
Incompressible Encodings

Tal Moran1 and Daniel Wichs2?

1 IDC Herzliya. talm@idc.ac.il
2 Northeastern University and NTT Research Inc. wichs@ccs.neu.edu

Abstract. An incompressible encoding can probabilistically encode some
data m into a codeword c, which is not much larger. Anyone can decode
the codeword c to recover the original data m. However, the codeword
c cannot be efficiently compressed, even if the original data m is given
to the decompression procedure on the side. In other words, c is an
efficiently decodable representation of m, yet is computationally incom-
pressible even given m. An incompressible encoding is composable if many
encodings cannot be simultaneously compressed.
The recent work of Damg̊ard, Ganesh and Orlandi (CRYPTO ’19) de-
fined a variant of incompressible encodings as a building block for “proofs
of replicated storage”. They constructed incompressible encodings in an
ideal permutation model, but it was left open if they can be constructed
under standard assumptions, or even in the more basic random-oracle
model. In this work, we undertake the comprehensive study of incom-
pressible encodings as a primitive of independent interest and give new
constructions, negative results and applications:

– We construct incompressible encodings in the common random string
(CRS) model under either Decisional Composite Residuosity (DCR)
or Learning with Errors (LWE). However, the construction has sev-
eral drawbacks: (1) it is not composable, (2) it only achieves selective
security, and (3) the CRS is as long as the data m.

– We leverage the above construction to also get a scheme in the
random-oracle model, under the same assumptions, that avoids all of
the above drawbacks. Furthermore, it is significantly more efficient
than the prior ideal-model construction.

– We give black-box separations, showing that incompressible encod-
ings in the plain model cannot be proven secure under any stan-
dard hardness assumption, and incompressible encodings in the CRS
model must inherently suffer from all of the drawbacks above.

– We give a new application to “big-key cryptography in the bounded-
retrieval model”, where secret keys are made intentionally huge to
make them hard to exfiltrate. Using incompressible encodings, we
can get all the security benefits of a big key without wasting storage
space, by having the key to encode useful data.

? Research supported by NSF grants CNS-1314722, CNS-1413964, CNS-1750795 and
the Alfred P. Sloan Research Fellowship.

2 Tal Moran and Daniel Wichs

1 Introduction

The entire contents of Wikipedia can be downloaded as a compressed (gzip) file
that is several gigabytes in size. Can it be compressed further? This is an inter-
esting question, and there is much work on optimizing compression for various
types of data. But there is also an uninteresting answer – the Wikipedia contents
can be easily compressed via the link “www.wikipedia.org”, which allows any-
one on the Internet to recover the data! We consider the compression problem in
exactly the above scenario, where the data is readily available publicly. However,
our goal is to make such data incompressible. That is, we want to come up with
an incompressible encoding scheme that takes some such data (e.g., Wikipedia
content) and probabilistically represents it in a way that is guaranteed to be
incompressible, even when the decompression procedure is given the original
data on the side for free (e.g., can access Wikipedia over the Internet). We now
elaborate on what this primitive is and why it is useful.

Incompressible Encodings. An incompressible encoding scheme consists of a pair
of efficient and key-less encoding and decoding procedures (Enc,Dec), such that
c← Enc(m) probabilistically encodes some data m into a codeword c that any-
body can efficiency decode to recover m = Dec(c). The size of the codeword c
should not be “much larger” than that of the underlying data m. Even though
the codeword c is an efficiently decodable representation of the data m, and
cannot contain much additional information since its size is not much larger,
we want c to be incompressible even given m. In particular, we consider the
following incompressibility security game:

1. An adversary chooses some arbitrary data m, which is encoded to get a
codeword c← Enc(m).

2. The codeword c is given to an adversarial compression algorithm that out-
puts some compressed value w.

3. The compressed value w along with underlying data m are given to an ad-
versarial decompressor, who wins if it outputs the codeword c.

We require that no efficient adversary can win the above game with better than
negligible probability, unless w is “almost as large” as the entire codeword.

Good vs. Trivial Encodings. The definition of incompressible encodings has two
parameters: for data m ∈ {0, 1}k, we let α(k) denote the codeword size, and β(k)
denote the incompressibility parameter, which bounds size of the value w output
by the compressor in the security game.

For a “good” incompressible encoding, we want the codeword size to be
essentially the same as the size of the underlying data α(k) = (1 + o(1))k and
we want the encoded data to be incompressible below the size of essentially the
entire data/codeword β(k) = (1− o(1))k = (1− o(1))α(k).3

3 Throughout the introduction, we will ignore additive polynomial terms in the secu-
rity parameter, which means that the above bounds only hold when the data size k
is sufficiently large.

www.wikipedia.org

Incompressible Encodings 3

On the other hand, there is a “trivial” incompressible encoding, which just
appends some randomness r to the data and sets the codeword to c = (m, r).
Since r cannot be compressed, the encoding also cannot be compressed below
the length of r. This ensures that α(k) = k + |r| and β(k) = |r|. Therefore a
scheme with α(k) ≥ k + β(k) is “trivial” and we say that an incompressible
encoding is “non-trivial” if it beats this bound.

It is easy to see that non-trivial incompressible encodings cannot be con-
structed information theoretically. This is because, there are at most 2α(k)−k

possible codewords per message on average, and therefore also certainly for the
worst-case message m. A pair of inefficient compression/decompression proce-
dures can enumerate the list of all such codewords (e.g., in lexiographic order)
and compress/decompress any codeword in the list just by writing down its in-
dex using β(k) = α(k)−k bits. Therefore, we will need to rely on computational
assumptions to construct non-trivial incompressible encodings.

Local Decoding. We will also want our incompressible encodings to be locally
decodable, so that any bit of the message can be recovered by only reading a few
bits of the codeword. While our constructions have this property, most of the
challenges are already present even without this requirement.

Composability. We say that an incompressible encoding scheme, with some in-
compressibility parameter β, is composable if any n independently generated
encodings of various messages cannot be compressed below

∑
i∈[n] β(ki) bits,

where ki denotes the length of the i’th message. Moreover, the probability of
the adversarial compression algorithm outputting less than

∑
i∈I β(ki) bits and

the decompression procedure reconstructing all of the codewords ci : i ∈ I for
some set I ⊆ [n] should be negligible. As we will discuss later, we do not know
whether all incompressible encodings are inherently composable (we conjecture
otherwise) and therefore we define it as a separate security property of interest.

Keyed vs Key-less Schemes. We mention that any semantically secure encryp-
tion scheme would give an incompressible encoding where the decoding proce-
dure needs a secret key. This is because the encryption of some arbitrary data
m is indistinguishable from an encryption of random data, which is inherently
incompressible even given m. The main difficulty of our problem is that we re-
quire the encoding and decoding procedures to be public and key-less; anybody
should be able to decode the codeword to recover the data.

1.1 Prior and Concurrent Work

Proofs of Replicated Storage. The work of Damg̊ard, Ganesh and Orlandi [17]
studied a primitive called “Proofs of Replicated Storage”, which considers a set-
ting where we want to store some data m with a cloud storage provider, who
promises to store n replicated copies of the data at different locations (“repli-
cas”) to increase fault tolerance. We want to be able to check that the provider
is indeed storing n copies of the data. To solve this problem they defined a

4 Tal Moran and Daniel Wichs

novel building block called a “replica encoding”, which corresponds to our no-
tion of an incompressible encodings that is also bounded self-composable; i.e.,
it is composable when the same message is encoded n times for some a-priori
bound n. Using such encodings, they construct “proofs of replicated storage”
by encoding the data n separate times and having each replica store a different
codeword. This is combined with “Proof of Retreivability” [22,35,51], which are
used to periodically audit each replica and check that it is storing its codeword.
The cloud provider cannot meaningfully save on storage while maintaining the
ability to pass the audit with non-negligible probability. “Proofs of Replicated
Storage” also have applications to the Filecoin cryptocurrency [37, 38], where
replicated storage of user data is a resource for mining coins; see [17] for de-
tails. We note that some prior notions of “proofs of replicated storage” and
“incompressible/replica encodings” were also previously considered by [9,13,24]
in settings where the adversary is computationally more constrained than the
encoding/decoding procedures and does not have the ability to run these pro-
cedures; here we focus on the setting where the adversary can run in arbitrary
polynomial time.

Construction of Incompressible Encodings of [17]. In the above context, the work
of Damg̊ard, Ganesh and Orlandi [17] (building on an idea from an earlier work
of [52]) proposed a construction of incompressible (replica) encodings based on a
family of trapdoor permutations (TDPs) denoted by fpk and an ideal invertible
public random permutation P, P−1. To encode a message m, the encoder samples
a random TDP public key and trapdoor (pk, td) and outputs a codeword c =
(pk, (f−1

pk ◦ P)r(m)) by applying the function g(x) = f−1
pk (P (x)) iteratively for r

rounds starting with the message m, where r is some parameter. The codeword
is efficiently decodable by computing fpk in the forward direction and making
calls to P−1. While the above requires using a TDP whose domain is as large as
the entire file, it is also possible to apply the TDP on smaller blocks of the file
separately. Unfortunately, the construction has several big deficiencies:
– We discovered that the security proof in the published version of [17] is

fundamentally flawed. In fact, we identified some heuristic counter-examples
to suggest that their scheme is unlikely to be secure in general with the
number of rounds r claimed. However, we conjectured (and it has since been
confirmed by a concurrent work, see below) that the scheme can be proved
secure when the number of rounds r is made very large: r = Ω(kn) where
k is the file-size (in bits), n is the number of compositions and λ is the
security parameter. Since each round takes Ω(k) time, this means that the
scheme has complexity Ω(k2n) and, in particular, runs in time quadratic in
the file size, which we envision to be large. Moreover, the scheme needs to
perform essentially that many public key operations (RSA exponentiations),
which makes the scheme highly impractical. Furthermore, the scheme only
achieves bounded-composability where the number of compositions n needs
to be known ahead of time and affects the complexity of the scheme.

– The construction works in the “ideal invertible random permutation” model.
Furthermore, the domain/range of the ideal permutation has to match that

Incompressible Encodings 5

of the TDP. For example, if we use the RSA TDP, then the domain/range
of P needs to be Z∗N where N is the RSA modulus. It remained as an open
problem to give a construction in the standard model, or even in the random
oracle model, or even using an ideal permutations where the domain/range is
just {0, 1}s for some parameter s. (While it is possible to construct indiffer-
entiable [41] ideal permutations from a random oracle [16], they will not have
the required structured domain/range. Furthermore, the indifferentiability
framework is insufficient to guarantee security for multi-stage games [49],
which includes the security game for incompressible encodings.)

