
Verifiable Registration-Based Encryption

Rishab Goyal1 and Satyanarayana Vusirikala2

1 MIT
goyal@utexas.edu

2 UT Austin
satya@cs.utexas.edu

Abstract. In recent work, Garg, Hajiabadi, Mahmoody, and Rahimi [18]
introduced a new encryption framework, which they referred to as Registration-
Based Encryption (RBE). The central motivation behind RBE was to
provide a novel methodology for solving the well-known key-escrow prob-
lem in Identity-Based Encryption (IBE) systems [33]. Informally, in an
RBE system, there is no private-key generator unlike IBE systems, but
instead, it is replaced with a public key accumulator. Every user in an
RBE system samples its own public-secret key pair and sends the public
key to the accumulator for registration. The key accumulator has no se-
cret state and is only responsible for compressing all the registered user
identity-key pairs into a short public commitment. Here the encryptor
only requires the compressed parameters along with the target identity,
whereas a decryptor requires supplementary key material along with the
secret key associated with the registered public key.

The initial construction in [18] based on standard assumptions only pro-
vided weak efficiency properties. In a follow-up work by Garg, Hajiabadi,
Mahmoody, Rahimi, and Sekar [19], they gave an efficient RBE construc-
tion from standard assumptions. However, both these works considered
the key accumulator to be honest which might be too strong an assump-
tion in real-world scenarios. In this work, we initiate a formal study of
RBE systems with malicious key accumulators. To that end, we intro-
duce a strengthening of the RBE framework which we call Verifiable
RBE (VRBE). A VRBE system additionally gives the users an extra
capability to obtain short proofs from the key accumulator proving cor-
rect (and unique) registration for every registered user as well as proving
non-registration for any yet unregistered identity.

We construct VRBE systems that provide succinct proofs of registration
and non-registration from standard assumptions (such as CDH, Factor-
ing, LWE). Our proof systems also naturally allow a much more efficient
audit process which can be performed by any non-participating third
party as well. A by-product of our approach is that we provide a more
efficient RBE construction than that provided in the prior work of Garg
et al. [19]. And lastly, we initiate a study on the extension of VRBE to
a wider range of access and trust structures.

1 Introduction

Public-key encryption (PKE) [13,30,21] has remained a cornerstone in modern-
day cryptography and has been one of the most widely used and studied crypto-
graphic primitive. Traditionally, a public-key encryption system enables a one-
to-one private communication channel between any two users over a public
broadcast network as long as it is possible to disambiguate any user’s public
key information honestly. Over the last few decades, significant research effort
has been made by the cryptographic community in re-envisioning the original
goals of public-key encryption, in turn pushing towards more expressiveness
from such systems. This effort has lead to introduction of encryption systems
with better functionalities such as Identity-Based Encryption (IBE) [33,12,5],
Attribute-Based Encryption (ABE) [32,23], and most notably Functional En-
cryption (FE) [6] which is meant to encapsulate both IBE and ABE functional-
ities.

Very briefly, in FE systems there is a trusted authority which sets up the
system by sampling public parameters pp along with a master secret key msk.
The public parameters pp can be used by any party to encrypt a message m
of its choice, while the master key msk enables the generation of certain pri-
vate decryption keys skf for any function f in the associated function class.
The most useful aspect of such systems is that decryption now leads to users
either conditionally learning the full message (as in IBE/ABE where the condi-
tion is specified at encryption time) or learning some partial information about
the message such as f(m) (as in general FE). The security of all such systems
guarantees that no computationally bounded adversary should be able to learn
anything other than what can be uncovered using the private decryption keys in
its possession.

Notably, in all such highly expressive systems it is crucial that the master key
msk is never compromised as given the master key any adversary can arbitrarily
sample private decryption keys to learn desired messages. Thus, an unfortunate
consequence of adding such powerful functionalities to public-key cryptosystems
is the introduction of a central trusted authority (or key generator) which is
responsible for sampling the public parameters, distributing the private decryp-
tion keys to authorized users, and most importantly securely storing the master
secret key. Now, this could be very worrisome for many applications, since the
authority must be fully trustworthy, otherwise, it would turn out to be a single
point of failure. While it would be quite reasonable to put some trust in the cen-
tral authority, it so happens that even an honest-but-curious key generator can
cause great havoc in such an environment. Specifically, any honest-but-curious
key generator can arbitrarily decrypt ciphertexts that are intended for specific
recipients since it has the master key. And, it could perform such an attack in an
undetectable way. This problem is widely regarded as the “key-escrow” problem.

While many previous works ([5,8,1,9,22,29,11,25] to name a few) have sug-
gested different approaches to solving the key-escrow problem, none of these
solutions were able to resolve the key-escrow problem completely. Very recently,
in a beautiful work by Garg, Hajiabadi, Mahmoody, and Rahimi [18], a novel

2

approach for handling key-escrow was proposed. The central motivation of that
work was to remove the requirement of private key generators completely from
IBE systems, and to that end, they introduced the notion of Registration-Based
Encryption (RBE). In an RBE system, each user samples its own public-secret
key pair, and the private key generator is replaced with a public key accumu-
lator. Every user registers their public key and identity information with the
key accumulator, and the job of a key accumulator is to compress all these user
identity-key pairs into a short public commitment with efficiently computable
openings. Here the commitment is set as the public parameters of the RBE sys-
tem, and the user-specific openings are used as supplementary key information
during decryption. Now ideally one would expect the registration process to be
time-unrestricted, that is users must be allowed to register at arbitrary time in-
tervals. However, this would imply that public parameters will get updated after
every registration, which could possibly lead to every registered user requesting
fresh supplementary key information after another user registers. Thus, to make
the notion more attractive, [18] required the following efficiency properties from
an RBE system — (1) public parameters must be short, i.e. |pp|= poly(λ, log n)
where λ is the security parameter and n is the number of users registered so far,
(2) the registration process as well as the supplementary key generation process
must be efficient, i.e. must run in time poly(λ, log n), (3) number of times any
user needs to request a fresh supplementary key from the accumulator (over the
lifetime of the system) is also poly(λ, log n). In short, an RBE system is meant to
be a public key accumulation service which provides efficient and adaptive user
registration while avoiding the problems associated with a private key generator.

In a sequence of two works [18,19], efficient construction of RBE systems
were provided from a wide variety of assumptions (such as CDH, Factoring,
LWE, iO). Specifically, [18] gave an efficient construction from indistinguishabil-
ity obfuscation (iO) [2,17], and a weakly efficient construction from hash garbling
scheme [18]. In a follow-up work by Garg et al. [19], a fully efficient RBE con-
struction from hash garbling was provided. At first glance, it seems like efficient
constructions for RBE systems fill the gap between regular PKE systems (which
do not suffer from key-escrow but also do not provide any extra functionality)
and IBE systems (which permit a simpler identity-based encryption paradigm
but suffers from key-escrow). However, it turns out there is still a significant gap
due to which even RBE systems potentially could be surprisingly compromised
due to a corrupt key accumulator. To better understand the gap, let us look
back at the excerpt from Rogaway’s essay [31] which was one of the prompts
behind the initial work on RBE in [18]:

“[. . .] But this convenience is enabled by a radical change in the
trust model: Bob’s secret key is no longer self-selected. It is issued
by a trusted authority. That authority knows everyone’s secret key
in the system. IBE embeds key-escrow indeed a form of key-escrow
where a single entity implicitly holds all secret keys even ones that
haven’t yet been issued. [. . .] ”

3

Now an RBE system solves the problem of self-selection of Bob’s (or any
user’s) secret key faced in IBE systems, that is during honest registration every
user samples its own public-secret key pair. However, the embedding key-escrow
problem is still not directly prevented by the RBE abstraction. This is because
a dishonest key accumulator could potentially add either certain trapdoors, or
secretly register multiple keys for already registered users, or register any key
for currently unregistered users. There could be many such scenarios in which
malicious behavior of a key accumulator permits decryptability of ciphertexts
intended towards arbitrary users by the key accumulator depending upon its
adversarial strategy. Although such attack scenarios were not explicitly studied
in the prior works [18,19], an extremely useful by-product of the approaches taken
in those works was that the user registration process (and all the computations
performed by the key accumulator) was completely deterministic. It thus leads to
an extremely simple and elegant methodology for avoiding the embedding key-
escrow problem by providing full public auditability. Basically, any user (or even
a non-participating third party) could audit key accumulator and verify honest
behavior by rebuilding the RBE public parameters and comparing that with
the accumulated public parameters. As honestly generated public parameters
do not have any trapdoors or faulty keys embedded by construction, thus public
auditability solves the embedding key-escrow problem.

Although the above deterministic reconstructability feature of the RBE sys-
tems serves as a possible solution to embedding key-escrow problem, this is not
at all efficient. Concretely, if any new (or even already registered) user wants to
verify that the key accumulation has been done honestly, then that particular
user needs to obtain a O(n) (linear-sized) proof as well as spend O(n) (linear
amount of) time for verification, where n is the number of users registered until
that point. In this work, we study the question of whether we can build RBE
systems in which such verifications could be sped up. Specifically, we ask the
following:

Do there exist efficient Registration-Based Encryption schemes in
which any user can obtain short proofs of unique registration as well
as short proofs of non-registration? Can such proof mechanisms be
useful for speeding up the auditability process? Is it even possible to
provide all such guarantees with only a poly(λ, log n) cost incurred
in the size of proof and running time of provers/verifiers?

We answer the above questions in affirmative by introducing a notion of effi-
cient verifiability for RBE systems and providing an instantiation from hash gar-
bling schemes [18] thereby giving constructions based on standard assumptions
(such as CDH, Factoring, LWE). Concretely, our contributions are described
below.

Our results. In this work, we introduce a new notion for key accumulation which
we call Verifiable Registration-Based Encryption (VRBE). Briefly, a VRBE sys-
tem is simply a standard RBE system in which the key accumulator can also pro-
vide proofs of correct (and unique) registration for every registered user as well

4

as proofs of non-registration for any yet unregistered identity. We give new con-
structions for VRBE from hash garbling schemes which provide succinct proofs
of registration and non-registration, where the key accumulator can efficiently
carry out the registration and proof generation processes. Our proof systems also
naturally allow a much more efficient audit process which can be performed by
any non-participating third party as well. A by-product of our approach is that
we provide a more efficient RBE construction than that provided in the most
recent work of Garg et al. [19], wherein the size of ciphertexts in our construction
is significantly smaller.3 And, lastly we briefly discuss how the notion of VRBE
can also be naturally extended to a wider range of access and trust structures,
wherein the keys accumulated are no more associated with a PKE system, but
for even more expressive encryption systems. Such systems might be practically
more interesting in the future.

