conditioned on these events, the third event occurs only if

H(W ∗, 0) = π(2W ∗)⊕ 2W ∗ = π(2(Wa ⊕R)⊕ j)⊕ 2(Wa ⊕R)⊕ j = Ha,

which occurs with probability roughly 1/2k since π is a random permutation.
Overall, then, the probability of this case is also 1/2k+1.

– Case 3: pb = 1, yet H(W, 0) = Ha. The probability of the first event is 1/2.
But conditioned on this, the second event occurs only if

H(W ∗, 0) = π(2W ∗)⊕ 2W ∗ = π(2(Wa⊕R)⊕ j)⊕ 2(Wa⊕R)⊕ j⊕R = Ha.

There are now two sub-cases. If 2W ∗ = 2(Wa ⊕ R) ⊕ j (which occurs with
probability 2−k), then since R has min-entropy k − 1 the probability that
the above equality holds is at most 2−k+1. If 2W ∗ 6= 2(Wa ⊕ R) ⊕ j, then
because π is a uniform permutation the probability that the above equality
holds is at most 1/(2k − 1). Overall, then, the probability of this case is
1/2k+1 + 1/22k ≈ 1/2k+1.

Summarizing: if the attack chooses p values W ∗1 , . . . ,W
∗
p , we expect a true pos-

itive with probability pC/2k+1 and a false positive with probability pC/2k. Put
differently, if we set p such that pC/2k+1 ≈ 1 then we expect to obtain R with
probability ≈ 1 while incurring only ≈ 2 false positives. (Note that only O(1)



queries to π are made during calls to Check, so the net result is only a small
number of additional queries to π.)

3.2 Attack Implementation

Here we describe our implementation of the attack described above.

Implementation optimizations. Above, we focused on the complexity of the
attack in terms of the number of queries to π. In practice, though, the lookups
in T also incur significant cost. For example, when C = 230 then T requires
roughly 24 GB to store; this impacts both the running time of the attack (due
to cache misses on memory accesses) and its dollar cost (since more-powerful
machines are needed). To mitigate this, we made the following optimizations:

1. We first observe that it suffices to search for matches on Ha-values, and
we thus store (only) those values in a hash table H. Once a match on Ha

is found, we can do a lookup in T to find the corresponding j,Wa values.
Moreover, we store only 64 bits of each Ha value in H rather than the entire
value. (This has only a small impact on the false-positive rate.) We store H
in memory, but can store T on disk since it will be accessed only O(1) times
during the course of the attack.

2. We implement the hash tableH using the “power of two choices” scheme [34].
In this construction, every element is mapped to two random buckets (each
capable of holding eight 64-bit strings); an element is inserted in the bucket
with lower occupancy, and lookups simply access both buckets. To further
reduce the cost of memory accesses, we modified the way hashing is done to
make sure that elements are always mapped to buckets within 16kB of each
other in memory. In this way, both buckets for a given element will likely
lie on the same page of memory, in which case both will be brought into
the CPU cache when the memory access for the first bucket is made. This
reduces the overall number of cache misses.

Verifying the attack complexity. We implemented our attack (with the above
optimizations) to verify its correctness and complexity. We ran the attack with
label lengths k ∈ {40, 48} and number of gates C ranging from 220–228 until the
true value R was found; the attack was run 100 times for each set of parameters.
We found that the average number of false positives (which cause lookups in
T and invocations of the Check routine) was less than 5 in all cases. We plot
the number of π-queries and the bound of 2k+1/C given by our analysis in
Figure 3a; our analysis is always within a factor of 2–3× of the experimental
results. We believe our use of a hash table (which can cause additional false
positives) partially contributes to the additional overhead.

Real-world running time and cost. We estimate the time and cost of imple-
menting our attack when k = 80 and C = 230. For the purposes of this estimate,
we assume customized preemptive instances with one Skylake CPU and 9 GB
memory, each of which can be rented for $13.17/month on the Google Cloud
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Platform as of 2019. By extrapolating experimental results for smaller values
of k (see Figure 3b), we find that we can approximate the running time T of the
attack (in milliseconds) as a function of k by the equation T (k) = 20.989k−39.8.
For k = 80, this gives T = 239.3 ms or 267 machine-months. Such an attack
would cost about $3500 to carry out. Since our attack can be fully parallelized,
the wall-clock time can be made arbitrarily small using multiple instances, with-
out increasing the cost. For example, using 267 instances the attack would finish
in about a month.

4 Better Concrete Security for the Half-Gates Scheme

The attack in the previous section does not exploit any weakness in the half-gates
scheme per se, but rather exploits a weakness in the way the underlying hash
function is implemented. Building on the work of Guo et al. [18], we introduce
here a security notion for hash functions called multi-instance tweakable circular
correlation robustness (miTCCR) and show that this is an appropriate definition
for analyzing the concrete security of the half-gates scheme.

4.1 Multi-Instance TCCR

Our definition of miTCCR differs from the related notion formalized by Guo et
al. in two respects. First, we consider an attacker who is given access to multiple
(independently keyed) functions, rather than just one. Second, we explicitly allow
the concrete security bound to depend on the maximum number of times µ an
attacker repeats any particular tweak.

Given a function H : W × T → W (that depends on an ideal cipher E),

define OmiTCCR
R (w, i, b)

def
= H(w ⊕R, i)⊕ b ·R. Let FuncW×T ×{0,1},W denote the

set of functions from W × T × {0, 1} to W.



Definition 3. Given a function HE : W × T → W, a distribution R on W,
and a distinguisher D, define

AdvmiTCCR
H,R (D,u, µ)

def
=

∣∣∣∣ Pr
R1,...,Ru←R

[
DE,OmiTCCR

R1
(·),...,OmiTCCR

Ru
(·) = 1

]
− Pr
f1,...,fu←FuncW×T×{0,1},W

[
DE,f1(·),...,fu(·) = 1

]∣∣∣∣ ,
where both probabilities are also over choice of E and we require that

1. D never queries both (w, i, 0) and (w, i, 1) to the same oracle (for any w, i).
2. For all i ∈ T , the number of queries (across all oracles) of the form (?, i, ?)

is at most µ.