Concurrent Work of [26]. A concurrent and independent work of Garg, Lu and
Waters [26] independently discovered the flaw in the proof of [17]. They managed
to patch the result by providing a completely new (and highly involved) proof of
security for their scheme, when the number of rounds r is made sufficiently large
r = Ω(kn) as discussed above. They also managed to remove the reliance on
an “ideal invertible random permutation” with a structured domain and showed
how to instantiate the scheme using the random oracle model alone.

1.2 Our Results

Our work initiates the study of incompressible encodings as a primitive of in-
dependent interest. We give new positive and negative results as well as a new
application of this primitive as follows.

Constructions in the CRS and RO Model. We give a new construction of in-
compressible encodings in the common random string (CRS) model under ei-
ther the Decisional Composite Residuosity (DCR) or the Learning with Errors
(LWE) assumptions. Our construction relies on certain types of lossy trapdoor
functions (LTFs) [47] that are also permutations/surjective, and our construc-
tions of these may be of independent interest. The encodings have good param-
eters with codeword size α(k) = (1 + o(1))k and incompressibility parameter
β(k) = (1 − o(1))k = (1 − o(1))α(k). Furhtermore, the encoding/decoding run-
time only scales linearly in the data-size. The scheme is also locally decodable.
However, it suffers from three drawbacks:
1. It is not composable if all the encodings use the same CRS (but is composable

if each encoding gets a fresh CRS).
2. It only achieves selective security, where the message being encoded cannot

be chosen adaptively depending on the CRS.
3. It has a long CRS, linear in the length of the data m.

We also leverage our construction in the CRS model to get a construction in
the random-oracle (RO) model under the same assumptions that avoids all of
the above drawbacks. Namely, it is fully composable without any a priori bound
on the number of compositions n, and achieves adaptive security, where the
adversary can choose the message after making random-oracle queries.

Our schemes represent a significant improvement over the construction and
analysis of [17,26] since:

6 Tal Moran and Daniel Wichs

– We get the first constructions in the CRS model without relying on an
ideal object (ideal permutation or random oracle), albeit with the above-
mentioned drawbacks.

– Our schemes in both the CRS and RO models are significantly more efficient
and our encoding/decoding run time is O(k) rather than O(k2), where k is
the data size. Since we generally envision encoding large data where k is
several gigabytes or terabytes, the difference between linear and quadratic
run-time is highly significant. (We omit factors in the security parameter in
the above bounds).

– Our RO scheme is fully composable and we do not need to bound the number
of compositions n ahead of time nor does the efficiency of the scheme degrade
with n.

– We can plausibly achieve post-quantum security via our LWE-based con-
struction whereas [17, 26] seemed to inherently require trapdoor permuta-
tions for which we have no good candidates with post-quantum security.

– Our proof of security is in many ways significantly simpler than that of [26].

Black-Box Separations. We give black-box separations, showing that non-trivial
incompressible encodings in the plain model cannot be proven secure via a black-
box reduction from any standard hardness assumption, including strong assump-
tions such as the existence of indistinguishability obfuscation. Moreover, we show
that similar black-box separations apply to good incompressible encodings in the
CRS model, unless they suffer from all 3 of the above drawbacks: they cannot
be fully composable with a single CRS, they cannot achieve adaptive security,
and the CRS needs to be essentially as long as the data m. This shows that our
results are in some sense optimal.

Application to Big-Key Crypto. We give a new application of incompressible
encodings to “big-key cryptography in the bounded-retrieval model” [2, 3, 8, 12,
19, 23, . . .]. Big-key cryptosystems are designed with intentionally huge secret
keys in order to make them hard to exfiltrate. They guarantee security even if
the adversary can get large amounts of arbitrary “leakage” on the secret key.

Using incompressible encodings, we can get all the security benefits of a big
key without wasting storage space, by allowing the key to encode useful data.
We do not need to assume that the data has any entropy from the point of view
of the adversary; for example the user’s secret key could encode the contents of
Wikipedia, or the user’s movie collection, or other data that a user may want
to store offline but is also publicly available on the Internet and may be fully
known to the adversary.

In particular, we show how to construct public-key encryption in this model,
where the secret key is an incompressible encoding of the user’s arbitrary data.
Security is maintained even if the adversary can exfiltrate arbitrary information
about the secret key, as long as the size of such leakage is bounded by some
(1− o(1)) fraction of the secret key size. The public key size, ciphertext size and
the encryption/decryption run time are all small and only poly-logarithmic in

Incompressible Encodings 7

the data size. In particular, each decryption operation only accesses some small
subset of the secret key bits.

1.3 Our Techniques

We now delve into each of the results above and the relevant techniques in turn.

Incompressible Encodings in the CRS model. We construct incompressible encod-
ings in the CRS model. In this model, the honest encoding/decoding algorithms
as well as the adversarial compression/decompression algorithms have access to
a public uniformly random string. Our construction relies on certain types of
lossy tradpor functions (LTFs) [47]. An LTF consists of a family of function fpk
indexed by a public key pk. The public key can be sampled in one of two indis-
tinguishable modes: in injective mode the function fpk is injective and we can
sample pk along with a trapdoor td that allows us to efficiently invert it, and in
lossy mode the function fpk has a very small image, meaning that fpk(x) reveals
very little information about the input x.

As a starting point, to illustrate the main ideas, let’s assume that we have
an LTF family fpk : {0, 1}d → {0, 1}d where both the domain and range are
equal to {0, 1}d for some polynomial d. This means that fpk is a permutation over
{0, 1}d in injective mode. Let’s also assume that the LTF is highly lossy, meaning
that the output fpk(x) in lossy mode only reveals o(d) bits of information about
x. To encode some data m ∈ {0, 1}k we think of m = (m1, . . . ,mk′) as consisting
of k′ = k/d blocks of length d each. We also rely on a common random string
crs = (u1, . . . , uk′) consisting of k′ random blocks of length d each. The encoding
procedure Enccrs(m) samples a random pk in injective mode, together with a
trapdoor td and sets the codeword to be c = (pk, f−1

pk (m1 ⊕ u1), . . . , f−1
pk (mk′ ⊕

uk′). The decoding procedure Deccrs(c) recovers m by applying fpk in the forward
direction and xor’ing out the ui components. Moreover, it’s easy to see that
individual locations of the data can be decoded locally. The codeword is of size
k + |pk| = (1 + o(1))k.

We prove incompressible security of the above scheme in the selective setting,
where the choice of the message m is worst-case but cannot depend on the
CRS. We first observe that the joint distribution of crs = (u1, . . . , uk′), c =
(pk, x1, . . . , xk′) sampled as above with ui ← {0, 1}d and xi = f−1

pk (mi ⊕ ui) is
identical to the distribution where we choose xi ← {0, 1}d uniformly at random
and set ui = fpk(xi) ⊕ mi. The latter distribution can be sampled without a
trapdoor. Therefore, we can indistinguishably switch pk to lossy mode. Now the
codeword c has (1− o(1))k bits of true entropy even conditioned on crs and m,
since each of the values ui = fpk(xi) ⊕mi reveals only o(d) bits of information
about each xi. Therefore, we can argue that in this case the codeword c is (even
information-theoretically) incompressible below (1 − o(1))k bits, even given crs
and m. But since this case is computationally indistinguishable from the real
distribution of crs, c, the same must hold computationally there as well.

To give some more intuition on the above idea, note that in reality the code-
word c has very little actual entropy given crs,m. This is inherent since we want

8 Tal Moran and Daniel Wichs

to c to be almost the same size as m and it has to decode to m so there is no
space left to inject actual entropy. But in the security proof, we indistinguishably
move the information about the message m into the crs and allow the codeword
to have a high amount of real entropy even given crs,m while preserving the
condition that it decodes to m. Therefore, we can argue incompressibility.

Surjective Lossy Functions. There are many constructions of lossy trapdoor func-
tions (LTFs) in the literature (e.g.,) [6,25,36,47,55]. However, the vast majority
of them are not surjective and hence are unusable for our scheme where we need
to compute inverses f−1

pk (m1 ⊕ u1) on arbitrary values that we cannot force to
be in the image. Fortunately, the work of [25] gives a construction of a surjective
LTF (permutation) based on Paillier’s Decisional Composite Residuosity (DCR)
assumption [44] using the ideas behind the Damg̊ard-Jurik cryptosystem [18].
Furthermore, this LTF can be made highly lossy to ensure that the output only
reveals an o(1) fraction of the information in the input. There is still some sub-
tlety in that the domain and range of the LTF are not bit-strings {0, 1}d but
rather the group Z∗Ns+1 for some RSA modulus N and some parameter s. It
turns out that we can nevertheless use it in our construction with minor mod-
ifications, while maintaining a uniformly random CRS. This is because we can
use truly random bits in the CRS to obliviously sample random elements in the
group Z∗Ns+1 .

Since surjective LTFs are also trapdoor permutations (TDPs), all good can-
didates rely on assuming the hardness of factoring and it is a long-standing open
problem to get constructions from other assumptions, such as DDH or LWE.
However, we notice that we don’t need our functions to be injective. Instead we
define a relaxation of surjective LTFs that we call Surjective Lossy Functions
(SLFs). SLFs have two modes: a surjective (but not necessarily injective) mode
and a lossy mode. In surjective mode, the image of the function fpk is the entire
range while in lossy mode the image is much smaller. Furthermore, in surjec-
tive mode we require a trapdoor that allows us to sample a random preimage
of any value in the range. If the function is surjective but not injective, the
input-length must be larger than the output-length, and we will require that it
is at most (1 + o(1)) times larger to ensure that our encodings have small α.
We show that such SLFs suffice in our construction of incompressible encod-
ings. We then proceed to construct such SLFs under the learning with errors
(LWE) assumption [48]. Our starting point is the surjective trapdoor function
of [1, 27, 42] defined as fA(x) = Ax where A ∈ Zn×mq and x ∈ Zmq has “small”
entries. Unfortunately, in the best known instantiations [42], the input length
(in bits) is at least twice as large as the output length, while we only want a
(1 + o(1)) increase. We show a new technique to get around this. The high level
idea is somewhat similar to a recent work of [14], and we rely on “approximate
trapdoors” where, given y, we can sample x such that Ax is close but not identi-
cal to y. We modify the function to fA(x) = dAxcp by applying some rounding
to the output to get rid of this difference. This allows us to optimize the ratio
of input-size to output-size and get an improvements over exact trapdoors. To
ensure a (1 + o(1)) overhead, our instantiation of this idea is somewhat differ-

Incompressible Encodings 9

ent and arguably simpler than that of [14]. Furthermore, we also show that this
function has a lossy mode where the output only reveals an o(1) fraction of the
information in the input, using the techniques of [4,29]. Overall, we believe that
this construction may be of independent interest.

