
The Memory-Tightness of Authenticated
Encryption

Ashrujit Ghoshal, Joseph Jaeger, and Stefano Tessaro

Paul G. Allen School of Computer Science & Engineering
University of Washington, Seattle, US

{ashrujit,jsjaeger,tessaro}@cs.washington.edu

Abstract. This paper initiates the study of the provable security of
authenticated encryption (AE) in the memory-bounded setting. Recent
works – Tessaro and Thiruvengadam (TCC ’18), Jaeger and Tessaro
(EUROCRYPT ’19), and Dinur (EUROCRYPT ’20) – focus on confiden-
tiality, and look at schemes for which trade-offs between the attacker’s
memory and its data complexity are inherent. Here, we ask whether
these results and techniques can be lifted to the full AE setting, which
additionally asks for integrity.
We show both positive and negative results. On the positive side, we
provide tight memory-sensitive bounds for the security of GCM and its
generalization, CAU (Bellare and Tackmann, CRYPTO ’16). Our bounds
apply to a restricted case of AE security which abstracts the deployment
within protocols like TLS, and rely on a new memory-tight reduction to
corresponding restricted notions of confidentiality and integrity. In par-
ticular, our reduction uses an amount of memory which linearly depends
on that of the given adversary, as opposed to only imposing a constant
memory overhead as in earlier works (Auerbach et al., CRYPTO ’17).
On the negative side, we show that a large class of black-box reductions
cannot generically lift confidentiality and integrity security to a joint
definition of AE security in a memory-tight way.

Keywords: Provable security, symmetric cryptography, time-memory
trade-offs, memory-tightness

1 Introduction

Cryptographic attacks aim to use as little memory as possible. While some at-
tacks are memoryless (e.g., for collision finding), others are subject to a trade-off
– as the available memory decreases, the time and data complexities increase. A
security proof (especially one in the spirit of concrete security) should tell us pre-
cisely how memory affects other complexity metrics. However, this is technically
challenging, and consequently, security proofs ignored memory until recently.

This paper continues an ongoing line of works introducing memory limita-
tions in provable security, and initiates the study of (nonce-based) authenticated
encryption (AE) in the memory-bounded setting. Recent works [16,10,6] have
shown memory-sensitive proofs of security for symmetric encryption, showing

that trade-offs between memory and data complexities are inherent. These re-
sults, however, only deal with confidentiality of encryption – and one of the main
contributions of this paper is to highlight the challenges of lifting them to the
more complex setting of AE.

We discuss definitional aspects, and then shift our focus to memory-tight
reductions [1] in the AE setting. We prove both positive and negative results. We
introduce a new technique for memory-tight reductions to obtain tight memory-
sensitive bounds for the AE-security of GCM in a setting that corresponds to its
usage for establishing a secure channel. We also show that restricting AE security
to specific settings is inherent for memory-tight reductions – indeed, we show
that the common approach of lifting confidentiality and integrity guarantees into
a combined notion of AE security (or of CCA security) fails in its most general
form, at least with respect to a broad class of security reductions.

1.1 Context: Time-memory Trade-offs for AE

Let us start by setting the context and highlighting some of the challenges. First
off, existing results [10,6] can be combined to analyze the INDR security1 of
nonce-based encryption. For example, consider a toy scheme2 SE based on a
block cipher E with block length n which encrypts M P t0, 1un with key K as

SE.EpK,N,Mq “ EKpNq ‘M .

Here, N is the nonce and INDR security should hold as long as no two messages
are encrypted with the same nonce. One can show that for every adversary A
with time, data, and memory complexities t, q, and S, respectively,

AdvindrSE pAq ď O

ˆ

q ¨ S ¨ logpqq

2n

˙

` AdvprpE pBq , (1)

where B is an adversary against the security of E as a pseudorandom permutation
(PRP), which has time and memory complexities (roughly) t and S, respectively,
and makes q queries. In particular, if S ă 2n{2, then SE achieves beyond-birthday
security q ą 2n{2 with respect to data complexity.

Our goal, in more detail.However, INDR security is rarely sufficient on its
own – we want fully secure AE schemes which also satisfy (ciphertext) integrity
(or CTXT security, for short). Following [15], we adopt a single AE security def-
inition that incorporates both INDR and CTXT, by measuring indistinguisha-
bility of two oracle pairs pEncb,Decbq for b P t0, 1u. For b “ 1, Enc1 returns
real ciphertexts, and Dec1 decrypts properly. For b “ 0, instead, Enc0 returns
random ciphertexts, and Dec0 decrypts only previous outputs from Enc0. It is

1 Which measures the indistinguishability of ciphertexts from truly random ones.
2 Our discussion can easily be extended to many schemes following the format of

counter-mode encryption.

2

important to use a combined definition, as it captures settings such as chosen-
ciphertext attacks and padding-oracle attacks [17], which use a decryption oracle
to break confidentiality.3

Lifting trade-offs. We want to prove a bound analogous to that of (1) for
AE security, preserving in particular the existing space-time trade-off. The usal
approach is to prove INDR and CTXT individually, and then combine them
to show AE security. This makes sense because (1) we know how to prove tight
trade-offs for INDR security, and (2) we may be able to prove stronger bounds on
CTXT easily, even without memory restrictions. The classical statement (origi-
nally in [15]) is that for every adversary A,

AdvaeSEpAq ď AdvindrSE pBq ` AdvctxtSE pCq ,

for suitable adversaries B and C, with similar time and query complexities as
those of A. However, this is only helpful towards our goal if the reduction is
memory -ight, in the sense Auerbach et al. (ACKF) [1], i.e., B and C’s memory
costs must not noticeably exceed those of A. This is fundamental to preserve a
time-memory trade-off like the one from (1).

Unfortunately, the standard proof is not memory-tight with respect to the
INDR adversary B, as it needs to simulate Dec0 which requires remembering
prior ciphertexts. In a nutshell, we will show that the lack of memory-tightness is
inherent, but the definition can be restricted enough for interesting deployment
scenarios to actually allow for a memory-tight reduction.

Definitional issues. Several “without loss of generality” definitional equiv-
alences are false in the memory-bounded setting. For example, INDR security
holds as long as nonces do not repeat, but there are options to formalize this,
e.g.: (A) The game enforces this by answering encryption queries repeating a
nonce with K, unless the same message is re-encrypted, or (B) The adversary
never repeats a nonce. If we do not care about memory, these two definitions are
indeed equivalent, but if we do, then they are not. Indeed, the bound in (1) for
our toy scheme can only be true for (B) – it is not hard to see that otherwise
we can mount a memory-less distinguishing attack with q « 2n{2 queries. (The
attack also works if K is returned even if we re-encrypt the same message.) We
discuss definitions in detail in Section 3.

1.2 Positive Results

We provide a novel memory-tight reduction for the common case where AE is
used to establish a secure communication channel, as in TLS. The key point is
that in this setting, only certain restricted adversarial interactions can occur in
the AE security game, i.e.:

(1) Nonces are implicit – they are incremented as a counter.

3 While we target such a single definition of AE, we stress that our results would
extend to considering CCA security as a target.

3

(2) The receiver aborts upon the first decryption failure. In particular, messages
need to be delivered in the same order as they are encrypted.

Our memory-tight reduction is for an abstraction of this setting we refer to as a
channel. (Although, for this introduction, we stick with the more conventional
language of AE.) We apply our reduction to prove (tight) memory-sensitive
bounds for a channel instantiated with the CAU scheme by Bellare and Tack-
mann [4], an abstraction of GCM [11].

The security game. When restricting AE security to this setting, we can
assume that the adversary A can encrypt messages M1,M2, . . . and obtains
ciphertexts C1, C2, . . . via an encryption oracle Encb, for b P t0, 1u. When b “ 1,
the Ci’s are actual encryptions of the Mi’s (with increasing nonces), whereas
when b “ 0, they are truly random ciphertexts. The adversary is also given access
to a decryption oracle Decb. If b “ 1, this just applies the decryption algorithm
of the AE scheme, using increasing nonces. If decryption fails, Decb responds
to this and any future queries with K. For b “ 0, the oracle responds with
M1,M2, . . . as long as it is supplied the ciphertexts C1, C2, . . . in the order they
have been produced by Enc0. If the ciphertexts come in the wrong order, Dec0

responds to this and any future queries with K. The goal here is to distinguish
pEnc0,Dec0q and pEnc1,Dec1q.

Proof idea. In this channel setting, to obtain a memory-tight reduction from
AE security to CTXT and INDR security, we first use CTXT security to replace
the oracles pEnc1,Dec1q with pEnc1,Dec0q. (This step is easily seen to be
memory-tight.) Next, we aim to use INDR security to replace Enc1 with Enc0.
The catch here is that when doing so, we need to simulate the Dec0 oracle in the
INDR security game (which does not provide one). Again, this seems to require
remembering all prior ciphertexts, thus preventing memory-tightness.

A key observation, however, is that ciphertexts are only accepted when ar-
riving with the right order. For this reason, we will show (via an information-
theoretic argument) that our reduction only needs to store the δ oldest cipher-
texts which have not been delivered yet, for some δ – the key point here is that
δ can be chosen to depend (roughly linearly) on the memory of the adversary
used by the reduction, so the overall memory of the constructed adversary is of
the same magnitude of that of the AE adversary.

This is in contrast to existing memory-tight reductions in the literature which
are (near) “memory-less”, i.e., the reduction adds a small memory overhead,
independent of the memory of the adversary. Our reduction is the first example
where the reduction uses memory in addition to that of the adversary, but the
size of this memory is bounded in terms of the adversary’s memory complexity.

Application to CAU. We apply our memory-tight reduction to show bounds
for CAU (and hence GCM) in the communication channel setting. We refer to
the resulting channel as NCH, and it is based on a block cipher E. We show that
for every adversary A, there exists B such that

Advch-aeNCH pAq ď 4 ¨ AdvprpE pBq `O
ˆ

pqS

2n

˙

, (2)

4

where Op¨q hides a small constant, q and S are the data and memory complexities
of A, and p is an upper bound on the length of ciphertexts. Further, B makes
q ¨ p queries, and has time complexity similar to that of A. Instrumental to our
result here is Dinur’s Switching Lemma [6]. The main challenge is to prove a
bound for CTXT security – our proof relies once again on similar techniques to
our memory-tight reduction.

