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Abstract. Despite the fundamental importance of delay functions, re-
peated squaring in RSA groups (Rivest, Shamir and Wagner ’96) is the
only candidate offering both a useful structure and a realistic level of
practicality. Somewhat unsatisfyingly, its sequentiality is provided directly
by assumption (i.e., the function is assumed to be a delay function).

We prove sharp thresholds on the sequentiality of all generic-ring delay
functions relative to an RSA modulus based on the hardness of factoring
in the standard model. In particular, we show that generically speeding-up
repeated squaring (even with a preprocessing stage and any polynomial
number parallel processors) is equivalent to factoring.

More generally, based on the (essential) hardness of factoring, we prove
that any generic-ring function is in fact a delay function, admitting a sharp
sequentiality threshold that is determined by our notion of sequentiality
depth. Moreover, we show that generic-ring functions admit not only sharp
sequentiality thresholds, but also sharp pseudorandomness thresholds.

1 Introduction

The recent and exciting notion of a verifiable delay function, introduced by
Boneh et al. [BBB+18], and the classic notion of time-lock puzzles, introduced
by Rivest, Shamir and Wagner [RSW96], are gaining significant interest due
to a host of thrilling applications. These include, for example, randomness
beacons, resource-efficient blockchains, proofs of replication and computational
timestamping. A fundamental notion underlying both of these notions is that
of a cryptographic delay function: For a delay parameter T , evaluating a delay
function on a randomly-chosen input should require at least T sequential steps
(even with a polynomial number of parallel processors and with a preprocessing
stage), yet the function can be evaluated on any input in time polynomial in T .
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A delay function can be easily constructed by iterating a cryptographic
hash function. A major benefit of this construction is that its sequentiality is
supported by an idealized-model proof of security: When the hash function is
modeled as a random oracle, its sequentiality is guaranteed in an information-
theoretic sense. Alas, the lack of structure exhibited by this construction seems
to disable its practical use for realizing time-lock puzzles or verifiable delay
functions. Specifically, for time-lock puzzles, iterated hashing does not seem
to admit sufficiently fast generation of input-output pairs [MMV11]; and for
verifiable delay functions it does not seem to enable sufficiently fast verification.1

The only known construction of a delay function that offers both a useful
structure for realizing time-lock puzzles or verifiable delay functions and a realistic
level of practicality is the “repeated squaring” function in RSA groups, defined

via x 7→ x2
T

mod N , underlying the time-lock puzzle of Rivest et al. [RSW96].2

This delay function was recently elegantly extended by Pietrzak [Pie19] and
Wesolowski [Wes19] to additionally yield a verifiable delay function.

The sequentiality of this function, however, is provided directly by assumption.
That is, the function is assumed to be a delay function, and there is currently
no substantial evidence relating its sequentiality to any other, more standard,
assumptions such as the RSA or factoring assumptions. This highly unsatisfying
state of affairs raises the important challenge of obtaining a better understanding
of the sequentiality of repeated squaring in RSA groups. Clearly, given the factor-
ization of the RSA modulus N , it is possible to speed up the computation of the
repeated squaring function by reducing 2T modulo the order of the multiplicative
group Z∗N . Thus, the hardness of factoring is essential for the sequentiality of
repeated squaring in RSA groups, leading to the following ambitious question:

Is speeding-up repeated squaring equivalent to factoring?

More generally, and given that delay functions have become a basic primitive un-
derlying a variety of evolving applications, this urges at exploring other candidate
delay functions, and obtaining a rigorous understanding of the cryptographic
assumptions underlying their sequentiality.

1.1 Our Contributions

We resolve the above-mentioned challenges within the generic-ring model relative
to an RSA modulus, capturing all computations that ignore any specific property

1 Although, asymptotically, for any concrete instantiation of the hash function, such
verification can be based on succinct non-interactive arguments for NP languages
[Kil92, Mic94, GW11], as suggested by Döttling et al. [DGM+19] and Boneh et al.
[BBB+18].

2 There are additional constructions of delay functions which enable extensions to time-
lock puzzles and to verifiable delay functions, but these rely on computational hardness
within algebraic structures that are less-explored from a cryptographic standpoint.
These include the class groups of imaginary quadratic fields [BW88, BBB+18, Pie19,
Wes19] and isogenies of supersingular elliptic curves [FMP+19, Sha19].
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of the representation of ring elements. Our main result is a sharp threshold on
the sequentiality of all generic-ring delay functions based on the hardness of
factoring in the standard model.

Trade-offs between sequentiality and parallelism are still not sufficiently
understood from the complexity-theoretic perspective for computations in the
standard model, and the generic-ring model provides a framework in which the
nature of computation is somewhat better understood on the one hand, and
which captures a wide variety of practical constructions and attacks on the other
hand. In particular, our results apply to the repeated squaring function, for which
we obtain the following theorem:

Theorem 1.1 (informal). Generically speeding-up repeated squaring is equiva-
lent to standard-model factoring.

That is, we prove that any generic-ring algorithm that has a non-negligible

probability in computing the function x 7→ x2
T

mod N for a uniformly chosen
input x← Z∗N using a preprocessing stage and any polynomial number of parallel
processors, each of which performs less than T sequential ring operations, yields
a polynomial-time standard-model factoring algorithm with polynomially-related
success probability and running time.

Sharp sequentiality thresholds. More generally, as mentioned above, we
prove sharp thresholds on the sequentiality of all generic-ring delay functions
based on the hardness of factoring in the standard model. These include, in
particular, all rational (partial) multivariate functions over the ring, as well as
more expressive functions which may depend on the equality pattern among all
intermediate values in the computation.

We prove that every generic-ring function is in fact a delay function, whose
sequentiality depends on the notion sequentiality depth, which we put forward. For
rather simple polynomials, this notion essentially coincides with the logarithm of
their degree (thus leading to Theorem 1.1 for the case of repeated squaring). For
general generic-ring functions, our notion of sequentiality depth can be viewed
as approximating the minimal degree of a rational function that is equivalent
modulo N to the given function. Even for rational functions, however, defining a
notion of equivalence is quite subtle given that the ring we consider is not an
integral domain.

Equipped with our notion of sequentiality depth for any generic-ring function,
we show that it serves as a sharp threshold for the number of sequential ring
operations required in order to evaluate the function on a uniformly-chosen input.

Theorem 1.2 (informal). Let F be a generic-ring function of sequentiality
depth d. Assuming the hardness of factoring in the standard model, it holds that:

– F can be generically evaluated on any input with d sequential rounds of ring
operations issued by a polynomial number of parallel processors.

– F cannot be generically evaluated on a uniformly-chosen input with less than
d sequential rounds of ring operations, even with a preprocessing stage and
any polynomial number of parallel processors.
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Sharp pseudorandomness thresholds. Moreover, we prove that for generic
attackers who preform two few sequential rounds of ring operations, generic-
ring functions provide not only unpredictability but in fact pseudorandomness.
We explore the pseudorandomness of delay functions not merely as a natural
strengthening of sequentiality, but also given that various applications of delay
functions may directly benefit from it (e.g., randomness beacons [BCG15, BGZ16,
PW18, BBB+18]).

Complementing our notion of sequentiality depth, we put forward the notion
of pseudorandomness depth of a generic-ring function, which can be viewed as
an indistinguishability-based variant of sequentiality depth. As above, for rather
simple polynomials the notion of pseudorandomness depth essentially coincides
with the logarithm of their degree (thus leading to a variant of Theorem 1.1 that
considers the pseudorandomness of repeated squaring instead of its sequentiality).
For general generic-ring functions, the pseudorandomness depth is always upper
bounded by the sequentiality depth, and exploring the exact relation between
these two notions is an interesting direction for future research.

We prove that the pseudorandomness depth of any generic-ring function
serves as a sharp threshold for the number of sequential rounds of ring operations
required in order to distinguish between a uniformly chosen ring element and the
output of the function when evaluated on a uniformly-chosen input.

Theorem 1.3 (informal). Let F be a k-variate generic-ring function of pseu-
dorandomness depth d. Assuming the hardness of factoring in the standard model,
it holds that:

– F (x1, . . . , xk) can be generically distinguished from a uniform ring element y,
where x1, . . . , xk are uniformly chosen in the ring, with d sequential rounds
of ring operations issued by a polynomial number of parallel processors,

– F (x1, . . . , xk) cannot be generically distinguished from a uniform ring ele-
ment y, where x1, . . . , xk are uniformly chosen in the ring, with less than d
sequential rounds of ring operations, even with a preprocessing stage and any
polynomial number of parallel processors.

