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Abstract. Robust secret sharing is a strengthening of standard secret
sharing that allows the shared secret to be recovered even if some of the
shares being used in the reconstruction have been adversarially modified.
In this work, we study the setting where out of all the n shares, the
adversary is allowed to adaptively corrupt and modify up to t shares,
where n = 2t + 1.3 Further, we deal with rushing adversaries, meaning
that the adversary is allowed to see the honest parties’ shares before
modifying its own shares.
It is known that when n = 2t + 1, to share a secret of length m bits
and recover it with error less than 2−λ, shares of size at least m+ λ bits
are needed. Recently, Bishop, Pastro, Rajaraman, and Wichs (EURO-
CRYPT 2016) constructed a robust secret sharing scheme with shares
of size m + O(λ · polylog(n,m, λ)) bits that is secure in this setting
against non-rushing adversaries. Later, Fehr and Yuan (EUROCRYPT
2019) constructed a scheme that is secure against rushing adversaries,
but has shares of size m+O(λ ·nε ·polylog(n,m, λ)) bits for an arbitrary
constant ε > 0. They also showed a variant of their construction with
share size m + O(λ · polylog(n,m, λ)) bits, but with super-polynomial
reconstruction time.
We present a robust secret sharing scheme that is simultaneously close-
to-optimal in all of these respects – it is secure against rushing adver-
saries, has shares of size m + O(λ logn(logn + logm)) bits, and has
polynomial-time sharing and reconstruction. Central to our construction
is a polynomial-time algorithm for a problem on semi-random graphs
that arises naturally in the paradigm of local authentication of shares
used by us and in the aforementioned work.

1 Introduction

Secret sharing, first studied by Shamir [Sha79] and Blakley [Bla79], is a funda-
mental cryptographic primitive that allows a secret to be shared among several
parties in such a way that certain authorized subsets of parties can reconstruct
3 Note that if the adversary is allowed to modify any more shares, then correct recon-
struction would be impossible.



the secret, while unauthorized subsets learn no information about the secret
from their shares. Secret sharing has widespread applications across cryptogra-
phy, ranging from secure multiparty computation [GMW87, BGW88, CCD88]
to threshold cryptographic systems [DF90,Fra90,DDFY94].

Typically, threshold secret sharing schemes4 are required to satisfy two prop-
erties: correctness, which says that more than a certain number of parties can
use their shares to reconstruct the secret, and privacy , which says that if there
are fewer than this number of parties, then their shares together reveal noth-
ing about the secret. A number of strengthenings of secret sharing have also
been studied in the past owing to various applications, such as verifiable secret
sharing [CGMA85], robust secret sharing [RB89], leakage-resilient secret shar-
ing [BDIR18,GK18], etc.. In this work, we focus on robust secret sharing.

Robust Secret Sharing. In robust secret sharing, in addition to the standard
correctness and privacy properties, we require the following robustness property:
even if some of the shares are adversarially modified, there is a reconstruction
procedure that can recover the original secret given all the shares (among which
it does not know which have been modified). In this sense, robust secret sharing
is to standard threshold secret sharing as decoding from errors is to decoding
from erasures in coding theory.

To be more specific, suppose a secret of length m bits is to be shared among
n parties with threshold t – meaning the adversary is allowed to (adaptively)
corrupt up to t of the parties. The properties we ask of a robust secret sharing
scheme are:

– Correctness – given (t+ 1) shares, it is possible to reconstruct the secret,
– Privacy – given t shares, the secret is hidden, and,
– Robustness – even if the adversary arbitrarily modifies up to t shares be-

longing to the parties it corrupts, the secret should be recoverable given all
n shares.

If t < n/3, it may be seen that Shamir secret sharing [Sha79] with threshold
t satisfies the robustness requirement, owing to the error correcting properties of
the Reed-Solomon code. On the other hand, if t > n/2, robustness is impossible
as the adversary could modify a majority of the shares. In addition, it is known
that for n/3 6 t < n/2, it is not possible to achieve perfect robustness, and any
construction will necessarily have a small probability of failure of reconstruc-
tion [Cev11], which we will call the robustness error. Further, any robust secret
sharing scheme for n = 2t+ 1 that has robustness error at most 2−λ has shares
of length at least (m+ λ) bits [CDV94].

In this work, we are interested in schemes that are robust in this extreme
case of n = 2t+ 1. And the quantity we are most interested in is the size of the
shares as a function of the robustness error and the number of parties.