We say H is (p, q, u, µ, ρ, ε)-miTCCR, if for all distinguishers D making at most
p queries to E and at most q queries (in total) to its other oracles, and all
distributions R with min-entropy at least ρ, we have AdvmiTCCR

H,R (D,u, µ) ≤ ε.

We recover the definition from Guo et al. if we set u = 1 and µ = |T |.
The concrete security of the half-gates scheme is directly related to the con-

crete security (in the sense of miTCCR) of the underlying hash function used.

Theorem 1. Let H be (p, 2C, u, u, k−1, ε)-miTCCR. Then the garbling scheme
HalfGatesH is (p, u, C, ε)-private.

A proof of the above follows along the same lines as the proof of the more general
result we show later (cf. Theorem 3), so we omit it.

The challenge is thus to design a hash function with good concrete security
in the sense of miTCCR. We remark that, as one might expect, a random oracle
is one such candidate; see Appendix B. However, as discussed extensively by
Guo et al. [18], it is not trivial to use a random oracle when implementing the
half-gates scheme: there is a significant performance penalty when instantiating
H using a cryptographic hash function like SHA-256 or SHA-3 (see also Table 1),
and indifferentiable constructions of a random oracle from an ideal cipher E that
are both efficient and have good concrete security are not known. (In particular,
work of Gauravaram et al. [16] shows a construction using two calls to E with
birthday-bound security; the construction we show in the next section is both
more efficient and has better concrete security in the sense of miTCCR.)

4.2 Designing a Hash Function with Better Concrete Security

We construct (from an ideal cipher E : {0, 1}L × {0, 1}L → {0, 1}L) a hash
function with good concrete security in the sense of miTCCR. Specifically, define

M̂MO
E

: {0, 1}L × {0, 1}L → {0, 1}L as

M̂MO
E

(x, i)
def
= E(i, σ(x))⊕ σ(x),



where σ is a linear orthomorphism. (We say σ : {0, 1}L → {0, 1}L is lin-

ear if σ(x ⊕ y) = σ(x) ⊕ σ(y) for all x, y ∈ {0, 1}L. It is an orthomorphism

if it is a permutation, and the function σ′ given by σ′(x)
def
= σ(x) ⊕ x is

also a permutation.) As shown by Guo et al. [18], σ can be efficiently in-
stantiated as σ(xL‖xR) = xR ⊕ xL‖xL where xL and xR are the left and
right halves of the input, respectively; in assembly code, this becomes σ(x) =
mm shuffle epi32(x, 78)⊕and si128(x, mask), where mask = 164‖064. We have:

Theorem 2. If σ is a linear orthomorphism and E is modeled as an ideal cipher,

then M̂MO
E

is (p, q, u, µ, ρ, ε)-miTCCR, where

ε =
2µp

2ρ
+

(µ− 1) · q
2ρ

.

Proof. Our proof uses the H-coefficient technique [36,10], which we review in
Appendix D (specialized for our proof). Fix a deterministic distinguisher D
making queries to u+ 1 oracles. The first is the ideal cipher (and its inverse); in
the real world, the remaining oracles are of the form

OmiTCCR
R (w, i, b) = M̂MO

E
(R⊕ w, i)⊕ bR = E(i, σ(R⊕ w))⊕ σ(R⊕ w)⊕ bR

(for u independent keys R1, . . . , Ru sampled from R), but in the ideal world

they are u independent random functions from {0, 1}2L+1
to {0, 1}L. Following

the notation from Appendix D, denote the transcript of D’s interaction by Q =
(QE ,QO,R). We only consider attainable transcripts. For i ∈ {0, 1}L define

QE [i]
def
= {(x, y) : (i, x, y) ∈ QE}. Clearly,

∑
i∈{0,1}L

∣∣QE [i]
∣∣ =

∣∣QE∣∣ = p.

We say a transcript (QE ,QO,R) is bad if:

– (B-1) There is a query (idx, w, i, b, z) ∈ QO and a query of the form (i, σ(Ridx⊕
w), ?) or of the form (i, ?, σ(Ridx ⊕ w)⊕ b ·Ridx ⊕ z) in QE .

– (B-2) There are distinct queries (idx, w, i, b, z), (idx′, w′, i, b′, z′) ∈ QO using
the same “tweak” i such that σ(Ridx ⊕ w) = σ(Ridx′ ⊕ w′) or σ(Ridx ⊕ w)⊕
b ·Ridx ⊕ z = σ(Ridx′ ⊕ w′)⊕ b′ ·Ridx′ ⊕ z′.
We bound the probabilities of the above events in the ideal world. Consider

(B-1). Imagine that first all the oracles are chosen (which defines QE ,QO) and
then the keys R are chosen. Fix some (idx, w, i, b, z) ∈ QO. It is immediate that

Pr[(i, Ridx ⊕ w, ?) ∈ QE ] ≤
∣∣QE [i]

∣∣
2ρ

since the min-entropy of R is ρ. Moreover,

Pr[(i, ?, σ(Ridx⊕w)⊕bRidx⊕z) ∈ QE ] = Pr[(i, ?, σ(Ridx)⊕σ(w)⊕bRidx⊕z) ∈ QE ],

by linearity of σ. Now, note that:

– When b = 0, the above probability is at most
∣∣QE [i]

∣∣ · 2−ρ since σ is a
permutation and the min-entropy of R is ρ.



– When b = 1, the above probability is also at most
∣∣QE [i]

∣∣ · 2−ρ since σ is an
orthomorphism and the min-entropy of R is ρ.

Therefore,

Pr[(B-1)] ≤
∑

(idx,w,i,b,z)∈QO

2 ·
∣∣QE [i]

∣∣
2ρ

=
∑

i∈{0,1}L

∑
(idx,w,i,b,z)∈QO︸ ︷︷ ︸

≤µ

2 ·
∣∣QE [i]

∣∣
2ρ

≤ µ ·
∑

i∈{0,1}L

2 ·
∣∣QE [i]

∣∣
2ρ

=
2µp

2ρ
.

