
Collusion Resistant Watermarkable PRFs from
Standard Assumptions

Rupeng Yang1?†, Man Ho Au1?, Zuoxia Yu1†, and Qiuliang Xu2

1 Department of Computer Science, The University of Hong Kong, Hong Kong, China
orbbyrp@gmail.com, allenau@cs.hku.hk, zuoxia.yu@gmail.com
2 School of Software, Shandong University, Jinan, 250101, China

xql@sdu.edu.cn

Abstract. A software watermarking scheme can embed a message into
a program without significantly changing its functionality. Moreover, any
attempt to remove the embedded message in a marked program will sub-
stantially change the functionality of the program. Prior constructions of
watermarking schemes focus on watermarking cryptographic functions,
such as pseudorandom function (PRF), public key encryption, etc.
A natural security requirement for watermarking schemes is collusion
resistance, where the adversary’s goal is to remove the embedded mes-
sages given multiple marked versions of the same program. Currently, this
strong security guarantee has been achieved by watermarking schemes for
public key cryptographic primitives from standard assumptions (Goyal
et al., CRYPTO 2019) and by watermarking schemes for PRFs from
indistinguishability obfuscation (Yang et al., ASIACRYPT 2019). How-
ever, no collusion resistant watermarking scheme for PRF from standard
assumption is known.
In this work, we solve this problem by presenting a generic construction
that upgrades a watermarkable PRF without collusion resistance to a
collusion resistant one. One appealing feature of our construction is that
it can preserve the security properties of the original scheme. For exam-
ple, if the original scheme has security with extraction queries, the new
scheme is also secure with extraction queries. Besides, the new scheme
can achieve unforgeability even if the original scheme does not provide
this security property. Instantiating our construction with existing water-
marking schemes for PRF, we obtain collusion resistant watermarkable
PRFs from standard assumptions, offering various security properties.

1 Introduction

A watermarking scheme allows one to embed some information into a program
while preserving its functionality. Moreover, it should be difficult for an ad-
versary to remove the embedded information without destroying the marked

? Corresponding author.
† Part of the work was done while the author was with the Department of Computing,

The Hong Kong Polytechnic University.

program. Watermarking schemes are widely employed in many applications, in-
cluding ownership protection, traitor tracing, etc.

The theoretical study of watermarking schemes was initiated by Barak et
al. [BGI+01] and Hopper et al. [HMW07]. However, no concrete construction
is provided in both works. It is extremely difficult to construct provably secure
watermarking schemes and early works in this area [NSS99, YF11, Nis13] only
consider restricted adversaries, which are not allowed to change the format of
the watermarked object.

The first watermarking scheme with provable security against arbitrary re-
moval strategies is presented by Cohen et al. in [CHN+16]. Specifically, they
construct a watermarkable pseudorandom function (PRF) from indistinguisha-
bility obfuscation. In subsequent works [BLW17,KW17,QWZ18,YAL+18,KW19,
YAL+19], watermarkable PRFs are constructed from either indistinguishability
obfuscation or standard (lattice) assumptions. However, there is still a signifi-
cant gap in security between the schemes constructed from indistinguishability
obfuscation and those from standard assumptions.

In [CHN+16], Cohen et al. also construct watermarking schemes for public
key encryption (PKE) and signature from their watermarkable PRFs. Subse-
quently, (stateful) watermarking schemes for PKE are constructed from any
PKE scheme [BKS17]. Recently, in [GKM+19], Goyal et al. construct water-
marking schemes for various public key cryptographic primitives with nearly all
desired security properties from simple assumptions, such as the existence of
one-way function, standard lattice assumptions, etc. This is achieved by a slight
relaxation on the correctness of the watermarking scheme. More precisely, in
their definition, a marked program is not required to approximately preserve the
input/output behaviors of the original program, and instead, it is only required
to preserve the “functionality” of the original program.1 Unfortunately, such re-
laxation is not applicable to watermarkable PRF, whose functionality is exactly
specified by its input/output behaviors.

Watermarking PRFs. A watermarking scheme for a PRF family F consists
of two main algorithms, namely, the marking algorithm and the extraction al-
gorithm. The marking algorithm takes as input the mark key, a message, and a
PRF key k, and outputs a watermarked circuit, which evaluates Fk(·) correctly
on almost all inputs. The extraction algorithm takes as input the extraction key
and a circuit, and outputs either a message or a symbol ⊥, which indicates that
the circuit is unmarked.

The main security property of a watermarking scheme is unremovability,
which requires that given a marked circuit C∗ for a random PRF key (namely,
the challenge key), the adversary is not able to remove or modify the embedded
message2 without altering the outputs of C∗ on a significant fraction of inputs. An
additional security property is unforgeability, which prevents anyone without the

1 For example, to mark a signing algorithm, it is sufficient that the marked program
can still output valid signatures.

2 That is, the extraction algorithm should still output the original message when
extracting a circuit created by the adversary.

2

mark key from generating a new watermarked circuit. Besides, for watermarkable
PRF, it is usually required to have pseudorandomness against the watermarking
authority, i.e., the pseudorandomness holds against an adversary who possesses
the mark key and the extraction key.

When defining security (either unremovability or unforgeability) for water-
marking schemes, adversaries with different capabilities are considered. For ex-
ample, if the adversary is allowed to access more than one marked circuit of the
challenge key, the scheme is collusion resistant. Moreover, we say that the scheme
has security with marking (oracle) queries if the security is defined against an
adversary who can obtain marked circuits of its generated keys and we say that
the scheme has security with public marking if the adversary can obtain the
mark key. Besides, we say that the scheme has security with extraction (oracle)
queries if the security is defined against an adversary who can obtain extraction
results of its generated circuits and we say that the scheme has security with
public extraction if the adversary can obtain the extraction key.

Prior works on watermarkable PRFs. Watermarkable PRF is first con-
structed by Cohen et al. in [CHN+16]. The scheme is constructed from indistin-
guishability obfuscation and has unremovability with public extraction. Later,
in [YAL+19], Yang et al. improve Cohen et al.’s scheme to achieve collusion
resistance. Both constructions rely on the full power of indistinguishability ob-
fuscation and it seems infeasible to instantiate them from standard assumptions.

Towards constructing watermarkable PRF from standard assumptions, Boneh
et al. [BLW17] propose a new approach that builds watermarkable PRF from
variants of constrained PRFs [BW13, KPTZ13, BGI14]. The schemes provided
in [BLW17] still rely on the existence of indistinguishability obfuscation. Then,
building on Boneh et al.’s framework, watermarkable PRFs from standard as-
sumptions are developed. In [KW17], Kim and Wu present the first watermark-
able PRF from standard assumptions. The scheme only achieves security with
marking queries. Subsequently, in [QWZ18, KW19], watermarkable PRFs that
have security with public marking and extraction queries are constructed. How-
ever, all of these constructions (from standard assumptions) fail to provide de-
sirable security properties such as security with public extraction and collusion
resistance.

The goal of this work is to narrow the gap in security between indistinguisha-
bility obfuscation based watermarkable PRFs and standard assumptions based
ones. We note that security with extraction queries, which is a natural stepping
stone towards security with public extraction, is already achieved by previous
watermarkable PRFs from standard assumptions [QWZ18,KW19]. In contrast,
no positive result on collusion resistant watermarkable PRF from standard as-
sumptions is known. Therefore, our main objective is to design collusion resistant
watermarkable PRF that can be instantiated from standard assumptions.

1.1 Our Results

In this work, we explore the possibility to build collusion resistant watermarkable
PRF from standard assumption and show that:

3

Collusion Unremovability

Unforgeability

Unforgeability Pseudorandomness

with with against

Resistance PM EO EO PE Authority

[KW17] 7 7 7 3 7 7 fully

[QWZ18] 7 3 3 7 − − 7

[KW19]
7 7 3 3 3 7 weak†

7 3 3 7 − − weak†

Ours + [KW17] 3 7 7 3 3 3 fully

Ours + [QWZ18] 3 3 3∗ 3 3 3 7

Ours + [KW19] 3 3 3∗ 3 3 3 weak†

∗: The adversary can only query the extraction oracle for a prior bounded number of times.

†: Actually, a stronger T -restricted pseudorandomness (see [KW19]) can be achieved.

Table 1: Security properties achieved by watermarkable PRFs from standard assump-
tion. The default setting for unremovability, which is achieved by all constructions,
is unremovability with marking queries. We use unremovability with PM to denote
unremovability with public marking and use unremovability with EO to denote un-
removability with extraction (oracle) queries. The default setting for unforgeability
is unforgeability with marking queries. We use unforgeability with EO to denote un-
forgeability with extraction (oracle) queries and use unforgeability with PE to denote
unforgeability with public extraction. We refer the reader to Sec. 4.1 for a more detailed
discussion on different levels of unremovability and unforgeability.

Theorem 1.1 (Informal). Assuming the existence of secure watermarkable
PRF, there exist collusion resistant watermarkable PRFs. Especially, collusion
resistant watermarkable PRFs exist assuming the worst-case hardness of appro-
priately parameterized GapSVP problems.

We prove Theorem 1.1 by presenting a generic transformation from water-
markable PRF without collusion resistance to collusion resistant watermarkable
PRF. Our transformation can approximately preserve the security of the original
scheme. For example, if the original scheme has security with public marking,
then so does the new scheme. Besides, by using our transformation, the new
scheme has very strong unforgeability even if the original scheme is not unforge-
able. This is achieved by a novel technique that adds unforgeability to a large
class of watermarkable PRFs, which may be of independent interest.

By applying our transformation to existing watermarkable PRFs from stan-
dard assumptions [KW17,QWZ18,KW19], we obtain lattice based collusion re-
sistant watermarkable PRFs with various features. The results are summarized
in Table 1.

The key component of our transformation is a fingerprinting code with en-
hanced security, where the adversary can query an extraction oracle that outputs
the decoding of its submitted word. Surprisingly, this natural security require-
ment has not been considered in previous works. In this work, we change this
situation by defining and constructing fingerprinting code that has security with
extraction queries. The new primitive is also potentially useful for copyright
protection in practical applications.

4

One caveat is that our constructions of fingerprinting code (and thus col-
lusion resistant watermarking schemes) are only secure against an adversary
that can make at most q queries to the extraction oracle, where q is a priori
bounded polynomial. Also, the message spaces of our fingerprinting code and
watermarkable PRFs are of polynomial-size.3 It is an interesting open problem
to design fingerprinting codes and standard assumption based collusion resistant
watermarkable PRFs without these restrictions.