4 Throughout this work, we will be concerned only with threshold secret sharing, and
thus we leave out this specification hereafter.
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Prior Work. There has been significant past work [RB89,CDV94,CDF01,CDF+08,
CFOR12,Che15,BP16,BPRW16,HO18,FY19b] in studying and constructing ro-
bust secret sharing schemes, both in the setting where n = 2t + 1, and where
t < (1− δ)n/2 for some constant δ > 0. We discuss here only the former line of
work, which is what leads up to our own, and refer the reader to the paper by
Bishop et al. [BPRW16] for discussions of the rest.

The first construction of robust secret sharing was by Rabin and Ben-Or
[RB89], and had a share size of m+ Õ(nλ) bits.5 This was done by giving each
party a set of (n−1) keys of a message authentication code (MAC) that it could
use to authenticate the shares held by each other party, and a set of (n−1) MAC
tags that other parties could use to authenticate its share. This was improved
by Cramer, Damgard and Fehr [CDF01] to m + Õ(n + λ) but with inefficient
reconstruction, and later Cevallos et al. [CFOR12] achieved the same overhead
with efficient reconstruction. The approach of the latter was to reduce the size of
the authentication keys used in the MAC at the expense of a more complicated
reconstruction procedure.

Recently, Bishop et al [BPRW16] improved the overhead in the share size to
m + Õ(λ). The central idea in their work is to not authenticate each share to
every other party, but instead, for each party to have d (roughly O(log n)) au-
thentication keys/tags corresponding to d other randomly chosen parties. They
further showed that even though some of the keys/tags themselves could be
adversarially modified, enough information can be recovered after such corrup-
tions to reconstruct the secret. However, it was pointed out later by Fehr and
Yuan [FY19b] that the proof of robustness of this scheme relies on the adversary
being non-rushing.

Rushing Adversaries. A rushing adversary, in our context, is one that decides
how to change the shares of the parties it has corrupted after seeing the honest
parties’ shares. In the case of interactive reconstruction (which is what is used
in our construction and in prior work), in each round the parties corrupted by
the adversary may wait till they see all the honest parties’ messages and then
decide what to send. Robustness against such adversaries becomes relevant, for
instance, if the parties are conducting the reconstruction amongst themselves as
happens in multiparty computation protocols.

As mentioned above, Fehr and Yuan [FY19b] noted that the proof of robust-
ness of Bishop et al [BPRW16] does not work if the adversary is rushing, though
it is not known whether their construction is actually non-robust in this case.
Fehr and Yuan then presented a construction of robust secret sharing, using the
local authentication approach of Bishop et al that was robust against rushing
adversaries, but with a share size of m + Õ(λ · nε) for an arbitrary constant
ε > 0. They also showed how to improve this to m+ Õ(λ) if the reconstruction
procedure was allowed to run in super-polynomial time.

5 Throughout the introduction, we use Õ to hide polylogarithmic factors in λ,n, and
m.
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Our Results. We construct robust secret sharing against rushing adversaries in
the setting of n = 2t+ 1, with a share size of m+O(λ · log n(log n+ logm)) for
secrets of size m and robustness error 2−λ. (Note that the overhead here is only
polylogarithmically larger than in the lower bound of m+λ for share size shown
in [CDV94].) Our reconstruction procedure is interactive, with two rounds of
interaction, and both sharing and reconstruction are polynomial-time. Our ap-
proach is similar to those of Bishop et al [BPRW16] and Fehr and Yuan [FY19b],
though our construction is simpler than either and does not use some of the so-
phisticated tools used there.

1.1 Technical Overview

In this subsection, we give a high-level overview of our construction and the
techniques we use. Recall that we wish to share secrets of length m among n
parties, with a threshold of t (the adversary is allowed to corrupt up to t parties),
with a robustness error smaller than 2−λ, and with n = 2t+ 1.

Sharing and Reconstruction We follow the local authentication paradigm
used in [BPRW16,FY19b]. In this approach, each party is given authentication
information about the shares of a small set of parties, which we will call its
“watchlist.” We will set the size of the watchlist to be roughly O(log n), thus this
contributes only a polylog(n) factor to the overhead in the size of each share.
This is to be contrasted with Rabin and Ben-Or’s approach [RB89] where each
party stores authentication information about every other party, thus leading to
a linear blow-up in the overhead. We now give some more details on how we use
the local authentication paradigm.