Next, we provide a detailed overview of our approach and describe the tech-
nical ideas. Later on, we discuss some related works.

1.1 Technical overview

We start by recalling the notion of RBE as it appears in prior works. We then
discuss our proposed notions of efficient verifiability for such systems. Since the
starting point of our construction is the RBE scheme proposed in [19], thus we
first recall the main ideas and high-level structure of their approach. And, later
we describe our construction and show how to provide succinct proofs of regis-
tration and non-registration for any user identity, thereby adding verifiability to
the system.

The RBE abstraction. In an RBE system, there is a dedicated party which we
call the key accumulator. A key accumulator runs the registration procedure
indefinitely4, where any user could make one of two types of queries — (1) regis-
tration query, where a new user sends in its identity and public key pair (id, pk)
for registration, (2) update query, where an already registered user requests for
supplementary key material u which is used for decryption. (The supplementary
key material is usually referred to as the update information.) The key accumu-
lator maintains the public parameters pp along with some auxiliary information
aux throughout its execution. After each registration query of the form (id, pk),
it updates the parameters to pp′ and aux′ to reflect addition and sends back
the associated key material u to the corresponding user. For each update query
made by a user with identity id, the accumulator extracts an update u from
the auxiliary information aux and sends it over to the user. The encryption and

3 Looking ahead, our efficiency gain is due to the fact that our construction takes a one-
shot (single-step) approach whereas [19] takes a two-step approach. Here the outcome
of a two-step approach is that the ciphertext consists of two layers of cascaded garbled
circuits, while our solution consists of a single sequence of garbled circuits.

4 It could run it sporadically as well, where it simply records all new registrations
made in a certain time window, and later registers them all at once. For simplicity,
here we consider the key accumulator is always online.

5

decryption procedures are defined analogous to the IBE counterparts, except
during decryption a user needs a piece of appropriate update information u to
complete the operation.

At a high level, the correctness requirement states that any honestly reg-
istered user with identity id and key pair (pk, sk) must be able to decrypt a
ciphertext encrypted for identity id under public parameters pp (which could
have been updated after id was registered) using its own secret key sk as long as
it also gets an update information u corresponding to pp from the accumulator.
For efficiency, it is important that the size of public parameters pp, size of update
information u, and the number of updates required by any user throughout its
lifetime grow at most poly-logarithmically with the number of registered users n.
Additionally, the registration process and update generation should run in time
poly(λ, log n). Lastly, for security, it is essential that a ciphertext encrypting a
message m for identity id under parameters pp should hide the message as long
as either id was not registered by the time pp was computed, or the key pair
registered with identity id was honestly sampled and the corresponding secret
key is unknown to an attacker.

Inadequacies of RBE and Workarounds. Now as we discussed before, the above
abstraction still suffers from the embedding key-escrow problem. Specifically, the
RBE system does not provide any abstraction for efficiently verifying whether a
dishonest key accumulator — (1) secretly registers a public-secret key pair for
any yet unregistered identity, (2) or while registering any new user (or even at
any later point in time), also introduces a trapdoor (or register multiple keys for
the same identity) that enables unauthorized decryption. For this specific rea-
son, we study the possibility of efficient verifiability for RBE systems. Concretely,
we consider two orthogonal notions of verifiability for an RBE scheme — pre-
registration and post-registration proofs. Intuitively, the goal of pre-registration
verifiability is to provide a short proof π validating that a given id has not yet
been registered as per public parameters pp and any ciphertext ct encrypted
towards such an identity id will completely hide the plaintext even if all other
secret keys are leaked. Similarly, the intuition behind post-registration verifia-
bility is to provide a short proof π of unique accumulation, where the proof π
guarantees that the key accumulator must not have added a trapdoor (or doubly
registered) during a possibly dishonest registration which allows decryption of
ciphertexts intended for that particular user. (Looking ahead, our formal defi-
nitions of pre/post-registration verifiability are stated in a much stronger way
where we allow an adversary to completely control the key accumulator and still
require the soundness/message-hiding property to hold.)

Defining Verifiable RBE. Formally, a verifiable RBE system is just like a reg-
ular RBE system with four additional (deterministic) algorithms — PreProve,
PostProve, PreVerify, and PostVerify. The pre-registration prover takes as input
a common reference string crs, public parameters pp, and a target identity id for
which a proof π of pre-registration is provided. The post-registration prover on
the other hand also takes a target public key pk as input. Both these provers are

6

given random-access to the auxiliary information for time-efficient computation.
Informally, the completeness of these proof systems states that the pre/post-
registration verifier should always accept honestly generated proofs. And for
soundness, the requirement is that if the pre-registration verifier accepts a proof
π for an identity id w.r.t. parameters pp, then ciphertexts encrypted towards
id must hide the message completely from a malicious key accumulator which
computes the parameters pp and proof π. Similarly, for post-registration sound-
ness, the property states that if the verifier accepts a proof π for identity-key
pair (id, pk) w.r.t. parameters pp, then ciphertexts encrypted towards id must
hide the message completely from a malicious key accumulator as long as the
accumulator does not possess the secret key sk associated with the public key
pk.

Stronger correctness guarantees. In addition to above-stated properties, we
also define a very strong form of extractable correctness property for our post-
registration proof. Concretely, the extractable correctness property states that
there exists a deterministic update extraction algorithm such that if there exists
an accepting post-registration proof π for identity-key pair (id, pk) w.r.t. param-
eters pp, then the extraction algorithm computes update information u from
the proof π itself such that using update u, anybody could decrypt ciphertexts
encrypted for identity id. Intuitively, extractable correctness states that com-
pleteness would still hold even for maliciously generated proofs. Our definitions
are formally introduced later in Section 3.

A simple paradigm for efficient auditability. Looking back at our verifiability
properties, one could interpret them as follows. The pre/post-registration proofs
together help in ensuring that a key accumulator is behaving honestly at least
locally. The idea behind a more global verification process is to perform the
pre/post-registration verification on a randomly chosen (small) subset of users
similar to what is done in probabilistically-checkable proof (PCP) literature.
Specifically, suppose that a party claims that it has accumulated public param-
eters pp with the list of registered users R and non-registered users S. Any third
party can efficiently audit the registration process by proceeding as follows — it
samples a random subset of users in R and S, it requests post-registration and
pre-registration proofs for users in those subsets respectively. If all the proofs
are valid, then the auditor approves declaring that registration was done hon-
estly. Note that depending upon the desired soundness threshold, the auditor
can appropriately set the size of the subsets it samples. Thus, such randomized
auditing would be more efficient than rebuilding the entire registration logs for
most parameter regimes.

Reviewing prior RBE systems [18,19]. Before outlining our approach, we quickly
recall the high-level structure used in prior works [18,19] since our construction
uses similar building blocks. Let us first look at the weakly efficient RBE con-
struction provided in [18] since it lays major groundwork for the follow-up works
(including ours). At a high level, the ideas behind their construction can be
summarized as follows. The key accumulator stores all the registered identity-
key pairs {(idi, pki)}i∈[n] using a shortlist of Merkle tree Tree1,Tree2, . . . ,Treek,

7

where every tree Treei is at least twice as large as Treei+1. Here the leaves of
each tree encode one of the registered identity-key pairs (id, pk), while the in-
ternal nodes are like standard Merkle tree nodes (which is that they encode the
hash of its children) except each node also stores the largest identity registered
in its left sub-tree as well. In words, each tree Treei is binary search Merkle
tree, with all the leaves are lexicographically sorted as per the identities. Con-
sequently, the public key of any registered identity can be obtained efficiently
via a binary search, and the root values of each Merkle tree serve as a short
commitment to the entire registry tree. To encrypt a message m to identity id,
encryptor needs to search the Merkle trees to obtain id’s public key pk. How-
ever, the public parameters only contain the root node, not the entire tree. To
overcome this issue, the [18] construction uses the ideas developed in a long line
of works [10,14,16,7,15] of deferring the binary search to the decryption side
by sending a set of garbled circuits as part of the ciphertext. Basically, for de-
cryption, a user needs to obtain an opening (i.e., path of nodes from root to
leaf) in one of the merkle trees to its registered key, and this corresponds to
the supplementary key material. Now, what makes the registration process only
weakly efficient is that in order to register an identity-key pair (id, pk), the key
accumulator creates a new tree consisting of only node (id, pk), and then merges
all merkle trees of equal size. This helps in keeping the size of the public pa-
rameters short, but since the leaves of the merkle trees have to be sorted, thus
tree merging process is quite inefficient which results in only a weakly efficient
system.

In the follow-up work [19], the authors observed that the weakly efficient
RBE construction described above is fully efficient if the identities being reg-
istered are already coming in sorted order. They call RBE schemes with these
restrictions as Timed-RBE (T-RBE). Starting with this observation, they sug-
gest a powerful two-step approach for building an efficient RBE system without
this restriction, i.e. they provide a nice bootstrapping construction from T-RBE
to general (non-timed) RBE with full efficiency. In their construction, the key
accumulator associates every identity id with a timestamp tid as well, where tid
is an internal counter incrementally maintained by the accumulator. The idea is
that since timestamps tid will be accumulated in a sorted order, thus for storing
the association between the timestamp tid and public key pkid one could simply
use T-RBE scheme. And, for storing the association between identity id and
timestamp tid, the accumulator maintains a balanced merkle tree TimeTree. The
leaves of TimeTree encode the identity-timestamp pairs (id, tid) for all registered
users, and are sorted as per the identities. The most crucial aspect of TimeTree is
that it is balanced (for instance, they use a red-black tree). Let us look into more
details about how such an additional balanced merkle tree is useful in improving
efficiency.