We next consider (B-2). For fixed i ∈ {0, 1}L, consider a pair of distinct
queries (idx, w, i, b, z), (idx′, w′, i, b′, z′) ∈ QO. If idx 6= idx′, we have

Pr
[
σ(Ridx ⊕ w) = σ(Ridx′ ⊕ w′)

]
≤ 1

2ρ

and

Pr[σ(Ridx ⊕ w)⊕ bRidx ⊕ z = σ(Ridx′ ⊕ w′)⊕ b′Ridx′ ⊕ z′] ≤
1

2ρ

as in the discussion of (B-1). If idx = idx′, then σ(Ridx ⊕ w) = σ(Ridx′ ⊕ w′) ⇒
w = w′ is not possible. Furthermore, with b′′ = b⊕ b′,

Pr[σ(Ridx ⊕ w)⊕ bRidx ⊕ z = σ(Ridx′ ⊕ w′)⊕ b′Ridx′ ⊕ z′] (3)

= Pr[σ(w)⊕ z = σ(w′)⊕ z′ ⊕ b′′Ridx] =
1

2L
≤ 1

2ρ
, (4)

using the fact that z, z′ ∈ {0, 1}L are uniform and independent. Thus, for any
pair of queries in QO, the probability that (B-2) holds is at most 2/2ρ. If we let
Ci ≤ µ denote the number of queries in QO using tweak i, then

Pr[(B-2)] ≤
∑

i∈{0,1}L

(
Ci
2

)
· 2

2ρ
≤ (µ− 1)

∑
i∈{0,1}L

Ci
2ρ
≤ (µ− 1) · q

2ρ
.

Summarizing, the probability of a bad transcript in the ideal world is at most
2µp
2ρ + (µ−1)·q

2ρ .
Fix a good transcript Q = (QE ,QO,R). The probability that the ideal world

is consistent with this transcript is given by Eq. (7). The probability that the
real world is consistent with this transcript is

Pr[∀(idx, w, i, b, z) ∈ QO : OmiTCCR
Ridx

(w, i, b) = z | E ` QE ]∏
v∈{0,1}L(2L)|QE [v]|

· PrR[R].



We can express the numerator of the above as

q∏
j=1

Pr[OmiTCCR
Ridxj

(wj , ij , bj) = zj | E ` QE ∧ ∀` < j : OmiTCCR
Ridx`

(w`, i`, b`) = z`].

Note that OmiTCCR
Ridxj

(wj , ij , bj) = zj iff M̂MO
E(
Ridxj ⊕ wj , ij

)
⊕ bjRidxj = zj , i.e.,

E
(
ij , σ(Ridxj ⊕ wj)

)
= σ(Ridxj ⊕ wj)⊕ bjRidxj ⊕ zj .

Since the transcript is good, there is no query of the form (ij , σ(Ridxj ⊕ wj), ?)
in QE (since (B-1) does not occur), nor is E(ij , σ(Ridxj ⊕ wj)) determined by
the fact that OmiTCCR

Ridx`
(w`, i`, b`) = z` for all ` < j (since (B-2) does not occur).

Similarly, there is no query of the form (ij , ?, σ(Ridxj ⊕ wj) ⊕ bjRidxj ⊕ zj) in
QE (since (B-1) does not occur), nor is E−1(ij , σ(Ridxj ⊕ wj) ⊕ bjRidxj ⊕ zj)
determined by the fact that OmiTCCR

Ridx`
(w`, i`, b`) = z` for all ` < j (since (B-2)

does not occur). Thus, for all j we have

Pr[OmiTCCR
Ridxj

(wj , ij , bj) = zj | E ` QE ∧ ∀` < j : OmiTCCR
Ridx`

(w`, i`, b`) = z`] ≥ 1/2L.

It follows that

Pr[∀(idx, w, i, b, z) ∈ QO : OmiTCCR
Ridx

(w, i, b) = z | E ` QE ] ≥ 1/2Lq,

and so the probability that the real world is consistent with the transcript is at
least the probability that the ideal world is consistent with the transcript. This
completes the proof. ut

Using shorter wire labels. Our construction above gives a hash function
H : {0, 1}L × {0, 1}L → {0, 1}L, where L is the block length and key length
of the underlying cipher E. In some applications of the half-gates scheme, one
may prefer using wire labels of length k < L. This is easily done by defining
H ′ : {0, 1}k × {0, 1}L → {0, 1}k as

H ′(x, i) = [H(x‖0L−k, i)]k,
where [z]k denotes the k least-significant bits of z. It is not hard to see that if H
is (p, q, u, µ, ρ, ε)-miTCCR then so is H ′. (Of course, for H ′ it must be the case
that ρ ≤ k.)

Putting everything together. Say M̂MO
E

is used in the half-gates scheme
with k-bit wire labels (as discussed above). Theorems 1 and 2 then imply that
the resulting garbling scheme is (p, u, C, ε)-private with

ε =
u · p+ (u− 1) · C

2k−2
.

Taking u = 1 (i.e., looking at the single-instance setting), we have ε = p/2k−2,
which is independent of the circuit size C and optimal up to a (small) constant.
When u > 1, however, security degrades linearly in u; since u can be Θ(C), the
security bound can be as bad as O((pC +C2)/2k) in the multi-instance setting.
We show in the next section how to rectify this.



5 Achieving Better Multi-Instance Security

As discussed at the end of the previous section, our new hash function gives an
optimal concrete-security bound for the half-gates scheme in the single-instance
setting. In the multi-instance setting, however, the security bound degrades as
the number of instances increases.