Sharing. In the sharing phase, we first compute a set of Shamir shares (Sh1,
. . . ,Shn) for the given secret. Then, for each i ∈ [n], we pick a random multiset
Si of size d (where d is roughly O(log n)) from [n] \ {i}. Si will be the set of
parties in the watchlist of party i. For every j ∈ Si, we pick a random MAC
key ki→j and compute the tag σi→j of the jth Shamir share Shj using ki→j . The
tuple (ki→j , σi→j) constitutes authentication information for Shj . The share cor-
responding to the ith party includes the Shamir share Shi, the watchlist Si, and
the authentication information {ki→j , σi→j}j∈Si of the parties in its watchlist.

There is, however, a concern about privacy as we are storing both the key
ki→j and the tag σi→j together and this might leak some information about the
share Shj that is being authenticated. In order to deal with this issue, we use
a tool called private (randomized) MAC introduced in [BPRW16]. This private
MAC has the property that for any key ki→j , the pair (ki→j , σi→j) does not
reveal any information about Shj . This allows us to argue that even when the
key is stored together with the tag, the privacy is still preserved.

Reconstruction. Recontruction is performed by a two-round interactive protocol
that proceeds as follows.
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– In the first round, the i-th party broadcasts its Shamir share Shi. The honest
parties will broadcast the correct shares, whereas for the adversarial parties,
the broadcasted shares could either be the original share or some modified
(even empty) share. At this point, we may partition the set of parties into
three sets – the set H of honest parties, the set P of “passive” corrupted
parties i that are corrupted but broadcast the correct share Shi, and the set
A of “active” corrupt parties that broadcast a modified share.
At the end of the first round, all the parties can determine if the shares
of the parties in its watchlist have been modified or not by checking if the
corresponding MAC tag verifies under the respective key. Specifically, for
every j ∈ Si, such that the σi→j verifies, party i labels j as “good.” Similarly,
if the tag does not verify, it labels j as “bad.” Thus, at the end of the first
round, the parties can obtain the labels for each j ∈ Si. Note that the
honest parties will always label a party j ∈ H ∪ P as “good” and with
overwhelming probability, will label a party in A as “bad.” Furthermore, at
the end of the first round, the adversarial parties do not learn any information
about the watchlist of the honest parties. This will be crucially used to argue
robustness.

– In the second round, each party i broadcasts Si along with the labels it
computed as above for each j ∈ Si. Again, the honest parties will broadcast
the correct information whereas the adversarial parties, including the parties
in P , can broadcast incorrect information. In particular, an adversarial party
might modify its watchlist, and also incorrectly accuse some honest party as
being “bad” or label a party in A as “good.”
The action of any adversary in this protocol effectively induces a (labelled
directed) graph on the vertex set V = [n] (with a vertex representing each
party) that is generated by the following process:
• The adversary partitions V into sets H,P, and A, where |H| > t+ 1.
• For every i ∈ H, we choose a random multiset Si of size d from [n] \ {i}.

For each j ∈ Si, we add an edge (i, j) to the graph. We label the edge
(i, j) to be “good” if j ∈ H ∪ P , and “bad” if j ∈ A.

• The outgoing edges from P ∪A and their labels are generated adversar-
ially after seeing the edges and labels from H.

(In the above process, we sample the watchlists Si of honest parties after the
adversary has partitioned the set into H,P,A. We note that this is fine, in
spite of the fact that the watchlists are actually sampled during the sharing,
since the adversary does not learn any information about the watchlist of
honest parties at the end of the first round of the reconstruction protocol.)
Suppose we have an algorithm that on input the above graph, outputs the
set S = H ∪ P . In this case, we are done since we can use the shares of
these parties to reconstruct the correct secret by the correctness of Shamir
sharing. We give an algorithm that finds an S that has a large intersection
with H ∪P and a small intersection with A. With such an S, we can use the
error correction properties of Shamir secret sharing (a.k.a. Reed-Solomon
codes) to recover the correct secret.

We next briefly describe how the above graph algorithm works.
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Vertex Identification Algorithm Our vertex identification algorithm cru-
cially uses the connection between the problem at hand and the independent set
problem. Recall that a subset of vertices in an undirected graph is said to be an
independent set if there is no edge between any pair of vertices in the set. While
our graph G is a directed graph, there is a natural way to view it as an undi-
rected graph: by simply keeping each edge with a “bad” label as an undirected
edge and discarding all edges with “good” labels. It is not hard to show that a
maximum independent set in this undirected version of G would give the desired
set S.