1.2 Technical Overview

In this section, we provide an overview of our techniques. We first recall current
approach for constructing (single key secure) watermarkable PRF from standard
assumption and identify the difficulty for achieving collusion resistance via this
approach. Then we show our ideas to overcome the difficulty.

The difficulty. Existing constructions of watermarkable PRF from standard
assumptions [KW17, QWZ18, KW19] are all built on (variants of) constrained
PRFs, following the blueprint proposed by Boneh et al. in [BLW17]. A con-
strained PRF F is a family of PRF that allows one to derive a constrained key
ck from a PRF key k, where Fck(·) and Fk(·) evaluate identically on almost all
inputs except at some “punctured” points4. Its security requires that given the
constrained key ck, Fk(x) is still pseudorandom if x is a punctured point. A
constrained PRF is constraint-hiding if the constrained key does not reveal the
punctured points. A (constraint-hiding) constrained PRF is collusion resistant if
the security remains even if the adversary can obtain multiple constrained keys
derived from a PRF key. Next, we briefly review how to watermark a constrained
PRF family F.

To watermark a PRF key k of F, the marking algorithm first generates
an input x∗ and produces a constrained key ck that is punctured on x∗ (i.e.,
Fck(x∗) 6= Fk(x∗) and Fck(x) = Fk(x) for all x 6= x∗). The marked version of k is
just a circuit that evaluates Fck(·). To test if a circuit C is marked, the extraction
algorithm recovers x∗ by using the extraction key and checks if C is a constrained
key punctured on x∗. This is accomplished via either checking if C(x∗) is in a
specific set ([KW17]) or checking if C(x∗) 6= Fk(x∗) ([QWZ18,KW19]). The vari-
ants of constrained PRF used in these works support such checks. Security of
the watermarking schemes relies on the fact that the punctured point x∗ (or the
output Fk(x∗)) is hidden from the adversary. Based on this, to embed a message
msg ∈ {0, 1}l (instead of a mark) into a PRF key, the marking algorithm will
encode the message into the punctured points. One simple method is to generate
2l inputs (x∗1,0, x

∗
1,1, . . . , x

∗
l,0, x

∗
l,1) and puncture the PRF key on {x∗i,msg[i]}i∈[l].

Then, the extraction algorithm can recover the i-th bit of the embedded message
via checking if the circuit is punctured on x∗i,0 or if it is punctured on x∗i,1.

3 In contrast, existing watermarkable PRFs without collusion resistance have expo-
nential message spaces.

4 The punctured points may be selected by a general constraint, e.g. a circuit.

5

The main obstacle to achieving collusion resistance via the above approach
is that the underlying (variants of) constrained PRFs are not collusion resistant.
Specifically, for the instantiations provided in [KW17, KW19], one can recover
the PRF key k and thus compromise security of the watermarking scheme if
it is given two different constrained keys derived from k. For the scheme con-
structed in [QWZ18], it can be instantiated from any constraint-hiding con-
strained PRF for general constraint. However, to the best of our knowledge, no
constraint-hiding constrained PRF from standard assumption [BKM17, CC17,
BTVW17, PS18, CVW18, AMN+18, DKN+20] is known to achieve collusion re-
sistance. Moreover, as proved in [CC17], collusion resistant constraint-hiding
constrained PRF for general constraint implies indistinguishability obfuscation.

Our solution. To get around this obstacle, our key idea is to encode bits of
a message into different “keys” instead of encoding them into different inputs.
Next, we first illustrate how the idea works with a failed attempt, then we show
how to correct it. We also discuss some barriers to achieving other desirable
security properties and explain how to solve them.

The first attempt. The watermarking object of our initial attempt is a new PRF

family F̃ that is a “repetition” of l constrained PRFs, i.e., F̃k1,...,kl(x) = (Fk1(x),
. . . ,Fkl(x)). To embed a message msg ∈ {0, 1}l into a key k = (k1, . . . , kl) of
F̃, the marking algorithm first generates 2l inputs (x∗1,0, x

∗
1,1, . . . , x

∗
l,0, x

∗
l,1), then

it punctures ki on x∗i,msg[i] to obtain a constrained key cki. The marked version

of k is a circuit that computes (Fck1(·), . . . ,Fckl(·)). Then, on input a circuit,
the extraction algorithm can recover the i-th bit of the embedded message via
checking if the i-th part of the circuit is punctured on x∗i,0 or if it is punctured
on x∗i,1.

Now, we examine what is guaranteed from this construction. For simplicity,
we consider the simplified case that l = 3 and that the adversary only obtains
two marked circuits C(1) = (F

ck
(1)
1

(·),F
ck

(1)
2

(·),F
ck

(1)
3

(·)) and C(2) = (F
ck

(2)
1

(·),
F
ck

(2)
2

(·),F
ck

(2)
3

(·)) of k = (k1, k2, k3), embedded with messages

msg(1) = 101 and msg(2) = 110

respectively. First, we have ck
(1)
1 = ck

(2)
1 since both of them are generated by

puncturing k1 on x∗1,1 (we derive the randomness for the puncturing algorithm
from k). Thus, by the single key security of the underlying (constraint-hiding)
constrained PRF, the adversary is not able to modify the mark 1 in k1. However,

as ck
(1)
2 and ck

(2)
2 (also, ck

(1)
3 and ck

(2)
3) are generated by puncturing k2 (resp.

k3) on different points, we have ck
(1)
2 6= ck

(2)
2 (resp. ck

(1)
3 6= ck

(2)
3). So, the

adversary is able to obtain different constrained versions of k2 and k3, and thus
it has the capability to remove or modify the marks in them. As a result, when
extracting a circuit produced by the adversary, the extraction algorithm may
obtain a message in {1} × {?, 0, 1} × {?, 0, 1},5 which contains new messages

5 We use ? to denote that no mark is detected for this position.

6

such as 111 and 100. That is, the adversary still has the ability to modify the
embedded messages even if it fails at some position.

A secure solution using fingerprinting code. To solve this problem, we employ a
fingerprinting code to amplify the robustness of our initial construction, from ex-
tracting some bits of the embedded messages to extracting one of the embedded
messages, when dealing with adversarially-generated circuits. A fingerprinting
code scheme consists of two algorithms, namely, the generation algorithm and
the decoding algorithm. The generation algorithm generates a codebook and a
trapdoor, where the codebook assigns a unique codeword to each message and
the trapdoor is used for decoding. The decoding algorithm decodes a word (not
necessarily in the codebook) using the trapdoor. Its security ensures that given
a few codewords for messages in a specific set C, no one could produce a word
that is decoded to a message outside C. This security is defined assuming the
“marking assumption”, where the adversary is not allowed to modify the bit at
a position if all given codewords agree at this position. For example, if the given
codewords are 101 and 110, then a word w such that w[1] = 0 is invalid.

Now, we integrate the fingerprinting code into our construction. More pre-
cisely, the marking algorithm first gets the codeword for the given message from
the codebook. Then it embeds the codeword into the PRF keys via invoking the
marking algorithm provided in our initial construction. Then, on input a circuit,
the extraction algorithm first invokes the extraction algorithm of our initial con-
struction. It replaces all “?” in the returned string with “0”, and decodes the
string using the decoding algorithm of the fingerprinting code. The marking as-
sumption is guaranteed by security of our initial construction and thus the new
extraction algorithm can succeed in extracting one of the embedded messages.

It is worth noting that our construction does not rely on concrete properties
of the underlying constrained PRF, thus it is safe to replace it with any secure
watermarkable PRF. In other words, our idea can be seen as a compiler that
compiles a single key secure watermarkable PRF into a collusion resistant one.

Achieving security with marking queries/public marking. We have shown how to
achieve collusion resistant watermarkable PRF in a setting that the adversary is
only allowed to obtain some “challenge circuits”, which are produced by embed-
ding messages in a set C into a random PRF key. However, in previous works,
the adversary is always allowed to further learn marked circuits for its selected
keys. The above solution is not secure with such marking queries. This is because
the marking query will provide codewords of messages outside C, which can help
the adversary to alter the embedded messages in the challenge circuits.

We fix this issue by forcing the marking algorithm to use different code-
books for different keys. In particular, the marking algorithm will first generate
a codebook and the associated trapdoor (using randomness derived from the
input PRF key), and then produce the marked circuit with this fresh codebook.
As the codewords acquired from the marking queries are from different code-
books, they will not help the adversary in modifying the embedded messages in
the challenge circuits.

7

The next issue is how to send the trapdoor to the extraction algorithm.
Here we need to guarantee that the extraction algorithm can always receive the
correct trapdoor and that the trapdoor is hidden to the adversary6. Note that,
however, the only communication channel between the marking algorithm and
the extraction algorithm is the watermarked circuits, which can be arbitrarily
modified by the adversary.

We complete this task by embedding an encryption of the trapdoor into a
new watermarkable PRF. More precisely, the watermarking object now is l + 1
single key secure watermarkable PRF, where each of the first l parts is embedded
with one bit of the codeword and the last part is embedded with the ciphertext.
For the same PRF key, we use the same randomness to generate the trapdoor
and its encryption, thus single key security of a watermarkable PRF is sufficient
to guarantee a reliable transmission of the trapdoor. Also, confidentiality of the
trapdoor is guaranteed by security of the encryption scheme.

By applying above tweaks, security with marking queries of the new con-
struction can be based on the security with marking queries of the underlying
(single key secure) watermarkable PRF. Besides, we can also show that if the
underlying watermarkable PRF is secure with public marking (i.e., the mark key
is public), the new scheme also supports public marking.

Achieving security with extraction queries. Another desirable security property
for watermarking schemes is security with extraction queries, which allows the
adversary to learn what can be extracted from its generated circuits. Note that
the extraction algorithm of our scheme consists of three steps. First, it extracts
a word and a ciphertext from the marked circuit; then it decrypts the ciphertext
to get the trapdoor; finally, it uses the trapdoor to retrieve the message from the
word. Therefore, security with extraction queries of our scheme can be guaran-
teed if the underlying watermarkable PRF has security with extraction queries
(achieved in [QWZ18, KW19]), the underlying encryption scheme has security
with decryption queries (i.e., CCA-security, which is achieved by numerous pre-
vious works), and the underlying fingerprinting code has security with extraction
queries. However, no fingerprinting code that is provable secure with extraction
queries is known. To solve this problem, in this work, we construct the first fin-
gerprinting code that is secure with extraction queries. We provide an overview
of this construction later in this section.