Composability and HILL vs Yao Entropies. We cannot prove our construction of
incompressible encodings in the CRS model to be composable if the same CRS
is used to generate all the encodings. However, we show that it is composable if
each encoding is given a fresh CRS. But first, let us discuss why composability
is generally difficult.

One may be tempted to conjecture that all incompressible encodings are in-
herently composable. For example, it seems intuitive that if the adversary needs
to store β(k) bits to compress one codeword, she would need 2β(k) bits to com-
press two codewords of two length k messages (potentially the same message).
Surprisingly, this intuition does not naturally translate into a proof — how would
one design a reduction which leverages a compression algorithm that takes two
codewords and compressed them below 2β bits to compress a single codeword
below β bits? The situation is highly reminiscent of the “leakage amplification”
problem in leakage-resilient cryptography: if some cryptosystem is secure even
given β bits of leakage on its secret key, does that mean that two copies of the
cryptosystem cannot be simultaneously broken even given 2β bits of leakage on
the two keys? Surprisingly this is not the case and it was possible to construct
clever counter-examples showing that the above does not generically hold in
some cases [20, 34, 40]. We conjecture that counter-examples may also exist for
incompressible encodings, at least under strong enough assumptions, and leave
it as an open problem to come up with one.

Given that it is unknown (and perhaps unlikely) that all incompressible en-
codings are composable, we leverage a special property of our construction to
show composability. In particular, the definition of incompressible encodings es-
sentially says that c has high “Yao incompressibility entropy” [7, 33, 54] even
given crs. However, for our construction, we showed that c even has a high HILL
entropy [32] given crs, since the distribution of (crs, c) is computationally indis-
tinguishable from one, where c has true (statistical) entropy given crs. Having
HILL entropy is a stronger property than having incompressibility entropy and
we leverage this to prove composition. In particular, while we do not know if the
“Yao incompressibility entropy” of independent samples adds up, we do know
that this is the case for HILL entropy: i.e., the HILL entropy of independent
samples (crsi, ci) for i ∈ [n] is the sum of the individual HILL entropies. This
property implies composability for our encodings.

Construction in the Random Oracle Model. Our CRS model construction needed
a long CRS, and a fresh CRS for each encoding if we wanted to argue compo-
sition. Furthermore, it only achieved selective security. We show how to resolve
all of these drawbacks in the random oracle model. In this model all honest
and adversarial algorithms have access to a truly random (fixed-length) function
RO : {0, 1}λ × {0, 1}λ → {0, 1}λ, where λ is the security parameter. The idea

10 Tal Moran and Daniel Wichs

behind our construction is simple: the encoding procedure chooses fresh short
randomness r ← {0, 1}λ on each execution and then calls RO(r, 1),RO(r, 2), . . .
to expand it into an arbitrarily long crs as needed; it then uses the incompress-
ible encoding scheme in the CRS model with the above crs to encode the data
and appends r to the codeword. This essentially corresponds to using a fresh
CRS for each encoding. Note that, in the random oracle model, we allow the
adversary to choose the message adaptively after making random oracle queries.
However, we only need to rely on selective security in the CRS model since the
adversary cannot predict r ahead of time and hence the crs used in each encoding
is essentially freshly chosen after the adversary selects the message.

Black-Box Separations. We give black-box separations, showing that incompress-
ible encodings in the plain model cannot be proven secure under any standard
hardness assumption, and incompressible encodings in the CRS model must in-
herently suffer from all of the drawbacks that ours has. Our black-box separations
have a similar flavor to those of [53] and we first explain their framework tailored
to our setting.

They define the class of “single-stage game” assumptions, which are modeled
via a game between a (potentially inefficient) challenger and a single stateful ad-
versary; the assumption states that any polynomial-time adversary should have
at most a negligible advantage in winning the game. This captures essentially all
standard assumptions used in cryptography, from the hardness of factoring to
indistinguishability obfuscation (iO).4 We observe that the security definition of
incompressible encodings is not a single-stage game since it involves two separate
entities (the compressor and the decompressor) who cannot fully share state or
communicate with each other — the compressor is limited in the number of bits
it can pass to the decompressor. This makes it possible to separate the security
of incompressible encodings from all single-stage game assumptions.

The separation works by constructing a “simulatable attacker”. This is an
inefficient (exponential size) attacker A = (A.Compress,A.Expand) that breaks
incompressible-encoding security. However we also design an efficient simulator
A′, such that one cannot (statistically) distinguish between black-box access to
A versus A′. Unlike the attackers A, the simulator A′ is a single fully stateful
entity that can fully remember any inputs for invocations of A′.Compress and
use them to answer future invocations of A′.Expand. Therefore A′ is not a legal
attacker against the incompressible encoding. However, if some reduction can
break a single-stage game assumption given black-box access to the legal (but
inefficient) A then it would also be able to do so given access to the efficient
(but illegal) A′ which means that the assumption is false.

On a very high level, our adversary A uses “brute-force” to find the index
i of the codeword in the lexicographic ordering of all codewords that decode
to m and applies a random permutation on i to get the compressed value w.
The decompressor inverts the permutation on w to recover i and uses that to
4 This is a larger class than falsifiable assumptions [28, 43], where the challenger is

also required to be efficient.

Incompressible Encodings 11

recover the codeword. The efficient simulator A′ just chooses a fresh random
w to compress each codeword but keeps a table of codewords it has seen with
the corresponding w values it gave. To decompress given w, it just finds the
corresponding codeword in the table.

In the above, we need to argue that the brute-force approach always works
and that the number of codewords that decode to m is small so that the index
i does not require too many bits to transmit. This holds in the plain model,
when we choose the worst case message, or even in the CRS model when the
message m can be chosen randomly but after the CRS if fixed. However, it fails
in the selective-security setting in the CRS model – as it should, since we have
a construction! This is because A may be given a CRS for which there are too
many codewords that decode to the message m and hence it cannot write down
the index i. If A failed in these cases but succeeded otherwise, we could use it
to distinguish between such a CRS and a truly random one, which is something
that cannot be efficiently simulated and indeed allows for a security reduction
under standard assumptions.

Application to Big-Key Crypto. We give a new application of incompressible en-
codings to “big-key cryptography in the bounded-retrieval model” [2,3,8,12,19,
23], where secret keys are intentionally huge to make them hard to exfiltrate.
In particular, these works envision cryptosystems where the keys are many gi-
gabytes or terabytes in size. Even if an adversary hacks into the system storing
the secret key and manages to leak out large amounts of arbitrary data (but
sufficiently less than the key size), we want the security of the cryptosystem to
be maintained. For example, in the case of encryption, this should not enable the
adversary to break semantic security of any ciphertexts sent in the future (un-
fortunately, the adversary can always perform decryption on past ciphertexts on
the compromised device and leak out some plaintext bits so we cannot guaran-
tee security of past ciphertexts). In such schemes, we want to maintain efficiency
of honest users even as the key grows, and therefore the cryptosystem cannot
even read the entire key to perform basic operations such as encryption and
decryption. Prior work focused on constructing various primitives in this setting
including symmetric-key encryption, public-key encryption and authenticated
key agreement.

One big disadvantage of big-key cryptography is that it forces honest users
to “waste” space by storing a huge random key of the cryptosystem. In this
work, we propose to get rid of this waste by converting useful data that the
user would store anyway into a cryptographic key. For example, the user can
take their local movie/music collection (or an offline copy of Wikipedia etc.) and
turn it into a cryptographic key for a “big-key” cryptosystem. We do not assume
that the underlying data has any entropy from the point of view of the attacker;
for example, the movie/music collection may be easily compressible into a very
short list of titles that are available for download on the Internet. In general,
we allow the attacker to choose the data in a worst-case fashion. This seems
to make such data unusable as a cryptographic key, since it may be completely
known to the adversary! However, this is where incompressible encodings come

12 Tal Moran and Daniel Wichs

in. We ask the user to store an encoded version of the data and use the codeword
as the key. The user can still access the data since it can be efficiently (locally)
decoded. However, an adversary cannot easily exfiltrate the key by compressing
it, even if the underlying data is completely known.

Turning the above high-level idea into workable big-key cryptosystems presents
two challenges:

– We need to rely on big-key cryptosystems where the secret key can be an
arbitrary string, rather than cryptosystems that choose a carefully structured
secret key. This is especially a challenge for public-key encryption (PKE)
schemes, where keys tend to have a lot of structure.

– We need to rely on a big-key cryptosystem that is secure with leakage, as
long as the secret key is incompressible, even if it is not uniformly random. In
particular, any attack against the leakage resilience of the encryption scheme
should translate into a compression/decompression procedure on the secret
key.

We call such cryptosystems encoding-friendly, and it is easy to see that they
remain secure if we set their key to be an incompressible encoding of some
arbitrary data.

We construct an encoding-friendly big-key PKE in the bounded-retrieval
model, where the secret key can be arbitrarily large but the public key, cipher-
texts, and encryption/decryption complexity are all small, only poly-logarithmic
in the key size. Our work departs significantly from the prior construction of big-
key PKE in the bounded-retrieval model of [2], which was not encoding friendly
(the secret key in that scheme consisted of many “identity secret keys” in a special
identity-based encryption scheme and hence required a large amount of struc-
ture). Instead, our construction relies on laconic oblivious transfer (LOT) [15],
which can in turn be constructed under a wide range of assumptions such as
CDH, LWE, and Factoring [11]. In an LOT scheme, one can take a long string
x ∈ {0, 1}k and hash it down into a short digest which acts as a public-key
pk = h(x). One can then encrypt some arbitrary data µ under the public key
pk with respect to a tuple (i, b) ∈ [k]× {0, 1} such that the resulting ciphertext
ct ← Encpk(µ, (i, b)) can be decrypted correctly using x if the i’th bit of x is
x[i] = b. On the other hand, if x[i] = 1 − b then the encryption is semantically
secure even given x.

In our construction of an encoding-friendly big-key PKE, we can take an
arbitrary (big) value x as the secret key and define the corresponding (short)
public key as pk = h(x). To encrypt a message µ, we apply a secret sharing
to derive random shares µ1, . . . , µλ that sum up to µ, where λ is the security
parameter. We then choose λ random indices i1, . . . , iλ and create 2λ LOT ci-
phertexts ctj,0 ← Encpk(µj , (ij , 0)) and ctj,1 ← Encpk(µj , (ij , 1)) where ctj,0 can
be decrypted if x[ij] = 0 and ctj,1 can be decrypted if x[ij] = 1 respectively.
We send all the ciphertexts along with the indices ij . The decryption algorithms
runs the LOT decryption on the ciphertexts ctj,x[ij] using the secret key x.