Looking at our construction and the proof of miTCCR security (Theorem 2),
we observe that the fundamental reason for the poor security bound in the multi-
instance case is that µ (namely, the number of times a given “tweak” may be
re-used; cf. Definition 3) can be as large as u (the number of circuits being
garbled). Tracing back to the half-gates scheme, we see that this is because the
scheme always assigns sequential gate identifiers (gids) starting at 1 to the AND
gates in a circuit, and so in particular each circuit that is garbled will at least use
the “tweak” i = 1. We fix this issue by modifying the scheme so that it instead
numbers the gates sequentially beginning at a random starting point determined
by the garbler (and sent to the evaluator along with the garbled circuit). That
is, the only changes with respect to Figure 1 are that (1) in Garble, the initial
value of gid is a uniform L-bit string, and (2) the initial value of gid is included

in GC. We denote the modified scheme by ̂HalfGates. To analyze the resulting
construction, we start with the following lemma.

Lemma 1. Fix integers L, q, an integer u ≤ q, and a sequence of positive in-
tegers (q1, . . . , qu) with

∑
i qi = q. Consider the following experiment involving

a set of 2L bins and q balls: for each i ∈ [u], qi balls are placed in consecutive
bins (wrapping around modulo 2L), where the initial bin is uniform. If µ∗ is the
random variable denoting the maximum number of balls in any bin, then

Pr[µ∗ > µ] ≤ qµ+1

(µ+ 1)! · 2µL .

Proof. Consider some µ sequences of balls, i.e., the i1th, . . . , iµth, and consider
the event that there is a k ∈ {0, 1}L such that every one of those sequences hits
the kth bin. It can be seen that the probability is

2L × qi1
2L
× · · · × qiµ

2L
=
qi1 × · · · × qiµ

2L·(µ−1)
.

Since µ∗ is the maximum number of balls in any of the 2L bins, we have

Pr[µ∗ ≥ µ] ≤
∑

0<i1<i2<···<iµ≤u

qi1 × · · · × qiµ
2L·(µ−1)

Observing that

(q1 + q2 + · · ·+ qu)µ ≥
∑

i1 6=i2 6=···6=iµ

qi1 × · · · × qiµ

= µ! ·
∑

i1<i2<···<iµ

qi1 × · · · × qiµ ,



we have ∑
i1<i2<···<iµ

qi1 × · · · × qiµ ≤
(q1 + q2 + · · ·+ qu)µ

µ!
.

Therefore,

Pr[µ∗ > µ] = Pr[µ∗ ≥ µ+ 1] ≤ 1

2L·µ
× (q1 + · · ·+ qu)µ+1

(µ+ 1)!
=

qµ+1

(µ+ 1)! · 2L·µ .

This complete the proof. ut

With the above in place, we now prove:

Theorem 3. Let H be (p, 2C, u, µ, k−1, ε)-miTCCR. Then the garbling scheme

̂HalfGates
H

is (p, u, C, ε′)-private, where

ε′ ≤ ε+
(2C)µ+1

(µ+ 1)! · 2µL .

Proof. We describe a simulator Sim1 that takes as input a circuit f and an
output y, and generates a simulated garbled circuit, input-wire labels, and the
decoding table. See below for details.

function Sim1(f, y)

gid∗ ← {0, 1}L, gid := gid∗

Rand← Func{0,1}k+L+1,{0,1}k

for i ∈ Inputs(f) do

W 0
i ← {0, 1}

k

for (a, b, c, T ) ∈ Gates(f) do
if T = XOR then
W 0
c := W 0

a ⊕W
0
b

else
(GC[gid],W 0

c ) := SimAnd1(W 0
a ,W

0
b , gid)

gid := gid + 1

for i ∈ Outputs(f) do
di := lsb(W 0

i )⊕ yi
return ((gid∗,GC), {W 0

i }i∈Inputs, d)

function SimAnd1(W 0
a ,W

0
b , gid)

j := 2× gid, j′ := 2× gid + 1
pa := lsb(W 0

a ), pb := lsb(W 0
b )

TG := H(W 0
a , j)⊕ Rand(W 0

a , j, pb)

TE := H(W 0
b , j
′)⊕ Rand(W 0

b , j
′, 0)⊕W 0

a

W 0
G := H(W 0

a , j)⊕ paTG
W 0
E := H(W 0

b , j
′)⊕ pb(TE ⊕W 0

a )

W 0
c := W 0

G ⊕W
0
E

return ((TG, TE),W 0
c )

Fix some {(f i, xi)}i∈[u]. We now show indistinguishability between the two
distributions in Definition 2. To do so, we consider a sequence of hybrid distri-
butions.

Ideal. Here, we run Sim1(f i, f i(xi)) for i ∈ [u].

Hybrid2. Here, we run Sim2(f i, xi) for i ∈ [u], where Sim2 is defined below.
Intuitively, the description of Sim1 is from the perspective of the garbler (who
knows the {W 0

i }), while that of Sim2 is from the perspective of the evaluator
(who knows the {W vi

i } only); the distribution of the outputs remains the same.



function Sim2(f, x)

gid∗ ← {0, 1}L, gid := gid∗

Rand← Func{0,1}k+L+1,{0,1}k

Evaluate f(x) and get all wire values vi
for i ∈ Inputs(f) do

W
vi
i ← {0, 1}

k

for (a, b, c, T ) ∈ Gates(f) do
if T = XOR then
Wvc
c := Wva

a ⊕Wvb
b

else
(GC[gid],Wvc

c ) := SimAnd2(Wva
a ,W

vb
b , gid)

gid := gid + 1

for i ∈ Outputs(f) do
di := lsb(W

vi
i )⊕ vi

return ((gid∗,GC), {Wvi
i }i∈Inputs, d)

function SimAnd2(Wva
a ,W

vb
b , gid)

j := 2× gid, j′ := 2× gid + 1
sa := lsb(Wva

a ), sb := lsb(W
vb
b )

TG := H(Wva
a , j)⊕ Rand(Wva

a , j, vb ⊕ sb)
TE := H(W

vb
b , j′)⊕ Rand(W

vb
b , j′, va)⊕Wva

a

W
va(vb⊕sb)
G := H(Wva

a , j)⊕ saTG
W
vasb
E := H(W

vb
b , j′)⊕ sb(TE ⊕Wva

a )

W
vavb
c := W

va(vb⊕sb)
G ⊕Wvasb

E

return ((TG, TE),W
vavb
c )

We claim that distribution Hybrid2 is identical to distribution Ideal. This is
because the values ((gid∗,GC), {W 0

i }i∈Inputs) in Hybrid1 and the corresponding
values ((gid∗,GC), {W vi

i }i∈Inputs) in Ideal are all uniform, and in both distribu-
tions we have

di = lsb(Eval((gid∗,GCi), {W i
j}j∈Inputs))⊕ f i(xi),

where we slightly abuse notation and let lsb(W1, . . . ,Wn) = lsb(W1), . . . , lsb(Wn).