1.2 Related Work

We prove our results within the generic-ring model introduced by Aggarwal and
Maurer [AM09] and further studied by Jager and Schwenk [JS13], as part of the
line of research on idealized models for capturing algebraic constructions and
hardness assumptions (see [Nec94, Sho97, BL96, MW98, Mau05, JS08, JR10,
FKL18] and the references therein). Within their model, which is more suitable
for capturing RSA-based constructions compared to the generic-group model,
Aggarwal and Maurer proved that any generic algorithm that is able to compute
roots of random ring elements relative to an RSA modulus can be used to
produce a standard-model factoring algorithm. That is, they showed that the
hardness of the RSA problem in the generic-ring model is equivalent to the
hardness of factoring in the standard model. Following-up on previous work on



Sharp Thresholds for All Generic-Ring Delay Functions 5

the relationship between the RSA and factoring assumptions (e.g., [BV98, DK02,
Bro05, LR06, JNT07]), this provided substantial evidence towards the security
of RSA-based constructions, showing that under the factoring assumption they
are not vulnerable to a wide variety of practical cryptanalytic attacks.

Our work is directly inspired by the work of Aggarwal and Maurer in relating
the capabilities of generic attackers to the hardness of factoring. The key difference,
however, both conceptually and technically is that, based on the hardness of
factoring, Aggarwal and Maurer proved that certain functions are completely
infeasible to compute in polynomial time, whereas we show a more fine-grained
result: It is infeasible to speed-up functions that can be computed in polynomial
time (even with a preprocessing stage and with any polynomial number of parallel
processors).

Following-up on the work of Aggarwal and Maurer, Jager and Schwenk [JS13]
proved that generically computing the Jacobi symbol of a random ZN element
is equivalent to factoring, although Jacobi symbols are easy to compute non-
generically given the standard integer representation of ZN elements. As pointed
out by Jager and Schwenk, and as discussed above, lower bounds in the generic-
ring model nevertheless capture a wide variety of practical constructions and
cryptanalytic attacks.3

In an independent work, Katz, Loss and Xu [KLX20] proved that within a
quantitative variant of the algebraic group model [FKL18], speeding-up repeated
squaring in the group QRN of quadratic residues modulo N is equivalent to
factoring N , where N is a bi-prime integer. Our results differ from theirs in
a few aspects. Firstly, our result holds for any function which may be defined
in the generic-ring model, whereas they consider only the repeated squaring
function; and we consider both unpredictability and pseudorandomness, whereas
they consider only unpredictability. Secondly, the model in which Katz et al.
prove their result is incomparable to the model in which we prove our results:
On the one hand, in the algebraic group model the adversary may use the
concrete representation of group elements (which is unavailable to the adversary
in the generic-ring model); but on the other hand, the adversary’s output must be
explained by a sequence of group operations (in QRN this translates to a sequence
of multiplications modulo N), whereas the generic-ring model permits the two
ring operations and their inverses (i.e., in addition to multiplication, it also allows
for addition, subtraction and division modulo N). Finally, they consider the group
QRN , whereas we consider its super-group Z∗N . From a technical standpoint,
their proof inherently relies on the fact that QRN is cyclic, which is not the case
for Z∗N .

Various cryptographic notions that share a somewhat similar motivation with
delay functions have been proposed over the years, such as the above-discussed

3 Aggarwal and Maurer also point out that lower bounds in the generic-ring model
remain interesting specifically for problems in which the adversary is required to
output elements in the ring, which is the case for evaluation of delay functions and
for computing roots in the ring, bit is not the case for computing the Jacobi symbol
of ring elements.
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notions of time-lock puzzles and verifiable delay functions (e.g., [RSW96, BGJ+16,
BBB+18, BBF18, Pie19, Wes19, EFK+20, FMP+19]), as well as other candidate
functions [DN92, LW15] and other notions such as sequential functions and proofs
of sequential work (e.g., [MMV11, MMV13, CP18]). It is far beyond the scope
of this work to provide an overview of these notions and constructions, and we
refer the reader to the work of Boneh et al. [BBB+18] for an in-depth discussion
of these notions and of the relations among them.

In the generic-group model, Rotem, Segev and Shahaf [RSS20] have recently
ruled out the possibility of constructing delay functions in cyclic groups, where
the group’s order is known to the attacker. In the random-oracle model, Döttling,
Garg, Malavolta and Vasudevan [DGM+19], and Mahmoody, Smith and Wu
[MSW19] recently proved impossibility results for certain classes of verifiable
delay functions. Our work is of a different flavor, as these works provide negative
evidence for the existence of delay functions and verifiable delay functions,
whereas our work provides positive evidence for the existence of generic-ring
delay functions. Our work is also different from the work of Rotem et al. [RSS20]
in that it considers the generic-ring model in order to capture the RSA group
which is believed to be of an unknown order from a computational perspective;
and from the works of Döttling et al. [DGM+19] and Mahmoody et al. [MSW19]
both in terms of focusing on the seemingly weaker notion of delay functions (i.e.,
we do not require verifiability), and in terms of characterizing the sequentiality
and pseudorandomness of all functions in the more structured and expressive
generic-ring model, based on the hardness of factoring in the standard model.

1.3 Paper Organization

The remainder of the paper is organized as follows. First, in Section 2 we present
the generic-ring model, and in Section 3 we describe our framework for generic-
ring delay functions. In Section 4 we prove our sharp threshold on the sequentiality
of straight-line delay functions. Due to space limitations, our extension of this
threshold to arbitrary generic-ring delay functions, as well as our sharp threshold
on the pseudorandomness of delay functions, are formally presented and proven
in the full version of this paper.

2 The Generic-Ring Model

In this section we present the idealized model of computation that we consider
in this work, slightly refining the generic-ring model introduced by Aggarwal and
Maurer [AM09] as we discuss below (mainly for the purpose of a more detailed
accounting of parallelism vs. sequentiality). Informally, a generic-ring algorithm
which receives one or more ring elements as input is restricted to handling these
elements only via the two ring binary operations and their inverses, and by
checking equality between two ring elements.

More formally, we consider generic computations in a ring R. Concretely,
following Aggarwal and Maurer, the ring R we consider is that of integers modulo
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N , denoted ZN , for N which is the product of two primes and is generated
by a modulus-generation algorithm ModGen(1λ), where λ ∈ N is the security
parameter. All generic-ring algorithms in this paper receive the modulus N as
an explicit bit-string input. Any computation in this model is associated with a
table B, where each entry of this table stores an element of R, and we denote by
Vi the ring element that is stored in the ith entry.

Generic-ring algorithms access this table via an oracle O, providing black-box
access to B as follows. A generic-ring algorithm A that takes d ring elements as
input does not receive an explicit representation of these elements, but instead,
has oracle access to the table B, whose first d entries store the elements of
R corresponding to the d ring elements that are included in A’s input. That
is, if the input of an algorithm A consists of d ring elements x1, . . . , xd, then
from A’s point of view the input consists of “pointers” x̂1, . . . , x̂d to the ring
elements x1, . . . , xd (these elements are stored in the table B). Accordingly, when
a generic-ring algorithm outputs a ring element y ∈ R, it actually outputs a
pointer which we denote by ŷ, pointing to an entry in B containing y.4 The
oracle O allows for two types of queries:

– Ring-operation queries: These queries enable computation of the binary
ring operations and their inverses. On input (i, j, ◦) for i, j ∈ N and ◦ ∈
{+,−, ·, /}, the oracle checks that the ith and jth entries of the table B
are not empty and are not ⊥, and in case that ◦ is / (i.e., the inverse of
the multiplication operation), the oracle also checks that the result of Vj is
invertible in the ring. If all checks pass, then the oracle computes Vi ◦ Vj and
stores the result in the next available entry. Otherwise, it stores ⊥ in the
next available entry.

– Equality queries: On input (i, j,=) for i, j ∈ N, the oracle checks that the
ith and jth entries in B are not empty and are not ⊥, and then returns 1 if
Vi = Vj and 0 otherwise. If either the ith or the jth entries are empty or are
⊥, the oracle ignores the query.

Straight-line functions. Looking ahead, we will first prove our results for the
case in which the delay function is a straight-line program, which is a deterministic
generic-ring algorithm that does not issue any equality queries. We refer to such
delay functions as straight-line delay functions. Then, we will extend our result
to arbitrary generic-ring functions that may issue both ring-operations queries
and equality queries.

Parallel computation. In order to reason about delay functions in this model,
we need to extend it in a way which accommodates parallel computation. A
generic-ring algorithm with w parallel processors invokes the oracle O with
ring-operation queries in “rounds”, where in each round, at most w parallel
ring-operation queries may be issued. We assume some order on the processors

4 We assume that all generic-ring algorithms receive a pointer to the multiplicative
identity 1 and a pointer to the additive identity 0 as their first two inputs (we capture
this fact by always assuming that the first two entries of B are occupied by 1 ∈ R
and 0 ∈ R), and we will forgo noting this explicitly from this point on.
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so that the results of the queries are also placed in the table B according to this
order. We emphasize, however, that the action that the oracle takes in response
to each of the queries in a certain round is with respect to the contents of the
table B before this round; meaning, the elements passed as input in the query
issued by a processor in some round cannot depend on the result of a query made
by any other processor in the same round. We emphasize that parallelism will
not play a role when it comes to equality queries, as we allow algorithm to issue
all possible such queries and do not account for their sequentiality (i.e., we prove
our thresholds for the number of ring-operation queries considering only the total
number of equality queries in our lower bound, and without issuing any equality
queries in our upper bound).