To prove security, we argue that we can extract (almost all of) x from any
successful distinguisher given the leakage. We do this by choosing random cipher-

Incompressible Encodings 13

texts and for each j testing if the distinguisher’s advantage goes down noticeably
when we replace the component ctj,0 by an encryption of random junk: if it does
then we learn x[ij] = 0 (since otherwise he could not notice this change) and
otherwise we know x[ij] = 1 (since if his advantage remains high, he must be
decrypting ctj,1). By doing this for sufficiently many random ciphertexts we can
recover a (1− o(1)) fraction of the bits of x. This gives us a way to compresss x,
by writing down the leakage together with a few additional bits that we can’t
recover from the distinguisher, and decompress it by running the distinguisher.

Organization. Due to lack of space, our black-box separation results, the appli-
cation to big-key cryptography, and some proofs are deferred to the full version.

2 Preliminaries

Throughout, we let λ denote the security parameter. By default, all our state-
ments hold in the non-uniform model of computation and we define PPT algo-
rithms as circuits of size polynomial in their input and the security parameter.
For n ∈ Z we let [n] denote the set [n] = {1, . . . , n}. When X is a distribution, or
a random variable following this distribution, we let x← X denote the process
of sampling x according to the distribution X. If X is a set, we let x← X denote
sampling x uniformly at random from X .

Let X,Y be random variables, potentially parameterized by the security pa-
rameter. We define their statistical difference as SD(X,Y) = 1

2
∑
u |Pr[X = u]− Pr[Y = u]| .

We write X s
≈ Y if the statistical distance is negligible in the security parame-

ter. We write X c
≈ Y if they are computationally indistinguishable: for all PPT

distinguishers D we have |Pr[D(X) = 1]− Pr[D(Y) = 1]| ≤ negl(λ).
The min-entropy of a random variable X is H∞(X) = − log(maxx Pr[X =

x]). Following Dodis et al. [21], we define the (average) conditional min-entropy of
X given Y as:H∞(X|Y) = − log

(
Ey←Y

[
2−H∞(X|Y=y)]) .Note thatH∞(X|Y) =

k iff the optimal strategy for guessing X given Y succeeds with probability 2−k.

Lemma 1. For any random variables X,Y where Y is supported over a set of
size T we have H∞(X|Y) ≤ H∞(X)− log T .

3 Defining Incompressible Encodings

We begin by giving a definition of incompressible encodings. Our first definition
does not require composability and can be thought of as a simplified version of
the replica encoding definition of [17].

Definition 1. An (α, β)-incompressible encoding scheme consists of PPT algo-
rithms (Enc,Dec). We require the following properties:

Correctness: There is some negligible µ such that for all λ ∈ N and all m ∈
{0, 1}∗ we have Pr[Dec(Enc(1λ,m)) = m] = 1− µ(λ).

14 Tal Moran and Daniel Wichs

α-Expansion: For all λ, k ∈ N and all m ∈ {0, 1}k we have Pr[|Enc(1λ,m)| ≤
α(λ, k)] = 1.

β-Incompressibility: Consider the following “compression experiment” CompExpA(1λ)
with an adversary A = (A.Select,A.Compress,A.Expand):
– (m, aux)← A.Select(1λ).
– c← Enc(1λ,m).
– w ← A.Compress(aux, c).
– c′ ← A.Expand(aux, w).
– Output 1 if c = c′ and |w| ≤ β(λ, |m|).

We require that for all PPT A we have Pr[CompExpA(1λ) = 1] = negl(λ).
We also refer to a “good” incompressible encoding, without specifying param-

eters (α, β) to refer to an (α, β)-incompressible encoding where α(λ, k) = k(1 +
o(1))+poly(λ) and β(λ, k) = k(1−o(1))−poly(λ) = α(λ, k)(1−o(1))−poly(λ).

Composability. We also define a stronger notion of composable incompressible
encodings. This can be thought of as a generalization of the replica encoding
definition of [17], which only required “self-composition” when the same message
was encoded many times.
Definition 2. An (α, β)-incompressible encoding is composable if the following
holds. Consider the following “composable compression experiment” CCExpA(1λ)
with an adversary A = (A.Select,A.Compress,A.Expand):
– ({mi}ni=1, aux)← A.Select(1λ).
– For i = 1 . . . , n: ci ← Enc(1λ,mi).
– w ← A.Compress(aux, {ci}ni=1).
– {c′i}ni=1 ← A.Expand(aux, w).
– Let I = {i : c′i = ci}. Output 1 if I 6= ∅ and |w| ≤

∑
i∈I β(λ, |mi|).

We require that for all PPT A we have Pr[CCExpA(1λ) = 1] = negl(λ).

CRS Model. We can generalize the above definitions to the common random
string (CRS) model, where the encoding/decoding algorithms as well as the
adversary A are given a random string crs← {0, 1}t(λ,k) as an input. The length
t(λ, k) of the crs may depend on the message length k. In the CRS model,
we distinguish between selective security and adaptive security. For selective
security, the crs is not given to A.Select but is given to A.Compress,A.Expand,
meaning that the adversary’s choice of the data m cannot depend on the crs.
For adaptive security, A.Select is also given the crs, and therefore the choice
of m can depend on the crs. We say a scheme is selectively (resp. adaptively)
β-incompressible in the CRS model.

Random Oracle Model. We can also generalize the above definitions to the
random-oracle model, where the encoding/decoding algorithms as well as the
adversarial algorithms A.Select, A.Compress, A.Expand are given oracle access
to a truly random function RO : {0, 1}λ × {0, 1}λ → {0, 1}λ. Note that, in
the random oracle model, we automatically require adaptive security, where the
adversary’s choice of the message m can adaptively depend on its random-oracle
queries.

Incompressible Encodings 15

Locally Decodable. An incompressible encoding scheme (Enc,Dec) is locally de-
codable if there is some additional local decoding procedure that can recover any
bit of the encoded message in time that is only poly-logarithmic in the message
length k. In particular, we require that there is an algorithm LocalDecc(1λ, k, i)
that gets RAM access to the input c and runs in time poly(λ, log k) such that
the following holds. There is a negligible µ such that for any λ, k ∈ N, any
m = (m1, . . . ,mk) ∈ {0, 1}k and any i ∈ [k] we have Pr[LocalDecc(1λ, k, i) =
mi : c← Enc(1λ,m)] = 1− µ(λ).

Note on (Im)Perfect Correctness. While it will be convenient to allow imperfect
correctness (with negligible failure probability) in our definition, we note that
we can take any scheme with imperfect correctness and convert it into one with
perfect correctness at a slight loss of security. The idea is to modify the encoding
algorithm to also tests whether decoding succeeds: if so it outputs the codeword
with a 0 appended to it and otherwise it outputs the message in the clear with a
1 appended to it. The decoding checks the appended bit and either applies the
original decoding if it is a 0 or just outputs the rest of the codeword if the bit
is a 1. If correctness of the original scheme holds with overwhelming probability
than the above transformation cannot harm security.

Note on Message Selection. In the above, we allow an adversary A.Select to
choose the message m along with some auxiliary information aux (which can
without loss of generality include the message m). For non-uniform adversaries,
we can assume that A.Select is deterministic (by hard-coding the worst-case
choice of its random coins). For incompressibility in the plain model or with
selective security in the CRS model, this means that we can get rid of A.Select
from the definition and simply quantify over all worst-case choices of the mes-
sage m and think of the corresponding aux as being hard-coded in the algorithms
A.Compress,A.Expand. However, for adaptive security in the CRS model or se-
curity in the random oracle model, we must allow m to be chosen adaptively
depending on the CRS or the random oracle queries.

4 HILL-Entropic Encodings and Composition

HILL-Entropic Encodings. We can think of the definition of incompressible en-
codings as roughly requiring that c has high “Yao incompressibility entropy”
[7, 33, 54]. In other words, one cannot efficiently compress c below β bits. We
could have defined a stronger variant of “HILL-Entropic Encodings” that would
require c to have high HILL entropy [32]. In other words, for any fixed message
m, if we consider the random variable C denoting the output of Enc(1λ,m) then
it is computationally indistinguishable from some C ′ such that the conditional
min-entropy H∞(C ′) ≥ β.

Impossibility in the Plain Model. Unfortunately, the notion of “HILL-Entropic
Encodings” is simply unachievable in the plain model for any non-trivial β ≥

16 Tal Moran and Daniel Wichs

α − k. In particular, consider the message m∗ = argminm |Cm| that minimizes
the size of the set Cm = {c : Dec(c) = m} of codewords that decode to m.
Since

∑
m |Cm| ≤ 2α we know that |Cm∗ | ≤ 2α−k. Consider a PPT distinguisher

D that gets m∗ as non-uniform advice such that D(c) = 1 if Dec(c) = m∗. Then
Pr[D(C) = 1] = 1 for C ≡ Enc(1λ,m∗) but for any random variable C ′ such
that H∞(C ′) ≥ α− k + 1 we have

Pr[D(C ′) = 1] = Pr[C ′ ∈ Cm∗] =
∑
c∈Cm∗

Pr[C ′ = c] ≤ 2α−k2−(α−k+1) ≤ 1
2 .

HILL-Entropic Encodings in the CRS Model. On the other, the above impossi-
bility fails in the CRS model and we will construct (selectively-secure) “HILL-
Entropic Encodings” in the CRS model. We define these precisely as follows.

Definition 3 (HILL-Entropic Encoding). An (α, β)-HILL-Entropic encod-
ing scheme with selective security in the CRS model consists of PPT algorithms
(Enc,Dec) with the same syntax, correctness, and expansion requirements as in-
compressible encodings. We also require that there is a (potentially inefficient)
algorithm SimEnc. For any polynomial k = k(λ) and any ensemble of messages
m = {mλ} of length |mλ| = k(λ), consider the following “real” experiment:

– crs← {0, 1}t(λ,k)

– c← Enccrs(1λ,mλ)

and let CRS, C denote the random variables for the corresponding values in the
“real” experiment. Also consider the following “simulated” experiment:

– (crs′, c′)← SimEnc(1λ,mλ)

and let CRS′, C ′ denote the random variables for the corresponding values in the
“simulated” experiment. We require that (CRS, C) c

≈ (CRS′, C ′) and H∞(C ′ | CRS′) ≥
β(λ, k).

Theorem 1. Any (α, β)-HILL-Entropic encoding with selective security in the
CRS model is also a (α, β′)-incompressible encoding scheme with selective secu-
rity in the CRS model, where β′ = β − λ.

For lack of space, we defer the proof of the above theorem to the full version.

Composable Encodings in the RO Model. We now show how to convert any
selectively HILL-entropic encoding in the CRS model into a composable incom-
pressible encoding scheme in the random oracle model. We rely on a “fixed
length” random oracle RO : {0, 1}λ × {0, 1}λ → {0, 1}λ. Note that, although
we start with a selectively secure scheme in the CRS model where the adversary
must choose the message before seeing the CRS, our resulting scheme in the
random-oracle model allows the adversary to choose the message after making
random-oracle queries.