Hybrid3. Here, we run Sim3(f i, xi) for i ∈ [u], where Sim3 is defined below. Sim3

is the same as Sim2 except that it uses oracles OmiTCCR
R in place of the random

function Rand, and it computes values {W v̄} that do not affect the output.

function Sim3(f, x)

gid∗ ← {0, 1}L, gid := gid∗

R← {0, 1}k−1‖1
Evaluate f(x) and get all wire values vi
for i ∈ Inputs(f) do

W
vi
i ← {0, 1}

k

W
v̄i
i := W

vi
i ⊕ R

for (a, b, c, T ) ∈ Gates(f) do
if T = XOR then
Wvc
c := Wva

a ⊕Wvb
b

else
(GC[gid],Wvc

c ) := SimAnd3(Wva
a ,W

vb
b , gid)

gid := gid + 1

for i ∈ Outputs(f) do
di := lsb(W

vi
i )⊕ vi

return ((gid∗,GC), {Wvi
i }i∈Inputs, d)

function SimAnd3(Wva
a ,W

vb
b , gid)

j := 2× gid, j′ := 2× gid + 1
sa := lsb(Wva

a ), sb := lsb(W
vb
b )

TG := H(Wva
a , j)⊕OmiTCCR

R (Wva
a , j, vb ⊕ sb)

TE := H(W
vb
b , j′)⊕OmiTCCR

R (W
vb
b , j′, va)⊕Wva

a

W
va(vb⊕sb)
G := H(Wva

a , j)⊕ saTG
W
vasb
E := H(W

vb
b , j′)⊕ sb(TE ⊕Wva

a )

W
vavb
c := W

va(vb⊕sb)
G ⊕Wvasb

E

return ((TG, TE),W
vavb
c )

Let µ∗ denote the maximum frequency of any tweak used as the input to OR,
across all u executions of Sim3. We claim that no distinguisher D making at most
p queries to E can distinguish between Hybrid2 and Hybrid3 with probability
better than ε+ Pr[µ∗ > µ]. Indeed, we can easily reduce any such distinguisher
to a distinguisher against H (in the sense of miTCCR) that respects the bound
µ on the number of times a tweak may be repeated so long as µ∗ ≤ µ. Note

further that Lemma 1 implies Pr[µ∗ > µ] ≤ (2C)µ+1

(µ+1)!×2µL
.



Hybrid4. Here, we run Sim4(f i, xi) for i ∈ [u], where Sim4 is defined below.
Sim4 is identical to Sim3 except that vi is always set to 0 and OmiTCCR

R (x, i, b) is
expanded to H(x⊕R, i)⊕ bR. It is immediate that distributions Hybrid3 and
Hybrid4 are identical.

function Sim4(f, x)

gid∗ ← {0, 1}L, gid := gid∗

R← {0, 1}k−1‖1
for i ∈ Inputs(f) do

W 0
i ← {0, 1}

k

W 1
i := W 0

i ⊕ R
for (a, b, c, T ) ∈ Gates(f) do

if T = XOR then
W 0
c := W 0

a ⊕W
0
b

else
(GC[gid],W 0

c ) := SimAnd3(W 0
a ,W

0
b , R, gid)

gid := gid + 1

for i ∈ Outputs(f) do
di := lsb(W 0

i )

return ((gid∗,GC), {Wxi
i }i∈Inputs, d)

function SimAnd4(W 0
a ,W

0
b , R, gid)

j := 2× gid, j′ := 2× gid + 1
pa := lsb(W 0

a ), pb := lsb(W 0
b )

TG := H(W 0
a , j)⊕H(W 1

a , j)⊕ pbR
TE := H(W 0

b , j
′)⊕H(W 1

b , j
′)⊕W 0

a

W 0
G := H(W 0

a , j)⊕ paTG
W 0
E := H(W 0

b , j
′)⊕ pb(TE ⊕W 0

a )

W 0
c := W 0

G ⊕W
0
E

return ((TG, TE),W 0
c )

One may observe that Hybrid4 is identical to the real-world distribution

that is obtained by running ̂HalfGates
H

(f i) and then including the input-wire
labels corresponding to xi. This completes the proof. ut

6 Concrete Security and Efficiency

Using Theorems 2 and 3 we see that when we instantiate ̂HalfGates with M̂MO
E

,
the overall garbling scheme is (p, u, C, ε)-private, with

ε =
µp+ (µ− 1) · C

2k−2
+

(2C)µ+1

(µ+ 1)!× 2µL
. (5)

Above, k ≤ L denotes the length of the wire labels and is chosen as part of
the implementation, while µ is a free parameter that can be set to optimize the
bound. The expression above can be separated into two terms: a term µp/2k−2

that represents the computational security (as it depends on the query com-

plexity p of the attacker) and a term (µ−1)·C
2k−2 + (2C)µ+1

(µ+1)!×2µL
that corresponds to

statistical security. To illustrate, we consider two particular options assuming
L = 128 (to match the case where AES-128 is the cipher E):

1. k = 80, C ≤ 243.5. The overall security bound here is optimized when µ = 1,
in which case

ε =
p

278
+

2C2

2128
≤ p

278
+ 2−40.