Achieving unforgeability. One drawback of the current construction is that it
cannot achieve unforgeability even if the underlying watermarking scheme is un-
forgeable. To see this, recall that given a marked circuit, which is a combination
of l+ 1 marked circuits, the extraction algorithm will extract one bit from each
of the first l circuits. The bit is set to be 1 if it gets 1 from the circuit and the bit
is set to be 0 either if it gets 0 from the circuit or if it gets an unmarked symbol
⊥. That is to say, the extraction algorithm could still output some message even
if part of the circuit is unmarked. Thus, an adversary may break the unforge-
ability of our construction by replacing part of a marked circuit with a random

6 This is because current fingerprinting code is not secure if the trapdoor is revealed.

8

circuit. The new circuit and the original marked circuit should behave differ-
ently on nearly all inputs, yet the extraction algorithm will probably extract
some message from it.

We solve this problem by presenting a general approach to adding strong
unforgeability to watermarkable PRFs.7 Let G be a secure watermarkable PRF
(without unforgeability). We show how to construct a secure watermarkable PRF
with unforgeability from G. The construction employs a signature scheme and an
encryption scheme. In more detail, the revised marking algorithm first signs on
the PRF key and encrypts the PRF key and the signature. Then, it embeds the
ciphertext as well as the message into the PRF key using the original marking
algorithm of G. The new extraction algorithm will first extract the ciphertext
and the message from the circuit. Then, it decrypts the ciphertext to obtain
the PRF key k and the signature. Next, the extraction algorithm checks if the
signature is valid and if the circuit behaves almost identically to Gk. It outputs
the message only if both checks are passed, and it outputs ⊥ otherwise.

Unforgeability of the watermarking scheme comes from unforgeability of
the signature scheme. In particular, due to the unforgeability of the signature
scheme, the adversary is not able to generate valid signatures for a new PRF key.
Therefore, if the adversary wishes to create a circuit that can pass the extraction
algorithm, the circuit must be close to one of previously marked PRF keys, which
is exactly what the unforgeability requires. We stress that the claim holds even
if the extraction key of the scheme is revealed. Thus, we provide the first wa-
termarkable PRF achieving unforgeability with public extraction from standard
assumption (yet, it does not have unremovability with public extraction).

Next, we argue why the new construction still has unremovability. There
are two main concerns. Firstly, the original PRF key is included in the marked
circuit, but as only an encryption of the key is embedded, this will not leak addi-
tional information to the adversary.8 Secondly, an additional check is performed
in the extraction algorithm to test if the circuit preserves the functionality of the
original key. Since the adversary (for unremovability) is not allowed to signifi-
cantly change the functionality of the challenge circuit(s), its submitted circuit
should pass the check.

Putting it all together. Piecing together all ideas and techniques proposed above,
we obtain a generic construction of collusion resistant watermarkable PRF from
any single key secure watermarkable PRF. The construction preserves the secu-
rity with marking queries/public marking/extraction queries of the underlying
single key secure watermarking scheme. Also, it achieves unforgeability for free.
We provide a detailed description of the construction in Sec. 4.

7 The technique only works for watermarkable PRFs with exponential message space,
which is not achieved by our collusion resistant watermarkable PRF (due to the
polynomially sized message space of the underlying fingerprinting code). Nonetheless,
we can still apply it in our construction specifically since the underlying single key
secure schemes do support exponential message space.

8 This only holds when the decryption key of the encryption scheme is kept private, so,
the upgrading does not preserve the unremovability in the public extraction setting.

9

Fingerprinting code secure with extraction queries. It remains to show
how to construct a fingerprinting code that is secure with extraction queries.
We start by briefly reviewing the well-known Boneh-Shaw code [BS95], which is
widely used in cryptography.

Let N be the size of the message space and let L be a polynomial in security
parameter and N . The code generation algorithm first samples N disjoint subsets
P1, . . . ,PN of [NL], where |Pi| = L, and sets them as the trapdoor. Then it sets
the codeword for a message m ∈ [N] to be an NL-bit binary string w̄m, where
w̄m[j] = 1 iff j ∈ Pi for some i ≤ m. To decode a word w, the decoding algorithm
sets A0 = 1 and AN+1 = 0, then it computes Ai = (

∑
j∈Pi w[j])/L and outputs

the first i s.t. Ai −Ai+1 is large.

To see security of the Boneh-Shaw code, considering a simple example where
N = 4 and the adversary is given two codewords w̄1 and w̄3, let w be the word
output by the adversary. Then, the decoding algorithm will not output a message
outside {1, 3} on input w, because:

1. For any j ∈ P1, w̄1[j] = w̄3[j] = 1 and for any j ∈ P4, w̄1[j] = w̄3[j] = 0,
then from the marking assumption, the adversary is not allowed to modify
the bit at a position in P1 and P4. Thus, we still have A1 = 1 and A4 = 0.
Therefore, the decoding algorithm will not output 0 or 4.

2. For bits at positions in P2 and P3, the adversary can modify them arbitrarily.
But, since the trapdoor is kept hidden to the adversary, it cannot distinguish
positions in P2 and that in P3. So, the adversary cannot make A2−A3 large
and thus the decoding algorithm will not output 2.

However, if the adversary is allowed to make queries to an extraction oracle,
it can learn some information about the trapdoor from each query. Thus, the
second claim above will be invalidated in this case.9

We deal with this issue by using part of the trapdoor in each invocation of
the decoding algorithm. In particular, the decoding algorithm randomly picks a
fixed size subset Si ⊆ Pi for i ∈ [N]. Then it computes A′i = (

∑
j∈Si w[j])/|Si|

and finds the large gap between A′i and A′i+1. The fraction A′i can be viewed as
an estimation of Ai and the two numbers are close, so the modification here will
not compromise security of the Boneh-Shaw code.

To see why the revised decoding algorithm can provide security with extrac-
tion queries, let S∗1 , . . . ,S∗N be the partial trapdoor used when decoding a word
w from the adversary, who has seen codewords for messages in a set C. Due to the
security of the original Boneh-Shaw code, the decoding algorithm should output
a message in C, if all Si used in previous extraction queries are sampled from
Pi − S∗i . Thus, it is sufficient to show that the output of the extraction oracle
will not change (significantly) if the decoding algorithm uses a random subset
of Pi − S∗i instead of a random subset of Pi. Unfortunately, it seems that there
is a non-negligible gap between the oracle outputs in these two cases and the
conventional statistical distance is not applicable here to bound the adversary’s
advantage. To overcome this hurdle, we use the Rényi divergence to measure

9 In fact, the adversary could find positions in P2 via altering bits of w̄3 one by one
and observe when the extraction oracle outputs 1 instead of 3.

10

the distribution closeness and limit the number of extraction queries from the
adversary. See Sec. 3 for a more detailed description of our construction.

1.3 Related Works

The notion of fingerprinting code is first studied in [Wag83,BMP85]. Consider-
ing the adversary’s ability in altering the codewords, many different models for
fingerprinting code are studied. In this work, we consider the model presented
in [BS98]. Boneh and Shaw [BS98] construct the first fingerprinting code that is
secure in this model. Then, in [Tar03], Tardos presents a shorter code and shows
that the code length is optimal in the asymptotic sense. Some subsequent works
(see e.g., [NFH+09,AT09,LdW14] and references therein) aim at improving the
concrete efficiency of the scheme. However, to the best of our knowledge, no work
has considered an adversary that can ask for the decoding of its created words.

One important application of fingerprinting code is to build traitor tracing
schemes [CFN94], which aims at tracing secret key leakers in a broadcast en-
cryption setting. The notion of traitor tracing is somewhat similar to the notion
of collusion resistant watermarking. But our construction has several differences
from previous fingerprinting code based traitor tracing schemes [BN08]. First,
we embed each bit of the codeword into the underlying single key watermarkable
PRF directly, while in [BN08], codewords are used to select secret keys for users.
Besides, we need to additionally send the trapdoor from the marking algorithm
to the extraction algorithm. In addition, we require a stronger fingerprinting code
that has adaptive security with extraction queries, and provide an instantiation.

2 Notations

Let s be a string, we use |s| to denote the length of s. For integers a ≤ |s|, we
use s[a] to denote the i-th character of s and for integers a ≤ b ≤ |s|, we use
s[a : b] to denote the substring (s[a], s[a+ 1], . . . , s[b]). Let S be a finite set, we

use |S| to denote the size of S, and use s
$← S to denote sampling an element s

uniformly from set S. Let D be a distribution, we use d← D to denote sampling
d according to D and use Supp(D) to denote the support of D.

We write negl(·) to denote a negligible function, and write poly(·) to denote
a polynomial. For integers a ≤ b, we write [a, b] to denote all integers from a to
b and use [b] to denote all integers from 1 to b. For natural numbers a ≤ b, we

use
(
b
a

)
to denote the binomial coefficient, i.e.,

(
b
a

)
= b·(b−1)·...·(b−a+1)

a·(a−1)·...·1 .

For more background knowledge and definitions of cryptographic primitives
employed, we refer the readers to the full version of this paper.

3 Fingerprinting Code with Enhanced Security

3.1 The Definition

In this section, we provide the definition of fingerprinting code. Compared to
previous definitions [BS95, Tar03, BN08], we require a stronger security, where

11

the adversary is allowed to 1) make queries to an extraction oracle that outputs
the decoding of a given word and 2) make challenge oracle queries adaptively.

Definition 3.1 (Fingerprinting Code). A fingerprinting code FC = (Gen,
Dec) with message space [1, N] and code length l consists of the following algo-
rithms:

• Gen(1λ)→ (td, Γ = (w̄m)m∈[N]) : On input the security parameter λ, the code
generation algorithm outputs the trapdoor td and N codewords w̄1, . . . w̄N
(for messages 1, . . . , N respectively) in {0, 1}l.

• Dec(td, w)→ m : On input the trapdoor td and a word w ∈ {0, 1}l (w is not
necessarily in Γ), the decoding algorithm outputs a message m ∈ [1, N]∪{⊥}.

The correctness property requires that the the decoding algorithm will decode
codewords in Γ correctly.