We are interested in three main efficiency measures when considering generic-
ring algorithms: (1) The number of parallel processors; (2) the number of sequen-
tial rounds in which ring-operation queries are issued; and (3) the algorithm’s
internal computation, measured via its running time.

Interactive computations. We consider interactive computations in which
multiple algorithms pass ring elements (as well as non-ring elements) as inputs
to one another. This is naturally supported by the model as follows: When a
generic-ring algorithm A outputs k ring elements (along with a potential bit-
string σ), it outputs the indices of k (non-empty) entries in the table B (together
with σ). When these outputs (or some of them) are passed on as inputs to a
generic-ring algorithm C, the table B is re-initialized, and these values (and
possibly additional group elements that C receives as input) are placed in the
first entries of the table.

Polynomial interpretation. Every ring element computed by the oracle O in
response to a ring-operation query made by a generic-ring algorithm, can be
naturally identified with a pair of polynomials in the ring elements given as input
to the algorithm. Formally, for a generic-ring algorithm which receives d ring
elements as input (in addition to the multiplicative identity 1 and the additive
identity 0), we identify the ith input element with the pair (Xi, 1) where Xi is
an indeterminate of the polynomials we will consider (the 1 and 0 elements are
identified with the pairs (1, 1) and (0, 1), respectively). The rest of the polynomials
are defined recursively: For a ring-operation query (i, j, ◦), let (Pi(X), Qi(X))
and (Pj(X), Qj(X)) be the pairs of polynomials identified with Vi and with Vj ,
where X = (X1, . . . , Xd). We define the pair of polynomials identified with the
result of the query as:

(P (X), Q(X)) =


(Pi(X) ·Qj(X) + Pj(X) ·Qi(X), Qi(X) ·Qj(X)) , if ◦ is +
(Pi(X) ·Qj(X)− Pj(X) ·Qi(X), Qi(X) ·Qj(X)) , if ◦ is −
(Pi(X) · Pj(X), Qi(X) ·Qj(X)) , if ◦ is ·
(Pi(X) ·Qj(X), Qi(X) · Pj(X)) , if ◦ is /

Note that this definition extends to the interactive case, in which one generic-ring
algorithm A receives d ring elements x1, . . . , xd as input, computes some ring
element from them which is associated with the pair of polynomials (P (X), Q(X)),
and then passes this ring element as input to another generic-ring algorithm C.
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Then, this definition allows us to reason about the values computed by C as
pairs of polynomials in the elements x1, . . . , xd.

Each pair of polynomials is naturally interpreted as a rational function (by
setting the first polynomial to be the numerator and the second to be the
denominator). For the time being, however, we simply think of these polynomials
as polynomials in Z[X], and so the problem of division by 0 does not arise yet, since
the second polynomial is always non-zero as a polynomial in Z[X]. For a straight-
line program S, we will denote by (PSσ [i, j], QSσ [i, j]) the pair of polynomials
computed by the jth query of the ith processor of S, when invoked on explicit
input σ ∈ {0, 1}∗. For the special case of a straight-line program S that outputs a
single ring element, the pair of polynomials corresponding to this element is fixed
for every explicit input σ, and we denote it by

(
PSσ , Q

S
σ

)
. When we are working

in the ring ZN , we will sometimes consider all of the aforementioned polynomials
as polynomials in ZN [X] (instead of allowing arbitrary integer coefficients). This
is naturally done by reducing all coefficients of the polynomial modulo N , and
will be clear from context.

Passing ring elements explicitly. Throughout the paper we refer to values
as either “explicit” ones or “inexplicit”/“implicit” ones. Explicit values are all
values whose representation (e.g., binary strings of a certain length) is explicitly
provided to the generic algorithms under consideration. Inexplicit values are all
values that correspond to ring elements and that are stored in the table B – thus
generic algorithms can access them only via oracle queries. We will sometimes
interchange between providing ring elements as input to generic-ring algorithms
inexplicitly, and providing them explicitly. Note that moving from the former to
the latter is well defined, since a generic-ring algorithm A that receives some of
its input ring elements explicitly can always simulate the computation as if they
were received as part of the table B. For a ring element x, we will differentiate
between the case where x is provided explicitly and the case where it is provided
implicitly via the table B, using the notation x in the former case, and the
notation x̂ in the latter.

In cases where all inputs to a generic-ring element A are provided explicitly,
we may be interested in obtaining its outputs explicitly as well (note that this is
indeed possible, since in this case the algorithm may preform all ring operations
internally in an explicit manner). When this is the case, we will use the oracle
notation AR instead of AO, where R is the ring being considered. For example,
consider a generic-ring algorithm A which receives two ring elements x1 and x2
as input, and outputs x1 + x2, and the is ring Z15 of integers modulo 15. The
notation AZ15(7, 10) indicates that the output of A (i.e., the integer 2) is obtained
explicitly as an integer.

Finally, note that if we replace a proper subset of the input ring-elements to
a generic algorithm A with explicit integers, than the intermediate ring elements
which A computes via the oracle O can be interpreted as pairs of polynomials in
the remaining inexcplicit ring elements, as described above.

Comparison with the model of Aggarwal and Maurer. Our model slightly
refines that of Aggarwal and Maurer [AM09] in the following natural respects:
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– As mentioned above, we consider algorithms with possibly many parallel
processors, whereas Aggarwal and Maurer consider algorithms which may
invoke the oracle on a single query at a time. Considering multiple processors
is essential when reasoning about delay function, as their security guarantees
should hold even against parallel adversaries.

– Algorithms in our model may receive multiple ring elements as input, as
opposed to a single ring element in the model of Aggarwal and Maurer. This
allows us to reason about the sequentiality of computing arbitrary generic
functions in the ring (e.g., multivariate rational functions).

– We consider interactive computations, which allows us to reason about
security properties which are defined via an interactive security experiment.
In particular, it allows us to account for a preprocessing stage when reasoning
about delay functions.

– Algorithms in our model may receive an explicit bit-string input (in addition
to the modulus N), which allows us to consider families of functions (via
the delay parameter T passed to the function evaluation algorithm), and
explicit states passed from one adversarial algorithm to another in interactive
security experiments.

In addition to the above extensions, it should be noted that Aggarwal and
Maurer present graph-based definitions for straight-line programs and generic-
ring algorithms, which we forgo here. However, both our definitions and the ones
in the work of Aggarwal and Maurer can be rendered as special cases of Maurer’s
generic model of computation [Mau05]; and when restricting our definitions to
single-processor algorithms with one ring element input, they are equivalent to
the ones found in the work of Aggarwal and Maurer.

The reason we choose to base our definitions on oracle-aided algorithms is
that we find it more convenient to explicitly consider the running time of such
algorithms in terms of their internal computational efforts. This comes up when
analyzing the running time of our factorization algorithms (in the plain model)
outputted by the reduction. Even when considering the simple case where the
input to the reduction is a straight-line program; once this program receives an
explicit input (e.g., the modulus N) in addition to ring elements, its queries may
be (and are indeed expected to be) a function of this input. Since this function is
not necessarily efficiently computable, reasoning about the running time of the
underlying straight-line program is necessary.

3 Generic-Ring Delay Functions

A generic-ring delay function in the ring ZN is given by a generic-ring algorithm
DF. This is a deterministic generic-ring algorithm, which receives as input the
modulus N , the delay parameter T and implicit access, as defined in Section 2,
to kin ring elements x1, . . . , xkin , and outputs (implicitly) a single ring element.5

5 For concreteness, we consider the case where the output consists of a single ring
element, and note that all of our bounds easily extend to the case where the output
consists of several ring elements and an explicit bit-string.
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In this section, we define the security of generic-ring delay functions (see Section
3.1) and our notions of sequentially depth and pseudorandomness depth (see
Section 3.2).

3.1 The Security of Generic-Ring Delay Functions

We consider two definitions that capture the fact that a generic-ring delay function
needs to be “inherently sequential”. The first requires that for a delay parameter T ,
no algorithm which makes less than T sequential rounds of ring-operation queries
should be successful with non-negligible probability in evaluating a delay function
on a randomly-chosen input – even with any polynomial number of parallel
processors and with a preprocessing stage. This definition is an adaptation of the
sequentiality definition for verifiable delay functions of Boneh et al. [BBB+18] to
the generic-ring model.

Definition 3.1 (Sequentiality). Let kin = kin(λ), T = T (λ) and w = w(λ) be
functions of the security parameter λ ∈ N. A generic-ring delay function DF is
(T,w)-sequential if for every polynomial q = q(·, ·) and for every pair A = (A0, A1)
of generic-ring algorithms, where A0 issues at most q(λ, T ) ring-operation queries
and A1 consists of at most w(λ) parallel processors each of which issues at most
T sequential rounds of ring-operation queries, there exists a negligible function
ν(·) such that

Pr
[
ExpSeqDF,A(λ) = 1

]
≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment ExpSeqDF,A(λ) is defined as
follows:

1. N ← ModGen(1λ).

2. st← AO0 (N,T ).

3. ŷ := DFO(N,T, x̂1, . . . , x̂kin), where x1, . . . , xkin ← ZN .