I.e., this gives 78-bit computational security and 40-bit statistical security.



Hash NI
k

Comp. sec. 100 2
localhostfunction support? (bits) Mbps Gbps

Zahur et al. Y 128 89 0.4 7.8 23

SHA-3 N 128 125 0.27 0.27 0.28
SHA-256 N 128 125 0.4 1.1 1.2
SHA-256 Y 128 125 0.4 2.1 2.5

M̂MO
E

Y 128 125 0.4 7.8 15

M̂MO
E

Y 88 86 0.63 12 15

Table 1: Performance of different hash functions in the half-gates
scheme. “NI support” indicates whether the implementation utilizes hardware-
level instructions (i.e., AES-NI or SHA-NI), k, is the length of the wire labels,
and “comp. sec.” refers to the computational security bound assuming C < 240.
Reported rates are in 106 AND gates per second.

2. k = 128, C ≤ 261. Now the overall security bound is maximized when µ = 2,
in which case

ε ≤ p

2125
+

8 · C3

3× 2256
≤ p

2125
+ 2−64.

I.e., this gives 125-bit computational security and 64-bit statistical security.

Optimizations. Compared to the hash function proposed by Zahur et al. [46],
which uses fixed-key AES, evaluation of our hash function involves re-keying
AES each time it is called. In our implementation, we apply the optimizations
introduced by Gueron et al. [17] that allow us to do key scheduling using AES-
NI instructions with pipelining. In our current implementation, we batch two
key-scheduling operations for each gate. In fact, since the AES key being used
to garble a given gate (which depends on the gid) is entirely predictable, we can
batch more than two key-scheduling operations to achieve even better efficiency.
Our optimized implementation will be made publicly available in EMP [43].

Performance. In Table 1 we evaluate the performance of different hash func-
tions in the half-gates scheme. “Zahur et al.” refers to using HalfGates with

their proposed hash function; the other rows refer to using ̂HalfGates where we

instantiate the hash function either with M̂MO
E

(using AES-128 as the ideal
cipher E), or with SHA-256 or SHA-3 (as random oracles).

We see that compared to the work of Zahur et al., when using wire la-
bels of the same length k = 128 our scheme achieves better concrete security
and is equally efficient as long as the network bandwidth is below 2 Gbps (so
the network communication is the bottleneck). When the network is faster, the
throughput (i.e., number of gates per second) of our scheme is lower but only by
about 35%. Compared to instantiations using cryptographic hash functions, we
see that garbling using SHA-256 without SHA-NI is up to 13× slower than our
AES-based solution in a fast network; even with SHA-NI, garbling is up to 6×



slower. Compared to the instantiation using SHA-3, our AES-based construc-
tion is up to 50× faster. For completeness, we also show the running time of our
scheme using k = 88, which provides roughly the same security as the 128-bit
scheme of Zahur et al.. We observe that in this case our scheme is about 1.5×
faster in a 2 Gbps network, due to the shorter labels.
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A (Multi-Instance) Obliviousness and Authenticity

We recall definitions of obliviousness and authenticity for garbling schemes,
adapted for the multi-instance setting. We then argue that our construction
(with small modifications) achieves optimal security bounds for those notions.

A.1 Obliviousness

Obliviousness, informally, requires that (GC, {W xi
i }) reveal nothing about x,

including f(x). This is formalized by requiring the existence of a simulator
Sim that takes the circuit f and outputs values that are indistinguishable from
(GC, {W xi

i }). In the multi-instance setting, we compare the output of Sim to the
outputs obtained when independently garbling u circuits.

Definition 4. Garbling scheme G is (p, u, C, ε)-oblivious if there is a simula-
tor Sim such that for any distinguisher D making p queries to E and any
{(f i, xi)}i∈[u] with

∑
i |f i| = C, we have∣∣∣∣∣ Pr

{(GCi,{W i,0
j ,W i,1

j },di)←GarbleE(fi)}i∈[u]

[
DE

(
{(GCi, {W i,xij

j })}i∈[u]

)
= 1

]

− Pr
{(GCi,{W i

j })←SimE(fi)}i∈[u]

[
DE

(
{(GCi, {W i

j}})}i∈[u]

)
= 1
]∣∣∣∣∣ ≤ ε,

where both probabilities are also over choice of E.

Theorem 4. Let H be (p, 2C, u, µ, k−1, ε)-miTCCR. Then the garbling scheme

̂HalfGates
H

is (p, u, C, ε′)-oblivious, where

ε′ ≤ ε+
(2C)µ+1

(µ+ 1)!× 2µL
.

We briefly justify the above bound. Observe that the simulator (for privacy)
in the proof of Theorem 3 only uses the output y when computing the decoding
information d. The simulator for obliviousness is identical except that it omits
that step. The concrete security bound we obtain for obliviousness is thus (at
most) the bound we prove for privacy.

http://eprint.iacr.org/2015/1153
http://eprint.iacr.org/2015/1153


A.2 Authenticity

Informally, authenticity requires that an attacker given (GC, {W xi
i }) should be

unable to generate output-wire labels that cause the decoding algorithm to pro-
duce a valid output other than f(x). In the multi-instance generalization, the
adversary succeeds if it can do this for any of u instances.

Definition 5. Garbling scheme G is (p, u, C,m, ε)-authentic if for any A making
p queries to E and any {(f i, xi)}i∈[u] with

∑
i |f i| = C and

∑
imi = m, we have

Pr
{(GCi,{W i,0

j ,W i,1
j },d

i)

←GarbleE(fi)}i∈[u]

 AE
(
{(GCi, {W i,xij

j })}i∈[u]

)
= (i′, {W ′j}),

Eval(GCi
′
, {W i,xij

j }) 6= {W ′j} ∧ Decode(di
′
, {W ′j}) 6= ⊥

 ≤ ε,
where the probability is also over choice of E.