Definition 3.2 (Correctness). Let (td, (w̄m)m∈[N])← Gen(1λ), then for any m,
we have:

Pr[Dec(td, w̄m) 6= m] = 0

The security property requires that given a few codewords {w̄m}m∈C∗ ⊆ Γ for
messages in a set C∗, no adversary can generate a “feasible” word that decodes
to a new message outside C∗. Here, we say that a word w is feasible if

∀j ∈ [l],∃ m ∈ C∗, w̄m[j] = w[j]

In this work, we consider a strong security, where the adversary is allowed to
learn the decoding of q feasible words for an a priori bounded q. Also, we allow
the adversary to make challenge oracle queries adaptively, i.e., it can request
codewords for its selected messages after viewing some codewords and the de-
coding of some words.

Definition 3.3 (Security with q Extraction Queries). A fingerprinting
code is secure with q extraction queries if for all polynomial-time (PPT) adver-
saries A, we have Pr[ExptA,q(λ) = 1] ≤ negl(λ), where we define the experiment
Expt as follows:

1. The challenger samples (td, (w̄m)m∈[N])← Gen(1λ) and initializes the set C∗ =
∅.

2. Then, the adversary is allowed to make a priori unbounded number of queries
to the challenge oracle and make up to q queries to the extraction oracle,
which are defined as follows:
• Challenge Oracle. On input a message m ∈ [1, N], the challenger re-

turns w̄m to the adversary and sets C∗ = C∗ ∪ {m}.
• Extraction Oracle. On input a word w, the challenger does not return

anything to A if w is not feasible (according to current C∗). Otherwise,
it computes m ← Dec(td, w). The challenger returns m to A if m ∈ C∗.
Otherwise, the experiment aborts and outputs 1.

3. The experiment outputs 0 if it does not abort in Step 2.

12

3.2 The Construction

In this section, we present our construction of fingerprinting code that has adap-
tive security with extraction queries.

Let λ be the security parameter. Let N,L, l, q be positive integers that are
polynomial in λ and satisfy l = 8λ(N + 1)2, L = 8l − 4 + 4l2Nq. Let θ =
1/(2(N + 1)). Let S = {S ⊆ [1, L] : |S| = l} be the set of all subsets of [1, L]
that contain l elements.

We construct the fingerprinting code FC = (Gen, Dec) with message space
[1, N] and code length NL as follows:

• Gen. On input a security parameter λ, the code generation algorithm first
samples a random permutation P over [NL]. Then for m ∈ [1, N], and h ∈
[NL], it sets

w̄m[h] =

{
1 if dP(h)/Le ≤ m

0 otherwise

Finally, it outputs the trapdoor td = P and the codewords (w̄m)m∈[N].
• Dec. On input the trapdoor td = P and a word w ∈ {0, 1}NL, the decoding

algorithm proceeds as follows:

1. For i ∈ [N]:

(a) Sample Si
$← S

(b) Ai = 0
(c) For j ∈ Si:

i. Ai = Ai + w[P−1((i− 1)L+ j)]
(d) If Ai

l ≤
3
4 − iθ:

i. If i = 1: Output ⊥
ii. Output i− 1

2. Output N

Theorem 3.1. FC is a secure fingerprinting code that has correctness and adap-
tive security with q extraction queries.

We give proof of Theorem 3.1 in the full version.

4 Collusion Resistant Watermarkable PRF

4.1 The Definition

In this section, we provide the definition of watermarkable PRF, which is adapted
and generalized from definitions in previous works [CHN+16, BLW17, KW17,
QWZ18,KW19,YAL+19].

Definition 4.1 (Watermarkable PRFs). A watermarkable PRF WPRF =
(Setup, KeyGen, Eval, Mark, Extract) with key space K, input space {0, 1}n, out-
put space {0, 1}m, and message space M consists of the following algorithms:

13

• Setup(1λ)→ (PP,MK,EK) : On input the security parameter λ, the setup
algorithm outputs the public parameter PP , the mark key MK and the ex-
traction key EK.

• KeyGen(PP) → k : On input the public parameter PP , the key generation
algorithm outputs a PRF key k ∈ K.

• Eval(PP, k, x)→ y : On input the public parameter PP , a PRF key k ∈ K,
and an input x ∈ {0, 1}n, the evaluation algorithm outputs an output y ∈ {0,
1}m.

• Mark(PP,MK, k,msg) → C : On input the public parameter PP , the mark
key MK, a PRF key k ∈ K, and a message msg ∈M, the marking algorithm
outputs a marked circuit C : {0, 1}n → {0, 1}m.

• Extract(PP,EK, C) → msg : On input the public parameter PP , the ex-
traction key EK, and a circuit C, the extraction algorithm outputs a message
m ∈M∪ {⊥}, where ⊥ denotes that the circuit is unmarked.

Correctness. The correctness of a watermarking scheme includes three prop-
erties. The functionality preserving property requires that the watermarked key
can roughly preserve the functionality of the original key.

Definition 4.2 (Functionality Preserving). For any msg ∈ M, let (PP,

MK,EK) ← Setup(1λ), k ← KeyGen(PP), C ← Mark(PP,MK, k,msg), x
$←

{0, 1}n, then we have Pr[C(x) 6= Eval(PP, k, x)] ≤ negl(λ).

The extraction correctness requires that the extraction algorithm can extract
the correct message from an honestly-watermarked key.

Definition 4.3 (Extraction Correctness). For any msg ∈M, let (PP,MK,
EK) ← Setup(1λ), k ← KeyGen(PP), C ← Mark(PP,MK, k,msg), then we
have Pr[Extract(PP,EK, C) 6= msg] ≤ negl(λ).

The meaningfulness property requires that most circuits are unmarked, which
rules out the trivial construction that regards all circuits as marked.

Definition 4.4 (Watermarking Meaningfulness). For any circuit C : {0,
1}n → {0, 1}m, let (PP,MK,EK)← Setup(1λ), then we have:

Pr[Extract(PP,EK, C) 6=⊥] ≤ negl(λ)

Remark 4.1. In Definition 4.2 and Definition 4.3, correctness properties are de-
fined for honestly-generated PRF keys only. A stronger notion of correctness
consider adversarially-chosen keys, where k is chosen by the adversary. See
[KW17,KW19] for more detailed discussions on different notions of correctness.

Pseudorandomness. The pseudorandomness property of a watermarkable PRF
is twofold. First, it requires that the watermarkable PRF should be pseudoran-
dom against an external adversary.

14

Definition 4.5 (Pseudorandomness). Let (PP,MK,EK)← Setup(1λ), k ←
KeyGen(PP), and f be a random function from {0, 1}n to {0, 1}m. Also, let O1(·)
be an oracle that takes as input a string x ∈ {0, 1}n and returns Eval(PP, k, x),
and let O2(·) be an oracle that takes as input a string x ∈ {0, 1}n and returns
f(x). Then for all PPT adversary A, we have:

| Pr[AO1(·)(PP) = 1]− Pr[AO2(·)(PP) = 1] |≤ negl(λ)

Moreover, the watermarkable PRF should be (weak) pseudorandom against
the watermarking authority, who holds the mark key and the extraction key.

Definition 4.6 (Pseudorandomness against the Watermarking Author-
ity). Let (PP,MK,EK) ← Setup(1λ), k ← KeyGen(PP), and f be a random
function from {0, 1}n to {0, 1}m. Also, let O1(·) be an oracle that takes as input
a string x ∈ {0, 1}n and returns Eval(PP, k, x), and let O2(·) be an oracle that
takes as input a string x ∈ {0, 1}n and returns f(x). Then for all PPT adversary
A, we have:

| Pr[AO1(·)(PP,MK,EK) = 1]− Pr[AO2(·)(PP,MK,EK) = 1] |≤ negl(λ)

Definition 4.7 (Weak Pseudorandomness against the Watermarking
Authority). Let (PP,MK,EK) ← Setup(1λ), k ← KeyGen(PP), and f be a
random function from {0, 1}n to {0, 1}m. Also, let O1 be an oracle that samples

x
$← {0, 1}n and returns (x, Eval(PP, k, x)) on each query, and let O2 be an

oracle that samples x
$← {0, 1}n and returns (x, f(x)) on each query. Then for

all PPT adversary A, we have:

| Pr[AO1(PP,MK,EK) = 1]− Pr[AO2(PP,MK,EK) = 1] |≤ negl(λ)

Unremovability. This is the main security requirement for a watermarking
scheme. Roughly, it requires that the adversary is not able to remove or modify
the messages embedded in a random PRF key without significantly changing the
functionality.

Definition 4.8 (ε-Unremovability). A watermarkable PRF is ε-unremovable
if for all PPT and ε-unremoving-admissible adversaries A, we have
Pr[ExptURA(λ) = 1] ≤ negl(λ), where we define the experiment ExptUR as fol-
lows:

1. The challenger samples (PP,MK,EK) ← Setup(1λ) and returns PP to
A. Also, it samples a challenge key k∗ ← KeyGen(PP), which is used in
answering the adversary’s challenge oracle queries.

2. Then, A is given access to the following oracles (but it may be restricted in
querying them as discussed below):
• Mark Key Oracle. The mark key oracle returns MK to the adversary.
• Extraction Key Oracle. The extraction key oracle returns EK to the

adversary.

15

• Marking Oracle. On input a PRF key k ∈ K and a message msg ∈M,
the marking oracle returns a circuit C← Mark(PP,MK, k,msg).

• Extraction Oracle. On input a circuit C, the extraction oracle returns
a message msg ← Extract(PP,EK, C).

• Challenge Oracle. On input a message msg, the challenge oracle re-
turns a circuit C∗ ← Mark(PP,MK, k∗,msg) to the adversary.

3. Finally, A submits a circuit C̃ and the experiment outputs 1 iff Extract(PP,
EK, C̃) 6∈ M∗. Here, we use M∗ to denote all messages submitted to the
challenge oracle and use C∗ to denote all circuits returned by the challenge
oracle.

We say that an adversary A is ε-unremoving-admissible if there exists circuit
C∗ ∈ C∗ that |{x ∈ {0, 1}n : C∗(x) 6= C̃(x)}| ≤ ε · 2n.

We can get different levels of unremovability by restricting the adversary’s
ability in querying oracles. In a nutshell, we write unremovability as C -(M ,E)-
ε-unremovability, where C ∈ {single key, bounded collusion resistant, fully collu-
sion resistant}, M ∈ {−,MO,PM}, and E ∈ {−,bounded EO,EO,PE}. In more
detail, the security notions are organized along the following three dimensions:

• Ability to Query the Challenge Oracle. The unremovability can be
defined against an adversary that can:
• make only one query to the challenge oracle (single key).
• make queries to the challenge oracle for a priori bounded number of times

(bounded collusion resistant).
• make queries to the challenge oracle for a priori unbounded number of

times (fully collusion resistant).
• Ability in Obtaining Information about MK. The unremovability can

be defined against an adversary that can:
• make query to neither the mark key oracle nor the marking oracle (−).
• make a priori unbounded number of queries to the marking oracle but

make no query to the mark key oracle (MO).
• make query to the mark key oracle (PM).