The key accumulator stores all the registered identity-timestamp pairs {(idi, i)}i∈[n]
using a balanced merkle TimeTree, and stores the timestamp-key association us-
ing a short list of (standard) merkle trees {Treej}j as in [18]. The public pa-
rameters consists of multiple versions of the root node of the TimeTree along

8

with the root nodes for {Treej}j . (Specifically, the public parameters store the
root node and depth information of TimeTree for all timestamps whenever the
underlying T-RBE merkle tree was updated.) To register an (id, pk) pair, the
key accumulator inserts the identity-timestamp pair (id, tid) into TimeTree, and
timestamp-key (tid, pkid) to the sequence of T-RBE trees. The most important
aspect of the construction is that if the T-RBE trees storing timestamp-key as-
sociations are merged, then the versions of root nodes being stored in the public
parameters are updated as well. Next, let us look at how encryption and decryp-
tion are performed since the efficiency of registration follows almost immediately.

While encrypting message m for identity id, the encryptor now provides two
levels of garbled circuit sequences, where the first level of garbled circuit sequence
is used to find the timestamp tid associated with id, and in next level one simply
uses the T-RBE garbled circuit sequence to encrypt m under the corresponding
public key pk. For building both levels of garbled circuit sequences, they employ
the same approach of deferring binary search to decryption. The supplementary
key material (or update) consists of two distinct paths, where the first path is
w.r.t. the TimeTree and the second path is as per the T-RBE system which is
w.r.t. one of the merkle trees in {Treej}j . The most important component of this
extended construction is that in order to tightly bound the number of updates
(for any user identity id), the first portion of key material/update u (required for
evaluating the first level of garbled circuits) are only issued whenever the first
T-RBE merkle tree in which identity id was registered gets merged. It turns out
that executing the above idea formally leads to an efficient RBE scheme.

Our Verifiable RBE solution. The starting point of our construction is the [19]
RBE scheme described above. As a first step, we start by simplifying their con-
struction and present a one-shot (single-step) approach to building efficient RBE
systems. Later we describe how the simplified system can be made verifiable,
both in pre-registration and post-registration settings, without making any ad-
ditional assumptions. Lastly, we provide some comparisons and discuss potential
generic methods for making existing RBE schemes verifiable.

Although the basic principles behind our simplified construction and the one
provided in [19] are quite similar, there are significant structural differences in
both the approaches. Therefore, we provide a direct outline of our construction
instead of going through the [19] construction and explaining the differences.
Later on, we briefly compare our construction with theirs. Below we sketch the
main ideas behind our construction. The actual construction is a little more
complicated but follows quite naturally from the following outline. A detailed
description appears later in Section 4.

In our construction, the key accumulator maintains a single balanced merkle
tree which directly stores the mapping between identities and their respective
public keys. Concretely, the key accumulator stores a balanced merkle tree which
we call EncTree and it consists of two types of nodes — leaf and intermediate.
Similar to existing works, a leaf node stores an identity-key pair (id, pk) for ev-
ery registered identity, whereas an intermediate node stores a tuple of the form

9

(hleft, id, hright), where hleft and hright are hash values of its left and right child
(respectively) and id is the largest identity in its left sub-tree. Since EncTree is
balanced and the nodes are ordered as per the registered identities, therefore
given an identity id the key accumulator could both efficiently search its associ-
ated public key (if id has been registered) and efficiently insert a new identity-key
pair. The key accumulator stores EncTree as auxiliary information aux, and pub-
lishes root value rt and depth d of the tree as part of public parameters pp.
The registration algorithm inserts given identity-key pair (id, pk) as a leaf in the
EncTree, balances the tree, and updates the hash values stored in all the an-
cestors of the newly inserted leaf. The registration algorithm then updates the
public parameters pp to store the root value and depth of the updated EncTree.

Encryption and Decryption. The encryption and decryption procedures follow
the aforementioned ‘deferred binary search’ approach in which the ciphertext for
identity id contains a sequence of d garbled circuits which work as follows. Given
a path (a sequence of nodes from root to a leaf) in EncTree as input, the sequence
of garbled circuits jointly check that the path is well-formed, and the leaf node
encodes the identity id, and outputs a PKE ciphertext under the public key
encoded in the leaf node. Individually, the ith garbled circuit performs the local
well-formedness check on the path and outputs the garbled input for (i + 1)th

garbled circuit. For decryption, the decryptor needs to obtain a valid path u
from the accumulator which can be efficiently generated by the accumulator
by performing a binary search on the EncTree. Given a well-formed path, the
decryptor can sequentially evaluate the garbled circuits and eventually obtain a
PKE ciphertext which it decrypts using its secret key.

How to get the desired efficiency? The snapshotting trick. The above scheme
is highly inefficient since updates must be issued each time a new user joins.
At a very high level, we visualize our approach to improve efficiency as that of
storing multiple ‘snapshots’ of the registration process, where an older snapshot
is deleted only after new user registration leads to a new snapshot that is used
by as many number of users as those using the older snapshot.5 The intuition
is to split the registered user space into disjoint groups of sizes — 1, 2, 4, . . . , 2λ.
For each group size, the public parameters will consist of at most one snapshot
which consists of root node and depth information of (a possibly older version
of) the balanced merkle tree EncTree.

Concretely, the public parameters look like
{

(j1, snapshotj1), . . . , (j`, snapshotj`)
}

where every ji ∈ {1, 2, . . . , 2λ}, and ji > ji+1, and snapshotji consists of a root
node and tree depth. These public parameters are interpreted as follows:

(1) the first j1 users who registered refer to the EncTree corresponding to snapshotj1
for decryption/obtaining update information;

5 The snapshotting trick was implicitly used in [19] for similar reasons which is to build
an efficient RBE scheme, but their construction instead highlighted the notion of
explicitly mapping identities to corresponding timestamps as the more important
aspect. Here we instead choose to focus mostly on the snapshotting principle since
it is the major contributor in improving efficiency.

10

(2) next j2 users who registered refer to the EncTree corresponding to snapshotj2 ;
...

(`) and similarly the last j` users to register refer to the EncTree corresponding
to snapshotj` .

Basically, the key accumulator still adds new users to the single balanced merkle
tree EncTree defined before, but now it also stores older snapshots of the EncTree
(thereby older snapshots of the registration process). When a new user is added
then a tuple (1, snapshot) is added to list of parameters, where snapshot is the
latest description of EncTree. Now older snapshots get replaced with latest snap-
shots, after new user registration, if there exist two different snapshots but for
same group size. By careful analysis and non-trivial execution of the above idea,
we were able to show that the resulting RBE scheme is efficient. (Hereby non-
trivial execution we mean that a straightforward implementation/generic usage
of balanced merkle trees lead to an RBE system which is only efficient in the
amortized sense, but if the balanced merkle tree are lazily created then we obtain
a fully efficient RBE scheme as desired. More details are provided in the main
body.)

Making RBE Verifiable. It turns out that our simplified RBE construction is
already very well suited for providing succinct proofs of pre/post-registration.
This is due to the fact that the underlying technology being used is a merkle tree
for which we know how to provide succinct proofs of membership, and since the
merkle trees we are building are balanced and sorted, thus we also can provide
succinct proofs of non-membership. Looking ahead, the proofs of pre-registration
will consist of proofs of non-membership, and proofs of post-registration would
be a combination of proofs of membership and non-membership.

Pre-Registration Proofs. For ease of exposition, consider that the pub-
lic parameters contain exactly one root node and depth value (rt, d). The idea
behind pre-registration proof readily extends to the general case when the pub-
lic parameters contain more than one root node and depth value pairs. Recall
that for soundness of pre-registration verifiability we need to argue that if the
adversary produces an accepting pre-registration proof π for an identity id and
parameters pp, then any ciphertext ct encrypted towards id under parameters pp
must hide the plaintext. Now we know that in our construction, in order to de-
crypt such a ciphertext ct the adversary must be able to generate a well-formed
path in the encryption tree EncTree such that the leaf node contains the identity
id.

Here well-formedness of a path (a sequence of nodes from root to a leaf)
is formally defined as follows. Let the path under consideration be path =
(node1, . . . , noded) where nodei = (hi,left, idi, hi,right) for all i. We say path is
well-formed if the following conditions are satisfied:

1. All the adjacent nodes obey the merkle tree hash constraints, i.e. either
hi,left = Hash(hk, nodei+1) or hi,right = Hash(hk, nodei+1) for all i,

11

(this also tells whether nodei+1 is a left child or a right child of nodei)
2. If nodei+1 is the left child of nodei, then it must be that idj ≤ idi; otherwise

idj > idi, (for all j > i)
3. Root rt is same as node1.

Similarly, we define the notion of adjacent paths. For b ∈ {0, 1}, consider two

paths path(b) = (node
(b)
1 , . . . , node

(b)
d) where node

(b)
i = (h

(b)
i,left, id

(b)
i , h

(b)
i,right). For

two distinct paths path(0) and path(1), we say they are adjacent if the following
conditions are satisfied:

1. Paths path(0) and path(1) are well-formed,

2. Nodes node
(0)
k+1 and node

(1)
k+1 are left and right child (respectively) of nodes

node
(0)
k and node

(1)
k

(where k is the largest index such that first k nodes in paths path(0) and

path(1) are identical)

3. For all j > k + 1, nodes node
(0)
j and node

(1)
j are right and left child of their

respective parent nodes
(where k is as defined above).

At this point, the pre-registration proofs follow from a natural observation which
is that — if some identity id has not yet been registered as per the encryption
tree EncTree (maintained by the key accumulator), then there must exist two
identities idlwr and idupr such that idlwr < id < idupr and paths from the root node
to leaf nodes containing idlwr and idupr are adjacent. That is, a pre-registration
proof consists of two adjacent paths pathlwr and pathupr with identity relations as
described above.6 Now such proofs can be very efficiently computed by perform-
ing an extended binary search for id, where the extension corresponds to finding
the closest registered identities both larger and smaller than id. Note that a ver-
ifier can perform the adjacency-check along with the check that the identities
are arranged as idlwr < id < idupr for verifying the pre-registration proof.

In summary, the idea is that proof of pre-registration for an identity id can
be provided using structured proofs of membership for two identities idlwr and
idupr, where the structure is formalized by the concept of adjacency as described
above. The proof of soundness and correctness builds upon the aforementioned
intuition and is provided in detail later in the main body.

Post-Registration Proofs. As in the case for pre-registration proofs, let
us focus on the case where the public parameters contain a single root node and
depth pair. Recall that an accepting post-registration proof π for identity-key
pair (id, pk) w.r.t parameters pp must guarantee that a key accumulator uniquely
added the identity-key pair (id, pk) to accumulated list of registered users. The
post-registration proofs in our construction can also be visualized similar to the
pre-registration proofs.