In order to obtain authenticity, we need to modify ̂HalfGates slightly. Specif-
ically, the decoding information di for the ith output wire will now be

(di[0], di[1]) = (H(W 0
i , gid), H(W 1

i , gid)).

Decoding of a labelWi on the ith output wire involves checking whetherH(Wi, gid)
is equal to di[0] or di[1] (and returning ⊥ if neither holds). We refer to the re-
sulting scheme as HalfGates.

Theorem 5. Let H be (p, 2C + m,u, µ, k − 1, ε)-miTCCR. Then the garbling

scheme HalfGates
H

is (p, u, C,m, ε′)-authentic, where

ε′ ≤ ε+
(2C +m)µ+1

(µ+ 1)!× 2µL
+ 2−k.

Our proof of the above proceeds in two steps: (1) we construct a simulator
for the garbling scheme and show that the simulated garbled circuits are indis-
tinguishable from real garbled circuits; (2) we show that the adversary cannot
break authenticity for simulated garbled circuits. For(1), the simulator is almost
identical to the privacy simulator we show in the proof of Theorem 3, except that
it chooses uniform di[1] ∈ {0, 1}k and sets di = (H(W 0

i , gid), di[1]) if yi = 0, and

chooses uniform di[0] ∈ {0, 1}k and sets di = (di[0], H(W 0
i , gid)) if yi = 1. By

an argument similar to that used in the proof of Theorem 3, any distinguisher
making at most p queries to E can distinguish between simulated garbled cir-

cuits and real garbled circuits with probability at most ε+ (2C+m)µ+1

(µ+1)!×2µL
. (The only

difference is that we need to also count the oracle queries needed to decode.) For
(2), since output labels are uniform and independent, the probability an attacker
can violate authenticity is 2−k.



B A Random Oracle as an miTCCR Hash Function

We show that a random oracle RO : {0, 1}2L → {0, 1}L (also) has good concrete
security in the sense of miTCCR. For completeness, we give the relevant defini-
tion (obtained by suitable modifying Definition 3). Recall that OmiTCCR

R (x, i, b) =
RO(x⊕R, i)⊕ b ·R.

Definition 6. Given a distribution R on {0, 1}L and a distinguisher D, define

AdvmiTCCR
RO,R (D,u, µ)

def
=

∣∣∣∣ Pr
R1,...,Ru←R

[
DRO,OmiTCCR

R1
(·),...,OmiTCCR

Ru
(·) = 1

]
− Pr
f1,...,fu←FuncW×T×{0,1},W

[
DRO,f1(·),...,fu(·) = 1

]∣∣∣∣ ,
where both probabilities are also over choice of RO and we require that

1. D never queries both (x, i, 0) and (x, i, 1) to the same oracle (for any x, i).

2. For all i ∈ {0, 1}L, the number of queries (across all oracles) of the form
(?, i, ?) is at most µ.

We say RO is (p, q, u, µ, ρ, ε)-miTCCR, if for all distinguishers D making at
most p queries to RO and at most q queries (in total) to its other oracles, and
all distributions R with min-entropy at least ρ, we have AdvmiTCCR

RO,R (D,u, µ) ≤ ε.

Theorem 6. RO is (p, q, u, µ, ρ, ε)-miTCCR, where

ε =
µp

2ρ
+

(µ− 1)q

2ρ+1
.

Proof. Fix a deterministic distinguisher D making queries to u+ 1 oracles. The
first is RO : {0, 1}2L → {0, 1}L; in the real world, the remaining u oracles are
OmiTCCR
R1

(·), . . . ,OmiTCCR
Ru

(·), where the Ri are chosen independently from distri-
bution R, while in the ideal world they are u independent random functions
with the correct domain and range. Denote the transcript of D’s interaction
by Q = (QRO,QO,R), where QRO = {(x1, i1, y1), . . .} means that D queried
RO(x, i) and received response y.

An attainable transcript (QRO,QO,R) is bad if:

– (B-1) There is a query (idx, w, i, z) ∈ QO and a query of the form (Ridx ⊕
w, i, ?) in QRO.

– (B-2) There exist two distinct queries (idx, w, i, z), (idx′, w′, i, z′) ∈ QO such
that Ridx ⊕ w = Ridx′ ⊕ w′.

It is easy to show that

Pr[(B-1)] =
∑

(idx,w,i,z)∈QO

∣∣QRO[i]
∣∣

2ρ
≤ µ ·

∑
i∈{0,1}k

∣∣QRO[i]
∣∣

2ρ
=
µp

2ρ
,



where QRO[i] := {(x, y) : (x, i, y) ∈ QRO} is defined similarly to Eq. (6). On the
other hand, with Ci denoting the number of queries under i in QO we have

Pr[(B-2)] ≤
∑

i∈{0,1}L

Ci(Ci − 1)

2
· 1

2ρ
≤ (µ− 1)

∑
i∈{0,1}L

Ci
2ρ+1

≤ (µ− 1)q

2ρ+1

(using Ci ≤ µ). Hence, the probability of a bad transcript in the ideal world is

at most µp
2ρ + (µ−1)q

2ρ+1 .
The remaining analysis resembles that of the proof of Theorem 2, giving

Pr[∀(idx, w, i, z) ∈ QO : OmiTCCR
Ridx

(w, i) = z | RO ` QRO] = 1/2Lq,

and so the probability that the real world is consistent with the transcript is the
same as (7). ut

C Concrete Security of Using TMMOπ in HalfGates

Here we show an attack on the half-gates scheme that runs in time O(2k/C)
when the underlying hash function is instantiated using the hash function from
Guo et al. [18]. We concentrate on the single-instance setting for simplicity.

The construction TMMO defined by Guo et al. is based on a single permu-
tation π, and is defined as

TMMOπ(x, i) = π(π(x)⊕ i)⊕ π(x).