Unfortunately, computing the maximum independent set is NP-hard in the
worst case [Kar72]. On the other hand, our graph is not a worst case graph since
all edges from H are random, although the edges from A ∪ P are worst case
(i.e., adversarially generated). Finding independent sets in such “semi-random”
graphs has long been a topic of study in literature, starting with the work of
Feige and Kilian [FK01] (see also [FK00,CSV17,MMT18]). Unfortunately, these
works do not apply to our scenario because of the following two reasons. First,
the guarantees from this line of work do not suffice for us; a typical guarantee
there is that an independent set found has a large size relative to the maximum
independent set, whereas we need the fact that the independent set has a large
intersection with H∪P and a small intersection with A. Second, the distribution
of our graph is unlike those considered in [FK01,FK00,CSV17,MMT18]. Specifi-
cally, the distributions considered in literature are often the following: pick a set
I of vertices (i.e., the “planted independent set”) and add random edges between
I and the remaining vertices. Then, the adversary is allowed to add arbritrary
edges that are not within I. However, this is not the case for us since the edges
from P to H are not random.

Despite the challenges mentioned in the previous paragraph, several things
go in our favor. First, our directed graph G actually contains more information
than its undirected variant considered in the previous paragraph. For instance,
if we have two vertices u1, u2 each having a directed edge pointing to v but with
different labels, then we know that either u1 or u2 must be corrupted. Such
information is not included when we just consider finding an independent set in
the trivial undirected version of G. This motivates us to look instead to what
we call the conflict graph Gconf, where we add an edge between every pair of
vertices u1, u2 that label a common neighbor differently. Clearly, H remains an
independent set in Gconf. Moreover, from the definition of Gconf, any independent
set I of Gconf has a “consistent opinion” on all vertices in the following sense:
every vertex v is labelled with the same label by all its in-neighbors that lie
in I. This leads us to the overall structure of our algorithm: (1) find a large
independent set I in Gconf and (2) output the set of all vertices labelled “good”
by (at least one vertex in) I.

Of course, we have not yet specified how we find a large independent set I in
Gconf. This is indeed where a second advantage of our scenario comes in: we are
guaranteed to have an independent set H of size more than half of the graph,
unlike previous works that place weaker assumptions on the size of the “planted”
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independent set. It turns out that this 1/2 threshold makes the problem “easier.”
For instance, Nemhauser and Trotter [NT74] show that any extremal solution
to the linear program (LP) relaxation of the independent set problem is half
integral (i.e., every variable is assigned either 0, 1/2, or 1), which means that at
least one vertex in H is assigned 1 in the solution. In our proof, we use a more
specific structural lemma from [ACF+04] (Lemma 3) together with the expansion
property of the random part of our graph (Lemma 4) to argue that, if we let I be
the set of all vertices assigned 1 by the LP solution, then it contains sufficiently
many vertices from H. This in turn implies that I labels most of the vertices in
H ∪ P as “good” and most of those in A as “bad.” A more quantitative version
of this argument shows that the output set satisfies the desired properties.

1.2 Comparison with Prior Work

As mentioned earlier, our construction follows the paradigm of local authentica-
tion of shares introduced by Bishop et al [BPRW16] and used also by Fehr and
Yuan [FY19b]. There are a number of similarities and differences between how
we proceed in this paradigm and how these papers do, and we briefly explain
these below.

Bishop et al [BPRW16]. The authors here use local authentication of shares
to reduce the robust reconstruction to a graph theoretic problem called graph
bisection, which when solved gives a set S of trustworthy parties whose shares
are used to reconstruct the secret.

Their reduction also involves partitioning the corrupted parties into a set P
of “passive” corruptions and a set A of “active” corruptions according to whether
a certain part of the shares are reported correctly during reconstruction. But
their notion of passive corruption is stronger than the one we use here – they
also require that parties in P never falsely label a party in H as being “bad.” This
required them to store the authentication information in a distributed manner,
using a primitive they call robust distributed storage. Additionally, they had
to authenticate not only the Shamir shares (as we do), but also the MAC keys
themselves. As pointed out by Fehr and Yuan [FY19b], authenticating the keys
in this way is what causes their proof of robustness to not include rushing adver-
saries. In the end, the set S that is the solution to the graph bisection problem
instance generated by this reduction is the set H ∪ P .