Our construction proceeds as follows. Assume (Enc′,Dec′) is an encoding in
the CRS model with a CRS of length t(λ, k). We define:

Incompressible Encodings 17

– EncRO(1λ,m) : Choose r ← {0, 1}λ. Compute crs = (RO(r, 1), . . . ,RO(r, t′)) ∈
{0, 1}t(λ,|m|) where t′ = t(λ, k)/λ. Let ĉ← Enc′crs(1λ,m). Output c = (r, ĉ).

– DecRO(c = (r, ĉ)): Compute crs = (RO(r, 1), . . . ,RO(r, t′)) ∈ {0, 1}t(λ,|m|)
where t′ = t(λ, k)/λ. Output Dec′crs(ĉ).

Theorem 2. If (Enc′,Dec′) is an (α′, β′)-HILL-entropy encoding with selective
security in the CRS model, then (Enc,Dec) is a composable (α, β)-incompressible
encoding in the Random Oracle model where α = α′ + λ and β = β′ − λ.

For lack of space, we defer the proof of the above theorem to the full version.

Composability in the Multi-CRS Model. We observe that the above result in
the RO model also implies that our CRS model construction is composable in
a setting where each encoding is performed with a fresh CRS. In particular, if
there were an attack against composable security in the latter setting, it would
immediately translate into an attack on the composable security of the former
setting.

5 Surjective Lossy Trapdoor Functions

We now introduce our main building block, which we call surjective lossy func-
tions (SLFs). This can be thought of as a relaxation of lossy trapdoor func-
tions [47] that are also permutations. In particular, while we insist on the func-
tions being surjective, we relax the requirement that they are injective. Instead,
we require a surjective mode and a lossy mode. In surjective mode, we also have
an inversion trapdoor. There is some domain distribution D such that, when we
sample a random value in the range and invert it using the trapdoor, we get
(statistically close to) a random sample from D. In lossy mode, there is some
small set of size ≤ 2` such that the output of the function almost always ends
up in that set - we call ` the leakage and want to make it as small as possible.

Definition 4. A family of `-surjective lossy trapdoor functions (`-SLFs) con-
sists of a polynomial-time computable family of functions fpk : Dpk → Rpk
along with the following PPT algorithms:

– pk← LossyGen(1λ): generates a public-key in lossy mode.
– (pk, td)← SurGen(1λ): generates a public-key in surjective mode, along with

a trapdoor.
– x← D(pk): samples a value x ∈ Dpk.
– x← Invtd(y): samples a pre-image x of ∈ Rpk.

We require the following properties.

Surjective Mode: The following distributions over (pk, x, y) are statistically
indistinguishable:
– Sample (pk, td) ← SurGen(1λ), x ← D(pk), y = fpk(x) and output

(pk, x, y)

18 Tal Moran and Daniel Wichs

– Sample (pk, td)← SurGen(1λ), y ← Rpk, x← Invtd(y) and output (pk, x, y).
The above implies that, in particular, we invert correctly:

Pr[fpk(Invtd(y)) = y : (pk, td)← SurGen(1λ), y ← Rpk] ≥ 1− negl(λ).

Lossy Mode: For any pk in the support of LossyGen(1λ) there exists a set Lpk
of size |Lpk| ≤ 2`(λ) such that Pr[fpk(x) ∈ Lpk : pk ← LossyGen(1λ), x ←
D(pk)] = 1− negl(λ).

Indistinguishability: The following distributions are computationally indis-
tinguishable:

{pk : pk← LossyGen(1λ)} c
≈ {pk : (pk, td)← SurGen(1λ)}.

The above definition captures the main properties of an SLF. However, in the
application, we also need some additional properties on the domain, range and
the domain distribution. All of the properties would be satisfied ideally if we had
a permutation where the domain and range were just Dpk = Rpk = {0, 1}d(λ)

and the domain distribution D(pk) was just uniform. However, we will need to
be more flexible subject to satisfying the following properties.

Definition 5 (SLF*: Enhanced SLF). We say that an `-SLF is an (r, r′, d, e, `)-
enhanced SLF, denoted by SLF*, if the domain Dpk, the range Rpk and the
domain distribution D(pk) satisfy the following properties:
– Elements of Dpk can be represented using (at most) d(λ) bits.
– For any fixed pk, the min-entropy of the distribution D(pk) is at least H∞(D(pk)) ≥
e(λ).

– The range Rpk is a group. (We will denote the group operation by addition.)
– We can efficiently embed bit-string of length r(λ) as elements of Rpk. In

particular, there are efficiently computable functions embedpk : {0, 1}r(λ) →
Rpk and unembedpk : Rpk → {0, 1}r(λ) such that for all m ∈ {0, 1}r(λ) we
have

Pr[unembedpk(embedpk(m)) = m : (pk, td)← SurGen(1λ)] = 1− negl(λ).

– We can obliviously sample uniformly random elements of Rpk. In particular,
there exists some PPT algorithm y ← sam(pk) that uses r′(λ) random bits
to sample a uniformly random values y ∈ Rpk along with a PPT algorithm
explainpk(y) such that (u, y) s

≈ (u′, y′), where u← {0, 1}r′(λ), y = sam(pk;u),
y′ ← Rpk, u′ ← explainpk(y).

We say that a scheme is a “good” SLF*, without specifying parameters, if it is
an (r, r′, d, e, `)-SLF* for some r = r(λ) with d = (1 + o(1))r, r′ = (1 + o(1))r,
e = (1− o(1))r, and ` = o(r).

5.1 SLFs from Decision Composite Residuosity
We describe a construction of a good SLF* under the Decision Composite Resid-
uosity (DCR) assumption of Paillier [44]. The construction is identical to that
of [25] and is based on the Damg̊ard-Jurik Cryptosystem [18]. We provide it here
for completeness.

Incompressible Encodings 19

The Damg̊ard-Jurik Cryptosystem. Let N = PQ where P,Q are odd primes such
that gcd(N,ϕ(N)) = 1. We call such N admissible. When P and Q are suffi-
ciently large and randomly chosen,N = PQ is admissible with all but negligible
probability. The following theorem gives the structure of the group Z∗Ns+1 .

Theorem 3 ([18]). For any admissible N = PQ and s < min{P,Q} the map
ψN,s : ZNs × Z∗N → Z∗Ns+1 given by ψN,s(m, r) = (1 +N)mrNs mod Ns+1 is
an isomprphism satisfying

ψN,s(m1 +m2 mod N, r1r2 mod Ns) = ψN,s(m1, r1) · ψN,s(m2, r2) mod Ns+1.

Moreover, ψN,s can be inverted in polynomial time given P,Q.

In the Damg̊ard-Jurik [18] cryptosystem, the public key is N and the secret
key is P,Q. The encryption of a message m ∈ ZNs is ψN,s(m, r) for a random
r ∈ Z∗N and the decryption inverts ψN,s using the secret key. The cryptosystem
is proven secure under the decision composite residuosity (DCR) assumption
stated below.

Definition 6 ([44]). The decision composite residuosity (DCR) assumption
states that for randomly chosen primes P,Q in the range [2λ−1, 2λ] and N = PQ
the distributions (N, x) and (N, y) are computatinally indistinguishable where
x ← Z∗N2 is uniformly random and y ← {zN mod N2 : z ∈ Z∗N} is a random
N -residue over Z∗N2 .

Intuitively the DCR assumption states that for s = 1, one cannot distinguish
between ψN,s(m, r) versus ψN,s(0, r) for a uniformly random m, r. It’s easy to
see that this implies that for any fixed m,m′ one cannot distinguish between
ψN,s(m, r) versus ψN,s(m′, r). Moreover, it turns out that the DRC assumption,
which is stated for s = 1, automatically implies security for arbitrary polyno-
mial s. The following theorem essentially states the that the Damg̊ard-Jurik
cryptosystem is semantically secure under the DCR assumption.

Theorem 4 ([18]). For any polynomial s = poly(λ), and for randomly chosen
primes P,Q in the range [2λ−1, 2λ] with N = PQ and for any values m,m′ ∈
ZNs , the distributions (N,ψN,s(m, r)) and (N,ψN,s(m′, r)) over r ← Z∗N are
computationally indistinguishable under the DCR assumption.

Constructing SLFs from DCR. Since ψN,s is a permutation with cryptographic
properties, we could think of setting ψN,s as the SLF. Unfortunately, it’s not
clear how to make it lossy directly. Instead, in addition to the modulus N , we
add a “ciphertext” c ∈ Z∗Ns+1 to the public key and define

fpk : ZNs × Z∗N → Z∗Ns+1 given by fpk(x = (m, r)) = cmψN,s(0, r)

In surjective (bijective) mode, we set c = ψN,s(1, r̂) to be an encryption of
the message 1, and we also add the randomness r̂ to the secret key. In that
case, fpk(m, r) = cmψN,s(0, r) = ψN,s(m, r̂m · r). We can invert fpk on any

20 Tal Moran and Daniel Wichs

value y ∈ Z∗Ns+1 using the secret key, by computing ψ−1
N,s(y) = (m, r′) and

outputting x = (m, r) were r = r′/r̂m. In lossy mode, we set c = ψN,s(0, r̂) to
be a random encryption of 0. In that case, the image of the function fpk is the
set Lpk = {ψN,s(0, r′) : r′ ∈ Z∗N}. In other words, in lossy mode, fpk(x) only
contains ≈ log(N) bits of information about the ≈ (s+ 1) logN bit value x.

We describe the construction in detail below. Let s = s(λ) be a parameter.

– (pk, td) ← SurGen(1λ): Generate random λ-bit primes P,Q such that N =
PQ is admissible. Let r̂ ← Z∗N and set c = ψN,s(1, r̂). Output pk = (N, c), sk =
(P,Q, r̂).

– LossyGen(1λ): Generate random λ-bit primes P,Q such that N = PQ is
admissible. Let r̂ ← Z∗N and set c = ψN,s(0, r̂). Output pk = (N, c).

– y = fpk(x): The function fpk : Dpk → Rpk has domain Dpk = ZNs × Z∗N
and range Rpk = Z∗Ns+1 . It is defined by fpk(x) = cmψN,s(0, r) mod Ns+1,
where x = (m, r) ∈ ZNs × Z∗N .

– x = (m, r)← D(pk): samples a uniformly random value x← Dpk.
– x ← Invtd(y): use the secret key P,Q to computr ψ−1

N,s(y) = (m, r′) and
output x = (m, r) were r = r′/r̂m.