1.3 Negative Results

A meaningful question is whether we can give a memory-tight reduction beyond
the setting of channels, and reduce AE security to INDR and CTXT security in
the most general sense. Here, we show that this is unlikely by giving impossibility
results for black-box reductions.

We consider reductions to INDR and CTXT which are restricted, but note
that all prior impossibility results on memory-tight reductions [1,18,8] make sim-
ilar or stronger restrictions. In particular, we require the reductions to simulate
their encryption oracles “faithfully” to an AE adversary, i.e., if they answer an
encryption query with a ciphertext C, the same query (1) has been asked to
the encryption oracle available to the reduction and (2) it has returned C. This
restriction is natural, and we are not aware of any reductions evading it.

Straightline reductions. Our first result builds an (inefficient) adversary
A against AE security which no straightline reduction can use to (1) break
CTXT security (regardless of the memory available to the reduction) or, more
importantly, to (2) break INDR security (unless the reduction uses an amount
of memory proportional to the query complexity of the adversary). Moreover,
A uses little memory, and thus our result implies impossibility even for “weakly
memory-tight reductions” which adapt their memory usage (such as the one
we give in this paper). This is unlike recent works [18,8], which only rule out
reductions with memory independent of that of the adversary.

At a high level, A forces the reduction to complete a memory-hard task
before being useful. If the reduction succeeds, A executes an (inefficient) proce-
dure to break INDR security. (And importantly, this procedure does not help
in breaking CTXT security!) More in detail, the first part of A’s execution con-
sists of challenge rounds. In each of these rounds, A encrypts random plaintexts
M1, . . . ,Mu, which result in ciphertexts C1, . . . , Cu, and also picks a random
index i˚ P rus. It then asks for the decryption of Ci˚ , and checks whether the
response equals Mi˚ . If so, it moves to the next round, if not it aborts by doing
something useless. Only if all rounds are successful A proceeds to break INDR
security. We use techniques borrowed from the setting of random oracles with
auxiliary input (AI-ROM) [5] to prove that the probability that all rounds are
successful decays exponentially as long as the reduction’s memory does not fit
all of M1, . . . ,Mu.

Full Rewinding. The restriction to straightline reductions seem too restric-
tive: After all, a reduction could (1) wait for a decryption query Ci˚ , then (2)
rewind the adversary to re-ask M1,M2, . . . until Mi˚ is asked. The caveat is that

5

our definition of INDR security does not allow for re-asking encryption queries
(again, as pointed out above, such a notion would prevent us from using the
results of [10,6]). Therefore, if we assume that all the reduction can do is re-
member (say) S plaintext-ciphertext pairs, the above adversary A will fail to
pass a challenge round with probability at least 1´ S{u.

Still, this does not mean that rewinding cannot help when allowing more
general adversarial strategies. While handling arbitrary rewinding appears to be
out of reach, we make partial progress by extending our proof (and our construc-
tion of A) to show that “full” rewinding (i.e., re-running A from the beginning)
does not help. This is the same rewinding model considered in prior memory-
tightness lower bounds [1]. However, in those results, one obtains a rewinding-
memory trade-offs (in that reducing memory would require more rewinding).
Here, our result is absolute, in the sense that if memory is too small, no amount
of rewinding can help.

Paper overview. In Section 2, we introduce our notation, basic definitions
and cover some cryptographic background necessary for the paper. In Section 3,
we recall the standard definitions for the security notions of nonce-based en-
cryption. We point out several nuances while defining security in the memory
bounded setting. We conclude the section by giving a time-memory tradeoff for
the INDR security of CAU. In Section 4, we show that memory-tight reductions
can be given for the combined confidentiality and integrity security of crypto-
graphic channels. Using the result from Section 3, we prove the security of a
channel based on CAU. The resulting channel can be viewed as (a simplification
of) the channel obtained when using GCM in TLS 1.3. In Section 5, we give
impossibility results (for a natural restricted class of black-box reductions) for
giving a memory-tight reduction from AE security to INDR and CTXT security.
This establishes that our move to the channel setting for Section 4 was necessary
for our positive result.

2 Definitions

Let N “ t0, 1, 2, . . . u. For D P N, let rDs “ t1, 2, . . . , Du. If S and S1 are finite
sets, then FcspS, S1q denotes the set of all functions F : S Ñ S1 and PermpSq
denotes the set of all permutations on S. Picking an element uniformly at random
from S and assigning it to s is denoted by sÐ$ S. The set of finite vectors with
entries in S is S˚ or pSq˚. Thus t0, 1u˚ is the set of finite length strings.

If x P t0, 1u˚ is a string, then |x| denotes its bitlength. If n P N and x P t0, 1u˚,
then |x|n “ maxt1, r|x|{nsu. We let x1 . . . x` Ðn x denote setting ` Ð |x|n and
parsing x into ` blocks of length n (except x` which may have |x`| ă n). We
let xr: ns denote the first n bits of x and xri : ns denote the i-th (exclusive)
through n-th (inclusive) bits of x. We adopt the convention that if |x| ă |x1|
then x‘ x1 “ x‘ x1r: |x|s. The empty string is ε.

We will make use of queues which operate in first-in, first-out order. If Q
is a queue then Q.addpMq adds M to the back of the queue and M Ð Q.dqpq

6

removes the first element of the queue and assigns it to M . If the queue is empty,
then M is assigned the value K R t0, 1u˚ which is used to represent rejection or
uninitialized values.

Algorithms are randomized when not specified otherwise. If A is an algo-
rithm, then y Ð AO1,...px1, . . . ; rq denotes running A on inputs x1, . . . with
coins r and access to the oracles O1, . . . to produce output y. Performing this
execution with a random r is denoted yÐ$ AO1,...px1, . . . q. The set of all pos-
sible outputs of A when run with inputs x1, . . . is rApx1, . . . qs. The notation
y Ð Opx1, . . . q is used for calling oracle O with inputs x1, . . . and assigning its
output to y. (Note, the code run by the oracle is not necessarily deterministic.)

We make regular use of pseudocode games inspired by the code-based frame-
work of [3]. Examples of games can be found in Fig. 1. We let PrrGs denote the
probability that a game G outputs true. Booleans are implicitly initialized to
false, integers to 0, and all other types to K.

Complexity conventions. When measuring the efficiency of an adversary
we follow the standard convention used in studying memory-tightness [1] on
measuring the local complexity of an adversary and not included the complexity
of whatever game it interacts with. We primarily focus on the worst-case runtime
(i.e. how much computation it performs in between making oracle queries) and
memory complexity (i.e. how many bits of state it stores for local computation)
of adversaries. Note that while these exclude the time and memory used within
whatever oracles the adversary may call, we do include the time and memory
used to write down an oracle query and receive the response.

2.1 Cryptographic Background

Function family. A function family is an efficiently computable function F :
AˆB Ñ C, where A, B, and C are sets. A hash function is a family of functions.
We often write FKp¨q in place of F pK, ¨q.

Pseudorandom function/permutation. Let E : t0, 1uk ˆ t0, 1un Ñ t0, 1um

be a function family. If n “ m and EKp¨q is a permutation for each K P t0, 1uk,
then we say that E is a block-cipher. The primary security notions of interest for
such functions are PRF and PRP security. The former is typically more useful
in applications, but when E is a block-cipher we prefer to assume PRP security
and use that to deduce PRF security.

These security notions are defined by games shown in Fig. 1. In Gprp, the ad-
versary is given access to either EKp¨q for a random key or a random permutation
P : t0, 1un Ñ t0, 1un. Game Gprf is defined similarly except a random function
F : t0, 1un Ñ t0, 1um is used in place of the permutation. For x P tprp, prfu, we
define the advantage of A by AdvxEpAq “ PrrGxE,1pAqs ´ PrrGxE,0pAqs.
Switching Lemma. A classic result in cryptography is the “switching lemma”
which bounds how well an adversary can distinguish between a random function
and a random permutation. Consider the game Gsl

D,b shown in Fig. 1. In it,
the adversary is given oracle access to either a random function or a random

7

Game Gprp
E,bpAq

KÐ$ t0, 1uk

P Ð$ Permpt0, 1unq
b1Ð$ AEvalb

Return b1 “ 1

Oracle Evalbpxq
y1 Ð EKpxq
y0 Ð P pxq
Return yb

Game Gprf
E,bpAq

KÐ$ t0, 1uk

F Ð$ Fcspt0, 1un, t0, 1umq
b1Ð$ AEvalb

Return b1 “ 1

Oracle Evalbpxq
y1 Ð EKpxq
y0 Ð F pxq
Return yb

Game Gsl
D,bpAq

F Ð$ FcsprDs, rDsq
P Ð$ PermprDsq
b1Ð$ AEvalb

Return b1 “ 1

Oracle Evalbpxq
y1 Ð F pxq
y0 Ð P pxq
Return yb

Fig. 1. Security games for PRF and PRP security of E and the switching lemma.

Game Gaxu
H pX q

ppA1, C1q, pA2, C2q, Zq Ð$ X
LÐ$ t0, 1uk

If pA1, C1q “ pA2, C2q then return false

Return HLpA1, C1q ‘HLpA2, C2q “ Z

Fig. 2. Security game for AXU security of H.

permutation with domain/range rDs and is trying to figure out which. We define
AdvslDpAq “ PrrGsl

D,bpAqs ´ PrrGsl
D,bpAqs.

The classic switching lemma shows AdvslDpAq P Opq2{Dq where q is the num-
ber of queries made by A. In general, bounding the memory-complexity of the
attacker cannot be used to meaningfully improve this bound because a low-
memory collision-finding attack (e.g., using Pollard’s ρ-method [12,13]) achieves
advantage AdvslDpAq P Ωpq2{Dq. However, as originally observed by Jaeger and
Tessaro we can obtain better results when restricting attention to adversaries
that never repeat any queries.

Let AdvslDpq, Sq denote the maximal value of AdvslDpAq for all A that are
S-bounded and make q non-repeating queries to their oracle. Jaeger and Tes-
saro [10] showed that AdvslDpq, Sq ď

a

Sq{D under a combinatorial conjecture.