4. ŷ′ ← A1
O(N, st, x̂1, . . . , x̂kin).

5. Output 1 if y′ = y, and otherwise output 0.

Note that the state st passed from A0 to A1 in the definition of ExpSeqDF,A(λ) may
include both explicit bit-strings and implicit ring elements.

Our second definition is a seemingly stronger one, and it requires that the for
a delay parameter T , no algorithm which makes less than T sequential rounds
of ring-operation queries should be successful with non-negligible probability in
distinguishing between the true output of the function and a uniformly chosen
ring element – even with any polynomial number of parallel processors and with
a preprocessing stage. Satisfying this definition is desirable not merely because it
is stronger in principal, but also because applications of delay functions often do
rely on the assumption that the output of the function is pseudorandom for any
algorithm which runs in sequential time which is less than the delay parameter
T . Such application include for example the use of verifiable delay-functions
for constructing randomness beacons (see, for example [BCG15, BGZ16, PW18,
BBB+18] and the references within).



12 L. Rotem and G. Segev

Definition 3.2 (Pseudorandomness). Let kin = kin(λ), T = T (λ) and w =
w(λ) be functions of the security parameter λ ∈ N. A generic-ring delay function
DF whose input includes kin ring elements is (T,w)-pseudorandom if for every
polynomial q = q(·, ·) and for every pair A = (A0, A1) of generic-ring algorithms,
where A0 issues at most q(λ, T ) ring-operation queries and A1 consists of at
most w(λ) parallel processors each of which issues at most T sequential rounds
of ring-operation queries, there exists a negligible function ν(·) such that

AdvDF,A(λ)
def
=
∣∣∣Pr
[
ExpSPDF,A,0(λ) = 1

]
−
[
ExpSPDF,A,1(λ) = 1

]∣∣∣ ≤ ν(λ)

for all sufficiently large λ ∈ N, where for b ∈ {0, 1}, the experiment ExpSPDF,A,0(λ)
is defined as:

1. N ← ModGen(1λ).

2. st← AO0 (N,T ).

3. y0 ← ZN .

4. ŷ1 := DFO(N,T, x̂1, . . . , x̂kin), where x1, . . . , xkin ← ZN .

5. b′ ← A1
O(N, st, x̂1, . . . , x̂kin , ŷb).

6. Output b′.

3.2 The Depth of Generic-Ring Delay Functions

Our bounds on the sequentiality and pseudorandomness of generic-ring delay
functions depend on the notions of sequentiality depth and pseudorandomness
depth that we now introduce. We will begin by defining these notions for straight-
line functions, and then we will extend them to arbitrary generic-ring functions.

Straight-line delay functions. We begin, in Definition 3.3, by defining the
sequentiality depth of a straight-line delay function. Informally, if a straight-line
delay function DF has sequentiality depth at most d, it means that it is possible
(with high probability and with a preprocessing stage) to compute a rational
function which is equivalent modulo N to the rational function computed by DF
using d or less sequential rounds of ring operations. By equivalence of rational
functions, we mean that the numerator of the difference between the two functions
is the zero polynomial modulo N .

We remind the reader that for a straight-line program S and explicit input σ,
the pair (PSσ , Q

S
σ ) describes the output of S on the explicit input σ, as a pair of

polynomials (which we may think of as a rational function) in the ring elements
given as input to S (see Section 2).

Definition 3.3. Let T = T (λ) and d = d(λ) be functions of the security param-
eter λ ∈ N, and let DF be a straight-line delay function. We say that DF has
sequentiality depth at least d if for every pair G = (G0, G1) of polynomial-time
generic-ring algorithms, where G1 is a straight-line program with polynomially-
many parallel processors each of which issues at most d− 1 sequential rounds of
ring-operation queries, there exists a negligible function ν(·) such that

Pr
[
ExpSeqDepth

DF,G (λ) = 1
]
≤ ν(λ),
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for all sufficiently large λ ∈ N, where the experiment ExpSeqDepth
DF,G (λ) is defined as

follows:

1. N ← ModGen(1λ).

2. st← GO0 (N,T ), where st = (st0, ŝt1, . . . , ŝt`).

3. Output 1 if
gnum, gden 6≡ 0 (mod N)

and
PDF
N,T · gden −QDF

N,T · gnum ≡ 0 (mod N),

where (gnum(X), gden(X)) = (PG1

N,T,st0
(st1, . . . , st`,X), QG1

N,T,st0
(st1, . . . , st`,X)).

Otherwise, output 0.

If the sequentiality depth of DF is not at least d+ 1, we say that it is at most d.
If the sequentiality depth of DF is at least d and at most d, we say that DF has
sequentiality depth d.

We clarify that gnum and gden are polynomials only in the formal variables
replacing the input elements to the function DF, and are obtained from G1

by fixing its explicit input to be (N,T, st0) and assigning the integer values
st1, . . . , st` to the variables replacing the ring elements passed from G0 to G1 as
part of the state. By the notation P ≡ 0 (mod N) for a polynomial P , we mean
that all of the coefficients of P are 0 modulo N . Note that a k-variate polynomial
might have a value of 0 for all inputs in (ZN )k, but still have non-zero coefficients
modulo N .

Intuitively, Definition 3.3 captures the fact that if we multiply both the
numerator and the denominator of the function computed by DF by the same
polynomial p, then this does not change the number of sequential ring operations
required to evaluate the function. For example, the function fN,T (X1, X2, X3) =(
X2T

1 ·X2

)/(
X2T

1 ·X3

)
(mod N) can be evaluated using a single ring opera-

tion, since it is equivalent to the function gN,T (X1, X2, X3) = X2/X3 (mod N).
On the other hand, the function fN,T (X) = Xϕ(N) (mod N) (where ϕ is Eu-
ler’s totient function) is not equivalent under our definition to the function
gN,T (X) = 1, even though the two functions agree almost everywhere in the ring.

Note that since we wish to relate Definition 3.3 to Definition 3.1, allowing for a
preprocessing stage is paramount. Consider for example the function fN,T (X) =
2T ·X (mod N). Without preprocessing, trivially evaluating this function requires
T + 1 ring operations. However, T of them are independent of the input, and
may be moved to the preprocessing stage, leaving just a single ring operation to
be computed in the online stage.

We now define, in Definition 3.3, the pseudorandomness depth of a straight-
line delay function. The definition will use the notation PG1

N,T,st0
(st1, . . . , st`,X,

PDF
N,T (X)/QDF

N,T (X)) for a straight-line program G1. This can be seen as the
polynomial obtained by invoking G1 on explicit input (N,T, st0), ` explicit state
ring elements, kin input ring elements x̂1, . . . , x̂kin , and an ring element ŷ which is
the output of DF on x̂1, . . . , x̂kin , and looking at the numerator of the output of G1
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as a polynomial in the variables X1, . . . , Xkin replacing x̂1, . . . , x̂kin (as discussed
in Section 2).

Definition 3.4. Let T = T (λ) and d = d(λ) be functions of the security parame-
ter λ ∈ N, and let DF be a straight-line delay function. We say that DF has pseu-
dorandomness depth at least d if for every pair G = (G0, G1) of polynomial-time
generic-ring algorithms, where G1 is a straight-line program with polynomially-
many parallel processors each of which issues at most d−1 rounds of ring-operation
queries, there exists a negligible function ν(·) such that

Pr
[
ExpPRDepth

DF,G (λ) = 1
]
≤ ν(λ),

for all sufficiently large λ ∈ N, where the experiment ExpPRDepth
DF,G (λ) is defined as

follows:

1. N ← ModGen(1λ).

2. st← GO0 (N,T ), where st = (st0, ŝt1, . . . , ŝt`).

3. Output 1 if
PG1

N,T,st0
(st1, . . . , st`,X, Y ) 6≡ 0 (mod N)

and

PG1

N,T,st0

(
st1, . . . , st`,X,

PDF
N,T (X)

QDF
N,T (X)

)
≡ 0 (mod N)

Otherwise, output 0.

If the pseudorandomness depth of DF is not at least d+ 1, we say that it is at
most d. If the pseudorandomness depth of DF is at least d and at most d, we say
that DF has pseudorandomness depth d.

Informally, if the pseudorandomness depth of a straight-line delay function
DF which takes in kin ring elements is at most d, it means that it is possible (with
high probability and with a preprocessing stage) to compute a (kin + 1)-variate
polynomial p which is not the zero polynomial, but becomes the zero (kin-variate)
polynomial when the last variable is replaced with the output of the rational
function computed by DF (in the previous kin input variables). Intuitively, this
notion captures the following trivial attack: Given access to x̂1, . . . , x̂kin and ŷ,
evaluate p at these inputs and zero test the result. Note that if the sequentiality
depth of DF is at most d, then so is its pseudorandomness depth.