We use a weaker notion of passive corruptions, where parties in P are allowed
to label parties inH as “bad.” This allows us leave out the distributed storage and
the authentication of the MAC keys, enabling proofs of security against rushing
adversaries. And solving the graph problem that we reduce to does not require
recovering the entire set H ∪ P , but only a set S that has a large intersection
with H ∪ P and a small intersection with A. Such a set is easier to find, which
is what lets us relax the definition of passive corruptions, and is still sufficient
to recover the shared secret due to the error correction properties of Shamir
sharing.
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Fehr and Yuan [FY19b]. The approach of Fehr and Yuan is more similar to
ours. They also partition the parties into sets H, P and A, and their definitions
for these sets are the same as ours. However, they still use robust distributed
storage to store authentication information. Our construction is simpler, using
only private MACs, which both of these papers also use.

Their approach is also to recover a set S of vertices that has a large inter-
section with H ∪ P and a small intersection with A, and then use the error
correction properties of Shamir sharing to recover the secret. Further, similarly
to us, they do this by reducing robust reconstruction to the vertex identification
problem in the model of random graphs that comes up in our work.

But their algorithm to solve this problem over n vertices with out-degree
d only works when the number of passive parties (|P |) is at most roughly
n · (log d/ log n)2. And so, when they find that |P | is more than this and their
algorithm fails, they fall back to list-decoding of all the shares together to re-
cover a list of possible sharings and then iterate over this list to find the ac-
tual secret. The size of this list is roughly (log n/ log d)Õ((logn/ log d)2), leading
to the restriction of d > nε for some constant ε for the list-decoding to run in
polynomial-time.

Our algorithm, on the other hand, solves the same graph problem without
any such restriction on |P |. To be more precise, it first solves the problem when
|P | is at most roughly 0.84 · n, and then observes that if |P | is more than this,
then S = [n] is already a solution. As |P | can be efficiently estimated from the
graph, this solves the problem. This releases us from their restriction on d, which
we can set to be O(log n), leading to our shares being significantly smaller.

1.3 Concurrent Work

In concurrent and independent work, Fehr and Yuan [FY19a] also give a con-
struction of a robust secret sharing scheme secure against rushing adversaries
in the setting of n = 2t + 1 with near-optimal parameters. Their construction
has shares of size m + O(λ · log3 n(log n + logm)) for secrets of size m and ro-
bustness error 2−λ, and polynomial-time sharing and reconstruction, where the
latter involves five rounds of interaction. We obtain the slightly better share size
of m + O(λ · log n(log n + logm)), and our reconstruction procedure has two
rounds of interaction.

In terms of techniques, while both papers have as their starting point the
ideas underlying the construction in [FY19b], the papers differ significantly in
how they proceed from there. Our improvements come from designing a better
algorithm for the vertex identification problem described in Section 1.2. [FY19a]
use the same algorithm for this problem that [FY19b] did, and develop new
techniques to deal with the case where the algorithm fails. Specifically, they add
additional instances of the consistency graph that are revealed over the course
of the reconstruction, and use this information to do better list-decoding, thus
eliminating the restrictions described above that the construction in [FY19b]
was subject to.
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Outline of paper. In Section 2, we define robust secret sharing and private MACs,
and state some known facts and theorems that will be useful later. In Section 3,
we present our vertex identification algorithm that will be used in our recon-
struction procedure. For readers who are only interested in our cryptographic
constructions, we suggest to look at Theorem 3 in Section 3 and skip to Section 4,
where we present our robust secret sharing scheme.

2 Preliminaries

Notation. We use capital letters to denote distributions and their support, and
corresponding lowercase letters to denote a sample from the same. Let [n] denote
the set {1, 2, . . . , n} and Ur denote the uniform distribution over {0, 1}r. For a
finite set S, we denote x $← S as sampling x uniformly at random from the set
S. For any i ∈ [n], let xi denote the symbol at the i-th co-ordinate of x, and for
any T ⊆ [n], let xT ∈ {0, 1}|T | denote the projection of x to the co-ordinates
indexed by T . We write ◦ to denote concatenation.