Later, Dinur [6] improved this to show that AdvslDpq, Sq P OpSq logpqq{Dq.
An immediate application of the switching lemma is that if A is an S-bounded

adversary which makes q non-repeating queries to its oracle, then |AdvprfE pAq ´
AdvprpE pAq| ď AdvslDpq, Sq for any block-cipher E whose range has size D.

AXU hash function. Let H : t0, 1uk ˆ pt0, 1u˚ ˆ t0, 1u˚q Ñ t0, 1un be a
hash function. Its almost XOR-universal (AXU) security is defined by the game
Gaxu
H shown in Fig. 2. In it, an adversary X attempts to guess the xor of the

output of H on two distinct inputs of its choosing for a random key L. We define
AdvaxuH pX q “ PrrGaxu

H pX qs. Typically one makes use of a c-AXU hash which for
all X satisfy AdvaxuH pX q ď c ¨ pN1`N2q{2

n where N1 (resp. N2) is the maximum

8

block length of any A (resp. C) output by X . Note this is unconditional, so
we will not have to worry about memory complexity when reducing to AXU
security.

3 Nonce-based Encryption and Memory-boundedness

In this section we recall known definitions and results for nonce-based encryp-
tion [14]. We carefully consider how these change when we move to the memory-
bounded setting. For example, as was previously noted by Auerbach, et al. [1],
definitions which are tightly equivalent when the memory usage of adversaries
is not bounded do not necessarily remain so with bounds on memory. So we
will consider several variants of the definitions we are recalling and try to rea-
son about which is the “correct” one to use. We additionally note some results
which can be extended to give appealing time-memory tradeoffs in the memory-
bounded setting and some for which this does not seem to be possible.

In Section 3.1, we discuss INDR security which measures the indistinguisha-
bility of ciphertexts from truly random ones. This security notion requires that
the adversary be disallowed from repeating nonces. We discuss three conventions
for capturing this which are tightly equivalent when ignoring memory restric-
tions, but observe they are no longer tightly equivalent with these restrictions.
Based on these discussions, the rest of the paper focuses on the restricted class
of adversaries that will never repeat nonces in their queries to encryption ora-
cles. In Section 3.2, we discuss CTXT (integrity of ciphertexts) and AE security
(combined INDR and CTXT) security. For these, the adversary must be disal-
lowed from trivially winning by forwarding ciphertexts from its encryption oracle
to its decryption oracle. Again we discuss several conventions for this which are
tightly equivalent when ignoring memory restrictions. Based on these discus-
sions, the rest of the paper will use the convention that if an adversary queries
pN,Cq to its decryption oracle after receiving C from an encryption query for
pN,Mq, the oracle will respond with M . With our chosen conventions, it does
not appear to be possible to prove that AE security is implied by INDR and
CTXT security with a memory-tight reduction. The rest of the paper will focus
on this (im)possibility. Section 4 shows it is possible in the restricted setting of
secure channels while Section 5 shows it is not possible for general nonce-based
encryption if the reduction behaves in a black-box manner.

Finally, in Section 3.3 we recall the CAU scheme by Bellare and Tackmann [4],
an abstraction of GCM [11]. Following existing proofs [4,9,11] and using [10,6],
we show that INDR security of CAU can be proven by a memory-tight reduction
to PRP security with an appealing time-memory tradeoff and we informally
discuss why such reductions seem impossible for CTXT or AE security.

Syntax and correctness. A (nonce-based) encryption scheme NE is defined
by algorithms NE.Kg, NE.D, and NE.E. Additionally it is associated with message
space NE.M Ď t0, 1u˚ and nonce space NE.N.

The syntax of the algorithms is shown in Fig. 3. The key generation algorithm
NE.Kg takes no input and returns key K. The encryption algorithm NE.E takes

9

key K, nonce N P NE.N, and message M P NE.M. It returns ciphertext C.
The decryption algorithm NE.D takes key K, nonce N P NE.N, and ciphertext

NE Syntax
KÐ$ NE.Kg
C Ð NE.EpK,N,Mq
M Ð NE.DpK,N,Cq

Fig. 3. Syntax of nonce-based
encryption scheme.

C. It returns message M P NE.MY tKu. When
M “ K, the ciphertext is rejected as invalid.

We additionally assume there is a ciphertext-
length function NE.cl : N Ñ N such that for
any K P rNE.Kgs, N P NE.N, and M P NE.M
we have |C| “ NE.clp|M |q whenever C Ð

NE.EpK,N,Mq. Typically, a nonce-based en-
cryption scheme also takes associated data as
input which is authenticated during encryption.
Associated data does not meaningfully effect
our results, so we have omitted it for simplicity
of notation.

Correctness of an encryption scheme requires for all K P rNE.Kgs, N P NE.N,
and M P NE.M that NE.DpK,N,NE.EpK,N,Mqq “M .

3.1 Indistinguishability From Random (INDR) Security

The first security notion we will consider requires that ciphertexts output by the
encryption scheme cannot be distinguished from ciphertexts chosen at random.

Definitions. Consider the game Gindr
NE,b shown in Fig. 4. Here an adversary A is

given access to an encryption oracle Enc to which it can query a pair pN,Mq
and receive back either the encryption of message M with nonce N (b “ 1) or
a random string of the appropriate length (b “ 0). The adversary outputs a bit
trying to guess which of these two views it was given. We define AdvindrNE pAq “
PrrGindr

NE,1pAqs ´ PrrGindr
NE,0pAqs.

In defining security we must address how to handle the possibility of A
making multiple queries with the same nonce. Encryption schemes are typically
designed under the assumption that the same nonce will not be used multiple
times and may become completely insecure in the face of such nonce repetition.
The primary convention we will adopt is to restrict attention to adversaries that
will never repeat nonces in their encryption queries. We use the phrase “nonce-
respecting INDR” to refer to security with respect to such adversaries.

An alternate approach would be to modify the code of the game to respond
appropriately to queries where nonces repeat. One version of this, which we will
refer to as INDR-R, would restrict attention to adversaries that will only repeat
nonces when they also repeat the message queried to encryption. For this the
game would be modified to keep track of all encryption queries that have been
made so far. When it receives a repeated pN,Mq pair, it simply returns the same
C that it returned last time it saw that pair. A second version of this, which we
will refer to as INDR-B, makes no restriction on the queries of the adversary.
Instead, the game is modified to return K whenever the adversary makes a query
with a nonce it has already used.

10

Game Gindr
NE,bpAq

KÐ$ NE.Kg
b1 Ð AEncb

Return b1

Oracle EncbpN,Mq
C1 Ð NE.EpK,N,Mq
C0 Ð$ t0, 1uNE.clp|M |q

M rN,Cbs ÐM
Return Cb

Game Gctxt-w
NE,b pAq

KÐ$ NE.Kg
b1 Ð AEnc1,Decwb

Return b1

Game Gae-w
NE,b pAq

KÐ$ NE.Kg
b1 Ð AEncb,Decwb

Return b1

Oracle Decwb pN,Cq
If M rN,Cs ‰ K then

Return M rN,Cs if w “ 1
Return ˛ if w “ 2
Return K if w “ 3

M1 Ð NE.DpK,N,Cq
M0 Ð K

Return Mb

Fig. 4. Games defining INDR, CTXT-w, and AE-w security of NE for w P t1, 2, 3u.

Discussion.When memory is not an issue, all of these variants would be equiv-
alent. Proving this follows by noting that an adversary can just remember all
prior queries it has made and thus never need to repeat. This proof strategy is
no longer available to us when we want to preserve the memory usage of ad-
versaries. We focus on nonce-respecting INDR because it hits the sweet spot of
being strong enough for common applications, yet weak enough that we know
how to give provable time-memory trade-offs.

Because nonce-respecting INDR considers a strictly smaller class of adver-
saries than the other two and all of the games behave identically for this class
of adversary it is tightly implied by the others. In fact, using ideas from [10,6]
we can see that nonce-respecting INDR is strictly weaker. The toy encryption
scheme SE considered in the introduction built from a block-cipher with block
length n is vulnerable to low-memory collision-finding attacks with advantage
Ωpq2{2nq in the INDR-R and INDR-B settings, but no attacks can have ad-
vantage better than Opqs{2nq in the nonce-respecting INDR setting. Here q
and s refer to the number of queries and amount of memory used by the at-
tackers, respectively. This underlies why the ideas of Jaeger and Tessaro [10]
can be used to prove nonce-respecting INDR (but not INDR-R or INDR-B)
time-memory trade-offs for natural counter-mode based encryption schemes. In
most common uses of nonce-based encryption the nonces are incremented as a
counter or picked uniformly at random. In the former case, nonces clearly never
repeat so nonce-respecting INDR suffices (we will see this formally in Section 4).
Nonces may repeat in the latter case, but we can follow [10,6] here and replace
the uniform random values with random, non-repeating values so again nonce-
respecting INDR suffices.

3.2 Security Beyond Confidentiality

INDR security only guarantees confidentiality of the messages against passive
attackers. However, in practice, attackers may actively modify ciphertexts in
transit. As such, it is important to consider security definition that take this

11

into account. We will consider integrity definitions and authenticated encryption
definitions which simultaneously asked for integrity and confidentiality.

Definitions. Consider the other two games shown in Fig. 4. We will first fo-
cus on Gae-w

NE,b which defines three variants of authenticated encryption security
parameterized by w P t1, 2, 3u. In this game, the adversary is given access to
an encryption oracle and a decryption oracle. Its goal is to distinguish between
a “real” and “ideal” world. In the real world (b “ 1) the oracles uses NE to
encrypt messages and decrypt ciphertexts. In the ideal world (b “ 0) encryption
returns random messages of the appropriate length and decryption returns K.
For simplicity, we will restrict attention nonce-respecting adversaries which do
not repeat nonces across encryption queries (as in nonce-respecting INDR secu-
rity). Note there is no restriction placed on nonces used for decryption queries.
Integrity of ciphertext security is defined by Gctxt-w

NE,b which behaves similarly ex-
cept the adversary is always given access to the real encryption algorithm.