Sequentiality and pseudorandomness depths vs. degree. The sequential-
ity and pseudorandomness depths of a straight-line delay function are inherently
related to the degree the rational function it computes. For a rational function
f = fnum/fden, we let its degree be the difference (in absolute value) between
the degrees of its numerator and denominator polynomials, where by degree of a
multi-variate polynomial, we mean its total degree;6 i.e.,

deg(f) = |deg(fnum)− deg(fden)| .
6 E.g., the degree of the polynomial X1X2 is 2.
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Informally, the following claim establishes that the sequentiality and pseudoran-
domness depths of a straight-line delay function DF are lower bounded by the
logarithm of the degree of the rational function it computes.

Before stating the claim (which is proved in the full version of the paper), we
introduce the following notation. For a concrete modulus N ∈ N outputted by
ModGen(1λ), denote by ExpSeqDepth

DF,G (λ,N) and ExpPRDepth
DF,G (λ,N) the experiments

obtained from ExpSeqDepth
DF,G (λ) and ExpPRDepth

DF,G (λ) by fixing the modulus to be N
(instead of sampling it at the onset), respectively.

Claim 3.5 Let T = T (λ), d = d(λ) and kin = kin(λ) be functions of the security
parameter λ ∈ N, let N be an integer outputted by ModGen(1λ) and let DF be
a straight-line delay function. Let fnum, fden ∈ ZN [X1, . . . , Xk] such that f =
fnum/fden is the rational function computed by DF on explicit input (N,T ). If
all coefficients of fnum and of fden are coprime to N , then for every pair G =
(G0, G1) of polynomial-time generic-ring algorithms, where G1 is a straight-line
program with polynomially-many parallel processors each of which issues at most
d sequential rounds of ring-operation queries, it holds that

1. If Pr
[
ExpSeqDepth

DF,G (λ,N) = 1
]
> 0 then d(λ) ≥ log (deg(f)).

2. If Pr
[
ExpPRDepth

DF,G (λ,N) = 1
]
> 0 then d(λ) ≥ log (deg(f)).

The depth of repeated squaring. As discussed in Section 1.1, for rather
simple polynomials our notions of sequentiality depth and pseudorandomness
depth essentially coincides with the logarithm of their degree. This is the case
with the repeated squaring function of Rivest, Shamir and Wagner [RSW96],
where both notions exactly coincide with the logarithm of its degree. Specifically,
consider the repeated squaring function: For a modulus N and a delay parameter

T = T (λ), the function is defined by fRSWN,T (X) = X2T (mod N). Of course, fRSWN,T

may be evaluated using T ring operations, so its sequentiality depth is at most
T . Claim 3.5 shows that it is exactly T , since any function computed with less
than T ring operations will not be equivalent (as specified by Definition 3.3) to
fRSWN,T . Moreover, Claim 3.5 shows that the pseudorandomness depth of repeated
squaring is also exactly T .

Arbitrary generic-ring delay functions. We now extend the above notions
to arbitrary generic-ring delay functions. Informally, in case that a delay function
DF issues equality queries, we consider the straight-line program obtained from
DF by setting the responses to all equality queries to be negative, except those
which are trivially satisfied. As formally defined below, by a trivially satisfied
equality query we mean that the polynomial it induces is the all-zero polynomial
modulo N .

More formally, for a generic-ring delay function DF, we denote by SLP(DF) the
straight-line program obtained from DF by setting the responses to all non-trivial
equality queries to be negative (and to all trivial queries to be positive). This may
be done one query at a time: At each step, consider the first of the equality queries
remaining (recall that DF is deterministic), and let (P,Q) and (P ′, Q′) be the pairs
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of polynomials associated with it. If P ·Q′ − P ′ ·Q ≡ 0 (mod N), then assume
(without querying) that the answer is answered affirmatively, and otherwise
assume that it is answered negatively (if any of P,Q, P ′ and Q′ is ⊥, then treat
the query as ignored). Note that this transformation is not necessarily efficient,
but it need not be, since it is only used to define the notions of sequentiality depth
and pseudorandomness depth for arbitrary generic-ring delay functions. Equipped
with this notation, Definition 3.6 captures the above informal description.

Definition 3.6. Let T = T (λ), dSeq = dSeq(λ) and dPR = dPR(λ) be functions of
the security parameter λ ∈ N, and let DF be a generic-ring delay function. We
say that DF has sequentiality depth at least (resp. at most) dSeq if SLP(DF) has
sequentiality depth at least (resp. at most) dSeq. We say that DF has pseudoran-
domness depth at least (resp. at most) dPR if SLP(DF) has sequentiality depth at
least (resp. at most) dPR.

4 A Sharp Sequentiality Threshold for Straight-Line
Delay Functions

In this section we present our sharp threshold for the number of sequential
rounds of ring-operation queries that are required for evaluating straight-line
delay functions (i.e., rational functions in their input elements). Our lower bound
is proven in Section 4.1, and its matching upper bound is proven in Section 4.2.

4.1 From Speeding Up Straight-Line Delay Functions to Factoring

Let DF be a straight-line delay function that has sequentiality depth at least
d, for some function d = d(λ) of the security parameter (recall Definition 3.3).
We prove the following theorem, showing that any generic-ring algorithm that
computes DF on a uniform input with a non-negligible probability in less than d
sequential rounds of ring-operation queries, can be transformed into a factoring
algorithm in the standard model.

Theorem 4.1. Let T = T (λ) and kin = kin(λ) be functions of the security
parameter λ ∈ N, and let DF be a straight-line program delay function receiving
kin ring elements as input. Then, for every function ε = ε(λ), for every polynomial
p(·), and for every pair G = (G0, G1) of probabilistic polynomial-time generic-ring
algorithms such that G1 has polynomially many parallel processors each of which
issues at most qop = qop(λ) sequential rounds of ring-operation queries and the
sequentiality depth of DF is at least qop + 1, there exists an algorithm A running
in time poly(λ, log(1/ε)) for which the following holds: For all sufficiently large
λ ∈ N, if

Pr
[
ExpSeqDF,G(λ) = 1

]
≥ 1

p(λ)

then
Pr

N←ModGen(1λ)
(a,b)←A(N,T )

[(N = a · b) ∧ (a, b ∈ [N − 1])] > 1− ε(λ).
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The proof of Theorem 4.1 makes use of Lemma 4.2 stated below. We first
introduce some notation: For an integer N ∈ N and for a k-variate polynomial
P , we denote by αN (P ) the density of roots of P in ZN ; i.e.,

αN (P ) = Pr
x1,...,xk←ZN

[P (x1, . . . , xk) = 0 (mod N)] .

Roughly speaking, Lemma 4.2 states that given any straight-line program whose
output is a polynomial P in its input elements, we can construct a standard-model
algorithm which succeeds in factoring N with probability which is proportional to
αN (P ). Recall that for a straight-line program S, the pair (PSN,σ, Q

S
N,σ) denotes

the output of S on explicit input (N, σ), as a pair of polynomials in the input
ring elements to S (see Section 2).

Lemma 4.2. Let k = k(λ), t = t(λ), w = w(λ), ` = `(λ) and q = q(λ) be
functions of the security parameter λ ∈ N. For any generic-ring straight-line
program S which takes as input k ring elements, a modulus N and an additional
explicit `-bit string, and runs in time t with w parallel processors, while making
at most q sequential rounds of ring-operation queries, there exists an algorithm
AS which runs in time O

(
t+ λ5 · k3 + w3 · q3

)
, such that the following holds:

For every λ ∈ N, for every N which is outputted with positive probability by
ModGen(1λ) and for every bit-string σ ∈ {0, 1}` which S may receive as an
additional explicit input, if PSN,σ 6≡ 0 (mod N) then

Pr
(a,b)←AS(N,σ)

[
N = a · b

a, b ∈ [N − 1]

]
≥

αN (PSN,σ)− (k − 1) · 2−λ+1

(1− 2−λ)
k−1 · 8k · (2λ · k + w · q)

.

We first prove Theorem 4.1 assuming Lemma 4.2 and then turn to prove
Lemma 4.2. We start by giving a high-level overview of the proof, which ignores
many of the technical difficulties arising in the formal analysis. Given G = (G0,
G1), our factoring algorithm A operates in three stages. In the first stage, it
invokes G0 in order to sample a state st,7 samples random coins ρ for G1, and
initializes a data structure η which will be used in order to keep track of the
likely response pattern to G1’s equality queries. The second stage proceeds in
iterations – one per each equality query made by G1. Each such equality query
naturally induces a polynomial when fixing st, ρ and the responses to all previous
equality queries according to the information in η. In the ith iteration, A tries
to factor N using the factoring algorithm guaranteed by Lemma 4.2 for the
polynomial induced by the ith equality query. If unsuccessful, A updates η with
the likely response to the ith query, by checking it on a uniformly sampled input.
In the third stage, A considers the polynomial induced by an equality between
the output of DF and the output of G1 when it is ran on the state st and with
random coins ρ, and when the responses to its equality queries are in accordance
with the learned η. Our algorithm then tries to factor N using the factoring

7 For the sake of this high-level overview, assume that st does not include any implicit
ring elements. In the full proof, this assumption is lifted by noting that since A is the
one that runs G0 it has explicit knowledge of the integer values of these elements.
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algorithm guaranteed by Lemma 4.2 for the straight-line program computing
this induced polynomial.