6 In case id is either smaller or larger than all registered identities, then the proof will
consist of exactly one path instead of two. Here we ignore that for simplicity.

12

Specifically, observe that if some identity id has been registered as per the
encryption tree EncTree (maintained by the key accumulator), then there must
exist two identities idlwr and idupr such that idlwr < id < idupr and paths from the
root node to leaf nodes containing idlwr and id, and id and idupr are adjacent. In
other words, if identity id was uniquely registered, then there must exist three
disjoint paths pathlwr, pathmid and pathupr such that pathlwr, pathmid are adjacent
as well as pathmid, pathupr with the identities in their respective leaf nodes are
related as described above.7 As for pre-registration proofs, the aforementioned
post-registration proof can be computed analogously in an efficient manner. The
verification procedure can also be naturally extended from pre-registration proof.

There is however one important distinction in the case of post-registration
proofs. Note that a pre-registration proof w.r.t. public parameters that contain
multiple root node and depth pairs simply consist of independently computed
pre-registration proofs for each root node and depth pair. This is because each
sub-proof would guarantee that id was not registered as per that corresponding
encryption tree snapshot. Thus, together all these sub-proof would guarantee
that id was not registered as per any existing encryption tree snapshot. On
the other hand, a post-registration proof w.r.t. public parameters with multiple
root node and depth pairs will not consist of independently computed post-
registration proofs for each root node and depth pair. This is because it is possible
that the identity-key pair (id, pk) is registered as per only one root node and
depth pair (say the latest snapshot), whereas it is not registered as per remaining
(older) snapshots. Therefore, a post-registration proof, in this case, will consist
of a mixture of post-registration and pre-registration proofs depending upon
whether (id, pk) was registered as per that encryption tree snapshot.

A generic approach to verifiability? A natural question a reader might ask is
whether it would be possible to provide proofs of pre/post-registration verifia-
bility generically for any RBE scheme by using a succinct non-interactive proof
system such as SNARGs/SNARKs [27,24,20,26,4] for instance. One possible ap-
proach along these lines could be to maintain an external sorted hash tree of
registered identities, and for providing a pre/post-registration proof the accu-
mulator would generate (non-)membership proofs for the hash tree along with a
SNARK for proving the consistency of the external tree w.r.t. the RBE public
parameters. Such a generic approach seems possible, but would require main-
taining additional data structures for consistency checks. More importantly, this
approach necessitates making additional assumptions as for most succinct non-
interactive proof systems we either need to make certain non-falsifiable assump-
tions [28,20], or work in the Random Oracle model [27,3]. Our construction and
the proofs of verifiability do not rely on any extra assumptions other than what
is already required in existing RBE systems [18,19] themselves, thus our results
show that verifiability comes for free.

7 As before, in case id is either the smallest or largest registered identity, then the proof
will consist of exactly two paths instead of three. Here we ignore that for simplicity.

13

Also, note that SNARKs are usually defined for a family of circuits, thus the
running time of prover is always as large as the size of the circuit, whereas in
this case our provers already have random-access over the auxiliary information
and we were able to provide highly efficient provers in which the running time
of prover grows only poly-logarithmically with the number of users. Therefore,
our non-generic approach is more interesting both theoretically as well as prac-
tically, since we do not make any non-standard assumptions, nor do we incur an
additional overhead in the efficiency.

Related Work and Future Directions. Due to space constraints, we
postpone this to full version of the paper.

2 Hash Garbling

We now review the notion of hash garbling scheme introduced in [18].

Setup(1λ, 1`)→ hk. The setup algorithm takes as input the security parameter
λ, an input length parameter `, and outputs a hash key hk.

Hash(hk, x)→ y. This is a deterministic algorithm that takes as input a hash
key hk and a value x ∈ {0, 1}` and outputs a value y ∈ {0, 1}λ.

GarbleCkt(hk, C, state)→ C̃. It takes as input hash key hk, a circuit C, a secret
state state ∈ {0, 1}λ and outputs a garbled circuit C̃.

GarbleInp(hk, y, state)→ ỹ. It takes as input hash key hk, a value y ∈ {0, 1}λ, a
secret state state ∈ {0, 1}λ and outputs a garbled value ỹ.

Eval(C̃, ỹ, x)→ z. This takes as input a garbled circuit C̃, a garbled value ỹ, a
value x ∈ {0, 1}` and outputs a value z.

Definition 1 (Correctness). A hash garbling scheme is said to be correct if
for all λ ∈ N, ` ∈ N, hash key hk ← Setup(1λ, 1`), circuit C, input x ∈ {0, 1}`,
state ∈ {0, 1}λ, garbled circuit C̃ ← GarbleCkt(hk, C, state) and a garbled value
ỹ ← GarbleInp(hk,Hash(hk, x), state), we have Eval(C̃, ỹ, x) = C(x).

Definition 2 (Security). A hash garbling scheme is said to be secure if there
exists a PPT simulator Sim such that for every stateful PPT adversary A, there
exists a negligible function negl(·) such that for every λ, ` ∈ N, we have

Pr

A(C̃b, ỹb) = b :

hk← Setup(1λ, 1`); (C, x)← A(hk); state← {0, 1}λ
C̃0 ← GarbleCkt(hk, C, state);

ỹ0 ← GarbleInp(hk,Hash(hk, x), state);

(C̃1, ỹ1)← Sim(hk, x, 1|C|, C(x)); b← {0, 1}

 ≤ 1

2
+negl(λ).

3 Verifiable Registration Based Encryption

In this section, we define the notion of Verifiable Registration Based Encryption
(VRBE). First, we recall the definition of Registration Based Encryption (RBE)
as introduced in [18]. For message space M = {Mλ}λ and identity space ID =
{IDλ}λ, an RBE system consists of the following algorithms —

14

CRSGen(1λ)→ crs. The CRS generation algorithm takes as input the security
parameter λ, and outputs a common reference string crs.

Gen(1λ)→ (pk, sk). The key generation algorithm takes as input the security
parameter 1λ, and outputs a public-secret key pair (pk, sk). (Note that these
are only public and secret keys, not the encryption/decryption keys.)

Reg[aux](crs, pp, id, pk)→ pp′. The registration algorithm is a deterministic algo-
rithm, that takes as input the common reference string crs, current public
parameter pp, an identity id to be registered, and a corresponding public key
pk. It maintains auxiliary information aux, and outputs the updated param-
eters pp′. The registration algorithm is modelled as a RAM program where it
can read/write to arbitrary locations of the auxiliary information aux. (The
system is initialized with pp and aux set to ε.)

Enc(crs, pp, id,m)→ ct. The encryption algorithm takes as input the common
reference string crs, public parameters pp, a recipient identity id, and a plain-
text message m. It outputs a ciphertext ct.

Updaux(pp, id)→ u. The key update algorithm is a deterministic algorithm, that
takes as input the public parameters pp and an identity id. Given the aux-
iliary information aux, it generates the key update u ∈ {0, 1}∗. Similar to
the registration algorithm, this is also modelled as a RAM program, but it
is only given read access to arbitrary locations of the auxiliary information
aux.

Dec(sk, u, ct)→ m/GetUpd/⊥ . The decryption algorithm takes as input a secret
key sk, a key update u, and a ciphertext ct, and it outputs either a message
m ∈M, or a special symbol in {⊥,GetUpd}. (Here GetUpd indicates that a
key update might be needed for decryption.)

Next, we introduce the notion of verifiability for an RBE system. Here we con-
sider the notions of pre-registration as well as post-registration verifiability. In-
tuitively, the goal of pre-registration verifiability is to provide a short proof vali-
dating that a given id has not yet been registered and any ciphertext encrypted
towards such an identity will completely hide the message even if all other secret
keys are leaked. Similarly, the intuition behind post-registration verifiability is
to provide a short proof of unique addition, where the proof guarantees that
the key accumulator (i.e., the party responsible for registration) must not have
added a trapdoor during a possibly dishonest registration which allows decryp-
tion of ciphertexts intended for that particular user. Formally, we introduce four
new algorithms — PreProve,PreVerify,PostProve,PostVerify with the following
syntax:

PreProveaux(crs, pp, id)→ π. The pre-registration prover algorithm is a determin-
istic algorithm, that takes as input the common reference string crs, public
parameters pp, and an identity id. Given the auxiliary information aux, it
outputs a pre-registration proof π. Similar to the registration algorithm,
this is also modeled as a RAM program, but it is only given read access to
arbitrary locations of the auxiliary information aux.

PreVerify(crs, pp, id, π)→ 0/1. The pre-registration verifier algorithm takes as in-
put the common reference string crs, public parameter pp, an identity id, and

15

a proof π. It outputs a single bit 0/1 denoting whether the proof is accepted
or not.

PostProveaux(crs, pp, id, pk)→ π. The post-registration prover algorithm is a de-
terministic algorithm, that takes as input the common reference string crs,
public parameters pp, an identity id, and a public key pk. Given the auxil-
iary information aux, it outputs a post-registration proof π. Similar to the
registration algorithm, this is also modeled as a RAM program, but it is only
given read access to arbitrary locations of the auxiliary information aux.

PostVerify(crs, pp, id, pk, π)→ 0/1. The post-registration verifier algorithm takes
as input the common reference string crs, public parameter pp, an identity id,
a public key pk, and a proof π. It outputs a single bit 0/1 denoting whether
the proof is accepted or not.

Note that if one does not impose any succinctness requirements on the
pre/post-registration proofs, then the above algorithms are directly implied by
the fact that the registration process is deterministic. This is because the proofs
themselves can set to be the auxiliary information aux, and one could perform
verification by simply rebuilding the public parameters given in aux. This is quite
inefficient, thus we impose succinctness restrictions along with completeness and
soundness restrictions on the pre/post-registration.

3.1 Correctness

The definition of completeness, compactness, and efficiency for RBE system is
studied in [18,19]. For completeness, we review the definition in full version of
the paper. Next, we introduce the completeness, compactness, and efficiency
conditions we require from the pre/post-registration procedures of a Verifiable
RBE system. Briefly, the completeness of (PreProve,PreVerify) algorithms states
that for any identity id∗ that has not yet been registered, the key accumulator
should be able to compute a proof π (by running the PreProve algorithm) such
that proof π guarantees id∗ has not yet been registered. Similarly for the post-
registration verification, the completeness of (PostProve,PostVerify) algorithms
states that for any identity id∗ that has been (honestly) registered, the key
accumulator should be able to compute a proof π (by running the PostProve
algorithm) such that proof π guarantees id∗ has been registered.