The decryption oracle needs to prevent trivial attacks. If the adversary re-
ceives C from a query of EncpN,Mq and then queries DecpN,Cq it would receive
M in the real world and K in the ideal world, making them easy to distinguish.
We must adopt some convention for how the oracles behave when such a query is
made to prevent this type of trivial attack. Towards this, the decryption oracle is
parameterized by the value w P t1, 2, 3u corresponding to three different security
notions. In all three, we use a table M r¨, ¨s to detect when the adversary forwards
encryption queries on to its decryption oracle. When w “ 1, the decryption or-
acle returns M rN,Cs in this case. When w “ 2, it returns a special symbol
˛. When w “ 3, it returns the symbol K which is also used by the encryption
scheme to represent rejection. For x P tae, ctxtu and w P t1, 2, 3u we define the
advantage of an adversary A by Advx-wNE pAq “ PrrGx-wNE,1pAqs´PrrGx-wNE,0pAqs. The
corresponding security notions are referred to as AE-w and CTXT-w.

Discussion. When memory usage is not an issue, the choice of w does not
matter. We can without loss of generality assume that the adversary never makes
one of these trivial attack queries because it could simply store the table M r¨, ¨s
for itself and simulate any such queries.4 It’s not clear that this equivalence holds
if we do not assume that storing M r¨, ¨s is “free” for the adversary.

The only memory-tight implication we are aware of between these is that
security for w “ 2 tightly implies security for w “ 3. This follows because an
adversary with access to Dec2

b can simulate Dec3
b with low memory. If Dec2

b

returns M “ ˛ the adversary returns K, otherwise it does not modify M . All of
the other implications we might want to show seem to require remembering all
prior encryption queries to properly simulate Dec.

Ultimately, for heuristic reasons, we believe that w “ 1 is the “correct” choice
and will focus on it in our later sections. The typical motivation behind chosen-
ciphertext security notions is that in practice an attacker can often observe the
behavior of the decrypting party to learn something about the message they
received. There is no reason to think an attacker should only be able to do

4 Restricting attention to adversaries which never make trivial attack queries is, in-
deed, a fourth way one could define security.

12

that for ciphertexts that have been modified, but not ciphertexts that have
been unmodified. This is best captured by w “ 1. The w “ 2 definition seems
to posit that the adversary can distinguish between ciphertexts it forwarded
on and ciphertexts that it modified (whether they were accepted or rejected)
by observing the decrypting party’s behavior. The w “ 3 definition seems to
posit that the adversary cannot learn anything about ciphertexts it forwards on
unmodified, but can learn about other modified ciphertexts by observing the
decrypting party’s behavior.

Revisiting a classic result. A classic result, which has been shown for nu-
merous styles of encryption, is that confidentiality and integrity together imply
authenticated encryption [15]. However, this becomes more difficult for nonce-
based encryption when we consider memory-tightness.

The classic proof that INDR and CTXT-1 security imply AE-1 security first
replaces real decryption with K via a reduction to CTXT-1 security and then re-
place real encryption with random using INDR security. However, in this second
step the reduction adversary would have to simulate the oracle Dec1

0 which seems
to require storing the table M r¨, ¨s.5 This potentially requires using much more
memory than the AE-1 adversary, losing the benefit of time-memory tradeoffs for
INDR-R. The rest of the paper is dedicated to understanding this reduction. In
Section 4.2, we make it memory tight when restricting attention to secure chan-
nels which only accept ciphertexts if they are received in order. In Section 5,
we give negative results showing that for nonce-based encryption this reduction
cannot be made memory tight (using a black-box reduction).

3.3 Security of the CAU Encryption Scheme

We conclude this section by considering the specific encryption scheme CAU for
which we can prove INDR security with a time-memory tradeoff. We will use
this scheme in Section 4 to show a time-memory tradeoff for the authenticated
encryption security of a channel instantiated with it.

One of the most widely deployed encryption schemes is Galois Counter-Mode
(GCM) [11]. Bellare and Tackmann [4] generalized it to the scheme CAU which
constructs an encryption scheme from a block cipher E and hash function H.
Using the techniques of Jaeger and Tessaro [10] we obtain a proof of security for
its nonce-respecting INDR security with an appealing time-memory tradeoff.

Construction.We recall the CAU construction of an encryption scheme. Fix a
key length CAU.kl P N, a block length n “ CAU.bl P N, and a nonce length
CAU.nl ă CAU.bl. Then let E be a function family with E : t0, 1uCAU.kl ˆ
t0, 1uCAU.bl Ñ t0, 1uCAU.bl and H be a function family with H : t0, 1uCAU.bl ˆ
pt0, 1u˚ ˆ t0, 1u˚q Ñ t0, 1uCAU.bl. The scheme constructed from E and H is de-
noted CAUrE,Hs. Its message space CAUrE,Hs.M is the set of all strings of length
at most n ¨ p2n´CAU.nl´1q and its nonce space CAUrE,Hs.N is the set t0, 1uCAU.nl.

The algorithms of CAUrE,Hs are shown in Fig. 5. The code uses padp¨q to
denote the padding function which on input N outputs N ||0n´CAUrE,Hs.nl´1 } 1.

5 The standard reduction would be memory tight for w “ 3.

13

Algorithm CAUrE,Hs.EpK,N,Mq
Y Ð padpNq
M1 . . .M` Ðn M
For i “ 1, ..., ` do
Ci ÐMi ‘ EKpY ` iq

C Ð C1 . . . C`
LÐ EKp0

n
q

T Ð HLpA,Cq ‘ EKpY q
Return T }C

Algorithm CAUrE,Hs.DpK,N, T }Cq
LÐ EKp0

n
q; Y Ð padpNq

C1 . . . C` Ðn C
T 1 Ð HLpA,Cq ‘ EKpY q
If T ‰ T 1 then return K
For i “ 1, ..., ` do
Mi Ð Ci ‘ EKpY ` iq

M ÐM1 . . .M`

Return M

Fig. 5. Encryption scheme CAU parameterized by function family E (typically a block
cipher) and hash function H. In the code, padpNq “ N } 0m } 1 for the appropriate
choice of m and M1 . . .M` Ðn M splits M into n-bit blocks.

Since our simplified notation does not use associated data we instead assume
there is a fixed associated data string A used with every message.

The encryption algorithm parses the input message into ` blocks of length
n (except for the last, which may be shorter) and pads the nonce to a string Y
of length n. It encrypts the message using counter-mode encryption with Y ` 1
as the first counter. This gives it a partial ciphertext C. The authentication is
inspired by a Carter-Wegman MAC. A key L for the hash function is obtained as
LÐ EKp0

nq. This key is used to compute the tag T as T Ð HLpA,Cq‘EKpY q
and then T }C is the full ciphertext output by encryption.

The decryption algorithm parses the input ciphertext as T }C. It computes
the correct tag T 1 for C by setting L Ð EKp0

nq and T Ð HLpA,Cq ‘ EKpY q
(as was done in encryption). If T ‰ T 1 the ciphertext is rejected by returning
M “ K. Otherwise the message M is obtained by counter-mode decrypting C.

INDR security of CAU.The following theorem formalizes that CAU is nonce-
respecting INDR secure assuming E is a secure PRF.

Theorem 1. Let A be an adversary against the nonce-respecting INDR security
of CAUrE,Hs that makes at most q oracle queries, each at most p ¨ CAU.bl bits
long. Then we can construct a Aprf such that

AdvindrCAUrE,HspAq ď AdvprfE pAprfq .

Adversary Aprf has runtime essentially that of A, makes at most qpp ` 1q ` 1
queries to its oracle, has memory/time complexity essentially that of A and never
repeats queries to its oracle.

It is important that Aprf never repeats queries because it allows us to apply
the time-memory switching lemma from Section 2. This give us roughly,

AdvindrCAUrE,HspAq P AdvprpE pAprfq `OpS ¨ pq ¨ logppqq{2nq

where S is a bound on the memory complexity of A. For variants other than
nonce-respecting INDR it would not be clear how to prevent Aprf from repeating
queries without storing the prior queries of A.

14

Proof (Sketch). One constructs Aprf to first set L Ð Evalp0nq. Then it runs
A and simulates encryption queries by running CAU.E while using its Eval
oracle in place of EK . It does not recompute L each time because it has already
computed it. Its final output is whatever A outputs. One can verify that the
view of A when simulated by Aprf is “real” encryptions when b “ 1 and random
strings when b “ 0, so the claimed advantage bound follows. [\

CTXT/AE security of CAU. It does not appear to be possible to give a sim-
ilar time-memory trade-off for the CTXT or AE security of CAU. The standard
analysis of either of these first uses PRF security to replace the output of E with
random. It then argues that the adversary’s view is independent of the HLpA,Cq
values produced in encryption so that it can apply the security of H. For x “ ae
or x “ ctxt this would give a bound of the form,

Advx-1CAUrE,HspAq “ AdvprfE pAprfq ` AdvaxuH pX q .

However, this PRF adversary Aprf needs to to simulate a decryption oracle to A.
The natural ways of doing this (remembering all prior encryption queries or using
Eval to run decryption) either require significant use of memory or repeating
queries to Eval. This prevents us from applying the switching lemmas of [10,6]
to get appealing time-memory tradeoffs when E is a PRP.

In Section 4.3, we will use a new technique for memory-tight reductions to
prove that using CAU in a channel can provide (the channel equivalent of) CTXT
security (and thus AE security from Section 4.2).

4 Memory-tight Reductions for Cryptographic Channels

In this section we show that memory-tight reductions can be given for the com-
bined confidentiality and integrity security of cryptographic channels. These are
a form of stateful encryption which provide the guarantee that messages cannot
be duplicated or reordered, in addition to the typical confidentiality and integrity
goals of encryption.

4.1 Syntax and Security Notions

Syntax and correctness.A (cryptographic) channel CH specifies algorithms
CH.Sg, CH.S, and CH.R along with message space CH.M Ď t0, 1u˚. The syntax of
these algorithms is shown in Fig. 6. The state generation algorithm CH.Sg takes
no input. It returns sender state σs and receiver state σr. The sending algorithm
CH.S takes a sender state σs and message M P CH.M. It returns updated sender
state σs and a ciphertext C. The receiving algorithm CH.R takes a receiver
state σr and a ciphertext C. It returns updated receiver state σr and a message
M P CH.M Y tKu. When M “ K, this represents the receiver rejecting the
message as invalid.