The analysis considers two cases. In the first case, there exists an equality
query which is “balanced” in the sense that it is affirmatively answered with
probability which is sufficiently bounded away from both 0 and 1, conditioned
on all previous queries being answered with the more likely response. When this
is the case, we show that in the iteration which corresponds to the first such
query in the second stage of A, it succeeds in factoring N with high probability
since: (1) with high probability the information in η indeed reflects the likely
responses to previous queries; and (2) the polynomial induced by the this query
is non-trivial and has a high rate of roots. In the second case, all equality queries
of G1 are sufficiently non-balanced so that the success probability of G is not
reduced by too much when conditioning on all of these queries being answered
in the more likely manner. If this is the case, then whenever the information
in η is consistent with the likely responses (which happens with high enough
probability), the rate of roots of the polynomial considered in the third stage of
A is proportional to the success probability of G. We use the fact that G1 makes
less ring-operation queries than the sequentiality depth of DF to argue that this
polynomial is non-trivial. We proceed to the formal proof.

Proof of Theorem 4.1. Let G = (G0, G1) be a pair of generic-ring algorithms
as in the statement of Theorem 4.1. Let qeq = qeq(λ) and w = w(λ) denote
the bound on the number of equality queries made by G1, and the number
of parallel processors of G1, respectively, and let r = r(λ) be a bound on the
number of random coins used by G1. For a modulus N , a state st outputted by
GZN

0 (N,T ), an index i ∈ [qeq], random coins ρ ∈ {0, 1}r and a binary string η of
length at most qeq bits, we define a related polynomial f [G1, N, st, i, ρ, η]. This is
the polynomial obtained from G1 by running it on explicit input (N,T, st) and
randomness ρ up to (and not including) the ith equality query, while setting
the reply to each of the first i − 1 equality queries of G1 according to η: The
reply to the jth equality query is positive if and only if the jth bit of η is 1. Let
(P,Q) and (P ′, Q′) be the pairs of polynomials corresponding to the two ring
elements compared in the jth equality query in this computation. Then, we define
f [G1, N, st, i, ρ, η] = P · Q′ − P ′ · Q. Finally, for ρ ∈ {0, 1}r and η ∈ {0, 1}qeq ,
denote by SLP(G1) the straight-line program obtained from G1 in the following
manner: On explicit input (N,T, st, ρ, η), the program SLP(G1) runs G1 on
explicit input (N,T, st) and randomness ρ, while setting the responses to all
equality queries according to the bits of η. Consider the following standard-model
factoring algorithm AG:

Algorithm AG

Input: An integer N sampled by ModGen(1λ), and a delay parameter T ∈ N.

1. Sample st← GZN
0 (N,T ), and ρ← {0, 1}r.

2. Initialize η0 to be the empty string.
3. For i = 1, . . . , qeq:
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(a) Let f
(N,st,ρ,ηi−1)

i (X) = f [G1, N, st, i, ρ, ηi−1](X), let Si be the straight-
line program that on explicit input (N,T, st, ρ, ηi−1) computes the pair(
f
(N,st,ρ,ηi−1)

i (X), 1
)

, and let ASi be the corresponding factorization al-

gorithm guaranteed by Lemma 4.2. Run ASi(N,T, st, ρ, ηi−1) to obtain
(ai, bi). If ai, bi ∈ [N − 1] and ai · bi = N , output (ai, bi) and terminate.

(b) Sample x1, . . . , xkin ← ZN .

(c) If f
(N,st,ρ,ηi−1)

i (x1, . . . , xkin) = 0, set ηi := ηi−1‖1 and otherwise, set
ηi := ηi−1‖0.

4. Let η = ηqeq , let S = SLP(G1) and let f
(N,st,ρ,η)
out = PSN,T,st,ρ,η · QDF

N,T −
QSN,T,st,ρ,η · PDF

N,T . Let Sout be the straight-line program that on explicit input

(N,T, st, ρ, η) computes
(
f
(N,st,ρ,η)
out (X), 1

)
and let ASout be the corresponding

factorization algorithm guaranteed by Lemma 4.2. Run ASout(N,T, st, ρ, η) to
obtain (a, b). If a, b ∈ [N − 1] and a · b = N , output (a, b). Otherwise, output
⊥.

Denote Pr
[
ExpSeqDF,G(λ) = 1

]
by β. We show that the probability that AG outputs

a valid factorization of N is at least Ω
(
β2/poly(λ)

)
. Then, repeating the attack

described by AG for Ω
(
ln (1/ε) · β−2 · poly(λ)

)
iterations yields Theorem 4.1.

For a modulus N , an index i ∈ [qeq], a state st passed by G0, randomness

ρ ∈ {0, 1}r and a string η ∈ {0, 1}i−1, we say that the polynomial f
(N,st,ρ,η)
i is

heavy if Prx

[
f
(N,st,ρ,η)
i (x) = 0

]
≥ 1 − β/(4 · qeq), and we say that it is light if

Prx

[
f
(N,st,ρ,η)
i (x) = 0

]
≤ β/(4 · qeq). Otherwise, we say that it is balanced. For

the same parameters, we also define an i-character string η∗N,st,ρ,i ∈ {0, 1,⊥}i
recursively; we let η∗N,st,ρ,0 be the empty string, and for i ∈ [qeq] we define:

η∗N,st,ρ,i =


η∗N,st,ρ,i−1‖⊥, if ⊥ ∈ η∗N,st,ρ,i−1 or f

(N,st,ρ,η∗N,st,ρ,i−1)

i is balanced

η∗N,st,ρ,i−1‖0, if ⊥ 6∈ η∗N,st,ρ,i−1 and f
(N,st,ρ,η∗N,st,ρ,i−1)

i is light

η∗N,st,ρ,i−1‖1, if ⊥ 6∈ η∗N,st,ρ,i−1 and f
(N,st,ρ,η∗N,st,ρ,i−1)

i is heavy

Denote η∗N,st,ρ = η∗N,st,ρ,ieq , and denote by Bal the event in which η∗N,st,ρ contains
a ⊥ symbol. We will prove the bound on AG’s success probability separately for
the following two cases.

Case 1: Pr [Bal] ≥ β/2. Let Factor be the event in which AG(N,T ) successfully
outputs a factorization of N . By total probability, it holds that

Pr [Factor] ≥ Pr [Factor|Bal] · Pr [Bal] ≥ β

2
· Pr [Factor|Bal] , (1)

and so we wish to bound Pr [Factor|Bal]. For i ∈ [qeq], let Ei and E∗i be the
random variables corresponding to ηi in the execution of AG and to η∗N,st,ρ,i
described above. Let i∗ be the minimal index in which η∗N,st,ρ has a ⊥ symbol (if
there are no ⊥ symbols, then i∗ = 0; note that i∗ is also a random variable), and
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let Typ be the event in which Ei∗−1 = E∗i∗−1. Then,

Pr [Factor|Bal] ≥ Pr [Factor|Bal ∧ Typ] · Pr [Typ|Bal]

≥ Pr [Factor|Bal ∧ Typ] ·
(

1− β

4

)
(2)

≥ 3

4
· Pr [Factor|Bal ∧ Typ] (3)

where (2) follow by union bound on all indices up to i∗ and the fact that it is
always the case that i∗ ≤ qeq.

Let Factor(i∗) denote the event in which ASi∗ (N,T, st, ρ, ηi∗−1) successfully
outputs a factorization of N . It holds that

Pr [Factor|Bal ∧ Typ] ≥ Pr [Factor(i∗)|Bal ∧ Typ] . (4)

To complete the analysis of Case 1, we wish to bound Pr [Factor(i∗)|Bal ∧ Typ],
and to this end, we would like to invoke Lemma 4.2. In order to so, we need to
argue two things: (1) That the (first) polynomial outputted by Si∗ – meaning, the

polynomial f
(N,st,ρ,ηi∗−1)
i∗ – is non-trivial modulo N ; and (2) That this polynomial

has many roots modulo N in ZN . This is indeed the case, since assuming both
Bal and Typ occur, it holds that Ei∗−1 = E∗i∗−1 and hence the polynomial

f
(N,st,ρ,ηi∗−1)
i∗ is equal to the polynomial f

(N,st,ρ,η∗N,st,ρ,i∗−1)

i∗ . But since the i∗th

bit of η∗st,ρ is ⊥, it means that αN

(
f
(N,st,ρ,η∗N,st,ρ,i∗−1)

i∗

)
> β/(4 · qeq). Hence, by

Lemma 4.2,

Pr [Factor(i∗)|Bal ∧ Typ] ≥
αN

(
f
(N,st,ρ,η∗N,st,ρ,i∗−1)

i∗

)
− (kin − 1) · 2−λ+1

8 · (1− 2−λ)
kin−1 · kin · (2λ · kin + w · qop)

≥ β − (kin − 1) · 2−λ+3 · qeq
32 · qeq · (1− 2−λ)

kin−1 · kin · (2λ · kin + w · qop)
.(5)

Combining inequalities (1), (3) and (5) concludes the analysis of Case 1.