In addition to the above natural completeness definition for the post-registration
verification, we also define a stronger completeness property that provides cer-
tain extractability guarantee. Informally, it states that if there exists a post-
registration proof π for identity-key pair (id∗, pk∗) that is accepted by the PostVerify
algorithm, then every honestly generated ciphertext intended towards id∗ can be
decrypted by the corresponding secret key sk∗ and some update u. Here the up-
date u is (publicly, efficiently and deterministically) computable from the proof
π itself, instead of the auxiliary information aux. Due to space constraints, we
postpone the formal definitions to full version of the paper.

16

3.2 Security

Below we first recall the definition of security for RBE systems as studied pre-
viously. After that, we introduce the definitions for soundness of the pre/post-
registration proofs.

Definition 3 (Message Hiding Security). For any (stateful) interactive
PPT adversary A, consider the following game SecRBEA (λ).

1. (Initialization) The challenger initializes parameters as (pp, aux, u, SID, id
∗) =

(ε, ε, ε, ∅,⊥), samples crs← CRSGen(1λ), and sends the crs to A.
2. (Query Phase) A makes polynomially many queries of the following form:

(a) Registering new (non-target) identity. On a query of the form
(regnew, id, pk), the challenger checks that id /∈ SID, and registers (id, pk)

by running the registration procedure as pp := Reg[aux](crs, pp, id, pk). It
adds id to the set as SID := SID ∪ {id}.

(b) Registering target identity. On a query of the form (regtgt, id), the
challenger first checks that id∗ =⊥. If the check fails, it aborts. Else, it
sets id∗ := id, samples challenge key pair (pk∗, sk∗) ← Gen(1λ), updates

public parameters as pp := Reg[aux](crs, pp, id∗, pk∗), and sets SID := SID∪
{id∗}. Finally, it sends the challenge public key pk∗ to A.

3. (Challenge Phase) On a query of the form (chal, id,m0,m1), then the chal-
lenger checks if id /∈ SID\{id∗}. It aborts if the check fails. Otherwise, it sam-
ples a bit b← {0, 1} and computes challenge ciphertext ct← Enc(crs, pp, id,mb).

4. (Output Phase) The adversary A outputs a bit b′ and wins the game if b′ = b.

We say that an RBE scheme is message-hiding secure if for every (stateful)
interactive PPT adversary A, there exists a negligible function negl(·) such that
for every λ ∈ N, Pr[A wins in SecRBEA (λ)] ≤ 1

2 + negl(λ).

Finally, we define the soundness requirements for our pre/post-registration
proof systems. Informally, the pre-registration soundness states that any ad-
versarial key accumulator must not be able to simultaneously — 1) provide a
valid (acceptable) proof of pre-registration for some identity id, 2) able to break
semantic security for (honestly generated) ciphertexts intended towards iden-
tity id. Intuitively, this says that even a corrupt key accumulator must not be
able to decrypt ciphertexts intended for unregistered users while being able to
provide an accepting pre-registration proof. Thus, any new user can ask for a
pre-registration proof to verify that the key accumulator has not inserted any
trapdoor that enables the accumulator to decrypt ciphertexts encrypted for that
user.

In a similar vein, the post-registration soundness informally states that any
adversarial key accumulator must not be able to simultaneously — 1) provide
a valid (acceptable) proof of post-registration for some identity-key pair (id, pk)
(where pk has honestly generated and the associated secret key was not revealed),
2) able to break semantic security for (honestly generated) ciphertexts intended
towards identity id. Intuitively, this says that even a corrupt key accumulator

17

must not be able to decrypt ciphertexts intended for registered users while being
able to provide an accepting post-registration proof. Thus, any registered user
can ask for a post-registration proof to verify that the key accumulator has
not inserted any trapdoor that enables the accumulator to decrypt ciphertexts
encrypted for that user. Now we give the formal definitions.

Definition 4 (Soundness of Pre-Registration Verifiability). A VRBE
scheme satisfies soundness of pre-registration verifiability if for every stateful
admissible PPT adversary A, there exists a negligible function negl(·) such that
for every λ ∈ N, the following holds

Pr

A(ct) = b :
crs← CRSGen(1λ)

(pp, id, π,m0,m1)← A(crs)
b← {0, 1}; ct← Enc(crs, pp, id,mb)

 ≤ 1

2
+ negl(λ),

where A is admissible if and only if π is a valid pre-registration proof, i.e.
PreVerify(crs, pp, id, π) = 1.

Definition 5 (Soundness of Post-Registration Verifiability). A VRBE
scheme satisfies soundness of post-registration verifiability if for every stateful
admissible PPT adversary A, there exists a negligible function negl(·) such that
for every λ ∈ N, the following holds

Pr

A(ct) = b :
crs← CRSGen(1λ); (pk, sk)← Gen(1λ)

(pp, id, π,m0,m1)← A(crs, pk)
b← {0, 1}; ct← Enc(crs, pp, id,mb)

 ≤ 1

2
+ negl(λ),

where A is admissible if and only if π is a valid post-registration proof, i.e.
PostVerify(crs, pp, id, pk, π) = 1.

4 Verifiable RBE from Standard Assumptions

In this section, we present our VRBE construction. Our construction relies
on two primitives — a regular PKE scheme PKE = (PKE.Setup, PKE.Enc,
PKE.Dec), and a hash garbling scheme HG = (HG.Setup, HG.Hash, HG.GarbleCkt,
HG.GarbleInp, HG.Eval). Below we provide a detailed outline of our construction.

4.1 Construction

For ease of exposition, we assume that the length of identities supported, length
of public keys generated by Gen algorithm, the output length of the hash is
λ-bits, and the input length of the hash function is (3λ + 1)-bits. Note that
this can be avoided by simply selecting parameters accordingly. Below we define
some useful notation that we will reuse throughout the sequel. Additionally, we
describe how to interpret the auxiliary information and the public parameters
in our construction.

18

Abstractions, Trees, and Notations. In our construction, the key accumulator
maintains two types of balanced binary trees. The first tree which we refer to as
the IDTree is a balanced binary tree in which each node has a label of the form
(id, t) ∈ {0, 1}2λ, and the nodes are basically being sorted as per the first tuple
entry which is id. (Concretely, (id1, t1) ≺ (id2, t2) iff id1 < id2, where ≺ denotes
the node ordering.) This tree is simply used as an internal storage object (which
provides fast node insertion/lookup) by the key accumulator. Here id denotes the
registered identity and t denotes the timestamp (i.e., number of users already
registered +1).

The second family of trees which we refer to are the encryption trees {EncTreei}i∈[`n]
for some `n > 0. Each such tree consists of two-types of nodes — (1) leaf nodes
which store a registered identity-key pair, (2) non-leaf nodes which store the
hash values of its children and largest registered identity in its left sub-tree. Con-
cretely, each node in the tree has a label of the form (flag||a||id||b) ∈ {0, 1}3λ+1.
For a leaf node flag = 1, a = 0λ, b = pk and (id, pk) is identity-key pair of
the corresponding registered user. For a non-leaf node, flag = 0, and id denotes
the largest registered identity in its left sub-tree, a and b are the hash value of
its left and right child’s label (respectively). The leaf nodes are inserted as per
their registered identity (i.e., the nodes are ordered with an increasing ordering
amongst the identities). Concretely, a new leaf node (1||0λ||id||pk) is added as
follows —

1. Perform a binary search, by using the ‘largest registered identity in the left
sub-tree’ information stored in the label of each intermediate node, to find

the leaf node with the smallest identity ĩd such that ĩd > id. (Let p̃k be the

key associated with ĩd.)

2. Delete the leaf node associated with ĩd, and replace it with a new interme-

diate node such that (1||0λ||id||pk) and (1||0λ||ĩd||p̃k) are its left and right
children (respectively).

3. Perform the re-balance operation on the binary tree.8

4. Re-compute the labels for all intermediate nodes which have been re-balanced
(i.e., moved around). This involves updating the largest registered identity
in the left sub-tree information as well as re-computing the corresponding
hash values.

Looking ahead, here the first `n − 1 encryption trees EncTree1, . . . ,EncTree`n−1
represent the older snapshots of the registration process, whereas EncTree`n rep-
resents the latest encryption tree which contains all the identities registered so
far. Also, the above tree insertion operation is efficient (O(log n) updates and
running time) as long as the underlying tree abstraction provides efficient lookup

8 Note that the tree re-balancing operation has to be carefully performed as in our
abstraction (as well as the [19] abstraction) the leaf nodes and intermediate nodes
are not exchangeable. Thus, the leaf-nodes must always stay the leaf nodes. Roughly
one might consider that the re-balancing operation is only performed on the tree
obtained by removing all leaf-nodes. This is not completely accurate but captures
the underlying intuition.

19

and insertion. Since we use a balanced tree as the underlying abstraction, thus
efficiency follows.

A very useful piece of notation in our scheme is the notion of ‘paths’ from the
root node to a leaf node in some encryption tree EncTree. Concretely, throughout
this section, we will define a path w.r.t. a tree EncTree (with root rt and depth d)
as a sequence of (at most) d nodes where the first node is the root node of the tree
and last node is a leaf node with certain specific properties. Concretely, any path
path will look like path = (node1, . . . , noded−1, noded), where for i < d, nodei =
(0||ai||idi||bi) for some hash values ai, bi and identity idi. Similarly, noded =
(1||0λ||idd||pk) for some identity-key pair idd, pk, and the remaining intermediate
nodes are such that for every i, ai = HG.Hash(hk, nodei+1) if nodei+1 is left child
of nodei, else bi = HG.Hash(hk, nodei+1). Also, if nodei+1 is left child of nodei
then idi ≥ idi+1, else idi < idi+1. Now note that such a path can be efficiently
computed for every identity id, which has been added to encryption tree EncTree,
by simply performing an extended binary search. We will be re-using this fact
many times throughout the sequel.