Multisets. Let S be a multiset and for any element a, we define the multiplic-
ity ma(S) to be the number of times a occurs in the multiset S. For any two
multisets S1, S2, we define S1‖S2 to be the multiset such that for any element
a, ma(S1‖S2) = ma(S1) +ma(S2).

We assume the reader’s familiarity with the definition of statistical distance.

2.1 Private MAC

In this subsection, we recall the definition of a private message authentication
code (MAC) used by Bishop et al [BPRW16] and Fehr and Yuan [FY19b], but
using different terminology. A private MAC for message space {0, 1}η for some
η ∈ N consists of the following algorithms, all of them running in time poly(η).

– KeyGen : A randomized algorithm that outputs a key k.
– Tag(k, (m, r)) : A deterministic algorithm that takes a key k, a “message

tuple” (m, r) ∈ {0, 1}η × {0, 1}κ for some κ ∈ N (called the randomness
length), and outputs a tag σ.

– Verify(k, (m, r), σ) : A deterministic algorithm that takes a key k, a message
tuple (m, r), and a tag σ, and outputs 1 or 0.

Definition 1. For an η, ` ∈ N and ε ∈ [0, 1], a triple of algorithms (KeyGen,
Tag,Verify) is an (`, ε)-private MAC for a message space {0, 1}η if the following
properties are satisfied for some κ ∈ N.

– Correctness. For every message tuple (m, r) ∈ {0, 1}η × {0, 1}κ, with k ←
KeyGen, and σ ← Tag(k, (m, r)),

Pr[Verify(k, (m, r), σ) = 1] = 1
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– Unforgeability. For any message tuple (m, r) ∈ {0, 1}η × {0, 1}κ, and any
adversary A, with k ← KeyGen, σ ← Tag(k, (m, r)), and (m′, r′, σ′)← A(m,
r, σ),

Pr[(m, r) 6= (m′, r′) ∧ Verify(k, (m′, r′), σ′) = 1] 6 ε.

– Privacy. For every m0,m1 ∈ {0, 1}η, any arbitrary set of ` keys {k1, . . . ,
k`}, and any adversary A, with k ← KeyGen, r ← {0, 1}κ, and σbi ← Tag(ki,
(mb, r)) for i ∈ [`] and b ∈ {0, 1},

Pr[A(σ0
1 , σ

0
2 , . . . , σ

0
` ) = 1] = Pr[A(σ1

1 , σ
1
2 , . . . , σ

1
` ) = 1]

– Uniformity. There is an s ∈ N such that for every (m, r) ∈ {0, 1}η×{0, 1}κ,
with k ← KeyGen, the distribution of σ ← Tag(k, (m, r)) is uniform over
{0, 1}s.

The following theorem follows from the construction of a private MAC pre-
sented in [BPRW16], using GF[2λ] as the field there.

Theorem 1 ( [BPRW16]). For any η, ` ∈ N and ε ∈ [0, 1], there exists an
(`, ε)-private MAC for message space {0, 1}η, with randomness length `λ, key
length 2λ and tag length λ, where λ = dlog((η + `)/ε)e.

2.2 Secret Sharing Scheme

We start with the definition of the sharing function and then give the definition
of a threshold secret sharing scheme.

Definition 2 (Sharing Function [Bei11]). Let [n] = {1, 2, . . . , n} be a set of
identities of n parties. LetM be the domain of secrets. A sharing function Share
is a randomized mapping from M to S1 × S2 × . . . × Sn, where Si is called the
domain of shares of party with identity i. A dealer distributes a secret m ∈ M
by computing the vector Share(m) = (S1, . . . ,Sn), and privately communicating
each share Si to the party i. For a set T ⊆ [n], we denote Share(m)T to be a
restriction of Share(m) to its T entries.