Theorem 5. For any polynomial s = s(λ) the above construction is an (r, r′, d, e, `)-
SLF* where:

r = (s+ 1)2(λ− 1), r′ = (s+ 1)2λ+ λ, d = (s+ 1)2λ, e = (s+ 1)2(λ− 1)− 1, ` = 2λ

In particular, when s = ω(1) then the above construction is a good SLF*.

Proof. We begin by showing each of the SLF properties:

– Surjective Mode: When (pk, td)← SurGen(1λ) is sampled in surjective mode,
the function fpk is a bijection over Dpk ∼= Rpk and Invtd is the inverse of fpk.
In particular, the distribution of (pk, x, y) for x ← D(pk), y = fpk(x) is
identical to sampling y ← Rpk and x = Invtd(y).

– Lossy Mode: When pk← LossyGen(1λ) is sampled in lossy mode, we have

Lpk = {fpk(x) : x ∈ Dpk} = {ψN,s(0, r′) : r′ ∈ Z∗N}

and therefore |Lpk| ≤ logN ≤ 2λ.
– Indistinguishability: This follows immediately from Theorem 4 with m = 0

and m′ = 1.

Next we discuss the augmented properties to show that the above SLF is also
an SLF*.

– Elements of Dpk = ZNs×Z∗N can be represented using d(λ) = (s+1)2λ bits.
– The min-entropy of the distribution D(pk), which is uniform over Dpk is

log |Dpk| ≥ (s+ 1)2(λ− 1)− 1. This is because N ≥ 22(λ−1).
– The range Rpk = Z∗Ns+1 is a group under multiplication.

Incompressible Encodings 21

– We can efficiently embed bit-string of length r(λ) = (s + 1)2(λ − 1) − 1 as
elements of Rpk. We do so, by simply taking the string and interpreting it
as an integer y < Ns+1 in binary. The probability of y 6∈ Z∗Ns+1 is negligible
over the random choice of N = PQ.

– We can obliviously sample from Rpk = Z∗Ns+1 using r′(λ) = ((s+ 1)2λ+ λ)-
bits. We do so by defining sam(pk) to choose a random r′(λ)-bit integer z and
outputting y = z mod Ns+1. This is 2−λ statistically close to sampling y ←
Zs+1
N which is statistically close to sampling y ← Z∗Ns+1 . The explainpk(y)

algorithm outputs a random r′(λ)-bit value z such that z = y mod Ns+1; it
does so by setting t = b2r′/Ns+1c and outputting z = y + v · Ns+1 where
v ← {0, . . . , t}. For any y, z = explain(y) is uniformly random over all z such
that sam(pk; z) = y.

5.2 SLFs from Learning with Errors

Lattice Preliminaries For any integer q ≥ 2, we let Zq denote the ring of
integers modulo q. For a vector e ∈ Zn we write ||e||∞ ≤ β if each entry ei in
e satisfies |ei| ≤ β. Similarly, for a matrix E ∈ Zn×mq we write ||E||∞ ≤ β if
each entry ei,j in E satisfies |ei,j | ≤ β. We say that a distribution χ over Z is
β-bounded if Pr[|x| ≤ β : x← χ] ≤ negl(λ). By default, all vectors are assumed
to be column vectors. For integers q ≥ p ≥ 2 we define the rounding function

d·cp : Zq → Zp : x 7→ b(p/q) · xe

If p divides q then the rounding function divides Zq into p intervals of size q/p
each. If q = 2k and p = 2k′ then dxcp corresponds to outputting the k′ most
significant bits of the k-bit integer x. If x is a vector we let dxcp denote the
component-wise rounding operation.

Learning with Errors (LWE). The learning with errors (LWE) assumption was
introduced by Regev in [48].

Definition 7 ([48]). Let n, q be integers and χ a probability distribution over
Zq, all parameterized by the security parameter λ. The (n, q, χ)-LWE assumption
says that for all polynomial m the following distributions are computationally
indistinguishable

(A,As + e) c
≈ (A,ut) : A← Zm×nq , s← Znq , e← χm,u← Zmq .

The work of [5] showed that the (n, q, χ)-LWE assumption above also implies
security when the secret is chosen from the error distribution χ:

(A,As + e) c
≈ (A,u) : A← Zm×nq , s← χn, e← χm,u← Zmq .

The works of [10,45,48] show that the LWE assumption is as hard as (quan-
tum) solving GapSVP and SIVP under various parameter regimes. In partic-
ular, we will assume that for every q = 2poly(λ) there exists some polynomial

22 Tal Moran and Daniel Wichs

n = poly(λ) and β = poly(λ) along with β-bounded distribution χ such that the
LWEn,q,χ assumption holds. We refer to the above as the LWE assumption when
we don’t specify parameters. This is known to be as hard as solving GapSVP and
(quantum) SIVP with sub-exponential approximation factors, which is believed
to be hard.

The Gadget Matrix and Preimage Sampling. Let q = Bγ be a modulus. We
define the base-B gadget matrix of dimension n as the matrix G ∈ Zn×γnq given
by

G = In × g =


· · ·gt · · ·

· · ·gt · · ·
. . .
· · ·gt · · ·


where g = [1, B,B2, . . . , Bγ−1].

Lemma 2 (Preimage Sampling [27, 42]). Let q = Bγ and n, n′ be some
parameters such that n, n′, log q are polynomial in the security parameter λ and
n ≥ λ. There exist PPT algorithms SamPre,Sam such that the following holds.
Let G ∈ Zn×γnq be the base-B gadget matrix of dimension n. Let A ∈ Zn×n′q

and let A = [A | AR + G] ∈ Zn×mq where m = n′ + γn and R ∈ Zn′×γnq with
||R||∞ ≤ β. Then:
– u← Sam(1λ) samples u ∈ Zmq such that ||u||∞ ≤ m2.5βB,
– u ← SamPreA,R(v) samples u ∈ Zmq such that Au = v and ||u||∞ ≤
m2.5βB,

where the distribution of (u,v) is statistically close to (u′,v′) with u← Sam(1λ),v =
Au, v′ ← Znq ,u′ ← SamPreA,R(v′). Furthermore, the distribution of Sam(1λ)
has min-entropy H∞(Sam(1λ)) ≥ m logB.

The above lemma follows from the works of [27,42]. Firstly, [42] shows that the
lattice Λ⊥(G) has a public basis S ∈ Zm′×m′ with ||S||∞ ≤ B where m′ = γn.
Furthermore, this can be efficiently extended to a basis T ∈ Zm×m for the lattice
Λ⊥(A) using knowledge of A,R, where ||T||∞ ≤ m′βB. This also shows that
the smoothing parameter of ηε(Λ⊥(A)) ≤ ||T|| ≤ m1.5βB. We define Sam(1λ) to
sample from the Discrete Gaussian DZm,s with parameter s = m2βB. Following
[27], the algorithm SamPreA,R(v) uses A,R to find the basis T and uses that
to sample from the Discrete Gaussaian t + DΛ⊥(A),s,−t where t is any solution
to At = v (which is guaranteed to exist and can be found efficiently). For u←
Sam(1λ) the value Au is then statistically close to uniform over Znq and for any
v, the distribution of u′ ← SamPreA,R(v) is exactly the conditional distribution
of u ← Sam(1λ) subject to Au = v. The probability that u ← Sam(1λ) or
u′ ← SamPreA,R(v) have norm greater than s

√
m = m2.5βB is negligible and,

for simplicity, we will modify the algorithms to never output such values. Lastly,
we rely on Lemma 2.11 in [46] and the fact that the min-entropy of the discrete
Gaussian DZm,s is greater than (s/(2ηε(Zm)))m ≥ (s/ logm)m ≥ Bm for the
min-entropy claim.

Incompressible Encodings 23

Constructing of SLFs from LWE Let n > n′ and B, q = Bγ , C, p be param-
eters depending on the security parameter λ and assume that p divides q. Let χ
be some β-bounded error distribution. Define m′ = γn and m = n′ +m′. Let G
be the base-B gadget matrix of dimension n over Zq.

For a public key pk = A ∈ Zn×mq define the function fpk : {−C, . . . , C}m →
Znp via

fpk(x) = dAxcp .
The domain is D = {−C, . . . , C}m and the range is R = Znp . We define all of
the algorithms of the SLF as follows

– (pk, td) ← SurGen(1λ): Choose a random A ← Zn×n′q , R ← χn
′×m′ ,E ←

χn×m
′ and set

pk = A = [A | AR + G + E]
td = (A,R,E)

– pk← LossyGen(1λ): Choose a random A← Zn×n′q , S← Zn′×mq , E← χn×m

and set
A = A · S + E

– x← D(pk): samples a uniformly random value x← Sam(1λ).
– x ← Invtd(y): Choose v ∈ Znq uniformly at random subject to dvcp = y

by choosing each coordinate uniformly from the appropriate interval. Let
A′ = A− [0|E] = [A | AR + G] and output x← SamPreA′,R(v).

For concreteness, we set B = 2λ, we set γ = λ so that q = Bγ = 2λ2

and p = 2λ2−2λ. By the LWE assumption, there are some polynomials n′ =
poly(λ), β = poly(λ) and a β-bounded distribution χ so that the LWEn′,q,χ
assumption hold. We set n = n′ · λ. Lastly, we choose C = dm2.5βBe. This
ensures that x← Sam(1λ) outputs x such that ||x||∞ ≤ C.

Theorem 6. The above construction is an (r, r′, d, e, `)-SLF* under the LWE
assumption where

r = r′ = n log p = n(λ2 − 2λ) = λ2n(1− o(1))
d = dm log(2C + 1)e = (n+ γn)(b+O(logm+ log β) = λ2n(1 + o(1)) = (1 + o(1))r
e = m logB = (n+ γn)λ ≥ λ2n ≥ r
` = n′ log q ≤ (n/λ)λ2 = o(r)

In particular, it is a good SLF*.

Proof. We show each property of SLFs in turn below:

– Surjective Mode: Let (pk = A, td)← SurGen(1λ) be some key pair sampled
in surjective mode with A = [A | AR + G + E] and let A′ = A− [0 | E] =
[A | AR + G]. By Lemma 2, we have

(x,A′x) s
≈ (x′,v)

24 Tal Moran and Daniel Wichs

where x← Sam(1λ), v← Znq and x′ ← SamPreA′,R(v). This implies that

(x, dAxcp) ≡ (x, dA′x + [0 | E]xcp)
s
≈ (x′, dv + [0 | E]x′cp)

s
≈ (x′, dvcp) ≡ (x′,y)

where y ← Znp . Here we use the fact that Pr[dvcp 6= dv + ecp] = negl(λ)
where e = [0 | E]x′. This is because v is uniform over Zq and e has norm τ =
||e||∞ ≤ Cm′β = 2λ+O(logλ). Therefore the only way that dv + ecp 6= dvcp is
if some coordinate of v lies within distance τ of the boundary of an interval
of size q/p that gets rounded to the same value, but for any coordinate this
happens with probability (2τ + 1)/(q/p) = 2λ+O(logλ)/22λ = negl(λ).