Lastly, we define a notion which we refer to as ‘adjacent’ paths. This is ex-
tremely useful for verifiability of our scheme. Note that if during binary search in
any balanced search tree, if the node/label that is being searched does not exist,
then one could prove that efficiently by giving two paths to nodes with labels
that are just bigger than and smaller than the label as per the ordering defined
in the tree. More formally, for any two paths path1 and path2 in an encryp-
tion tree, we can perform an adjacency check efficiently as follows. Let pathj =
(node1,j , . . . , noded−1,j , noded,j) for j ∈ [2] where nodei,j = (0||ai,j ||idi,j ||bi,j) for
j < d and noded,j = (1||0λ||idd,j ||pkd,j): (1) First, check that both paths are
valid. Note that path validity is checked as that either HG.Hash(hk, nodei+1,j)
is equal to ai,j or bi,j .

9 (2) Next, the verifier first computes the largest common
prefix of nodes in paths path1 and path2. That is, let k be the largest index
such that nodei,1 = nodei,2 for all i ≤ k. Now if idd,1 < idd,2, then check that
nodek+1,1 and nodek+1,2 are left and right children of nodek,1 = nodek,2. Next,
it must check that, for all i > k+1, nodei,1 is always the right child of its parent
and nodei,2 is always the left child of its parent. Basically, this is done to make
sure that these two paths are adjacent and there does not exist any intermediate
registered identity between these.

Construction. The key accumulator initializes the public parameters pp and
auxiliary information aux as empty strings ε. And, afterwards at any point,
the auxiliary information will contain the IDTree and (at most a λ number of)
encryption trees EncTreei along with a number ni.

10 And, the public parameters
pp consists of root value and depth pairs (rti, di) for each encryption tree EncTreei
present in auxiliary information aux. Here rti is the root node and di is the depth
of EncTreei. We now formally describe our construction.

9 Note that this also tells whether nodei+1,j is a left child of nodei,j , or right child.
10 Looking ahead, the number ni signifies the number of users who will refer to the tree

EncTreei for decryption. The significance of ni will become clear in the construction.

20

CRSGen(1λ)→ crs. The CRS generation algorithm samples a hash key for the
hash garbling scheme as hk← HG.Setup(1λ, 13λ+1), and outputs crs = hk.

Reg[aux](crs, pp, id, pk)→ pp′. Let pp = {(rti, di)}i∈[`n] and aux =
(

IDTree,

{(EncTreei, ni)}i∈[`n]
)

. Also, let n =
∑
i ni + 1. The key accumulator per-

forms the following operations:
1. It creates a leaf node with the label (1||0λ||id ||pk), and update the

current (latest) encryption tree EncTree`n by inserting the new leaf node.
(Note that the insertion is performed as described above, and it involves
balancing the tree and updating the hash values accordingly.)

2. Let NewTree be the new encryption tree. It continues by adding (id, n)
to the IDTree, and the tuple (EncTree`n+1, 1) := (NewTree, 1) to current
auxiliary information aux. (This new tuple should be interpreted as signi-
fying that only one user (which is the current, i.e. nth, user with identity
id) would refer to the latest encryption tree NewTree during decryption.)

3. Next it modifies the list of encryption trees as follows. Let aux =
(

IDTree,

{(EncTreei, ni)}i∈[`n]
)

, and

δ = max
(
{0} ∪

{
i ∈ [`n − 1] : ∀ j ∈ [i], n`n+1−j = 2j−1

})
.

It modifies the auxilliary information as aux =
(

IDTree,{
(EncTree′i, n

′
i)
}
i∈[`n+1−δ]

)
, where

(EncTree′i, n
′
i) :=

{
(EncTreei, ni) if i < `n + 1− δ,
(NewTree, 2 · ni) otherwise.

In words, the accumulator removes all the old versions of the encryption
trees as long as it could replace all of them with the latest tree until the
number of users which would then refer to the latest tree stays a power
of 2. To illustrate this operation, we give a detailed running example of
the Reg algorithm in Figure 1.

4. Lastly, the accumulator modifes the public parameters to pp′ = {(rt′i, d
′
i)}i∈[`n+1−δ],

where rt′i, d
′
i are root node and depth of the encryption tree EncTree′i (re-

spectively).
Note. At a high level, the accumulator maintains the invariant that the
ith encryption tree EncTree′i is an accumulation of the identity-key pairs
for exactly the first

∑
j≤i n

′
j , and this tree is intended to be precisely

used during decryption by those n′i users who registered just after the
first

∑
j≤i−1 n

′
i users. Additionally, the ni values for the last and the

second last encryption trees are more than a factor of 2 apart. (The last
point is quite crucial in ensuring that number of updates grows only
logarithmically.)

Enc(crs, pp, id,m)→ ct. Let pp = {(rti, di)}i∈[`n] and crs = hk. The encryptor
proceeds as follows:

21

Sample Execution of Reg Algorithm

Consider the scenario where 7 users (id1, id2, id3, id4, id5, id6, id7) are registered
into the system. The auxilliary information aux now stores IDTree and 3 ver-
sions of EncTree. IDTree consists of all the identites along with their times-
tamps. EncTree1,EncTree2 are the versions of EncTree when only 4 users and 6
users were registered respectively. EncTree3 is the latest version of the EncTree
when all 7 users are registered in the system. More precisely, the list of iden-
tities present in each EncTreei is as follows.

aux = {IDTree, (EncTree1, 4) : [id1, . . . , id4], (EncTree2, 2) : [id1, . . . , id6],

(EncTree3, 1) : [id1, . . . , id7]}

Let us now look at when we register a new identity id8. The key accumula-
tor sets n = 8, inserts id8 into IDTree, creates NewTree by inserting id8 into
EncTree3, and sets (EncTree4, 1) = (NewTree, 1). To compute δ, the key accu-
mulator observes that n`n+1−j = n4−j = 2j−1 for all j ∈ [3], and sets δ = 3.
The key accumulator now deletes EncTreei for each i ≥ `n + 1 − δ = 1, and
sets (EncTree′1, n

′
1) = (NewTree, 2 · n1 = 8). So, now the updated auxilliary

information is aux = {IDTree, (EncTree′1, 8) : [id1, . . . , id8]}.

Fig. 1. An example demonstrating aux being updated during registration

1. First, it samples statei,j ← {0, 1}λ and ri,j ← {0, 1}λ for each i ∈ [`n],
and j ∈ [di + 1].

2. Next, for each encryption tree EncTreei, it computes a sequence of di
hash-garbled circuits as follows:
For i ∈ [`n]:

— For j ∈ [di] : It constructs a step-circuit Enc-Stepi,j as defined in
Figure 2 with hk, id,m, statei,j+1, ri,j+1 hardwired. It then garbles

the circuit as ˜Enc-Stepi,j ← HG.GarbleCkt(hk, Enc-Stepi,j , statei,j).
— It computes the hash value of root node as hi = HG.Hash(hk, rti), and

computes the input garbling as ỹi,1 = HG.GarbleInp(hk, hi, statei,1; ri,1).

3. Finally, it outputs the ciphertext ct as ct =

(
{(rti, di)}i ,

{
˜Enc-Stepi,j

}
i,j
, {ỹi,1}i

)
.

Updaux(pp, id)→ u. Let pp = {(rti, di)}i∈[`n] and aux =
(

IDTree, {(EncTreei, ni)}i∈[`n]
)

.

The update computation is a two-step approach. In the first step, the algo-
rithm performs a binary search over the IDTree to obtain the timestamp
associated with the identity id. As IDTree is a balanced binary search tree,
thus this can done efficiently. Let t be the timestamp associated with id that
the binary search outputs. (It aborts if no such timestamp exists.) In the
second phase, the update generator computes the index i∗ ∈ [`n] such that∑
j∈[i∗−1] nj < t ≤

∑
j∈[i∗] nj . Index i∗ corresponds to the smallest index

of the encryption tree in which id has been registered. Now the algorithm
performs a binary search for identity id in the encryption tree EncTreei∗ .
It stores the path of nodes traversed from root rti∗ to leaf node containing

22

Circuit Enc-Stepi,j

Constants: hk, id,m, statei,j+1, ri,j+1.
Input: flag||a||id∗||b ∈ {0, 1}3λ+1.

1. If flag = 1 and id∗ = id, output 1||PKE.Enc(b,m; ri,j+1).
2. If flag = 1 and id∗ 6= id, output 1||⊥.
3. If id > id∗, output 0||HG.GarbleInp(hk, b, statei,j+1; ri,j+1)

Else, output 0||HG.GarbleInp(hk, a, statei,j+1; ri,j+1).

Fig. 2. Description of the step-circuit Enc-Stepi,j

identity id. Let path be the searched path in tree EncTreei∗ . Finally, it out-
puts the update u as u = path. (Again, it aborts if no such index or a path
to a leaf node containing identity id exists.)

Dec(sk, u, ct)→ m/⊥ /GetUpd. The decryption algorithm first parses the in-

puts as: ct =

(
{(rti, di)}i ,

{
˜Enc-Stepi,j

}
i,j
, {ỹi,1}i

)
and u = path =

(node1, . . . , noded−1, noded). It then proceeds as follows:
1. Let i be the smallest index i ∈ [`n] such that node1 = rti. If such an i

does not exist, then it outputs GetUpd. Otherwise, it continues.
2. Now the decryptor iteratively runs the hash garbling evaluation algo-

rithms as follows.
For j ∈ [di]:

— It evaluates the jth step-circuit as (flag||ỹi,j+1)← HG.Eval(˜Enc-Stepi,j ,
ỹi,j , nodei).

— If flag = 1 and ỹi,j+1 =⊥, the algorithm outputs ⊥.
— Otherwise, if flag = 1 and ỹi,j+1 6=⊥, then interpret ỹi,j+1 as a PKE

ciphertext, and decrypt it as ỹi,j+1 using key sk to obtain the message
as m← PKE.Dec(sk, ỹi,j+1). And, it outputs the message m.

3. If the algorithm did not terminate, then it outputs ⊥.

PreProveaux(pp, id)→ π. Let pp = {(rti, di)}i∈[`n] and aux =
(

IDTree,

{(EncTreei, ni)}i∈[`n]
)

. The pre-registration proof consists of `n sub-proofs

πi for i ∈ [`n], where each sub-proof πi consist of two11 adjacent paths in the
ith encryption tree EncTreei. Concretely, the algorithm proceeds as follows:
For i ∈ [`n]:
— It runs a binary search on tree EncTreei to find identity id. If id is con-

tained in EncTreei, then it outputs ⊥. Otherwise, it continues.
— It runs an extended binary search on tree EncTreei to find two adjacent

paths pathi,lwr and pathi,upr for identities idi,lwr and idi,upr, respectively.
(Here idi,lwr is the largest identity in EncTreei such that idi,lwr < id and
similarly idi,upr is the smallest identity in EncTreei such that idi,upr > id.)
If idi,lwr is the largest identity registered in the tree EncTreei, that is no
such idi,upr exists, then path pathi,upr is set as pathi,upr = ε. Similarly,

11 Sometimes one of the paths might just be an empty path.

23

if idi,upr is the smallest identity, that is no such idi,lwr exists, then path
pathi,lwr is set as pathi,lwr = ε.