• Ability in Obtaining Information about EK. The unremovability can
be defined against an adversary that can:
• make query to neither the extraction key oracle nor the extraction oracle

(−).
• make at most q queries to the extraction oracle but make no query to

the extraction key oracle, where q is a priori bounded (bounded EO or
q-EO).

• make a priori unbounded number of queries to the extraction oracle but
make no query to the extraction key oracle (EO).

• make query to the extraction key oracle (PE).

Remark 4.2. In our definition of collusion resistant unremovability, the adver-
sary is allowed to make challenge oracle queries adaptively. Such adaptive se-
curity is not defined (and achieved) in previous works about collusion resistant
watermarkable PRF [YAL+19].

16

Unforgeability. This property is dual to the unremovability. Roughly, it pre-
vents one from embedding messages to PRF keys without the mark key.

Definition 4.9 (δ-Unforgeability). A watermarkable PRF is δ-unforgeable if
for all PPT and δ-unforging-admissible adversaries A, we have Pr[ExptUFA(λ) =
1] ≤ negl(λ), where we define the experiment ExptUF as follows:

1. The challenger samples (PP,MK,EK)← Setup(1λ) and returns PP to A.
2. Then, A is given access to the following oracles (but it may be restricted in

querying them as discussed below):
• Extraction Key Oracle. The extraction key oracle returns EK to the

adversary.
• Marking Oracle. On input a PRF key k ∈ K and a message msg ∈M,

the marking oracle returns a circuit C← Mark(PP,MK, k,msg).
• Extraction Oracle. On input a circuit C, the extraction oracle returns

a message msg ← Extract(PP,EK, C).
3. Finally, A submits a circuit C̃ and the experiment outputs 1 iff Extract(PP,

EK, C̃) 6=⊥.

Here, an adversary A is δ-unforging-admissible if for every circuit Ci returned
by the marking oracle, |{x ∈ {0, 1}n : Ci(x) 6= C̃(x)}| ≥ δ · 2n.10

We can get different levels of unforgeability by restricting the adversary’s
ability in querying oracles. In a nutshell, we write unforgeability as (M ,E)-δ-
unforgeability, where M ∈ {−,MO}, and E ∈ {−,EO,PE}. In more detail, the
security notions are organized along the following two dimensions:

• Ability in Obtaining Information about MK. The unforgeability can
be defined against an adversary that can:
• make no query to the marking oracle (−).
• make a priori unbounded number of queries to the marking oracle (MO).

• Ability in Obtaining Information about EK. The unforgeability can
be defined against an adversary that can:
• make query to neither the extraction key oracle nor the extraction oracle

(−).
• make a priori unbounded number of queries to the extraction oracle but

make no query to the extraction key oracle (EO).
• make query to the extraction key oracle (PE).

4.2 The Construction

In this section, we show our main construction, which upgrades single key secure
watermarkable PRF families into fully collusion resistant ones.

Let λ be the security parameter. Let n,m,N, l, s, κ, q be positive integers
that are polynomial in λ. Let ε, ε′, ε̄ be positive real values s.t. 1/ε̄ is polynomial
in λ, ε̄ = (1 + 1/λ) · ε, ε′ = (1 + 2/λ) · ε. Also, let t = λ3/ε.

Our construction is built on the following building blocks:

10 An alternative definition of δ-unforging-admissibility, which is used in [KW17], addi-
tionally requires that for every PRF key ki submitted to the marking oracle, |{x ∈ {0,
1}n : Ci(x) 6= Eval(PP, ki, x)}| ≥ δ · 2n.

17

• A watermarkable PRF family WPRF0 = (WPRF0. Setup,WPRF0. KeyGen,
WPRF0. Eval,WPRF0. Mark,WPRF0. Extract) with input space {0, 1}n, out-
put space {0, 1}m, and message space {0, 1}κ. Also, we use R0 and R′0 to
denote the randomness space for the algorithm WPRF0. KeyGen and the al-
gorithm WPRF0. Mark respectively.

• A fingerprinting code FC = (FC. Gen,FC. Dec) with message space [1, N] and
code length l. Also, we use T and RFC to denote the key space (i.e., the set
of all trapdoors for FC) and the randomness space for the algorithm FC. Gen
respectively.

• A signature scheme SIG = (SIG. KeyGen,SIG. Sign,SIG. Verify) with mes-
sage space {0, 1}λ, signature space {0, 1}s and signing randomness space
RSIG.

• A PKE scheme PKE = (PKE. KeyGen,PKE. Enc,PKE. Dec) with message
space T × {0, 1}λ × {0, 1}s, ciphertext space {0, 1}κ, and encryption ran-
domness space RPKE.
• Pseudorandom generators:

G : {0, 1}λ → {0, 1}λ × {0, 1}λ ×RFC ×RSIG ×RPKE

G′ : {0, 1}λ → Rl+1
0 G′′ : {0, 1}λ → R′2l+1

0

• A pseudorandom function family F = (F. KeyGen,F. Eval) with input space
R′2l+1

0 and output space R′2l+1
0 .

We construct WPRF = (Setup, KeyGen, Eval, Mark, Extract), which has in-
put space {0, 1}n, output space {0, 1}(l+1)m, and message space [1, N], as follows:

• Setup. On input a security parameter λ, the setup algorithm first generates
(PP0,MK0, EK0) ← WPRF0. Setup(1λ), (V K, SK) ← SIG. KeyGen(1λ),
(PK,DK) ← PKE. KeyGen(1λ), and K ← F. KeyGen(1λ). Then, it outputs
the public parameter PP = (PP0, V K, PK), the mark key MK = (MK0,
SK,K), and the extraction key EK = (EK0, DK).
• KeyGen. On input the public parameter PP , the key generation algorithm

outputs the PRF key s
$← {0, 1}λ.

• Eval. On input the public parameter PP = (PP0, V K, PK), a PRF key
s ∈ {0, 1}λ and an input x ∈ {0, 1}n, the evaluation algorithm proceeds as
follows:
1. (ř, r̂, RFC, RSIG, RPKE) = G(s).
2. (r0, r1, . . . , rl) = G′(ř).
3. For i ∈ [0, l], ki = WPRF0. KeyGen(PP0; ri).
4. Output (WPRF0. Eval(PP0, ki, x))i∈[0,l].

• Mark. On input the public parameter PP = (PP0, V K, PK), the mark key
MK = (MK0, SK,K), a PRF key s ∈ {0, 1}λ and a message msg ∈ [1, N],
the marking algorithm proceeds as follows:
1. (ř, r̂, RFC, RSIG, RPKE) = G(s).
2. (r0, r1, . . . , rl) = G′(ř).
3. For i ∈ [0, l], ki = WPRF0. KeyGen(PP0; ri).

18

4. (td, (w̄i)i∈[N]) = FC. Gen(1λ;RFC).
5. σ = SIG. Sign(SK, ř;RSIG).
6. ct = PKE. Enc(PK, td‖ř‖σ;RPKE).
7. (r′0, (r

′
i,ι)i∈[l],ι∈{0,1}) = F. Eval(K, G′′(r̂)).

8. W0 = WPRF0. Mark(PP0,MK0, k0, ct; r
′
0).

9. For i ∈ [l]:
(a) bi = w̄msg[i].
(b) Wi = WPRF0. Mark(PP0,MK0, ki, bi; r

′
i,bi

).

10. Outputs a circuit C : {0, 1}n → {0, 1}(l+1)m s.t. C(x) = (Wi(x))i∈[0,l].
• Extract. On input the public parameter PP = (PP0, V K, PK), the ex-

traction key EK = (EK0, DK), and a circuit C, the extraction algorithm
proceeds as follows:
1. Set the circuit W0 : {0, 1}n → {0, 1}m as W0(x) = C(x)[1 : m].
2. ct = WPRF0. Extract(PP0, EK0, W0).
3. If ct =⊥, output ⊥.
4. (td‖ř‖σ) = PKE. Dec(DK, ct).
5. If (td‖ř‖σ) =⊥, output ⊥.
6. If SIG. Verify(V K, ř, σ) = 0, output ⊥.
7. (r0, r1, . . . , rl) = G′(ř).
8. For i ∈ [0, l], ki = WPRF0. KeyGen(PP0; ri).
9. A = 0.

10. For j ∈ [t]:

(a) Sample x
$← {0, 1}n.

(b) If C(x) 6= (WPRF0. Eval(PP0, ki, x))i∈[0,l], A = A+ 1.
11. If A > t · ε̄, output ⊥.
12. For i ∈ [l]:

(a) a = im+ 1, b = (i+ 1)m.
(b) Set the circuit Wi : {0, 1}n → {0, 1}m as Wi(x) = C(x)[a : b].
(c) w[i] = WPRF0. Extract(PP0, EK0, Wi).
(d) If w[i] 6∈ [0, 1], w[i] = 0.

13. msg ← FC. Dec(td, w).
14. Output msg.

Theorem 4.1. If WPRF0 is a single key secure watermarkable PRF family, FC
is a secure fingerprinting code that is adaptively secure with q + 1 extraction
queries as defined in Sec. 3, PKE is a CCA secure PKE scheme, SIG is a secure
signature scheme, G, G′, G′′ are secure pseudorandom generators, and F is secure
pseudorandom function, then WPRF is a secure watermarkable PRF family with
collusion resistant security. In particular:

• If WPRF0 has (weak) pseudorandomness against the watermarking authority,
then WPRF also has (weak) pseudorandomness against the watermarking
authority.
• If WPRF0 is single key-(M ,E)-ε′-unremovable, then WPRF is fully collu-

sion resistant-(M ,E)-ε-unremovable, where M ∈ {MO,PM}, and E ∈ {−,
bounded EO}. In more detail, if WPRF0 is single key-(M , (l + 1)q-EO)-ε′-
unremovable, then WPRF is fully collusion resistant-(M , q-EO)-ε-unremovable.

19

• WPRF is (MO,PE)-ε′-unforgeable.

We present proof of Theorem 4.1 later in this section, which includes proof
of the correctness and pseudorandomness (Sec. 4.4), the unremoveability (Sec.
4.5), and the unforgeability (Sec. 4.6) of WPRF.