– Lossy Mode: For (pk = A)← LossyGen(1λ) we have A = AS+E. We define

Lpk =
{⌈

ASx
⌋
p

: x ∈ {−C, . . . , C}m
}
⊆
{⌈

Ay
⌋
p

: y ∈ Zn
′

q

}
which is of size |Lpk| ≤ qn

′ ≤ 2`. For any x ∈ {−C, . . . , C}m = Dpk and a
random A← LossyGen(1λ) we have

Pr
[
dAxcp 6∈ Lpk

]
≤ Pr

[⌈
ASx + Ex

⌋
p
6=
⌈
ASx

⌋
p

]
≤ negl(λ)

Here, we rely on the fact that τ = ||Ex||∞ ≤ Cmβ = 2λ+O(logλ). If Sx = 0
then the above can never happen. Otherwise ASx is uniformly random over
the choice of A and the above can only happen if some some coordinate of
ASx lies within distance τ of the boundary of an interval of size q/p that
gets rounded to the same value, but for any coordinate this happens with
probability (2τ + 1)/(q/p) = 2λ+O(logλ)/22λ = negl(λ).

– Indistinguishability: We claim that the distributions of pk sampled from ei-
ther LossyGen(1λ) or SurGen(1λ) are both computationally indistinguishable
from the uniform distribution over Zn×mq , and therefore also indistinguish-
able from each other.
Firstly for (pk, td) ← SurGen(1λ) we have pk = [A | AR + G + E]. By
thinking of the columns of R as LWE secrets that come from the error
distribution and A as the LWE coefficients, we get that [A,AR + E] is
computationally indistinguishable from uniform, which also shows that pk =
[A,AR + E] + [0 | G] is indistinguishable from uniform.
Second for pk ← LossyGen(1λ) we have pk = [AS + E]. By thinking of the
columns of S as LWE secrets and A as the LWE coefficients, it is immediate
that pk is computationally indistinguishable from uniform.

Next, we prove that the domain and range satisfy the enhanced properties that
make it an SLF*.

– Elements of Dpk = {−C, . . . , C}m can be represented using d = dm log(2C+
1)e bits.

– By Lemma 2, the min-entropy of the distribution D(pk) = Sam(1λ) is at
least m logB.

– The range Rpk = Znp is a group under addition (or we can interpret Rpk =
{0, 1}n(λ2−2λ) as a group under XOR).

Incompressible Encodings 25

– We can efficiently embed bit-string of length r = n log p = n(λ2 − 2λ) as
elements of Rpk = Znp .

– We can obliviously sample from Rpk = Znp using r′ random bits by equating
elements of Znp with bit-strings of length r′ = n log p.

6 Incompressible Encodings from SLFs

We now construct incompressible encodings in the CRS model. We will show that
these encodings satisfy the stronger notion of HILL-entropic security (Definition
3 from Section 4), which implies incompressibility by Theorem 1. Furthermore,
this means that we can also use this construction to get a composable incom-
pressible encoding in the random oracle model using Theorem 2.

Construction. Given an (r, r′, d, e, `)-SLF*, we define the incompressible encod-
ing scheme in the CRS model as follows:

– crs = (u1, . . . , uk′)← {0, 1}r
′(λ)·k′ , where r′(λ) is the number of random bits

needed to obliviously sample from the range of the SLF and k′ = dk/r(λ)e.
– Enccrs(1λ,m): Choose (pk, td)← SurGen(1λ). Interpret m = (m1, . . . ,mk′) ∈
{0, 1}r(λ)·k′ . For i ∈ [k′], let m̂i = embedpk(mi) ∈ Rpk, yi := sam(pk;ui) ∈
Rpk and ci ← Invtd(yi + m̂i). Output c = (pk, c1, . . . , ck′).

– Deccrs(c = (pk, c1, . . . , ck′)): For i ∈ [k′], let yi := sam(pk;ui), m̂i := fpk(ci)−
yi, mi := embed−1

pk (m̂i). Output (m1, . . . ,mk′).

Theorem 7. Assuming the existence of an (r, r′, d, e, `)-SLF*, the above con-
struction yields an (α, β)-HILL-Entropic encoding scheme with selective security
in the CRS model, where α(λ, k) = k′(λ)d(λ) + poly(λ), β(λ, k) = k′(λ)(e(λ)−
`(λ)) and the crs is of length t(λ, k) = k′(λ) · r′(λ) for k′(λ) = d k

r(λ)e. Further-
more, the encoding is locally decodable.

In particular, any good SLF* yields a good incompressible encoding that is
locally decodable and achieves either:

1. Selective security in the CRS model, where the CRS is of length t(λ, k) =
k(1 + o(1)) + poly(λ).

2. Composable security in the Random Oracle model.

Proof. We only prove the first part of the theorem and the second part (“in
particular...”) follows from Theorems 1 and 2.

The correctness of the scheme and the parameter α (length of encoding),
t (length of CRS) are clear from the construction. To show β-HILL-Entropic
security, define the procedure (crs, c) ← SimEnc(1λ,m) that, on input m =
(m1, . . . ,mk′) ∈ {0, 1}r(λ)·k′ , samples crs = (u1, . . . , uk′) and c = (pk, c1, . . . , ck′)
as follows:

– Choose pk← LossyGen(1λ).
– For i ∈ [k′], choose ci ← D(pk).

26 Tal Moran and Daniel Wichs

– For i ∈ [k′], let m̂i = embedpk(mi) ∈ Rpk. Let yi = fpk(ci)− m̂i if fpk(ci) ∈
Lpk or else set yi = L − m̂i where L is some arbitrary element of Lpk. Let
ui ← explainpk(yi).

First we show that SimEnc satisfies the entropy requirements. For any fixed m,
pk, let CRS = (U1, . . . , Uk′), C = (pk, C1, . . . , Ck′) be random variables for the
output (crs, c)← SimEnc(1λ,m). Then

H∞(C|CRS) ≥
∑
i∈[k′]

H∞(Ci|Ui) ≥ k′(λ)(e(λ)− `(λ))

where the first inequality follows from the fact that (Ci, Ui) are k′ independent
random variables, and the second inequality follows since Ui ∈ Lpk − m̂i is
supported over a set of size 2`(λ). This shows that the SimEnc satisfies the entropy
requirement.

Let m = {mλ} be any ensemble of messages of length |mλ| = k(λ). We show
that the two distributions of (crs, c) are indistinguishable for crs← {0, 1}t(λ,k), c←
Enccrs(1λ,m) versus (crs, c) ← SimEnc(1λ,m). We do so via a sequence of hy-
brids.

Hybrid 0: This is the distribution of crs← {0, 1}t(λ,k), c← Enccrs(1λ,m) where
m = (m1, . . . ,mk′) ∈ {0, 1}r(λ)·k′ . The values are sampled as follows:
– For i ∈ [k′], choose ui ← {0, 1}r

′(λ).
– Choose (pk, td)← SurGen(1λ).
– For i ∈ [k′], let m̂i = embedpk(mi) ∈ Rpk, yi := sam(pk;ui) ∈ Rpk and
ci ← Invtd(yi + m̂i).

– Output (crs = (u1, . . . , uk′), c = (pk, c1, . . . , ck′).
Hybrid 1: Instead of choosing ui ← {0, 1}r

′(λ) and setting yi := sam(pk;ui) ∈
Rpk, we now choose yi ← Rpk and set ui ← explainpk(yi). That is, hybrid 1
is defined as follows:
– Choose (pk, td)← SurGen(1λ).
– For i ∈ [k′], choose yi ← Rpk and ui ← explainpk(yi).
– For i ∈ [k′], let m̂i = embedpk(mi) ∈ Rpk, yi := sam(pk;ui) ∈ Rpk and
ci ← Invtd(yi + m̂i).

– Output (crs = (u1, . . . , uk′), c = (pk, c1, . . . , ck′).
Hybrids 0 and 1 are statistically indistinguishable by the “oblivious sam-
pling” property of the range Rpk of the SLF*.

Hybrid 2: In hybrid 2, instead of choosing yi ← Rpk and setting ci ← Invtd(yi+
m̂i), we choose ci ← D(pk) at random and set yi = fpk(ci) − m̂i. That is,
hybrid 2 is defines as follows:
– Choose (pk, td)← SurGen(1λ).
– For i ∈ [k′], choose ci ← D(pk).
– For i ∈ [k′], let m̂i = embedpk(mi) ∈ Rpk, yi = fpk(ci) − m̂i and ui ←

explainpk(yi).
– Output (crs = (u1, . . . , uk′), c = (pk, c1, . . . , ck′).

Hybrids 1 and 2 are statistically indistinguishable by the requirement on the
surjective mode of the SLF*, which ensures that the two distributions on
(yi, ci) in hybrids 1 and 2 are indistinguishable.

Incompressible Encodings 27

Hybrid 3: In hybrid 3, instead of choosing (pk, td) ← SurGen(1λ) we choose
pk← LossyGen(1λ). Note that td is never used hybrid 2. That is, hybrid 3 is
defined as follows.
– Choose pk← LossyGen(1λ).
– For i ∈ [k′], choose ci ← D(pk).
– For i ∈ [k′], let m̂i = embedpk(mi) ∈ Rpk, yi = fpk(ci) − m̂i and ui ←

explainpk(yi).
– Output (crs = (u1, . . . , uk′), c = (pk, c1, . . . , ck′).

Hybrids 2 and 3 are computationally indistinguishable by the indistinguisha-
bility requirement on the SLF.

Hybrid 4: In hybrid 4, if fpk(ci) /∈ Lpk we set yi = L − m̂i where L is some
arbitrary fixed element of Lpk. That is, hybrid 4 is defined as follows:
– Choose pk← LossyGen(1λ).
– For i ∈ [k′], choose ci ← D(pk).
– For i ∈ [k′], let m̂i = embedpk(mi) ∈ Rpk. Let yi = fpk(ci) − m̂i if
fpk(ci) ∈ Lpk or else set yi = L− m̂i where L is some arbitrary element
of Lpk. Let ui ← explainpk(yi).

– For i ∈ [k′], let m̂i = embedpk(mi) ∈ Rpk, yi = fpk(ci) − m̂i and ui ←
explainpk(yi).

– Output (crs = (u1, . . . , uk′), c = (pk, c1, . . . , ck′).
Hybrids 3,4 are indistinguishable by the lossy mode property of the SLF*. In
particular, for a random pk← LossyGen(1λ) and ci ← D(pk), the probability
that fpk(ci) /∈ Lpk is negligible.