A channel is expected to never again return M ‰ K after if it has rejected a
message. This models the behavior of protocols such as TLS which are assumed

15

CH Syntax
pσs, σrq Ð$ CH.Sg
pσs, Cq Ð$ CH.Spσs,Mq
pσr,Mq Ð CH.Rpσr, Cq

Game Gch-corr
CH,b pAq

pσs, σrq Ð$ CH.Sg
b1Ð$ AEncDec

Return b1 “ 1

Oracle EncDecbpM0q

pσs, Cq Ð$ CH.Spσs,M0q

pσr,M1q Ð CH.Rpσr, Cq
Return Mb

Fig. 6. Left: Syntax of channel algorithms. Right: Channel correctness game.

to be run over a reliable transport layer and has been the standard notion for
channels since the work of Bellare, Kohno, and Namprempre [2]. When a protocol
(e.g. QUIC or DTLS) is run over an unreliable transport layer, then a robust
channel is used instead [7]. We leave memory-tight proofs of security for robust
channels as an interesting direction for future work.

We typically assume there is a ciphertext-length function CH.cl : N Ñ N
such that for any M P CH.M and state σs, we have Prr|C| “ CH.clp|M |q :
pσs, Cq Ð$ CH.Spσs,Mqs “ 1.

Correctness requires that if the receiver is given the ciphertexts sent by
the sender in order and without modification then the receiver will output the
same sequence of messages that were sent. One way to formalize this is via
the game Gch-corr

CH,b shown in Fig. 6. We define Advch-corrCH pAq “ PrrGch-corr
CH,1 pAqs ´

PrrGch-corr
CH,0 pAqs. Perfect correctness requires that Advch-corrCH pAq “ 0 for all (even

unbounded) A. This implies that the M1 output by CH.R always equals M0.

Security definitions.We consider indistinguishability from random, integrity
of ciphertext, and authenticated encryption security for channels just like we did
for nonce based encryption.

Authenticated encryption security of a channel CH is defined by game Gch-ae
CH,b

defined in Fig. 7. In it the adversary is given access to an encryption oracle and
a decryption oracle. The adversary’s goal is to distinguish between a “real” and
“ideal” world. In the real world (b “ 1) the oracles use CH to encrypt messages
and decrypt ciphertexts. In the ideal world (b “ 0) encryption returns random
messages of the appropriate length and decryption returns K. In both worlds,
as long as the adversary’s queries to decryption have consisted of the outputs of
encryption in the correct order, the oracles are considered in sync and decryption
just returns the appropriate message that was queried to encryption.6 After the
first time the adversary queries something else, the oracles are out of sync and
will never be in sync again (so Dec will always return Mb).

Authenticated encryption security is a combined confidentiality and integrity
notion. We can also define separate notions. INDR security is defined by the
game Gch-indr

CH,b which is the same as Gch-ae
CH,b except the adversary is only given

oracle access to Encb. CTXT security is defined by the game Gch-ctxt
CH,b which

is the same as Gch-ae
CH,b except the adversary is given oracle access to Enc1 and

6 This matches the convention of CTXT-1 and AE-1 for encryption schemes. We
believe it to be “correct” for the same reasons discussed for those definitions.

16

Game Gch-ae
CH,b pAq

sync Ð true

pσs, σrq Ð$ CH.Sg
b1Ð$ AEncb,Decb

Return b1 “ 1

Game Gch-indr
CH,b pAq

sync Ð true

pσs, σrq Ð$ CH.Sg
b1Ð$ AEncb

Return b1 “ 1

Game Gch-ctxt
CH,b pAq

sync Ð true

pσs, σrq Ð$ CH.Sg
b1Ð$ AEnc1,Decb

Return b1 “ 1

Oracle EncbpMq
pσs, C1q Ð$ CH.Spσs,Mq
C0 Ð$ t0, 1uCH.clp|M |q

M.addpMq; C.addpCbq
Return Cb

Oracle DecbpCq
pσr,M1q Ð CH.Rpσr, Cq
M0 Ð K

M 1
ÐM.dqpq

C 1 Ð C.dqpq
If sync then

If C “ C 1 then
Return M 1

sync Ð false

Return Mb

Fig. 7. Games defining the INDR, CTXT, and AE security of a channel.

Game Git
L,δpA1,A2q

RÐ$ t0, 1uL

pi, σq Ð$ A1pRq
rÐ$ A2pi, σ,Rr: i´1sq
Return r “ Rri : i` δs

Fig. 8. Information theoretic game in which A tries to remember a δ bit sequence in
an L-bit random string.

Decb. These games are given explicitly in Fig. 7. We define the advantage of A
by AdvxCHpAq “ PrrGxCH,1pAqs ´ PrrGxCH,0pAqs for x P tch-ae, ch-indr, ch-ctxtu.

4.2 Confidentiality and Integrity Imply Authenticated Encryption

We will show that INDR security plus CTXT security imply AE security using a
memory-tight reduction. While the normal proof that INDR and CTXT security
suffice to imply AE security is not particularly difficult, it uses a non-memory
tight reduction to INDR security. Making the proof memory tight will require
more involved analysis.

Information theoretic lemma. Before proceeding to the proof, we first will
provide a simple information theoretic lemma that will be a useful subcomponent
of that proof. Consider the game Git

L,δ shown in Fig. 8. In it, an adversary is given
a length L string R and tries to choose an index i for which it is able to remember
the next δ-bits of the string using state σ. We say that an adversary pA1,A2q is
S-bounded if |σ| “ S always. We define AdvitL,δpA1,A2q “ PrrGit

L,δpA1,A2qs.

Lemma 1. Let L, δ, S P N. Let pA1,A2q be an S-bounded adversary. Then

AdvitL,δpA1,A2q ď L ¨ 2S{2δ .

17

Proof. Let L, δ, S,A1,A2 be defined as in the theorem statement. Without loss
of generality we can assume that A1 and A2 are deterministic. Then for any
fixed choice of i and σ, the probability that A2pi, σ,Rr: i´ 1sq “ Rri : i` δs will
be exactly 1{2δ. Then we can calculate as follows.

PrrGit
L,npA1,A2qs ď PrRrDi, σ s.t. Rri : i` δs “ A2pi, σ,Rr: i´ 1sqs

ď
ÿ

i,σ

PrrRri : i` δs “ A2pi, σ,Rr: i´ 1sqs

“
ÿ

i,σ

1{2δ ď L ¨ 2S{2δ .

The last inequality follows from there being at most L ¨ 2δ choices for pi, σq. [\

Security result. Now we can proceed to our security result showing that AE
security can be implied by INDR and CTXT security in a memory-tight manner.
The technical crux of the result is the reduction adversary Aδ which simulates
the view of an AE adversary A to attack the INDR security of the channel. In
our theorem statement this reduction adversary is parameterized by a variable δ
which determines how much local memory it uses. Using Lemma 1, our concrete
advantage bound is expressed in terms of δ and establishes that the reduction
can be successful with this value not much larger than the local memory of A.

Theorem 2. Let CH be a cryptographic channel. Let A be an adversary with
memory complexity S and making at most q queries to its Enc oracle, each of
which returns a ciphertext of length at most x. Then for any δ P N we can build
an adversary Aδ (described in the proof) such that

Advch-aeCH pAq ď Advch-ctxtCH pAq ` 2 ¨ Advch-indrCH pAδq ` 2q ¨ x ¨ 2S{2δ .

Adversary Aδ has running time approximately that of A and uses about S ` 2δ
bits of state.

Setting δ “ S ` logpqxq ` κ makes the last term about 1{2κ while limiting
the memory usage of Aδ to only 2S ` 2 logpqxq ` 2κ.

The standard way of proving that INDR security and CTXT security imply
AE security would first use CTXT security to transition from a world in which
A is given oracle access to pEnc1,Dec1q to a world in which A is given oracle
access to pEnc1,Dec0q. Then INDR security would be used to transition to
A being given oracle access to pEnc0,Dec0q. The issue in our setting with this
proof arises in the second step. The INDR reduction adversary needs to simulate
Dec0 for A. The natural way of doing so requires storing the entirety of the tables
M and C which means that Aδ may use much more memory than A.

Our proof of Thm. 2 follows this same general proof flow, but uses a more
involved analysis for the reduction to INDR security. In particular, we make use
of the following insight: If A has memory complexity S but cannot distinguish the
ciphertexts it see from random (because of INDR security), then from Lemma 1

18

it cannot remember many more than S of the ciphertext bits that it has received
from Enc but not yet forwarded to Dec.

If A ever queries a ciphertext which is not the next ciphertext in C, then
Dec0 oracle will never again return anything other than K. Because we can as-
sume that A will be unable to remember too many bits of ciphertext, we can just
have our reduction adversary Aδ remember a few more bits of ciphertext than
A can. If the total length of ciphertext that A has received from its encryption
oracle, but not forwarded on to its decryption oracle ever exceeds the amount
that Aδ will store, then Aδ assumes A must have forgotten some intermedi-
ate ciphertext before that point, allowing the reduction to cease storing future
ciphertexts because sync will be false before that point.

Proof. We will construct INDR adversaries A1δ, A2δ , and S-bounded adversary
pA1,A2q and show that

Advch-aeCH pAq ď Advch-ctxtCH pAq`Advch-indrCH pA1δq`2Advitq¨x,δpA1,A2q`Advch-indrCH pA2δq

The stated theorem then follows by applying Lemma 1 and constructing the
adversary Aδ which runs either A1δ or A2δ (chosen at random) and outputs what-
ever that adversary does. The resulting Aδ will satisfy the efficiency constraints
stated in the theorem statement. We will prove this bound via a sequence of
transformations that slowly change Gch-ae

CH,1 to Gch-ae
CH,0 .

CTXT transition.Let G0 “ Gch-ae
CH,1 pAq and G1 “ Gch-ctxt

CH,0 pAq. Because Gch-ae
CH,1 pAq

and Gch-ctxt
CH,1 pAq are identical games we have that PrrG0s´PrrG1s “ Advch-ctxtCH pAq.

Transition to limited memory game. Next we want to transition to a ver-
sion of G1 that stores a bounded amount of local state. Consider the games
G2 and G3 shown in Fig. 9. The tables M2 and C2 track the messages and
ciphertexts as in the real game. Because of this PrrG1s “ PrrG2s.