Case 2: Pr [Bal] < β/2. In this case, it holds that

Pr
[
ExpSeqDF,G(λ) = 1

∣∣∣Bal] ≥ Pr
[(

ExpSeqDF,G(λ) = 1
)
∧ Bal

]
= β − Pr

[(
ExpSeqDF,G(λ) = 1

)
∧ Bal

]
≥ β − Pr [Bal]

>
β

2
. (6)
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Let AllTyp be the event in which η = η∗N,st,ρ, and let FactorOut denote the event
in which ASout(N,T, st, ρ, η) successfully outputs a factorization of N . Then,

Pr [Factor] ≥ Pr [FactorOut]

≥ Pr
[
FactorOut

∣∣Bal ∧ AllTyp
]
· Pr

[
Bal
]
· Pr

[
AllTyp

∣∣Bal]
> Pr

[
FactorOut

∣∣Bal ∧ AllTyp
]
·
(

1− β

2

)
·
(

1− β

4

)
(7)

≥ 3

8
· Pr

[
FactorOut

∣∣Bal ∧ AllTyp
]
, (8)

where (7) follows from union bound over i ∈ [qeq].
We again wish to invoke Lemma 4.2, so we wish to argue that conditioned

on Bal∧AllTyp, the polynomial f
(N,st,ρ,η)
out = PSN,T,st,ρ,η ·QDF

N,T −QSN,T,st,ρ,η ·PDF
N,T

which the straight-line program S (from Step 4 of the algorithm AG) computes is
non-trivial modulo N with overwhelming probability. Assume that the contrary is

true; i.e., that f
(N,st,ρ,η)
out ≡ 0 (mod N) with non-negligible probability conditioned

on Bal ∧ AllTyp. But, conditioned on Bal ∧ AllTyp, it holds that η = η∗N,st,ρ, and
the responses pattern induced by η∗N,st,ρ to G1’s equality queries occurs with

probability at least 3/4 in ExpSeqDF,G(λ). This means that the straight-line program
S corresponds to a valid execution of G1, and thus makes at most qop operation
queries, when given as input the ring elements in st implicitly (as elements in the
oracle table B). Consider the pair of algorithms (B0, S), where B0 computes st, ρ
and η as in the definition of AG and passes them to S, where the ring elements
in st are passed implicitly. By Definition 3.3, this is a contradiction to the fact
that DF has sequentiality depth at least qop + 1. Hence, for all sufficiently large

λ ∈ N, the polynomial f
(N,st,ρ,η)
out is non-trivial modulo N with all but negligible

probability, and there exists an negligible function ν(·) such that by Lemma 4.2,

Pr
[
factor(N, out)

∣∣Bal ∧ AllTyp
]

≥
αN

(
f
(N,st,ρ,η)
out

)
− (kin − 1) · 2−λ+1 − ν(λ)

8 · (1− 2−λ)
kin−1 · kin · (2λ · kin + w · qop)

=
αN

(
f
(N,st,ρ,η∗N,st,ρ)
out

)
− (kin − 1) · 2−λ+1 − ν(λ)

8 · (1− 2−λ)
kin−1 · kin · (2λ · kin + w · qop)

(9)

We are left with bounding αN

(
f
(N,st,ρ,η∗N,st,ρ)
out

)
for N , st and ρ for which Bal

holds. Consider the experiment ExpSeqDF,G(λ), and let Con be the event in which
the all equality queries made by G1 in this experiment are answered consis-
tently with η∗N,st,ρ. Conditioned on Bal and on Con, the output of G1 is exactly(
PSN,st,ρ,η∗N,st,ρ

, QSN,st,ρ,η∗N,st,ρ

)
, and hence for every x ∈ (ZN )

kin for which G1

successfully evaluates the function, it is also the case that f
N,st,ρ,η∗N,st,ρ
out (x) =

0 (mod N). Since the input N given to AG is sampled as in ExpSeqDF,G(λ), and the



22 L. Rotem and G. Segev

st and ρ are sampled by AG as in ExpSeqDF,G(λ), this means that for N , st and ρ

for which Bal holds, it holds that

αN

(
f
N,st,ρ,η∗N,st,ρ
out

)
≥ Pr

[
ExpSeqDF,G(λ) = 1

∣∣∣Bal ∧ Con
]

≥ Pr
[(

ExpSeqDF,G(λ) = 1
)
∧ Con

∣∣∣Bal]
= Pr

[
ExpSeqDF,G(λ) = 1

∣∣∣Bal]− Pr
[(

ExpSeqDF,G(λ) = 1
)
∧ Con

∣∣∣Bal]
≥ β

2
− Pr

[
Con

∣∣Bal] (10)

≥ β

4
. (11)

Inequality (10) follows from (6) and inequality (11) follows by union bound over
all i ∈ [qeq]. Combining inequalities (8), (9) and (11) concludes the analysis of
case 2.

We complete the proof by analyzing the running time of AG. To that end,
we use the following proposition, which states that any single-output straight-
line program S can be converted into a related straight-line program S′ which
computes the pairs (PSN,σ, 1) and (QSN,σ, 1) in two different oracle queries, using
roughly the same running time, parallelism and query complexity as S. In other
words, one can “decouple” the numerator from the denominator which a straight-
line program computes, with very little overhead. An almost identical proposition
(in the univariate, single processor setting) was proven in [Jag07] and was also
used in [AM09].

Proposition 4.3 Let w = w(λ), q = q(λ), t = t(λ) and ` = `(λ) be functions
of the security parameter λ ∈ N, let N ← ModGen(1λ) and let σ ∈ {0, 1}`. For
any single-output straight-line program S which runs in time t with w parallel
processors, each of which making at most q sequential oracle queries, there exits
a straight-line program S′ which runs in time O(t) with 3w parallel processors,
each of which making at most 2q sequential oracle queries, and there exist indices
i1, i2 ∈ [3w] and j1, j2 ∈ [2q], such that (PS

′

N,σ[i1, j1], QS
′

N,σ[i1, j1]) = (PSN,σ, 1) and

(PS
′

N,σ[i2, j2], QS
′

N,σ[i2, j2]) = (QSN,σ, 1).

We turn to the runtime analysis. Steps 1 and 2 of AG take poly(λ) time. The
dominant part in each iteration of Step 3 is Step (a): The straight-line program
Si runs in time poly(λ) and makes at most O(poly(λ)+qop) ring-operation queries
per processor. This is by: (1) first, converting the explicit elements in st (of which
there are at most poly(λ)) to elements in the table (each conversion takes at
most 2λ queries), and then (2) running the straight-line program guaranteed by
Proposition 4.3 for the straight-line program which runs G1 until the ith equality
query (answering all equality queries up to that point according to η) and then
outputting z1− z2 where z1 and z2 are the ring elements being compared. Hence,
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the factorization algorithm ASi runs in time polynomial in λ by Lemma 4.2.
Similarly, the factorization algorithm ASout from Step 5 runs in time polynomial
in λ as well. This concludes the proof of Theorem 4.1.

We now conclude this section by presenting the proof of Lemma 4.2. In order
to prove Lemma 4.2, we reduce the case of straight-line programs with multiple
input elements and multiple parallel processors, to single-processor straight-line
programs receiving just one ring element as input. In the latter setting, Aggarwal
and Maurer [AM09] proved the following special case of Lemma 4.2.8

Lemma 4.4 ([AM09]). Let t = t(λ), q = q(λ) and ` = `(λ) be functions of the
security parameter λ ∈ N. For any straight-line program S which takes as input
a single ring element and an explicit bit-string in {0, 1}`, and runs in time t
with a single processor making at most q ring-operation queries, there exists an
algorithm AS which runs in time O(t + q3 · λ2), such that the following holds:
For every λ ∈ N, for every N which is outputted with positive probability by
ModGen(1λ) and for every σ ∈ {0, 1}` which S may receive as an explicit input,
if PSN,σ 6≡ 0 (mod N) then

Pr
(a,b)←AS(N,σ)

[
N = a · b

a, b ∈ [N − 1]

]
≥
αN
(
PSN,σ(x)

)
8q

.

Equipped with this lemma, we turn to prove the general case of Lemma 4.2.

Proof of Lemma 4.2. Let k = k(λ), t = t(λ), w = w(λ), ` = `(λ) and q = q(λ)
be functions of the security parameter λ ∈ N, and let S be a straight-line program
which receives as input k ring elements, a modulus N and an additional `-bit
string, and runs in time t with w parallel processors, each making at most q
oracle queries. Consider the following algorithm AS :

Algorithm AS

Input: An integer N sampled by ModGen(1λ), and an `-bit string σ.

1. Sample i← [k], and sample x = (x1, . . . , xi−1, xi+1, . . . , xk)← (ZN \ {0})k−1.
2. For every j ∈ [k] \ {i}, compute gi = gcd(xj , N), and if gj 6∈ {1, N}, then

output (gj , N/gj) and terminate.
3. Let fx := PSN,σ(x1, . . . , xi−1, X, xi+1, . . . , xk) be the uni-variate polynomial

in the indeterminate X obtained from PSN,σ by fixing Xj to be xj for each
j ∈ [k] \ {i}, let Sfx be the single-processor straight-line which on explicit
input (N,σ) outputs (fx(X), 1), and let ASfx (N) be the factoring algorithm
guaranteed by Lemma 4.4. Invoke (a, b)← ASfx (N,σ) and output (a, b).