Hybrid 4 is exactly the distribution of (crs, c) ← SimEnc(1λ,m). Therefore, we
have shown that the two target distributions in Hybrid 0 and Hybrid 4 are indeed
indistinguishable, which concludes the proof.

Corollary 1. Under either the DCR or LWE assumptions, there exist good in-
compressible encodings that are locally decodable and achieve either:

1. Selective security in the CRS model, with a CRS of length t(λ, k) = k(1 +
o(1)).

2. Composable security in the Random Oracle model.

Furthermore the complexity of encoding/decoding is k · poly(λ).

References

1. M. Ajtai. Generating hard instances of lattice problems (extended abstract). In
28th ACM STOC, pages 99–108. ACM Press, May 1996.

2. J. Alwen, Y. Dodis, M. Naor, G. Segev, S. Walfish, and D. Wichs. Public-key en-
cryption in the bounded-retrieval model. In H. Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 113–134. Springer, Heidelberg, May / June 2010.

3. J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryptography in
the bounded-retrieval model. In Halevi [30], pages 36–54.

28 Tal Moran and Daniel Wichs

4. J. Alwen, S. Krenn, K. Pietrzak, and D. Wichs. Learning with rounding, revisited -
new reduction, properties and applications. In R. Canetti and J. A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 57–74. Springer, Heidelberg,
Aug. 2013.

5. B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In Halevi [30],
pages 595–618.

6. B. Auerbach, E. Kiltz, B. Poettering, and S. Schoenen. Lossy trapdoor permuta-
tions with improved lossiness. In M. Matsui, editor, CT-RSA 2019, volume 11405
of LNCS, pages 230–250. Springer, Heidelberg, Mar. 2019.

7. B. Barak, R. Shaltiel, and A. Wigderson. Computational analogues of entropy.
In Approximation, randomization, and combinatorial optimization, volume 2764 of
Lecture Notes in Comput. Sci., pages 200–215. Springer, Berlin, 2003.

8. M. Bellare, D. Kane, and P. Rogaway. Big-key symmetric encryption: Resisting
key exfiltration. In Robshaw and Katz [50], pages 373–402.

9. D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay functions. In
H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 757–788. Springer, Heidelberg, Aug. 2018.

10. Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness
of learning with errors. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors,
45th ACM STOC, pages 575–584. ACM Press, June 2013.

11. Z. Brakerski, A. Lombardi, G. Segev, and V. Vaikuntanathan. Anonymous IBE,
leakage resilience and circular security from new assumptions. In J. B. Nielsen and
V. Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages
535–564. Springer, Heidelberg, Apr. / May 2018.

12. D. Cash, Y. Z. Ding, Y. Dodis, W. Lee, R. J. Lipton, and S. Walfish. Intrusion-
resilient key exchange in the bounded retrieval model. In S. P. Vadhan, editor,
TCC 2007, volume 4392 of LNCS, pages 479–498. Springer, Heidelberg, Feb. 2007.

13. E. Cecchetti, B. Fisch, I. Miers, and A. Juels. PIEs: Public incompressible encod-
ings for decentralized storage. In L. Cavallaro, J. Kinder, X. Wang, and J. Katz,
editors, ACM CCS 2019, pages 1351–1367. ACM Press, Nov. 2019.

14. Y. Chen, N. Genise, and P. Mukherjee. Approximate trapdoors for lattices and
smaller hash-and-sign signatures. In S. D. Galbraith and S. Moriai, editors, ASI-
ACRYPT 2019, Part III, volume 11923 of LNCS, pages 3–32. Springer, Heidelberg,
Dec. 2019.

15. C. Cho, N. Döttling, S. Garg, D. Gupta, P. Miao, and A. Polychroniadou. La-
conic oblivious transfer and its applications. In J. Katz and H. Shacham, editors,
CRYPTO 2017, Part II, volume 10402 of LNCS, pages 33–65. Springer, Heidelberg,
Aug. 2017.

16. J.-S. Coron, T. Holenstein, R. Künzler, J. Patarin, Y. Seurin, and S. Tessaro. How
to build an ideal cipher: The indifferentiability of the Feistel construction. Journal
of Cryptology, 29(1):61–114, Jan. 2016.

17. I. Damg̊ard, C. Ganesh, and C. Orlandi. Proofs of replicated storage without
timing assumptions. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019,
Part I, volume 11692 of LNCS, pages 355–380. Springer, Heidelberg, Aug. 2019.

18. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In K. Kim, editor, PKC 2001, volume
1992 of LNCS, pages 119–136. Springer, Heidelberg, Feb. 2001.

19. G. Di Crescenzo, R. J. Lipton, and S. Walfish. Perfectly secure password protocols
in the bounded retrieval model. In Halevi and Rabin [31], pages 225–244.

Incompressible Encodings 29

20. Y. Dodis, A. Jain, T. Moran, and D. Wichs. Counterexamples to hardness amplifi-
cation beyond negligible. In R. Cramer, editor, TCC 2012, volume 7194 of LNCS,
pages 476–493. Springer, Heidelberg, Mar. 2012.

21. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. D. Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. SIAM J. Comput.,
38(1):97–139, 2008.

22. Y. Dodis, S. P. Vadhan, and D. Wichs. Proofs of retrievability via hardness ampli-
fication. In O. Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 109–127.
Springer, Heidelberg, Mar. 2009.

23. S. Dziembowski. Intrusion-resilience via the bounded-storage model. In Halevi and
Rabin [31], pages 207–224.

24. B. Fisch. Tight proofs of space and replication. Cryptology ePrint Archive, Report
2018/702, 2018. https://eprint.iacr.org/2018/702.

25. D. M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev. More constructions
of lossy and correlation-secure trapdoor functions. Journal of Cryptology, 26(1):39–
74, Jan. 2013.

26. R. Garg, G. Lu, and B. Waters. New techniques in replica encodings with client
setup. Cryptology ePrint Archive, Report 2020/617, 2020. https://eprint.iacr.
org/2020/617.

27. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In Ladner and Dwork [39], pages 197–206.

28. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In L. Fortnow and S. P. Vadhan, editors, 43rd ACM STOC,
pages 99–108. ACM Press, June 2011.

29. S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Robustness of the
learning with errors assumption. In A. C.-C. Yao, editor, ICS 2010, pages 230–240.
Tsinghua University Press, Jan. 2010.

30. S. Halevi, editor. CRYPTO 2009, volume 5677 of LNCS. Springer, Heidelberg,
Aug. 2009.

31. S. Halevi and T. Rabin, editors. TCC 2006, volume 3876 of LNCS. Springer,
Heidelberg, Mar. 2006.

32. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

33. C.-Y. Hsiao, C.-J. Lu, and L. Reyzin. Conditional computational entropy, or to-
ward separating pseudoentropy from compressibility. In M. Naor, editor, EURO-
CRYPT 2007, volume 4515 of LNCS, pages 169–186. Springer, Heidelberg, May
2007.

34. A. Jain and K. Pietrzak. Parallel repetition for leakage resilience amplification
revisited. In Y. Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 58–69.
Springer, Heidelberg, Mar. 2011.

35. A. Juels and B. S. Kaliski Jr. Pors: proofs of retrievability for large files. In P. Ning,
S. De Capitani di Vimercati, and P. F. Syverson, editors, ACM CCS 2007, pages
584–597. ACM Press, Oct. 2007.

36. E. Kiltz, A. O’Neill, and A. Smith. Instantiability of RSA-OAEP under chosen-
plaintext attack. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
295–313. Springer, Heidelberg, Aug. 2010.

37. P. Labs. Filecoin: A decentralized storage network. 2017.
38. P. Labs. Proof of replication. 2017.
39. R. E. Ladner and C. Dwork, editors. 40th ACM STOC. ACM Press, May 2008.
40. A. B. Lewko and B. Waters. On the insecurity of parallel repetition for leakage

resilience. In 51st FOCS, pages 521–530. IEEE Computer Society Press, Oct. 2010.

https://eprint.iacr.org/2018/702
https://eprint.iacr.org/2020/617
https://eprint.iacr.org/2020/617

30 Tal Moran and Daniel Wichs

41. U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In
M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages 21–39. Springer, Heidel-
berg, Feb. 2004.

42. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 700–718. Springer, Heidelberg, Apr. 2012.

43. M. Naor. On cryptographic assumptions and challenges (invited talk). In D. Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 96–109. Springer, Heidelberg,
Aug. 2003.

44. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238.
Springer, Heidelberg, May 1999.

45. C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In M. Mitzenmacher, editor, 41st ACM STOC, pages 333–342.
ACM Press, May / June 2009.

46. C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-case as-
sumptions on cyclic lattices. In Halevi and Rabin [31], pages 145–166.

47. C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In
Ladner and Dwork [39], pages 187–196.

48. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In H. N. Gabow and R. Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press,
May 2005.

49. T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with composition: Lim-
itations of the indifferentiability framework. In K. G. Paterson, editor, EURO-
CRYPT 2011, volume 6632 of LNCS, pages 487–506. Springer, Heidelberg, May
2011.

50. M. Robshaw and J. Katz, editors. CRYPTO 2016, Part I, volume 9814 of LNCS.
Springer, Heidelberg, Aug. 2016.

51. H. Shacham and B. Waters. Compact proofs of retrievability. In J. Pieprzyk, editor,
ASIACRYPT 2008, volume 5350 of LNCS, pages 90–107. Springer, Heidelberg,
Dec. 2008.

52. M. van Dijk, A. Juels, A. Oprea, R. L. Rivest, E. Stefanov, and N. Triandopou-
los. Hourglass schemes: how to prove that cloud files are encrypted. In T. Yu,
G. Danezis, and V. D. Gligor, editors, ACM CCS 2012, pages 265–280. ACM
Press, Oct. 2012.

53. D. Wichs. Barriers in cryptography with weak, correlated and leaky sources. In
R. D. Kleinberg, editor, ITCS 2013, pages 111–126. ACM, Jan. 2013.

54. A. C.-C. Yao. Theory and applications of trapdoor functions (extended abstract).
In 23rd FOCS, pages 80–91. IEEE Computer Society Press, Nov. 1982.

55. M. Zhandry. The magic of ELFs. In Robshaw and Katz [50], pages 479–508.

	Incompressible Encodings
	Introduction
	Prior and Concurrent Work
	Our Results
	Our Techniques

	Preliminaries
	Defining Incompressible Encodings
	HILL-Entropic Encodings and Composition
	Surjective Lossy Trapdoor Functions
	SLFs from Decision Composite Residuosity
	SLFs from Learning with Errors

	Incompressible Encodings from SLFs