— It sets sub-proof πi as πi = (pathi,lwr, pathi,upr).

Finally, it outputs the pre-registration proof as π = (π1, . . . , π`n).
PreVerify(crs, pp, id, π)→ 0/1. Let crs = hk, pp = {(rti, di)}i∈[`n], π = (πi)i∈[`n].

12

Also, let each sub-proof be πi = (pathi,lwr, pathi,upr) for i ∈ [`n].
The pre-registration proof verification procedure proceeds as follows. For
every i ∈ [`n], it runs the pre-registration sub-proof verification procedure
which is described in Figure 3.
If the pre-registration sub-proof verification procedure rejects for any index
i ∈ [`n], then the main verification algorithm also rejects and outputs 0. Oth-
erwise, if all sub-proof verification routines accept, then the main verification
algorithm also accepts and outputs 1.

PostProveaux(pp, id, pk)→ π. Let pp = {(rti, di)}i∈[`n] and aux =
(

IDTree,

{(EncTreei, ni)}i∈[`n]
)

. The post-registration proof consists of `n sub-proofs

πi for i ∈ [`n], where each sub-proof πi consist of either two or three adjacent
paths in the ith encryption tree EncTreei.

13 (Very briefly, having 3 adjacent
paths w.r.t. an encryption tree will correspond to the proof of uniqueness of
decryptability by the registered user’s secret key; whereas 2 adjacent paths
will mostly correspond to a proof of non-decryptability.) Concretely, the
algorithm proceeds as follows:
Initialize ` = ⊥, where ` will eventually denote the index of the first encryp-
tion tree EncTree` in which identity id was registered. For i ∈ [`n]:

— It runs a binary search on tree EncTreei to find identity id. If the tree
contains a leaf node of the form 1||0λ||id||pk′ for some key pk′ 6= pk, then
the algorithm simply outputs ⊥. Otherwise, it continues as follows.

— If id is not contained in EncTreei, then it first checks that ` = ⊥. If the
check fails, it aborts. Otherwise, it proceeds as for the pre-registration
sub-proof which is to run an extended binary search on tree EncTreei
to find two adjacent paths pathi,lwr, pathi,upr for identities idi,lwr, idi,upr
(respectively). Here idi,lwr is the largest identity in EncTreei such that
idi,lwr < id and similarly idi,upr is the smallest identity in EncTreei such
that idi,upr > id. And, it sets sub-proof πi as πi = (pathi,lwr, pathi,upr).
(Recall that one of these paths might be empty.)

— If id is contained in EncTreei, then it proceeds as follows:
— If ` = ⊥, then it sets ` = i (i.e., sets ` as the first tree where id was

found).
— It runs an extended binary search on tree EncTreei to find three

adjacent paths pathi,lwr, pathi,mid, pathi,upr for identities idi,lwr, id,

12 If the number of sub-proofs and number of encryption trees are distinct, then the
verifier rejects. Here we simply consider that while parsing the inputs, the verifier
verifies that the crs and pp are consistent which simply corresponds to checking that
the number of trees and their depths are consistent.

13 Sometimes one of the paths might just be an empty path.

24

Verification procedure for pre-registration sub-proof

For simplicity of exposition, suppose that none of paths pathi,lwr, pathi,upr are
empty. At the end, we explain how to handle if either of these paths is ε.

Non-empty paths. It interprets every path pathi,tag as
(nodei,1,tag, . . . , nodei,di,tag) for i ∈ [`n] and tag ∈ {lwr, upr}. And every
node nodei,j,tag, is interpreted as (flagi,j,tag||ai,j,tag||idi,j,tag||bi,j,tag).

1. First, it checks that both paths pathi,lwr and pathi,upr are well-formed.
That is, nodei,1,tag = rti for both tag ∈ {lwr, upr}. Also, it checks
that nodei,j+1,tag is either left child of nodei,j,tag (i.e., ai,j,tag =
HG.Hash(hk, nodei,j+1,tag) and idi,j,tag ≥ idi,j+1,tag), or right child
of nodei,j,tag (i.e., bi,j,tag = HG.Hash(hk, nodei,j+1,tag) and idi,j,tag <
idi,j+1,tag). If nodei,j+1,tag is left child of nodei,j,tag, then it checks that
idi,k,tag ≤ idi,j,tag for each k > j. Similarly, If nodei,j+1,tag is right child
of nodei,j,tag, then it checks that idi,k,tag > idi,j,tag for each k > j. And,
it checks that flagi,j,tag = 0 for j < di, and flagi,di,tag = 1, ai,di,tag = 0λ.
(Note that during this validity check, the verifier also stores whether that
node is left child or right child.).

2. Next, it checks that idi,di,lwr < id < idi,di,upr, that is the identity in the
lower path is less than that in the upper path, and the identity id whose
non-registration is being proven lies between both these identities.

3. It then computes the largest common prefix of nodes in paths pathi,lwr and
pathi,upr. That is, let k be the largest index such that nodei,j,lwr = nodei,j,upr
for all j ≤ k. It checks that idi,k,lwr = idi,di,lwr. Also, it checks:
(a) It checks that nodei,k+1,lwr and nodei,k+1,upr are left and right children

of nodei,k,lwr = nodei,k,upr. That is, ai,k,lwr = HG.Hash(hk, nodei,k+1,lwr)
and bi,k,upr = HG.Hash(hk, nodei,k+1,upr).

(b) For every index j > k, nodei,j+1,lwr and nodei,j+1,upr are right and left
children of nodei,j,lwr and nodei,j,upr, respectively. That is, bi,j,lwr =
HG.Hash(hk, nodei,j+1,lwr) and ai,j,upr = HG.Hash(hk, nodei,j+1,upr).

It rejects, i.e. outputs 0, if any of these checks fails. Otherwise, it accepts and
outputs 1.

One empty path. Suppose pathi,lwr = ε. The verifier checks first well-
formedness of pathi,upr as in Step 1 (above). Next, it checks that id < idi,di,upr,
and lastly verifies that idi,di,upr is the smallest registered node in EncTreei.
For the last check, the verifier check that for every index j, nodei,j+1,upr is the
left child of nodei,j,upr. It rejects, i.e. outputs 0, if any of these checks fails.
Otherwise, it accepts and outputs 1.

Similarly, if pathi,upr = ε, then it proceeds as above, except it checks that
idi,di,lwr is the largest identity in EncTreei instead.

Fig. 3. Conditions for verifying a proof πi = (pathi,lwr, pathi,upr) that id is NOT regis-
tered as per EncTreei

25

idi,upr (respectively). Here idi,lwr is the largest identity in EncTreei
such that idi,lwr < id and similarly idi,upr is the smallest identity in
EncTreei such that idi,upr > id.
If id is the largest identity registered in the tree EncTreei, that is no
such idi,upr exists, then path pathi,upr is set as pathi,upr = ε. Similarly,
if id is the smallest identity, that is no such idi,lwr exists, then path
pathi,lwr is set as pathi,lwr = ε.

— It sets sub-proof πi as πi = (pathi,lwr, pathi,mid, pathi,upr).

Finally, it outputs the post-registration proof as π = (π1, . . . , π`n , `). (Note
that the cut-off index ` in included as part of the proof.)

PostVerify(crs, pp, id, pk, π)→ 0/1. Let crs = hk, pp = {(rti, di)}i∈[`n], π = (π1,

. . . , π`n , `).
14 Now each sub-proof either is interpreted as 3 adjacent paths

πi = (pathi,lwr, pathi,mid, pathi,upr), or as 2 adjacent paths πi = (pathi,lwr, pathi,upr)
for every i.
The post-registration proof verification procedure proceeds as follows. For ev-
ery i ∈ [`], it runs the pre-registration sub-proof verification procedure which
is described in Figure 3. Now, for every i ∈ {`, `+ 1, . . . , `n}, it runs the post-
registration sub-proof verification procedure which is described in Figure 4.
If any of the pre-registration or post-registration sub-proof verification pro-
cedure rejects for any index i ∈ [`n], then the main verification algorithm
also rejects and outputs 0. Otherwise, if all sub-proof verification routines
accept, then the main verification algorithm also accepts and outputs 1.

Remark 1. In the above construction, we make the key accumulator maintain
a special balanced tree IDTree privately. It turns out this is not necessary, and
one could easily remove it from our construction, thereby only leaving the list of
encryption trees {EncTreei}i as part of the auxiliary information. However, for
ease of exposition, we include IDTree explicitly as part of the description.

4.2 Efficiency and Completeness

The above VRBE construction is efficient in the sense that if n is the number
of registered users, then (1) The time complexity of Reg algorithm is O(log2 n),
(2) The size of the public parameters is O(log n), (3) The time complexity of
Upd algorithm is O(log n), (4) The size of an update is O(log n), (5) The num-
ber of updates to any user is O(log n), (6) The time complexity of PreProve,
PostProve algorithms is O(log2 n), and (7) The size of pre/post-registration
proofs is O(log2 n). Due to space constraints, we provide the full efficiency anal-
ysis of the above construction in full version of the paper.

The above scheme satisfies the correctness property as the decryptor in-
ternally performs a binary search on id in the EncTree and always obtains a

14 If the number of sub-proofs and number of encryption trees are distinct, then the
verifier rejects. Here we simply consider that while parsing the inputs, the verifier
verifies that the crs and pp are consistent which simply corresponds to checking that
the number of trees and their depths are consistent.

26

Verification procedure for post-registration sub-proof

For simplicity of exposition, suppose that none of paths pathi,lwr, pathi,upr are
empty. At the end, we explain how to handle if either of these paths are ε.

Non-empty paths. It interprets every path pathi,tag as
(nodei,1tag, . . . , nodei,ditag) for i ∈ [`n] and tag ∈ {lwr,mid, upr}. And
every node nodei,j,tag, is interpreted as (flagi,j,tag||ai,j,tag||idi,j,tag||bi,j,tag).