4.3 The Instantiations

In this section, we show how to instantiate our construction via employing ex-
isting watermarkable PRFs from standard assumptions [KW17,QWZ18,KW19].
Note that, all of them can be instantiated from some standard lattice assump-
tions, which can be further reduced to the worst-case hardness of appropriately
parameterized GapSVP problem. Therefore, the watermarking schemes provided
in this work also rely on the worst-case hardness of the GapSVP problem.

Instantiating from [KW17]. The scheme in [KW17] can achieve a single key-
(MO,−)-ε′-unremovability and a (MO,−)-δ′-unforgeability, where ε′ is negligible
in λ and δ′ = 1/poly(λ). Besides, the scheme has pseudorandomness against the
watermarking authority.

Unfortunately, the scheme can not be used in our general construction di-
rectly. This is because in our construction, ε′ is required to be significantly larger
than ε̄, where 1/ε̄ = poly(λ). Nonetheless, the requirement (i.e., ε′− ε̄ is large) is
only desired when proving unremovability against an adversary that can query
the extraction oracle. Since the scheme in [KW17] does not achieve security with
extraction queries, we do not need to argue it during the upgrading. So, we can
still instantiate WPRF0 with the scheme. Formally, we have:

Corollary 4.1. Assuming the worst-case hardness of appropriately parameter-
ized GapSVP problem, there exist watermarkable PRF families with fully collu-
sion resistant-(MO,−)-ε-unremovability, (MO,PE)-δ-unforgeability, and pseu-
dorandomness against the watermarking authority, where ε = negl(λ) and δ =
1/poly(λ).

Instantiating from [QWZ18]. The scheme in [QWZ18] can achieve a single
key-(PM,EO)-ε′-unremovability, where ε′ = 1/2−1/poly(λ). When instantiating
our construction with this scheme, we have:

Corollary 4.2. Assuming the worst-case hardness of appropriately parameter-
ized GapSVP problem, there exist watermarkable PRF families with fully collu-
sion resistant-(PM, bounded EO)-ε-unremovability and (MO,PE)-δ-unforgeability,
where ε = δ − 1/poly(λ) and δ = 1/2− 1/poly(λ).

Instantiating from [KW19]. The scheme provided in [KW19] has single
key-(PM,EO)-ε′-unremovability and weak pseudorandomness against the wa-
termarking authority11, where ε′ = 1/2 − 1/poly(λ). When instantiating our
construction with this scheme, we have

11 In fact, the scheme can achieve a T -restricted pseudorandomness against the wa-
termarking authority, which guarantees security as long as the authority does not
query the PRF on some pre-defined T inputs.

20

Corollary 4.3. Assuming the worst-case hardness of appropriately parameter-
ized GapSVP problem, there exist watermarkable PRF families with fully col-
lusion resistant-(PM, bounded EO)-ε-unremovability, (MO,PE)-δ-unforgeability,
and weak pseudorandomness against the watermarking authority, where ε =
δ − 1/poly(λ) and δ = 1/2− 1/poly(λ).

4.4 Correctness and Pseudorandomness of WPRF

Functionality Preserving. The functionality preserving property comes from
the functionality preserving property of WPRF0 and the pseudorandomness of
G, G′, G′′,F directly.

Note that if WPRF0 has functionality preserving against adversarially-chosen
keys (achieved in [QWZ18, KW19]), WPRF also has this stronger correctness
property. Besides, even if WPRF0 does not satisfy it, WPRF can still achieve
functionality preserving against adversarially-chosen keys if the outputs of G are
“random” enough (e.g., if G is modeled as a random oracle).

Extraction Correctness. The extraction correctness comes from the extrac-
tion correctness of WPRF0, the correctness of PKE, the correctness of SIG, the
functionality preserving property of WPRF0, the correctness of FC, and the pseu-
dorandomness of G, G′, G′′,F directly.

Watermarking Meaningfulness. The watermarking meaningfulness comes
from the watermarking meaningfulness of WPRF0 directly.

Pseudorandomness. The pseudorandomness comes from the pseudorandom-
ness of WPRF0 and the pseudorandomness of G, G′ by a direct reduction.

(Weak) Pseudorandomness against the Watermarking Authority. The
(weak) pseudorandomness against the watermarking authority comes from the
(weak) pseudorandomness against the watermarking authority of WPRF0 and
the pseudorandomness of G, G′ by a direct reduction.

4.5 Unremovability of WPRF

In this section, we prove the fully collusion resistant-(M ,E)-ε-unremovability of
WPRF, assuming that WPRF0 is single key-(M ,E)-ε′-unremovable, where M ∈
{MO,PM} and E ∈ {−,bounded EO}. For simplicity, here we only provide the
detailed proof for M = PM and E = bounded EO. The proofs are similar in
cases that M ∈ {PM} and E ∈ {−,bounded EO}, and at the end of this section,
we also discuss how to deal with a few subtle issues in the proofs when M = MO.

First, we define the following games between a challenger and a PPT ε-
unremoving-admissible adversary A:

• Game 0. This is the real experiment ExptUR with some purely conceptual
changes. More precisely, the challenger proceeds as follows.

21

I. First, the challenger generates (PP0,MK0, EK0) ← WPRF0. Setup(1λ),
(V K, SK)← SIG. KeyGen(1λ), (PK,DK)← PKE. KeyGen(1λ), andK ←
F. KeyGen(1λ). Then, it returns the public parameter PP = (PP0, V K,
PK) and the mark key MK = (MK0, SK,K) to A.

II. Then the challenger samples the challenge key s∗
$← {0, 1}λ and gener-

ates some variables (determined by s∗), which are used in answering the
challenge oracle:
1. (ř∗, r̂∗, R∗FC, R

∗
SIG, R

∗
PKE) = G(s∗).

2. (r∗0 , r
∗
1 , . . . , r

∗
l) = G′(ř∗).

3. For i ∈ [0, l], k∗i = WPRF0. KeyGen(PP0; r∗i).
4. (td∗, (w̄∗i)i∈[N]) = FC. Gen(1λ;R∗FC).
5. σ∗ = SIG. Sign(SK, ř∗;R∗SIG).
6. ct∗ = PKE. Enc(PK, td∗‖ř∗‖σ∗;R∗PKE).
7. (r′∗0 , (r

′∗
i,ι)i∈[l],ι∈{0,1}) = F. Eval(K, G′′(r̂∗)).

III. Next the challenger answers A’s oracle queries, including the extraction
oracle queries and the challenge oracle queries. Once A submits a circuit
C to the extraction oracle, the challenger proceeds as follows:
1. Set the circuit W0 : {0, 1}n → {0, 1}m as W0(x) = C(x)[1 : m].
2. ct = WPRF0. Extract(PP0, EK0, W0).
3. If ct =⊥, return ⊥ to A.
4. (td‖ř‖σ) = PKE. Dec(DK, ct).
5. If (td‖ř‖σ) =⊥, return ⊥ to A.
6. If SIG. Verify(V K, ř, σ) = 0, return ⊥ to A.
7. (r0, r1, . . . , rl) = G′(ř).
8. For i ∈ [0, l], ki = WPRF0. KeyGen(PP0; ri).
9. A = 0.

10. For j ∈ [t]:

(a) Sample x
$← {0, 1}n.

(b) If C(x) 6= (WPRF0. Eval(PP0, ki, x))i∈[0,l], A = A+ 1.
11. If A > t · ε̄, return ⊥ to A.
12. For i ∈ [l]:

(a) a = im+ 1, b = (i+ 1)m.
(b) Set the circuit Wi : {0, 1}n → {0, 1}m as Wi(x) = C(x)[a : b].
(c) w[i] = WPRF0. Extract(PP0, EK0, Wi).
(d) If w[i] 6∈ [0, 1], w[i] = 0.

13. msg ← FC. Dec(td, w).
14. Return msg to A.
Also, for the h-th challenge oracle query with message msg∗h, the chal-
lenger generates the circuit C∗h as follows and returns it back to the
adversary.
1. W∗h,0 = WPRF0. Mark(PP0,MK0, k

∗
0 , ct

∗; r′∗0).
2. For i ∈ [l]:

(a) b∗h,i = w̄∗msg∗h
[i].

(b) W∗h,i = WPRF0. Mark(PP0,MK0, k
∗
i , b
∗
h,i; r

′∗
i,bi

).
3. Set the circuit C∗h as C∗h(x) = (W∗h,i(x))i∈[0,l].

22

IV. Finally, A submits a circuit C̃ to the challenge oracle and the chal-
lenger checks if A succeeds in attacking the unremovability of WPRF as
follows. Here, we use M to denote the set of all messages submitted to
the challenge oracle.
1. Set the circuit W0 : {0, 1}n → {0, 1}m as W0(x) = C̃(x)[1 : m].
2. ct = WPRF0. Extract(PP0, EK0, W0).
3. If ct =⊥, output 1.
4. (td‖ř‖σ) = PKE. Dec(DK, ct).
5. If (td‖ř‖σ) =⊥, output 1.
6. If SIG. Verify(V K, ř, σ) = 0, output 1.
7. (r0, r1, . . . , rl) = G′(ř).
8. For i ∈ [0, l], ki = WPRF0. KeyGen(PP0; ri).
9. A = 0.

10. For j ∈ [t]:

(a) Sample x
$← {0, 1}n.

(b) If C̃(x) 6= (WPRF0. Eval(PP0, ki, x))i∈[0,l], A = A+ 1.
11. If A > t · ε̄, output 1.
12. For i ∈ [l]:

(a) a = im+ 1, b = (i+ 1)m.
(b) Set the circuit Wi : {0, 1}n → {0, 1}m as Wi(x) = C̃(x)[a : b].
(c) w[i] = WPRF0. Extract(PP0, EK0, Wi).
(d) If w[i] 6∈ [0, 1], w[i] = 0.

13. msg ← FC. Dec(td, w).
14. If msg 6∈ M, output 1.
15. Output 0.

• Game 1. This is identical to Game 0 except that in Step II, the challenger
samples (ř∗, R∗FC, R

∗
SIG, R

∗
PKE, r

′∗
0 , (r

′∗
i,ι)i∈[l],ι∈{0,1}) uniformly at random in-

stead of computing them using pseudorandom generators and pseudorandom
functions.
• Game 2. This is identical to Game 1 except that the challenger changes

the way to answer extraction oracle queries. In particular, after receiving
a circuit C and extracting the ciphertext ct from the first part of C, the
challenger works as follows (instead of continuing the extraction procedure
defined above) if ct = ct∗:

1. A = 0.
2. For j ∈ [t]:

(a) Sample x
$← {0, 1}n.