In the transition to G3 we are going to stop using these tables and instead
solely rely on the tables M and C. With these tables, if the total number of bits
of ciphertexts that would be stored in C exceeds δ then we permanently stop
adding elements to these tables – we assume that the adversary will cause sync
to be set to false at some point earlier in the game. Note that up until this
point the tables pM2,C2q and pM,Cq are used identically. The two games only
differ in the boxed code in Dec which returns M2 if the adversary has queried
a ciphertext stored in C2 that was not stored in C. Hence, these games are
identical-until-bad so the fundamental lemma of game playing [3] gives,

PrrG3s ´ PrrG2s ď PrrG3 sets bads.

We want to apply Lemma 1 to bound the probability that bad is set. To do so
we need to be able to treat the ciphertexts as random strings. Thus we defer the
analysis of the probability that it occurs until after applying INDR security.

INDR Transition.Now consider the game G4. It is identical to G3 except that
the ciphertexts returned by Enc are chosen at random instead of using CH. We
can transition to this game using a reduction to INDR security. It is important

19

Games G2 , G3, G4, G5

flag Ð true

sync Ð true

pσs, σrq Ð$ CH.Sg
b1Ð$ AEnc,Dec

Return b1 “ 1

Oracle EncpMq
pσs, Cq Ð$ CH.Spσs,Mq
CÐ$ t0, 1uCH.clp|M |q

M2.addpMq; C2.addpCq
If flag then

If ||C|| ` |C| ă δ then
M.addpMq; C.addpCq

Else
flag Ð false

Return C

Oracle DecpCq

M 1
ÐM.dqpq; M2 ÐM2.dqpq

C 1 Ð C.dqpq; C2 Ð C2.dqpq
If sync then

If C “ C 1 then
Return M 1

Elif C “ C2 then
bad Ð true

Return M2

sync Ð false

Return K

Fig. 9. Hybrid games for proof of Theorem 2. Highlighted code is only included in
highlighted games. Boxed code is only included in boxed games.

here that our reduction adversary will not need to use too much memory because
of the way that we have limited the memory needed for G3.

Consider the adversaries Aδ and A1δ shown in Fig. 10. Highlighted code is
only included in the latter adversary.

Adversary A1δ uses its Enc oracle to present A with a view identical to G3

if b “ 1 and identical to G4 if b “ 0. Note here that the tables pM2,C2q do not
effect the view of A in either of these game, allowing Aδ not to have to store
them. We have that PrrGch-indr

CH,1 pA1δqs “ PrrG3s and PrrGch-indr
CH,0 pA1δqs “ PrrG4s. In

other words, Advch-indrCH pA1δq “ PrrG3s ´ PrrG4s.
Adversary A2δ instead uses its INDR oracle to simulate the view of A, but

returns 1 if the flag bad would have been set. Because this can only be set by
the first ciphertext not stored in C we only need to be able to simulate the
games up until that point. So we store this extra ciphertext and put an ˚ in
C so that in Dec we know when we have reached the relevant point. We have
that PrrGch-indr

CH,1 pA2δqs “ PrrG3 sets bads and PrrGch-indr
CH,0 pA2δqs “ PrrG4 sets bads.

In other words, PrrG3 sets bads ď Advch-indrCH pA2δq ` PrrG4 sets bads.

Final transition. The final transition is from G4 to G5. These two games are
identical-until-bad as can be seen in Dec. Because of this we have that

PrrG4s ´ PrrG5s ď PrrG4 sets bads.

Using all of M2 and C2 instead of just M and C makes G5 identical to Gch-ae
CH,0 .

Bounding probability of bad. We conclude by bounding the probability G4

sets bad via a reduction to our information theoretic analysis. Consider the S-
bounded pA1,A2q that behaves as follows. First, A1 internally simulates the
view of A in G4 using the coins for A which maximize the probability of bad and
using the bits of R as the ciphertext bits returned by encryption. If A causes
flag to be set to false, A1 will halt and output the current state of A as σ with
i chosen so the next δ bits of C and c are the values of R for A2 to guess.

20

Adversary A1Encδ

flag Ð true

sync Ð true

b1Ð$ ASimEnc,SimDec

Return b1 “ 1

Adversary A2Encδ

flag Ð true

sync Ð true

ASimEnc,SimDec

Return 0

Oracle SimEncpMq
flag Ð true

sync Ð true

CÐ$ EncpMq
If flag then

If ||C|| ` |C| ă δ then
M.addpMq; C.addpCq

Else
C.addp˚q; C˚ Ð C
flag Ð false

Return C

Oracle SimDecpCq

M 1
ÐM.dqpq; C 1 Ð C.dqpq

If sync then
If C “ C 1 then

Return M 1

Elif C 1 “ ˚ and C “ C˚ then
abortp1q

sync Ð false

Return K

Fig. 10. INDR adversaries for proof of Theorem 2. Highlighting indicates code that is
only used by adversary A1δ.

Then A2 will resume executing A using σ. When A makes encryption queries
it will just make up its own responses. When A makes a decryption query for
a ciphertext C then A2 will concatenate it into its guess r. It just assumes this
was the correct next ciphertext that should have been stored in C (otherwise A
would fail in setting bad). To determine which M to return for this query, A2

re-runs A from the beginning using the same coins A1 used. It uses its given
prefix of R and the current value of r to respond to encryption queries until
it reaches the encryption query corresponding to the current decryption query.
Whatever message A queried for this encryption query is then returned for the
decryption query. Once r is δ bits long, A2 outputs that as its guess.

We can see that when bad would be set in G4, the view of A is perfectly
simulated up until that point and A2 will guess r correctly. This gives us
PrrG4 sets bads ď Advitq¨x,δpA1,A2q as desired.

Combining all the bounds we have shown completes the proof. [\

4.3 AE Security of a TLS 1.3-like Channel

We have shown that the AE security of a channel can be reduced to its con-
stituent INDR and CTXT security in a way that preserves memory complexity.
This is, of course, only meaningful if we have channels for which we can give prov-
able time-memory tradeoffs for their INDR and CTXT security. Using the ideas
of Jaeger and Tessaro [10] it is easy to give such examples for INDR security.

Using the ideas from proof of Thm. 2 we will prove the security of a channel
based on GCM (or more generally CAU). The resulting channel can be viewed as
a (simplified) version of the channel obtained by using GCM in TLS 1.3.

The construction. The construction we consider is a straightforward con-
struction of a channel from a nonce-based encryption scheme NE by using a
counter for the nonce. The INDR security of this channel follows easily from the
nonce-respecting INDR security of NE. Proving integrity of the channel from the

21

NCHrNEs.Sg
KÐ$ NE.Kg
N Ð$ NE.N
Return ppK,Nq, pK,Nqq

NCHrNEs.SppK,Nq,Mq
N Ð N ` 1
C Ð NE.EpK,N,Mq
Return ppK,Nq, Cq

NCHrNEs.RppK,Nq, Cq
If N “ K then

Return ppK,Kq,Kq
N Ð N ` 1
M Ð NE.DpK,N,Cq
If M “ K then

Return ppK,Kq,Kq
Return ppK,Nq,Mq

Fig. 11. Algorithms of channel NCHrNEs constructed from encryption scheme NE.

integrity of NE is possible, but of limited applicability since we do not have ex-
amples of encryption schemes with proven time-memory tradeoffs for integrity.
We will instead only show integrity for the specific case that NE “ CAU.

The channel NCHrNEs is parameterized by an encryption scheme NE. It has
NCHrNEs.M “ NE.M. We assume that NE.N can be interpreted as a cyclic group
written using additive notation. Its algorithms are shown in Fig. 11. State gen-
eration sets the state of both parties equal to a shared random key and nonce.
Encryption increments the nonce and uses NE to encrypt the message with the
current nonce. Decryption increments the nonce and uses NE to decrypt the
ciphertext with the current nonce. If the ciphertext is rejected (M “ K), the
receiver will replace its state with K’s. Henceforth it will reject all ciphertexts it
receives (via the first line which checks if N “ K already holds.

INDR Security. The INDR security of NCHrNEs follows easily from nonce-
respecting INDR security of NE. This is captured by the following theorem.

Theorem 3. Let A be an adversary against the INDR security of NCHrNEs that
makes less than |NE.N| oracle queries. Then we can construct B such that

Advch-indrNCHrNEspAq ď AdvindrNE pBq .

Adversary B has complexity comparable to that of A and is nonce-respecting.

Proof (Sketch). Adversary B picks N at random and then starts executing A.
Whenever A makes a EncpMq query, B increments N , queries C Ð EncpN,Mq,
and returns C to A. Adversary B outputs whatever A does. Verifying the claims
made about this adversary is straightforward. [\

CTXT Security. For CTXT security we need to focus our attention on the
particular construction of NCHrNEs obtained when using the encryption scheme
NE “ CAUrE,Hs for some function families E and H.

In our proof, we will take advantage of the fact that the adversary can es-
sentially only make a single forgery attempt. If it fails at this attempt, then the
state of the decryption algorithm can be erased and it will henceforth always re-
turn K. Because CAU uses a Carter-Wegman style MAC we have to first use the

22

PRF security of E to hide the values of HLpA,Cq used in encryption queries. To
get our desired state-aware results we need to make sure that our PRF reduction
does not use much more memory than the original adversary. This creates an
issue similar to what we saw in Section 4 where it can be difficult to simulate the
values returned by Dec. This issue is resolved by adjusting the proof technique
used to establish Thm. 2 where we exploit the fact that ciphertexts look random
to assume that A cannot remember too many ciphertexts.

Theorem 4. Let NE “ CAUrE,Hs for some E and H. Let A be a nonce-
respecting adversary against the CTXT security of NCHrNEs with memory com-
plexity S that makes at most q ď 2CAU.nl ´ 1 encryption queries, each of which
returns a ciphertext of length at most x. Then for any δ P N we can construct
an adversary Aprf such that

Advch-ctxtNCHrNEspAq ď 2 ¨ AdvprfE pAprfq ` AdvaxuH pX q ` q ¨ x ¨ 2S{2δ .

Adversary Aprf has running time approximately that of A and uses about S` 2δ
bits of state. It makes at most qpx{n` 2q` 1 non-repeating queries to its oracle.