1. First, it checks that both paths pathi,lwr, pathi,mid and pathi,upr are
well-formed. That is, nodei,1,tag = rti for both tag ∈ {lwr,mid, upr}.
Also, it checks that nodei,j+1,tag is either a left child of nodei,j,tag (i.e.,
ai,j,tag = HG.Hash(hk, nodei,j+1,tag) and idi,j,tag ≥ idi,j+1,tag), or is a right
child of nodei,j,tag (i.e., bi,j,tag = HG.Hash(hk, nodei,j+1,tag) and idi,j,tag <
idi,j+1,tag). If nodei,j+1,tag is left child of nodei,j,tag, then it checks that
idi,k,tag ≤ idi,j,tag for each k > j. Similarly, If nodei,j+1,tag is right child
of nodei,j,tag, then it checks that idi,k,tag > idi,j,tag for each k > j. And,
it checks that flagi,j,tag = 0 for j < di, and flagi,di,tag = 1, ai,di,tag = 0λ.
(Note that during this validity check, the verifier also stores whether that
node is left child or right child.)

2. Next, it checks that idi,di,lwr < id = idi,di,mid < idi,di,upr, that is the identity
in the lower path is less than that in the upper path, and the identity
id whose non-registration is being proven is equal to the identity in the
middle path and lies between the other two identities. It also checks that
bi,di,mid = pk.

3. For both tag pairs (tag1, tag2) ∈ {(lwr,mid), (mid, upr)}, it proceeds as
follows:
It computes the largest common prefix of nodes in paths pathi,tag1 and
pathi,tag2 . That is, let k be the largest index such that nodei,j,tag1 =
nodei,j,tag2 for all j ≤ k. It checks that idi,k,tag1 = idi,di,tag1 . Also, it checks:
(a) It checks that nodei,k+1,tag1 and nodei,k+1,tag2 are left and right

children of nodei,k,tag1 = nodei,k,tag2 . That is, ai,k,tag1 =
HG.Hash(hk, nodei,k+1,tag1) and bi,k,tag2 = HG.Hash(hk, nodei,k+1,tag2).

(b) For every index j > k, nodei,j+1,tag1 and nodei,j+1,tag2 are right and left
children of nodei,j,tag1 and nodei,j,tag2 , respectively. That is, bi,j,tag1 =
HG.Hash(hk, nodei,j+1,tag1) and ai,j,tag2 = HG.Hash(hk, nodei,j+1,tag2).

It rejects, i.e. outputs 0, if any of these checks fails. Otherwise, it accepts and
outputs 1.

One empty path. Suppose pathi,lwr = ε. The verifier checks first well-
formedness of pathi,mid, pathi,upr as in Step 1 (above). Next, it checks that
id = idi,di,mid < idi,di,upr as in Step 2 (above). And lastly, it performs
the Step 3 verification checks as described above only for the tag pair
(tag1, tag2) = (mid, upr). Lastly verifies that nodei,di,mid is the smallest
registered node in EncTreei i.e., the verifier checks that for every index j,
nodei,j+1,mid is the left child of nodei,j,mid. It rejects, i.e. outputs 0, if any of
these checks fail. Otherwise, it accepts and outputs 1.

The case when pathi,upr = ε is handled analogously.

Fig. 4. Conditions for verifying a proof πi = (pathi,lwr, pathi,mid, pathi,upr) that id is
registered as per EncTreei 27

PKE encryption of the message m using his public key pkid. The above scheme
satisfies the completeness of pre/post-registration as any proof obtained by
PreProve/PostProve algorithms satisfy the conditions in Figures 3 and 4. Due
to space constraints, we postpone full proofs to the full version of the paper.

4.3 Security

In this section, we prove that the above scheme satisfies soundness of pre/post-
Registration Verifiability and Message Hiding properties as defined in Defini-
tions 3 to 5. We now provide a brief overview of the proofs.

Recall that soundness of pre-registration verifiability property ensures that
if a PPT adversary A can create valid public parameters pp along with a pre-
registration proof π that an identity id is not registered, then he will not be able
to decrypt any ciphertext ct encrypted for id with non-negligible probability. To
provide the proof’s intuition, consider the scenario where a cheating accumu-
lator/adversary creates public parameters by inserting (id, pk) at a wrong leaf
location by violating property that the EncTree is to be sorted as per identities.
Such an adversary could provide a valid pre-registration proof that the iden-
tity is not registered. However, it cannot decrypt the ciphertexts encrypted for
the identity. For example, the EncTree generated by adversary has 3 registered
identities id1 < id2 < id3, has root value rt = h1||id3||h2 with left subtree con-
taining id1, id3 and right subtree containing id2. Clearly, the paths to the leaves
containing id1, id3 form a valid pre-registration proof. A ciphertext contains 3

garbled circuits { ˜Enc-Stepi}i and garbling of Hash(rt). When the garbled circuit

˜Enc-Step1 is run with input as the root value rt, it identifies that id2 is in left

subtree (as id2 < id3) and outputs garbling of h1. Now, ˜Enc-Step2 can only be run
on the left child value of the root node. The garbing values output the garbled
circuits would follow the path that is present as part of pre-registration proof,
and as a result the final garbled circuit outputs ⊥ and the adversary cannot de-
crypt the ciphertext. We formally prove that the scheme satisfies the property,
by arguing that when the adversary is forced to generate public parameters along
with a pre-registration proof, it cannot distinguish between a real ciphertext and
a simulated ciphertext that is generated without using the message.

Soundness of post-registration verifiability property guarantees that if an
adversary can create valid public parameters pp along with a post-registration
proof π that an identity-key pair (id, pk) is registered (for an honestly generated
pk such that corresponding secret key sk is not revealed to the adversary), then
he will not be able decrypt any ciphertext ct encrypted for id. The proof is similar
to the proof of pre-registration verifiability, except that the simulated ciphertext
is now generated using only PKE encryptions of the message with the identity’s
public key (the corresponding secret key is unknown to the adversary).

Message Hiding properties guarantees that if the public parameters pp are
honestly generated, then a PPT adversary cannot decrypt ciphertexts of unreg-
istered identities, and cannot decrypt ciphertexts of registered identities without
the knowledge of their secret keys. We argue that if any RBE scheme satisfies

28

soundness of pre/post-registration verifiability properties along with complete-
ness property, it also satisfies message hiding property. If an (id, pk) pair is regis-
tered as part of pp, then one could also create a valid post-registration proof as
per the completeness property. Therefore, as per soundness of post-registration
verifiability the ciphertexts meant for id cannot be decrypted with non-negligible
probability when secret key corresponding to pk is unknown. If an id is not reg-
istered as part of pp, then one could create a valid pre-registration proof as per
the completeness property. Therefore, as per soundness of pre-registration ver-
ifiability, the ciphertexts meant for id cannot be decrypted with non-negligible
probability.

Due to space constraints, we postpone the full proofs to full version of the
paper.
Acknowledgements. We thank anonymous reviewers for useful feedback, es-
pecially for pointing out a possible black-box approach for achieving verifiability.
The work is done in part while the first author was at UT Austin (supported
by IBM PhD Fellowship), and at the Simons Institute for the Theory of Com-
puting (supported by Simons-Berkeley research fellowship). The second author
is supported by Packard Fellowship, NSF CNS-1908611, CNS-1414082, DARPA
SafeWare and Packard Foundation Fellowship.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Inter-
national conference on the theory and application of cryptology and information
security (2003)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: CRYPTO (2001)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: CCS (1993)

4. Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive proofs
and their efficiency benefits. In: CRYPTO (2012)

5. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil Pairing. In:
CRYPTO (2001)

6. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: TCC (2011)

7. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous ibe, leak-
age resilience and circular security from new assumptions. In: EUROCRYPT (2018)

8. Chen, L., Harrison, K., Soldera, D., Smart, N.P.: Applications of multiple trust
authorities in pairing based cryptosystems. In: International Conference on Infras-
tructure Security (2002)

9. Cheng, Z., Comley, R., Vasiu, L.: Remove key escrow from the identity-based
encryption system. In: Exploring New Frontiers of Theoretical Informatics (2004)

10. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: CRYPTO 2017 (2017)

11. Chow, S.S.: Removing escrow from identity-based encryption. In: PKC (2009)
12. Cocks, C.: An identity based encryption scheme based on Quadratic Residues. In:

Cryptography and Coding, IMA International Conference (2001)

29

13. Diffie, W., Hellman, M.E.: New directions in cryptography (1976)
14. Döttling, N., Garg, S.: Identity-based encryption from the diffie-hellman assump-

tion. In: CRYPTO (2017)
15. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-

based and key-dependent message secure encryption schemes. In: PKC 2018 (2018)
16. Döttling, N., Garg, S.: From selective ibe to full ibe and selective hibe. TCC (2017)
17. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate

indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

18. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A.: Registration-based encryp-
tion: Removing private-key generator from IBE. In: TCC 2018 (2018)

19. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A., Sekar, S.: Registration-based
encryption from standard assumptions. In: PKC (2019)

20. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: STOC 2011 (2011)

21. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. (1984)
22. Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In:

CRYPTO (2007)
23. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-

grained access control of encrypted data. In: CCS ’06 (2006)
24. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: ASI-

ACRYPT (2010)
25. Kate, A., Goldberg, I.: Distributed private-key generators for identity-based cryp-

tography. In: ICSCN (2010)
26. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-

knowledge arguments. In: TCC (2012)
27. Micali, S.: CS proofs (extended abstracts). In: FOCS (1994)
28. Naor, M.: On cryptographic assumptions and challenges. In: CRYPTO (2003)
29. Paterson, K.G., Srinivasan, S.: Security and anonymity of identity-based encryp-

tion with multiple trusted authorities. In: Pairing-Based Cryptography (2008)
30. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures

and public-key cryptosystems. Commun. ACM (2) (1978)
31. Rogaway, P.: The moral character of cryptographic work. Cryptology ePrint

Archive, Report 2015/1162, https://eprint.iacr.org/2015/1162
32. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: EUROCRYPT (2005)
33. Shamir, A.: Identity-based cryptosystems and signature schemes. In: CRYPTO

(1985)

30

https://eprint.iacr.org/2015/1162

	Verifiable Registration-Based Encryption