(b) If C(x) 6= C∗1(x), A = A+ 1.
3. If A > t · ε̄, return ⊥ to A.
4. For i ∈ [l]:

(a) a = im+ 1, b = (i+ 1)m.
(b) Set the circuit Wi : {0, 1}n → {0, 1}m as Wi(x) = C(x)[a : b].
(c) w[i] = WPRF0. Extract(PP0, EK0, Wi).
(d) If w[i] 6∈ [0, 1], w[i] = 0.

5. msg ← FC. Dec(td∗, w).

23

6. Return msg to A.
• Game 3. This is identical to Game 2 except that in Step IV, after extracting

the ciphertext ct, it works as follows (instead of continuing the extraction
procedure defined above) if ct = ct∗:
1. For i ∈ [l]:

(a) a = im+ 1, b = (i+ 1)m.
(b) Set the circuit Wi : {0, 1}n → {0, 1}m as Wi(x) = C̃(x)[a : b].
(c) w[i] = WPRF0. Extract(PP0, EK0, Wi).
(d) If w[i] 6∈ [0, 1], w[i] = 0.

2. msg ← FC. Dec(td∗, w).
3. If msg 6∈ M, output 1.
4. Output 0.

• Game 4. This is identical to Game 3 except that the challenger changes the
way to generate ct∗. In particular, it computes ct∗ ← PKE. Enc(PK, 0).
• Game 5. This is identical to Game 4 except that the challenger samples

(r∗0 , r
∗
1 , . . . , r

∗
l) uniformly at random instead of setting them as (r∗0 , r

∗
1 , . . . ,

r∗l) = G′(ř∗). Note that in Game 5, each C∗h is set as

C∗h(x) = W∗0(x)‖(W∗i,w̄∗
msg∗

h
[i](x))i∈[1,l]

where W∗0, {W∗i,j}i∈[l],j∈{0,1} are generated as follows in Step II:
1. For i ∈ [0, l], k∗i ←WPRF0. KeyGen(PP0).
2. (td∗, (w̄∗i)i∈[N])← FC. Gen(1λ).
3. ct∗ ← PKE. Enc(PK, 0).
4. W∗0 ←WPRF0. Mark(PP0,MK0, k

∗
0 , ct

∗).
5. For i ∈ [l]:

(a) W∗i,0 ←WPRF0. Mark(PP0,MK0, k
∗
i , 0).

(b) W∗i,1 ←WPRF0. Mark(PP0,MK0, k
∗
i , 1).

• Game 6. This is identical to Game 5 except that in Step IV, after extracting
the ciphertext ct, the challenger aborts the experiment and outputs 2 if
ct 6= ct∗.
• Game 7. This is identical to Game 6 except that when
• answering an extraction oracle query with extracted ciphertext ct = ct∗,
• performing the final check in Step IV,

the challenger aborts and outputs 2 if the extracted word w satisfies

∃i ∈ [l], b ∈ {0, 1} : w[i] 6= b ∧ ∀msg ∈ M, w̄∗msg[i] = b

We call this event as Bad . Here, we abuse the notion M as the set of all
messages submitted to the challenge oracle before the event occurs.

Next, we prove the indistinguishability of each consecutive pair of games
defined above and show that the adversary A will win in the final game (Game
7) with a negligible probability. For simplicity of notation, we use Ei to denote
the output of Game i.

Lemma 4.1. | Pr[E0 = 1]− Pr[E1 = 1] |≤ negl(λ).

24

Proof. In Game 1, some random variables are sampled uniformly instead of
being set as output of pseudorandom generators. As the PRG seed s∗, r̂∗ does
not appear in the view of A directly, indistinguishability between Game 0 and
Game 1 comes from the pseudorandomness of G, G′′.

Lemma 4.2. | Pr[E1 = 1]− Pr[E2 = 1] |≤ negl(λ).

Proof. Game 1 and Game 2 are identical as long as

1. (td∗‖ř∗‖σ∗) = PKE. Dec(DK, ct∗).
2. SIG. Verify(V K, ř∗, σ∗) = 1.
3. For all tested input x, C∗1(x) = (WPRF0. Eval(PP0, k

∗
i , x))i∈[0,l].

The first two conditions are satisfied (with all but negligible probability) due to
the correctness of PKE and the correctness of SIG respectively. The last condition
comes from the functionality preserving property (against an honest key) of
WPRF, which guarantees that the probability that C∗1(x) 6= (WPRF0. Eval(PP0,
k∗i , x))i∈[0,l] is negligible for a uniform x.

Lemma 4.3. | Pr[E2 = 1]− Pr[E3 = 1] |≤ negl(λ).

Proof. Proof of Lemma 4.3 is similar to the proof of Lemma 4.2. Note that as
A is ε-unremoving-admissible, there exists ĩ ∈ [Q] s.t.

|{x ∈ {0, 1}n : C∗
ĩ
(x) 6= C̃(x)}| ≤ ε · 2n

Also, by the functionality preserving property (against an honest key) of WPRF,

|{x ∈ {0, 1}n : C∗
ĩ
(x) 6= (WPRF0. Eval(PP0, k

∗
i , x))i∈[0,l]}| ≤ negl(λ) · 2n

So, we have

|{x ∈ {0, 1}n : C̃(x) 6= (WPRF0. Eval(PP0, k
∗
i , x))i∈[0,l]}| ≤ (ε+ negl(λ)) · 2n

By the Chernoff bounds,

Pr[A ≥ t · ε̄] ≤ e− λ
60

Therefore, it will not affect the output even if the challenger does not check
whether C̃ is close to (WPRF0. Eval(PP0, k

∗
i , x))i∈[0,l].

Lemma 4.4. | Pr[E3 = 1]− Pr[E4 = 1] |≤ negl(λ).

Proof. Indistinguishability between Game 3 and Game 4 comes from the CCA-
security of PKE by a direct reduction. Note that the reduction can answer the
extraction oracle queries and perform the check in Step IV by querying its de-
cryption oracle, and in both cases it is not required to decrypt the challenge
ciphertext ct∗.

Lemma 4.5. | Pr[E4 = 1]− Pr[E5 = 1] |≤ negl(λ).

25

Proof. As the PRG seed ř∗ is not used in any other part of the experiment, indis-
tinguishability between Game 4 and Game 5 comes from the pseudorandomness
of G′ directly.

Lemma 4.6. | Pr[E5 = 1]− Pr[E6 = 1] |≤ negl(λ).

Proof. Indistinguishability between Game 5 and Game 6 comes from the single
key-(PM, (l + 1)q-EO)-ε′-unremovability of WPRF0.

More precisely, if the adversary is able to generate a circuit C̃ such that
W0(·) = C̃[1 : m] is marked with a message not equal to ct∗ (with a non-negligible
probability), then we can construct an adversary B that breaks the single key-
(PM, (l + 1)q-EO)-ε′-unremovability of WPRF0.

In particular, the adversary B sets the circuit W∗0 as its challenge, which
is obtained by submitting ct∗ to its challenge oracle. Moreover, B can answer
extraction oracle queries via querying its own extraction oracle. Also, using the
mark key returned from its mark key oracle, it can answer the mark key oracle
query from A and to generate {W∗i,b}i∈[l],j∈{0,1} when answering the challenge

oracle. Finally, B submits W0(·) = C̃[1 : m] to its challenger. Note that, B is ε′-
unremoving-admissible since A is ε-unremoving-admissible, which ensures that
|{x ∈ {0, 1}n : W0(x) 6= W∗0(x)}| ≤ ε · 2n.

Lemma 4.7. | Pr[E6 = 1]− Pr[E7 = 1] |≤ negl(λ).

Proof. Indistinguishability between Game 6 and Game 7 comes from the single
key-(PM, (l + 1)q-EO)-ε′-unremovability of WPRF0 by a hybrid argument and
the reductions are similar to the reduction provided in the proof of Lemma 4.6.

Note that for i ∈ [l], if w̄∗msg∗1 [i] = w̄∗msg∗2 [i] for all msg∗1 ,msg
∗
2 ∈ M, then the

adversary A can only obtain one marked circuit for k∗i , thus, single key security
for WPRF0 is enough. Also, for i ∈ [l],

• If Bad occurs at Step IV: Let Wi(·) = C̃(·)[il + 1, (i + 1)l]. Then |{x ∈ {0,
1}n : Wi(x) 6= W∗i (x)}| ≤ ε · 2n due to the fact that A is ε-unremoving-
admissible.
• If Bad occurs at an extraction oracle query: Let Wi(·) = C(·)[il + 1, (i+ 1)l],

where C is the circuit submitted to the extraction oracle. Assuming that |{x ∈
{0, 1}n : Wi(x) 6= W∗i (x)}| ≥ ε′ ·2n, then by the chernoff bound, the probability
that C can pass the check in Step 3 (in the new extraction procedure defined
in Game 2) is negligible, i.e., the challenger is not able to recover a word w
in this case.

Thus, the adversary B is ε′-unremoving-admissible.

Lemma 4.8. Pr[E7 = 1] ≤ negl(λ).

Proof. Lemma 4.8 comes from adaptive security with (q + 1) extraction queries
of FC by a direction reduction.

Combining Lemma 4.1 to Lemma 4.8, we have Pr[E0 = 1] ≤ negl(λ), i.e.,
the probability that A wins in the real experiment ExptUR is negligible. This
completes the proof of unremovability.

26

The proofs in cases that M = MO. The above proof strategies (almost)
work perfectly in cases that M = MO. One subtle issue is that in the proof
of Lemma 4.6 and that of Lemma 4.7, the adversary B for single key security
of WPRF0 needs to simulate the marking oracle for A via its own marking
oracle. However, as the seed (WPRF’s PRF key) is chosen by A, security of
pseudorandom generator is not enough to ensure that the simulated marking
oracle (which runs WPRF0. Mark on fresh randomness) is indistinguishable from
an honest marking oracle (which runs WPRF0. Mark on randomness output by
some pseudorandomness generation component). To solve this subtle issue, we
employ a pseudorandom function F to generate the randomness for WPRF0. Mark.
Since the secret key K of F is put in the mark key, which is not given to A in
this case, we can argue the indistinguishability of these two modes for answering
marking oracle queries.