The attack is given in Figure 4. Essentially, the attack looks for a query (Ha, j,Wa)
and a permutation query π(X∗) = Y ∗ such that the evaluation of the former
internally calls the latter. By construction, this means Ha ⊕ j = X∗ ⊕ Y ∗,
which justifies our checking condition in Step 3. Given a query (Ha, j,Wa), for
a uniform permutation query π(X∗) = Y ∗, the probability to have a match
Ha ⊕ j = X∗ ⊕ Y ∗ is 1/2n: the analysis is thus similar to that of Section 3.1.

D The H-Coefficient Technique

We provide a brief review of the H-coefficient technique, adapted from [18]. Fix a

deterministic distinguisher D that is given access to an ideal cipher E : {0, 1}L×
{0, 1}L → {0, 1}L, as well as u oracles O1, . . . ,Ou that can be of two types: in
the real world they are functions that depend on u keys R1, . . . , Ru sampled
according to a distribution R, while in the ideal world they are u functions
chosen independently from FuncW×T ×{0,1},W . We are interested in bounding
the maximum difference between the probabilities that D outputs 1 in the real
world vs. the ideal world, where the maximum is taken over all D making p
queries to E and q queries to its other oracles.

A transcript of D’s interaction takes the form Q = (QE ,QO,R), where
QE = {(k1, x1, y1), . . .} records D’s queries/answers to/from E or E−1 (with



Inputs: A garbled circuit, along with input-wire labels {Wi}i∈Inputs.

Main algorithm:

1. Initialize a hash table T := ∅. Evaluate the garbled circuit honestly and obtain
a label Wa for each wire a.

2. For each AND gate (a, b, c,AND) with gate identifier gid and garbled table
(TG, TE), set j := 2 × gid, compute Ha := H(Wa, j) ⊕ TG, and insert (Ha ⊕
j, j,Wa) into T ;

3. Repeatedly choose uniform X∗ ∈ {0, 1}k until there exists (j,Wa) such that
(π(X∗)⊕X∗, j,Wa) ∈ T .

4. Given X∗, j,Wa from the previous step, compute W ∗ := π−1(X∗ ⊕ j) and
R := Wa ⊕W ∗. If Check(R) = 1, output R; otherwise go to step 3.

Check(R):

1. For a gate (a, b, c,AND) with gate identifier gid and garbled table (TG, TE),
let Wa,Wb,Wc be the labels computed on the respective wires.

2. If (TG, TE ,Wc ⊕ wR)
?
= GbAnd(W 0

a ⊕ uR,W 0
b ⊕ vR,R, gid) for some values

u, v, w ∈ {0, 1}, output 1; else output 0.

Fig. 4: Attack on the TMMOπ-based implementation of the half-gates scheme.

(k, x, y) ∈ QE meaning E(k, x) = y, regardless of whether the query was to E
or E−1) and where QO = {(idx1, w1, i1, b1, z1), . . .} records D’s queries/answers
to/from the remaining oracles (where the tuple (idx, w, i, b, z) ∈ QO means that
Oidx(w, i, b) = z). The keys R = (R1, . . . , Ru) are appended to the transcript
as well (even though they are not part of D’s view) to facilitate the analysis:
in the real world, these are the actual keys used by the oracles, whereas in the
ideal world they are simply “dummy” keys sampled independently from R. A
transcript Q is attainable for some fixed D if there exist some oracles such that
the interaction of D with those oracles would lead to transcript Q.

Fix some D. Let T denote the set of attainable transcripts, let Prreal[·] and
Prideal[·] denote the probabilities of events in the real and ideal worlds, respec-
tively, and let Q∗ denote the random variable corresponding to D’s transcript.
The H-coefficient technique involves defining a partition of T into a “bad” set
Tbad and a “good” set Tgood = T \ Tbad, and then showing that

Prideal[Q∗ ∈ Tbad] ≤ ε1

and

∀Q ∈ Tgood :
Prreal[Q∗ = Q]

Prideal[Q∗ = Q]
≥ 1− ε2.

The distinguishing advantage of D is then at most ε1 + ε2.

One of the key insights of the H-coefficient technique is that the value of
Prreal[Q∗ = Q]/Prideal[Q∗ = Q] is equal to the ratio between the probability that
the real-world oracles are consistent with Q and the probability that the ideal-



world oracles are consistent with Q. For each v ∈ {0, 1}L, define QE [v] ⊆ QE as

QE [v]
def
= {(x, y) : (v, x, y) ∈ QE}. (6)

The probability that an ideal cipher (with L-bit blocks and L-bit keys) is con-
sistent with the p queries in QE is exactly ∏

v∈{0,1}L
(2L)|QE [v]|

−1

,

where for integers 1 ≤ b ≤ a, we set (a)b = a · (a−1) · · · (a−b+1), with (a)0 = 1
by convention. For any attainable transcript Q = (QE ,QO,R), the probability
that the ideal world is consistent with Q is always exactly

Pr[R]∏
v∈{0,1}L(2L)|QE [v]| · 2Lq

. (7)

(We assume |QO| = q, i.e., D always makes exactly q queries to its other ora-
cles.) Bounding the distinguishing advantage of D thus reduces to bounding the
probability that the real world is consistent with transcripts Q ∈ Tgood.

Let E ` QE denote the event that block cipher E is consistent with the
queries/answers in QE , i.e., that E(v, x) = y for all (v, x, y) ∈ QE . Since, in the
real world, the behavior of the second oracle is completely determined by E and
R, we can also write (E,R) ` QO to denote the event that cipher E and keys R
are consistent with the queries/answers in QO. For a (good) transcript Q =
(QE ,QO,R), the probability that the real world is consistent with Q is exactly

Pr
[
(E,R) ` QO | E ` QE

]
· Pr[E ` QE ] · Pr[R]

(using independence of R and E). We have Pr[E ` QE ] = 1/
∏
v∈{0,1}L(2L)|QE [v]|

exactly as before. The crux of the proof thus reduces to showing a bound

on Pr
[
(E,R) ` QO | E ` QE

]
. Note that we can equivalently express this as

Pr[∀(idx, w, i, b, z) ∈ QO : OmiTCCR
Ridx

(w, i, b) = z | E ` QE ].
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