The proof is given in the full version. As with Thm. 1, the PRF adversary we give
never repeats queries so we can apply the switching lemma to obtain a bound
using PRP security of E. Here it is important that the memory of Aprf is not
much more than that of A. Assuming |A| ă p, setting δ « S ` n, and assuming
S ą n we can combine all of our theorems so far to obtain a bound of

Advch-aeNCHrNEspAq ď 4 ¨ AdvprfE pBq `O
ˆ

Spq logppqq ` cpp` qq

2n

˙

for a B with comparable efficiency to A and assuming H is c-AXU.

5 Negative Results for Memory-tight AE Reductions

In this section we give impossibility results for giving a memory-tight reduction
(for a natural restricted class of black-box reductions) from AE-1 security to
nonce-respecting INDR and CTXT-1 security. This establishes that our restric-
tion to the channel setting for Section 4 was necessary for our positive results.

Black-box Reductions.A reduction R maps an adversary A to an adversary
RrAs. We consider reductions that run an AE-1 adversary A in a black-box
manner as shown in Fig. 12. It starts with initial state σ output by R.Init. The
parameter R.rew determines how many times R will perform a full rewind of
A. Then it runs A while simulating its encryption and decryption oracles. For
every encryption query, R runs R.SimEnc with the query and its state as input to
produce the updated state, a flag rf, and a ciphertext. If the flag rf is true, then
R starts running A from the beginning again. Otherwise, it answers with the
query answer R.SimEnc returned. Decryption queries are handled analogously.
If R did not rewind A before A finished its execution, then it runs R.Upd on A’s

23

Reduction RrAsO

σÐ$ RO.Init
iÐ 0
While i ď R.rew do
bÐ$ AREnc,RDec

σÐ$ RO.Updpσ, bq
NEXT: iÐ i` 1

Return RO.Finpσq

Oracle REncpN,Mq

pσ, rf, Cq Ð$ RO.SimEncpσ,N,Mq
If rf then goto NEXT
Return C

Oracle RDecpN,Cq

pσ, rf,Mq Ð$ RO.SimDecpσ,N,Cq
If rf then goto NEXT
Return M

Fig. 12. Syntax of a black-box reductions R running AE-1 adversary A. We represent
the oracles R has access to collectively as O.

output to updates its state and starts running A from the beginning if has not
already rewinded R.rew times. Finally, R outputs whatever R.Finpσq returns.
The following definition captures some restrictions we will place on reductions.

Definition 1. Let R be a reduction using the syntax from Fig. 12. It is full-
rewinding if R.rew ą 0 or straightline if R.rew “ 0. It is nonce-respecting
if RrAs is nonce-respecting when A is nonce-respecting. It is faithful if RrAs
answers encryption queries of A consistent with its own encryption oracle, i.e.,
R responds with C on an encryption query made on pN,Mq, only if it previously
queried its own encryption oracle with pN,Mq and received C as the answer.

Game Git-chl-r
u,m pD1,D2q

σ Ð K

For i P rrs do
For j P rus do
Mj Ð$ t0, 1um

σ Ð D1pσ,M1, . . . ,Muq

j˚Ð$ rus
pσ,Mq Ð D2pσ, j

˚
q

IfMj˚ ‰M then return false

Return true

Fig. 13. Information theoretic game played
by adversary pD1,D2q.

Additional notation. We fix an
understood nonce-based encryption
scheme NE for which we assume
that t0, 1uml Ď NE.M. We also as-
sume N ˆ N Ď NE.N and we use
N “ NE.N as shorthand. We assume
that rNE.Kgs “ t0, 1ukl. We let C “

t0, 1uNE.clpmlq. We also introduce some
new notation for the complexity of
an algorithm A. First, MempAq is de-
fined as the number of bits of mem-
ory that A uses. The total number
of queries to its oracles is QuerypAq,
and the number of computation steps
TimepAq. For a reduction R we use
MempRq to denote the number of bits
of memory that R uses in addition
any memory of the adversary it runs.

Information theoretic lemma. We give a lemma that will be a useful sub-
component of our proofs. It pertains to game Git-chl-r

u,m in Fig. 13. It is an r-
round game, played by a two-stage adversary pD1,D2q. In each round, D1 gets

24

state σ from the prior round, along with u random strings M1, . . . ,Mu each
of length m. Adversary D1 outputs state σ which is input to D2 along with a
randomly sampled index j˚ from rus. Then D2 outputs a string M and state
σ that is passed to D1 in the next round. If M “Mj˚ , we say that pD1,D2q

has answered the challenge of this round correctly. If pD1,D2q answers all the r
challenges correctly, the game returns true. Otherwise it returns false. We de-
fine Advit-chl-ru,m pD1,D2q “ PrrGit-chl-r

u,m pD1,D2qs. Adversary pD1,D2q is S-bounded
if the state output by D1 is at most S bits long. We can prove the following.

Lemma 2. If pD1,D2q is S-bounded, then

Advit-chl-ru,m pD1,D2q ď

ˆ

2pS `mq

u
`

3

2m

˙r

.

The proof, deferred to the full version, goes via a reduction to the r “ 1 case
which is analyzed using techniques from the AI-ROM setting [5].

5.1 Memory Lower Bound for Straightline Reductions

Our first theorem shows that it is not possible to give memory-tight, straightline
reductions proving the AE-1 security of an encryption scheme from its INDR
and CTXT-1 security. (As the theorem statement is somewhat complicated, we
will describe how to interpret it below.)

Theorem 5 (Impossibility for straightline reductions). Let NE be a
nonce-based encryption scheme. Fix u, r P N and define the nonce-respecting ad-
versary A as shown in Fig. 15. Let R be a straightline, nonce-respecting, faithful
black-box reduction from AE-1 to nonce-respecting INDR with MempRq “ S. Let
R1 be a straightline, nonce-respecting, faithful reduction from AE-1 to CTXT-1.
Then, we can construct adversaries C and W such that,

(i) Advae-1NE pAq ě 1´
2kl

22NE.clpmlq
,

(ii) AdvindrNE pRrAsq ď 2 ¨

ˆ

2pS ` log r ` klq ` 2ml

u
`

3

2ml

˙r

` 4 ¨ AdvindrNE pCq ,

(iii) Advctxt-1NE pR1rAsq ď Advctxt-1NE pR1rWsq .

Moreover, A satisfies QuerypAq “ pu ` 1q ¨ r ` 2 and MempAq ď 2kl ` 2ml `
2NE.clpmlq ` 2 log |N| ` log u ¨ r. Also C and W satisfy QuerypCq ă QuerypRq `
QuerypAq, TimepCq P OpQuerypAq ` TimepRqq, and QuerypWq “ QuerypAq and
TimepWq P OpQuerypAqq.

To interpret this theorem, assume that the parameters of NE are such that
the advantage of A is essentially one. Hence, a successful pair of reductions R
and R1 would need at least one of RrAs or R1rAs to have high advantage. For
memory-tight R and R1 we expect there to be linear functions f1 and f2 such
that their local computation time and memory usage when interacting with an

25

Games G0
b , G1

bÐ 1
K˚Ð$ NE.Kgpq; σÐ$ REncb .Init
For i P rrs do
j˚Ð$ rus
For j P rus do
Mj Ð$ t0, 1uml; Nj Ð pi, jq
pσ, ¨, Cjq Ð$ REncb .SimEncpσ,Nj ,Mjq

pσ, ¨,Mq Ð$ REncb .SimDecpσ,Nj˚ , Cj˚q

If M ‰Mj˚ then return false

Return true

Oracle EncbpN,Mq
C0 Ð$ C
C1 Ð NE.EpK˚, N,Mq
C1 Ð NE.EpK˚, N, 0ml

q

Return Cb

Fig. 14. Games G1 and G0
1 for b P t0, 1u. Highlighted code is only included in G1.

Adversaries AEnc,Dec, SEnc,Dec , WEnc,Dec

For i P rrs do
j˚Ð$ rus
For j P rus do
Mj Ð$ t0, 1uml

Nj Ð pi, jq
Cj Ð EncpNj ,Mjq

M Ð DecpNj˚ , Cj˚q

If M ‰Mj˚ then return 1
bad Ð true

Return BEnc; Return 0; Return EEnc

Adversaries BEnc, EEnc

M1 Ð$ t0, 1uml

M2 Ð$ t0, 1uml

N1 Ð p0, 1q; N2 Ð p0, 2q
C1 Ð EncpN1,M1q

C2 Ð EncpN2,M2q

For K P t0, 1ukl do
eq1 Ð pNE.EpK,N1,M1q “ C1q

eq2 Ð pNE.EpK,N2,M2q “ C2q

If eq1 and eq2 then return 1
Return 0; Return 1

Fig. 15. Adversaries against the AE-1 security of NE. Boxed code is only included in
S. Highlighted code is only included in A and B.

adversary A would be bounded by f1pqAq and f2psAq where qA “ QuerypAq and
sA “ MempAq.

Suppose this was the case. Then we can fix upper bounds for logpuq and
logprq, determining the memory usage of A and hence f1psAq “ S. Now we can

pick reasonable u and r such that, 2 ¨
´

2pS`log r`klq`2ml
u ` 3

2ml

¯r

is very small

(by say making the inside of the parenthesis less than 1{2 and setting r “ 128).
Then, for one of the reductions to have high advantage, one of C or R1rWs would
have to have high advantage. But the efficiencies of these are bounded as small
functions of the query complexity of A (rather than its local runtime) so cannot
be too large. But then assuming security of NE prevents any of them from having
high advantage.

Proof. Consider the adversary A in Fig. 15 against AE-1 security of NE. Note
that it is nonce-respecting. It has a challenge phase followed by an invocation
of B. Each iteration of the challenge phase consists of A making u encryption
queries with unique nonces and making one decryption query on one of the u

26

ciphertexts it received as answers chosen uniformly at random with its corre-
sponding nonce. If the answer of the decryption query is not consistent with
the prior encryption query, A returns 1. There are r iterations of the challenge
phase. If these are all passed, A runs adversary B (shown on the right) with its
Enc oracle and outputs whatever B outputs. From the code of A we can see
that it makes r ¨ u` 2 encryption queries, r decryption queries, and satisfies

MempAq ď 2kl` 2ml` 2NE.clpmlq ` 2 log |N| ` log u ¨ r .