4.6 Unforgeability of WPRF

Next, we prove the unforgeability of WPRF. First, we define the following games
between a challenger and a PPT ε′-unforging-admissible adversary A:

• Game 0. This is the real experiment ExptUF. More precisely, the challenger
proceeds as follows.
I. First, the challenger generates (PP0,MK0, EK0) ← WPRF0. Setup(1λ),

(V K, SK)← SIG. KeyGen(1λ), (PK,DK)← PKE. KeyGen(1λ), andK ←
F. KeyGen(1λ). Then, it returns the public parameter PP = (PP0, V K,
PK) to A.

II. Next, it answers A’s oracle queries:
• If A submits a query to the extraction key oracle, the challenger

returns EK = (EK0, DK) to A.
• If A submits the h-th marking oracle query (sh,msgh) ∈ {0, 1}λ ×

[N], the challenger returns Ch ← Mark(PP,MK, sh,msgh) to A.
III. Finally, A submits a circuit C̃ and the challenger proceeds as follows:

1. Set the circuit W0 : {0, 1}n → {0, 1}m as W0(x) = C̃(x)[1 : m].
2. ct = WPRF0. Extract(PP0, EK0, W0).
3. If ct =⊥, output 0.
4. (td‖ř‖σ) = PKE. Dec(DK, ct).
5. If (td‖ř‖σ) =⊥, output 0.
6. If SIG. Verify(V K, ř, σ) = 0, output 0.
7. (r0, r1, . . . , rl) = G′(ř).
8. For i ∈ [0, l], ki = WPRF0. KeyGen(PP0; ri).
9. A = 0.

10. For j ∈ [t]:

(a) Sample x
$← {0, 1}n.

(b) If C̃(x) 6= (WPRF0. Eval(PP0, ki, x))i∈[0,l], A = A+ 1.
11. If A > t · ε̄, output 0.
12. For i ∈ [l]:

(a) a = im+ 1, b = (i+ 1)m.

27

(b) Set the circuit Wi : {0, 1}n → {0, 1}m as Wi(x) = C̃(x)[a : b].
(c) w[i] = WPRF0. Extract(PP0, EK0, Wi).
(d) If w[i] 6∈ [0, 1], w[i] = 0.

13. msg ← FC. Dec(td, w).
14. If msg =⊥, output 0.
15. Output 1.

• Game 1. This is identical to Game 0 except that in Step III.6, after check-
ing if σ is a valid signature for ř, the challenger further checks if ř has
appeared. In particular, let Q be the number of marking oracle queries the
adversary made and for h ∈ [Q], let (řh, r̂h, RhFC, R

h
SIG, R

h
PKE) = G(sh), then

the challenger outputs 0 if ∀h ∈ [Q], ř 6= řh.

Game 0 and Game 1 are identical unless SIG. Verify(V K, ř, σ) = 1 but
∀h ∈ [Q], ř 6= řh, i.e., the adversary generates a valid signature σ for a new
message ř after viewing signatures for messages ř1, . . . , řQ. This occurs with
only a negligible probability due to the existentially unforgeable of SIG. Thus,
the probability that A succeeds in Game 0 and that in Game 1 are close.

Next, we argue that Game 1 outputs 1 with only a negligible probability.
First, due to the new checking rule in Game 1, ř = řh for some h ∈ [Q] (other-
wise, the experiment outputs 0 directly). Then, by the functionality preserving
property (against adversarially-chosen PRF keys) of WPRF, with all but negli-
gible probability,

|{x ∈ {0, 1}n : (WPRF0. Eval(PP0, ki, x))i∈[0,l] 6= Ch(x)}| ≤ negl(λ) · 2n

Since A is ε′-unforging-admissible,

|{x ∈ {0, 1}n : C̃(x) 6= Ch(x)}| ≥ ε′ · 2n

So, we have12

|{x ∈ {0, 1}n : C̃(x) 6= (WPRF0. Eval(PP0, ki, x))i∈[0,l]}| ≥ (ε′ − negl(λ)) · 2n
(1)

Finally, by the Chernoff bounds,

Pr[A ≤ t · ε̄] ≤ e−
λ−2
8

i.e., C̃ can pass the check in Step III.11 with only negligible probability.
This completes the proof of unforgeability.

Acknowledgement. We appreciate the anonymous reviewers for their valuable
comments and especially to one reviewer for suggesting defining collusion re-
sistant unremovability against adversaries that can adaptively make challenge
queries. Part of this work was supported by the National Natural Science Foun-
dation of China (Grant No. 61972332, U1636205, 61572294, 61632020), and the
Research Grant Council of Hong Kong (Grant No. 25206317).

12 If we use the alternative definition of unforging-admissibility (see Footnote 10), then
ε′-unforging-admissibility implies Equation (1) directly and we do not need func-
tionality preserving against adversarially-chosen PRF keys for WPRF.

28

References

[AMN+18] Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Ya-
mada, and Takashi Yamakawa. Constrained PRFs for NC1 in traditional
groups. In CRYPTO, pages 543–574. Springer, 2018.

[AT09] Ehsan Amiri and Gábor Tardos. High rate fingerprinting codes and the
fingerprinting capacity. In SODA, pages 336–345. SIAM, 2009.

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit
Sahai, Salil Vadhan, and Ke Yang. On the (im) possibility of obfuscating
programs. In CRYPTO, pages 1–18. Springer, 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In PKC, pages 501–519. Springer, 2014.

[BKM17] Dan Boneh, Sam Kim, and Hart Montgomery. Private puncturable PRFs
from standard lattice assumptions. In EUROCRYPT, pages 415–445.
Springer, 2017.

[BKS17] Foteini Baldimtsi, Aggelos Kiayias, and Katerina Samari. Watermarking
public-key cryptographic functionalities and implementations. In ISC,
pages 173–191. Springer, 2017.

[BLW17] Dan Boneh, Kevin Lewi, and David J Wu. Constraining pseudorandom
functions privately. In PKC, pages 494–524. Springer, 2017.

[BMP85] GR Blakley, Catherine Meadows, and George B Purdy. Fingerprinting
long forgiving messages. In CRYPTO, pages 180–189. Springer, 1985.

[BN08] Dan Boneh and Moni Naor. Traitor tracing with constant size ciphertext.
In CCS, pages 501–510. ACM, 2008.

[BS95] Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital
data. In CRYPTO, pages 452–465. Springer, 1995.

[BS98] Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital
data. IEEE Transactions on Information Theory, 44(5):1897–1905, 1998.

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck
Wee. Private constrained PRFs (and more) from LWE. In TCC, pages
264–302. Springer, 2017.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and
their applications. In ASIACRYPT, pages 280–300. Springer, 2013.

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC1

from LWE. In EUROCRYPT, pages 446–476. Springer, 2017.
[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In CRYPTO,

pages 257–270. Springer, 1994.
[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan,

and Daniel Wichs. Watermarking cryptographic capabilities. In STOC,
pages 1115–1127, 2016.

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond
permutation branching programs: Proofs, attacks, and candidates. In
CRYPTO, pages 577–607. Springer, 2018.

[DKN+20] Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and
Takashi Yamakawa. Adaptively secure constrained pseudorandom func-
tions in the standard model. Cryptology ePrint Archive, Report 2020/111,
2020. https://eprint.iacr.org/2020/111.

[GKM+19] Rishab Goyal, Sam Kim, Nathan Manohar, Brent Waters, and David J
Wu. Watermarking public-key cryptographic primitives. In CRYPTO,
pages 367–398. Springer, 2019.

29

https://eprint.iacr.org/2020/111

[HMW07] Nicholas Hopper, David Molnar, and David Wagner. From weak to strong
watermarking. In TCC, pages 362–382. Springer, 2007.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and
Thomas Zacharias. Delegatable pseudorandom functions and applications.
In CCS, pages 669–684. ACM, 2013.

[KW17] Sam Kim and David J Wu. Watermarking cryptographic functionalities
from standard lattice assumptions. In CRYPTO, pages 503–536. Springer,
2017.

[KW19] Sam Kim and David J. Wu. Watermarking PRFs from lattices: Stronger
security via extractable PRFs. In CRYPTO, pages 335–366. Springer,
2019.

[LdW14] Thijs Laarhoven and Benne de Weger. Optimal symmetric tardos traitor
tracing schemes. Designs, Codes and Cryptography, 71(1):83–103, 2014.

[NFH+09] Koji Nuida, Satoshi Fujitsu, Manabu Hagiwara, Takashi Kitagawa, Ha-
jime Watanabe, Kazuto Ogawa, and Hideki Imai. An improvement of
discrete tardos fingerprinting codes. Designs, Codes and Cryptography,
52(3):339–362, 2009.

[Nis13] Ryo Nishimaki. How to watermark cryptographic functions. In EURO-
CRYPT, pages 111–125. Springer, 2013.

[NSS99] David Naccache, Adi Shamir, and Julien P Stern. How to copyright a
function? In PKC, pages 188–196. Springer, 1999.

[PS18] Chris Peikert and Sina Shiehian. Privately constraining and programming
PRFs, the LWE way. In PKC, pages 675–701. Springer, 2018.

[QWZ18] Willy Quach, Daniel Wichs, and Giorgos Zirdelis. Watermarking PRFs
under standard assumptions: Public marking and security with extraction
queries. In TCC, pages 669–698. Springer, 2018.

[Tar03] Gábor Tardos. Optimal probabilistic fingerprint codes. In STOC, pages
116–125. ACM, 2003.

[Wag83] Neal R Wagner. Fingerprinting. In S&P, pages 18–18. IEEE, 1983.
[YAL+18] Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu.

Unforgeable watermarking schemes with public extraction. In SCN, pages
63–80. Springer, 2018.

[YAL+19] Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu. Col-
lusion resistant watermarking schemes for cryptographic functionalities.
In ASIACRYPT, pages 371–398. Springer, 2019.

[YF11] Maki Yoshida and Toru Fujiwara. Toward digital watermarking for cryp-
tographic data. IEICE transactions on fundamentals of electronics, com-
munications and computer sciences, 94(1):270–272, 2011.

30

	Collusion Resistant Watermarkable PRFs from Standard Assumptions
	Introduction
	Our Results
	Technical Overview
	Related Works

	Notations
	Fingerprinting Code with Enhanced Security
	The Definition
	The Construction

	Collusion Resistant Watermarkable PRF
	The Definition
	The Construction
	The Instantiations
	Correctness and Pseudorandomness of WPRF
	Unremovability of WPRF
	Unforgeability of WPRF