Let N be the input modulus to AS , and let a∗, b∗ ∈ {0, 1}λ be its prime
factors and assume that PSN,σ 6≡ 0 (mod N) (as otherwise the lemma trivially

8 The lemma of Aggarwal and Maurer is stated in [AM09] in the terminology of their
graph-based language for generic-ring algorithms, and without explicitly considering
additional bit-string inputs (alongside the implicit access to ring elements). However,
Lemma 4.4 as stated here follows directly from their proof.
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holds). Let success be the event in which AS outputs the correct factors of N ,
and denote the event in which Xi (where i is the index chosen by AS in Step 1)
has non-zero degree in PSN,σ by nonzero. Observe that since PSN,σ 6≡ 0 (mod N),
then the probability of nonzero is at least 1/k. By total probability it holds that

Pr [sucess] ≥ Pr [sucess|nonzero] · 1

k
.

Denote by hit the event in which AS terminates in Step 2 (hence, hit is the event
in which it terminates in Step 3). Since hit and nonzero are independent events,
it holds that

Pr [success|nonzero] = Pr [success|hit ∧ nonzero] Pr [hit]

+ Pr
[
success

∣∣hit ∧ nonzero
]
· Pr

[
hit
]

= 1 · Pr [hit] + Pr
[
success

∣∣hit ∧ nonzero
]
· (1− Pr [hit])

≥ Pr
[
success

∣∣hit ∧ nonzero
]
.

We now wish to lower bound Pr
[
success

∣∣hit ∧ nonzero
]
. We observe that since

PSN,σ 6≡ 0 (mod N), then conditioned on hit and nonzero it is also the case

that fx 6≡ 0 (mod N). To see why that is, assume that hit and nonzero hold,
and assume towards contradiction that fx ≡ 0 (mod N). In this case, since
Xi has non-zero degree in PSN,σ, there exists in PSN,σ a monomial of the form

c ·Xi1 · · ·Xim ·Xδ
i (where c ∈ Z, m ∈ N, δ > 0 and ij ∈ [k] for every j ∈ [m])

such that c is not divisible by N . Assume without loss of generality that c is
not divisible by a∗ (if c is divisible by a∗, then it is not divisible by b∗ and
the proof is symmetric). But since f ≡ 0 (mod N) it holds that c · xi1 · · ·xim
is divisible by N . Finally, since 0 < xi1 , . . . , xim < N , there exists at least one
h ∈ [m] such that xih is divisible by a∗. Therefore, gcd(xih , N) = a∗ and AS
outputs (a∗, b∗) in Step 2 with probability 1, in contradiction to the fact that we
are conditioning on hit. Moreover, the single-processor straight-line program Sfx
makes at most 2λ · k + w · q oracle queries: 2λ queries to obtain each element in
x, and then w · q operations to compute the polynomial fx (by a serialization of
the multi-processor program S). Hence, if PSN,σ 6≡ 0 (mod N) then by Lemma
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4.4 it holds that

Pr [success] ≥ 1

k
· Pr

[
success

∣∣hit ∧ nonzero
]

≥
Prx←(ZN\{0})k−1

x←ZN

[
P
ASfx (N)

N (x) = 0 (mod N)

]
8k · (2λ · k + w · q)

(12)

=

Prx←(ZN\{0})k−1

x←ZN

[
fx(x) = 0 (mod N)

]
8k · (2λ · k + w · q)

=

Prx←(ZN )k−1

x←ZN

[
fx(x) = 0 (mod N)

∣∣ ∀xj ∈ x, xj 6= 0
]

8k · (2λ · k + w · q)

≥
Prx←(ZN )k−1

x←ZN

[
fx(x) = 0 (mod N)

]
− Prx←(ZN )k−1 [∃xj ∈ x, xj = 0](

Prx←(ZN )k−1 [∀xj ∈ x, xj 6= 0]
)
· 8k · (2λ · k + w · q)

≥
Prx←(ZN )k−1

x←ZN

[
fx(x) = 0 (mod N)

]
− (k − 1) · 2−λ+1

(1− 2−λ)
k−1 · 8k · (2λ · k + w · q)

(13)

≥
αN (PSN,σ)− (k − 1) · 2−λ+1

(1− 2−λ)
k−1 · 8k · (2λ · k + w · q)

, (14)

where (12) follows from Lemma 4.4, (13) holds since 2λ−1 ≤ N < 2λ and (14)
follows from the definition of fx.

We conclude by analyzing the running time of AS . Steps 1 and 2 can be exe-
cuted in time O(k ·λ). The significant step is Step 3: Sfx runs in time t and makes
at most 2λ ·k+w ·q oracle queries. Hence, by Lemma 4.4, invoking ASfx in Step 3

can be done in time O
(
t+ (2λ · k + w · q)3 · λ2

)
= O

(
t+ λ5 · k3 + w3 · q3

)
. This

concludes the proof of Lemma 4.2.

4.2 A Matching Upper Bound

In this section we prove a matching upper bound to the lower bound from Section
4.1. Roughly speaking, Theorem 4.5 states that for qop = qop(λ), if DF has
sequentiality depth at most qop, then there is a generic attack which evaluates DF
(according to Definition 3.1) while issuing at most qop rounds of ring-operation
queries (after a preprocessing stage), or else factoring is easy.

Theorem 4.5. Let T = T (λ) and qop = qop(λ) be functions of the security
parameter λ ∈ N, and let DF be a straight-line delay function whose sequentiality
depth is at most qop. Then, there exist a pair G = (G0, G1) of generic-ring
algorithms where G1 has polynomially-many parallel processors each of which
issues at most qop rounds of ring-operation queries, a standard-model probabilistic
polynomial-time algorithm A, and a polynomial p(·), such that at least one of the
following holds for infinitely many values of λ ∈ N:
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1. Pr
[
ExpSeqDF,G(λ) = 1

]
≥ 1/(2 · p(λ)).

2. PrN←ModGen(1λ)
(a,b)←A(N,T )

[(N = a · b) ∧ (a, b ∈ [N − 1])] > 1/(2 · p(λ)).

Proof. Since DF has sequentiality depth at most qop, it means that there exists
a pair G = (G0, G1) of polynomial-time generic-ring algorithms, where G1 is a
straight-line program with polynomially-many parallel processors making at most
qop rounds of operation queries, and there exists a polynomial p(·) such that

Pr
[
ExpSeqDepth

DF,G (λ) = 1
]
>

1

p(λ)
,

for infinitely many values of λ ∈ N. Let kin = kin(λ) be the number of ring
elements which DF receives as input, and consider the following standard-model
factoring algorithm A.

Algorithm A

Input: An integer N sampled by ModGen(1λ), and the delay parameter T ∈ N.

1. Sample x = (x1, . . . , xkin)← (ZN )kin .
2. Compute y = QDF

N,T (x1, . . . , xkin), and compute a = gcd(y,N). If a 6∈ {1, N},
then output (a,N/a) and terminate.

3. Run GZN
0 (N,T ) to obtain a state st = (st0, st1, . . . , st`), where st1, . . . , st` are

ring elements.
4. Compute z = QG1

N,T,st0
(st1, . . . , st`, x1, . . . , xkin), and compute b = gcd(z,N).

If b 6∈ {1, N}, then output (b,N/b) and terminate.
5. Output ⊥.

Denote by Factor the event in which A outputs a valid factorization of N ,
and denote by Inv the event in which both y = QDF

N,T (x1, . . . , xkin) and z =

QG1

N,T,st0
(st1, . . . , st`, x1, . . . , xkin) are invertible modulo N . Observe that condi-

tioned on ExpSeqDepth
DF,G (λ) = 1 and on Inv, it holds that

QDF
N,T (x1, . . . , xkin)

PDF
N,T (x1, . . . , xkin)

=
PG1

N,T,st0
(st1, . . . , st`, x1, . . . , xkin)

QG1

N,T,st0
(st1, . . . , st`, x1, . . . , xkin)

.

In other words, G1 successfully outputs the output of DF.
On the other hand, conditioned on ExpSeqDepth

DF,G (λ) = 1 and on Inv, at least
one of y and z are not invertible modulo N . In this case, a = gcd(y,N) or
b = gcd(z,N) are a prime factor of N and A outputs a valid factorization of N .
Hence, by total probability, for infinitely many values of λ ∈ N it holds that

Pr
[
ExpSeqDepth

DF,G (λ) = 1
]

= Pr
[
ExpSeqDepth

DF,G (λ) = 1 ∧ Inv
]

+ Pr
[
ExpSeqDepth

DF,G (λ) = 1 ∧ Inv
]

≤ Pr
[
ExpSeqDF,G(λ) = 1

]
+ Pr [Factor] . (15)

Therefore, at least one of the addends in (15) is greater than 1/(2p(λ)) for
infinitely many values of λ ∈ N, concluding the proof.
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