To prove the theorem we need to separately establish the three advantage claims
(and corresponding statements about the efficiency of various algorithms). For
the first claim, note that Advae-1NE pAq “ Advae-1NE pBq because M will always equal
Mj˚ when A is playing Gae-1

NE,b. The simple analysis giving the needed bound on

Advae-1NE pBq is deferred to the full version.
For the third claim, consider adversary W defined as shown in Fig. 15. It is

identical to A, except that it calls E , which is similar to B but always returns
1. Because R1 is faithful, B would never return 0 when run by R1rAs playing
Gctxt-1
NE,b so Advctxt-1NE pR1rAsq “ Advctxt-1NE pR1rWsq holds trivially.

We spend the rest of the proof establishing the second claim. Consider the
adversary S in Fig. 15. It behaves identically to A until the flag bad is set. Using
the Fundamental Lemma of Game Playing [3], we can obtain for b P t0, 1u

ˇ

ˇ

ˇ
Pr

”

Gindr
NE,bpRrAsq

ı

´ Pr
”

Gindr
NE,bpRrSsq

ı
ˇ

ˇ

ˇ
ď Pr

”

RrAs sets bad in Gindr
NE,b

ı

.

Consider the games G0
b for b P t0, 1u in Fig. 14. In it, we assume that R always

outputs rf “ false since it is straightline. Note that G0
b simulates the challenge

phase of A and the game Gindr
b to R perfectly, so it returns true whenever RrAs

would set bad is set in Gindr
b . From this we can show

AdvindrNE pRrAsq ď AdvindrNE pRrSsq ` Pr
“

G0
0

‰

` Pr
“

G0
1

‰

. (3)

Now consider the game G1 defined in the same figure. It is identical to either G0
b

except that it answers all encryption queries with the encryption of the message
0ml. We now state two lemmas which give bounds on both Pr

“

G0
b

‰

’s via G1.

First, in Lemma 3, we use that the INDR security of NE implies G1’s encryption
oracle is indistinguishable from those in either G0

b to transition to G1. Next, in
Lemma 4 we give a bound on Pr

“

G1
‰

which was obtained by using R to construct

an adversary for Git-chl-r
u,ml and bounding its advantage with Lemma 2. The proofs

of these lemmas are deferred to the full version.

Lemma 3. There exist adversaries C1 and C2 such that

Pr
“

G0
1

‰

ď Pr
“

G0
0

‰

` AdvindrNE pC1q,
Pr

“

G0
0

‰

ď Pr
“

G1
‰

` AdvindrNE pC2q

where G0
b and G1 are defined as in Fig. 14. Moreover QuerypC1q ă QuerypRq `

QuerypAq and TimepC1q P OpQuerypAq`TimepRqq. Adversary C2’s complexity is
the same.

27

Lemma 4. If R is a straightline, nonce-respecting, faithful black-box reduction
from AE-1 to nonce-respecting INDR with MempRq “ S. Then,

Pr
“

G1
‰

ď

ˆ

2pS ` log r ` klq ` 2ml

u
`

3

2ml

˙r

where G1 is defined as in Fig. 14.

Applying these lemmas to equation (3) gives

AdvindrNE pRrAsq ď2 ¨

ˆ

2pS ` log r ` klq ` 2ml

u
`

3

2ml

˙r

` AdvindrNE pRrSsq ` 2 ¨ AdvindrNE pC1q ` AdvindrNE pC2q .

To complete the proof, we combine the three INDR adversaries RrSs, C1, and C2.
Let C be the INDR randomly chooses one of RrSs, C1, or C2 (with probabilities
1{4, 1{2, and 1{4, respectively) then runs the adversary it chose, outputting
whatever that adversary does. Simple calculations give

4 ¨ AdvindrNE pC2q “ AdvindrNE pRrSsq ` 2 ¨ AdvindrNE pC1q ` AdvindrNE pC2q .

The claimed complexity of C follows from that of RrSs, C1, and C2. [\

5.2 Memory Lower Bound for Full-Rewinding Reductions

We can extend our result to cover full-rewinding reductions as captured by the
following theorem. Its interpretation works similarly to that of Thm. 5.

Theorem 6 (Impossibility for full-rewinding reductions). Let NE be
a nonce-based encryption scheme. Fix u, r, c P N. We can construct a nonce-
respecting adversary A such that for all full-rewinding, nonce-respecting, re-
stricted reductions R from AE-1 to nonce-respecting INDR with MempRq “ S
and all full-rewinding, nonce-respecting, restricted reductions R1 from AE-1 to
CTXT-1 there exist adversaries C and W such that,

(i) Advae-1NE pAq ě 1´
2kl

22NE.clpmlq
,

(ii) AdvindrNE pRrAsq ď 2 ¨

ˆ

2pS ` log r ` klq ` 2ml

u
`

3

2ml

˙r

`
2S`1

2c¨NE.clpmlq
`

6 ¨ AdvindrNE pCq ,
(iii) Advctxt-1NE pR1rAsq ď Advctxt-1NE pR1rWsq.

Moreover, A satisfies QuerypAq “ c` pu` 1q ¨ r` 2 and MempAq ď 2kl` 2ml`
2NE.clpmlq ` 2 log |N| ` log u ¨ r. Also C and W satisfy QuerypCq ă QuerypRq `
QuerypAq, TimepCq P OpQuerypAq ` TimepRqq, QuerypWq “ QuerypAq, and
TimepWq P OpQuerypAqq.

28

For interests of space, the proof of this result has been deferred to the full
version. We give a very brief intuition about how this impossibility proof pro-
ceeds. We define a new adversary that is similar to A used for the proof of
Thm. 5, but has an additional “buffer” phase before the challenge phase. In the
buffer phase, it makes c encryption queries on a fixed message 0ml using different
nonces. The key idea is that if the reduction rewinds the adversary after going
past the buffer phase and still manages to pass the challenge phase, it must have
remembered the c ciphertexts. Because these c ciphertexts look random (from
the INDR security of NE), the memory of the reduction has to grow with c. This
rules out low memory reductions that pass the challenge phase after rewinding
the adversary after going past the buffer phase. As in the previous section, we
can show that if a reduction cannot pass the challenge phase, it cannot have
a high advantage of breaking INDR security. If the reduction does not rewind
after going past the buffer phase, we can bound its advantage analogously to the
straightline reduction case.

6 Conclusions

Our work gives memory-sensitive bounds for the security of a particular construc-
tion of a channel and shows the difficulty of providing such bounds for encryption
schemes. It leaves open a number of interesting questions including: (i) whether
memory-sensitive bounds can be given for other practical examples of channels,
(ii) whether analogous results can be shown for any robust channels [7], and (iii)
whether memory-sensitive bounds can be extended to the multi-user setting.

Acknowledgements. This work was partially supported by NSF grants CNS-
1719146, CNS-1553758 (CAREER), and by a Sloan Research Fellowship.

References

1. Benedikt Auerbach, David Cash, Manuel Fersch, and Eike Kiltz. Memory-tight
reductions. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 101–132. Springer, Heidelberg, August 2017.

2. Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking and prov-
ably repairing the ssh authenticated encryption scheme: A case study of the encode-
then-encrypt-and-mac paradigm. ACM Transactions on Information and System
Security (TISSEC), 7(2):206–241, 2004.

3. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor, EU-
ROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, Heidelberg,
May / June 2006.

4. Mihir Bellare and Björn Tackmann. The multi-user security of authenticated en-
cryption: AES-GCM in TLS 1.3. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 247–276. Springer, Heidel-
berg, August 2016.

29

5. Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John P. Steinberger. Random
oracles and non-uniformity. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 227–258. Springer,
Heidelberg, April / May 2018.

6. Itai Dinur. On the streaming indistinguishability of a random permutation and a
random function. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part II, volume 12106 of LNCS, pages 433–460. Springer, Heidelberg, May 2020.

7. Marc Fischlin, Felix Günther, and Christian Janson. Robust channels: Handling
unreliable networks in the record layers of quic and dtls 1.3. Cryptology ePrint
Archive, Report 2020/718, 2020. https://eprint.iacr.org/2020/718.

8. Ashrujit Ghoshal and Stefano Tessaro. On the memory-tightness of hashed El-
Gamal. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II,
volume 12106 of LNCS, pages 33–62. Springer, Heidelberg, May 2020.

9. Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. Breaking and repair-
ing GCM security proofs. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 31–49. Springer, Heidelberg, August
2012.

10. Joseph Jaeger and Stefano Tessaro. Tight time-memory trade-offs for symmetric
encryption. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part I, volume 11476 of LNCS, pages 467–497. Springer, Heidelberg, May 2019.

11. David A. McGrew and John Viega. The security and performance of the
Galois/counter mode (GCM) of operation. In Anne Canteaut and Kapalee
Viswanathan, editors, INDOCRYPT 2004, volume 3348 of LNCS, pages 343–355.
Springer, Heidelberg, December 2004.

12. J. M. Pollard. A monte carlo method for factorization. BIT Numerical Mathemat-
ics, 15(3):331–334, Sep 1975.

13. Jean-Jacques Quisquater and Jean-Paul Delescaille. How easy is collision search.
New results and applications to DES. In Gilles Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 408–413. Springer, Heidelberg, August 1990.

14. Phillip Rogaway. Nonce-based symmetric encryption. In Bimal K. Roy and Willi
Meier, editors, FSE 2004, volume 3017 of LNCS, pages 348–359. Springer, Heidel-
berg, February 2004.

15. Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the
key-wrap problem. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004
of LNCS, pages 373–390. Springer, Heidelberg, May / June 2006.

16. Stefano Tessaro and Aishwarya Thiruvengadam. Provable time-memory trade-offs:
Symmetric cryptography against memory-bounded adversaries. In Amos Beimel
and Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239 of LNCS, pages
3–32. Springer, Heidelberg, November 2018.

17. Serge Vaudenay. Security flaws induced by CBC padding - applications to SSL,
IPSEC, WTLS... In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332
of LNCS, pages 534–546. Springer, Heidelberg, April / May 2002.

18. Yuyu Wang, Takahiro Matsuda, Goichiro Hanaoka, and Keisuke Tanaka. Memory
lower bounds of reductions revisited. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 61–90. Springer,
Heidelberg, April / May 2018.

30

https://eprint.iacr.org/2020/718

	The Memory-Tightness of Authenticated Encryption