Definition 3 ((t, n, εc, εs)-Secret Sharing Scheme). LetM be a finite set of
secrets, where |M| > 2. Let εc, εs ∈ [0, 1], t, n ∈ N such that t 6 n, and [n] = {1,
2, . . . , n} be a set of identities (indices) of n parties. A sharing function Share
with domain of secretsM is a (t, n, εc, εs)-secret sharing scheme if the following
two properties hold :

– Correctness: The secret can be reconstructed by any t-out-of-n parties. That
is, for any set T ⊆ [n] such that |T | > t, there exists a deterministic, inter-
active reconstruction protocol Rec between the parties in T with the input of
i ∈ T being Share(m)i such that for every m ∈M,

Pr[Rec(Share(m)T ) = m] = 1− εc
where the probability is over the randomness of the Share function. We will
slightly abuse the notation and denote Rec as the reconstruction protocol that
takes in T and Share(m)T where T is of size at least t and outputs the secret.
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– Statistical Privacy: Any collusion of less than t parties should have “al-
most” no information about the underlying secret. More formally, for any
unauthorized set U ⊆ [n] such that |U | < t, and for every pair of secrets
m0,m1 ∈ M , for any distinguisher D with output in {0, 1}, the following
holds :

|Pr[D(Share(m0)U ) = 1]− Pr[D(Share(m1)U ) = 1]| 6 εs

We define the rate of the secret sharing scheme as

lim
|m|→∞

|m|
maxi∈[n] |Share(m)i|

Remark 1. The above definition of privacy considers a weaker notion where the
unauthorized set U is specified upfront. We can also consider a stronger variant
where the adversary adaptively specifies this set U one party at a time, seeing
the share of each party as it is specified. We note that for the case of perfect
privacy (i.e., εs = 0), the above two variants are equivalent.

2.3 Robust Secret Sharing

We now give the definition of robust secret sharing scheme.

Definition 4. Let εc, εs, δ ∈ [0, 1], t, n, κ, τ ∈ N such that t 6 n, and τ 6 κ 6 n.
An (t, n, εc, εs) secret sharing scheme (Share,Rec) for message space M is said
to be (δ, κ, τ)-robust if for every interactive adversary A and message m ∈M,

Pr[ExptA,m,κ,τ = 1] 6 δ

where ExptA,m,κ,τ is defined below.
– (share1, . . . , sharen)← Share(m).
– A outputs a set Γ ⊆ [n] such that |Γ | = κ.
– Set T = ∅. Repeat until |T | = τ :
• A chooses i ∈ Γ \ T .
• Update T = T ∪ {i} and give sharei to A.

– Run the reconstruction protocol among the parties in Γ with every party
i ∈ Γ \ T behaving honestly using its share sharei and the adversary A
taking control the parties in T . A is allowed to behave maliciously (possibly
using a different share) and can deviate arbitrarily from the specification
of the reconstruction protocol. Here, we assume that in every round of the
reconstruction protocol, A can send its outgoing messages after seeing all its
incoming messages from the honest parties (a.k.a. rushing adversary). For
every i ∈ Γ \ T , let m′i be the output of the i-th party at the end of the
reconstruction algorithm.

– Output 1 if and only if there exists an i ∈ Γ \ T such that m 6= m′i.

We call log(1/εs) as the privacy parameter and log(1/δ) as the robustness pa-
rameter.

Fact 2 Fix t ∈ N, n, κ > t. There is a robust reconstruction protocol such
that Shamir secret sharing is a (t, n, 0, 0) secret sharing scheme that is (0, κ,
b(κ− t)/2c)-robust.
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3 Vertex Identification Algorithm

In this section, we give a polynomial time graph algorithm that we call the
vertex identification algorithm, which will be used as a building block in the
construction of robust secret sharing. We start with the description of the model
of semi-random graphs the algorithm works for.

Model. Our (directed) graph6 G where |V | = n and a labeling L : EG → {good,
bad} is generated as follows:

– First, the adversary partitions V into three parts H,P,A such that |H| >
n+1
2 .

– For every u ∈ H and every i ∈ {1, . . . , d}, select a vertex vi ∈ (V \ {u})
uniformly at random and add an edge (u, vi) to the graph. The label for
L(u, vi) of the edge is “good” if vi lies in H ∪ P , and is “bad” if vi ∈ A.

– The outgoing edges of A∪P and their labels are generated by the adversary
after seeing the edges and the labels from H.

For notational convenience, we will always think of each vertex v ∈ V as having
a self-loop with label L(v, v) = good. Our main theorem in this section is the
following:

Theorem 3. There is a polynomial-time (deterministic) algorithm VertexID that,
given G,L generated as above with d > C log n, outputs a set S ⊆ V that satisfies

|S ∩ (H ∪ P )| > n+ 1

2
+ 2 · |S ∩A| (1)

with probability 1−O(e−βd), where C > 1 and β > 0 are some constants.

The Algorithm. Our algorithm relies on the linear programming (LP) relaxation
of the Independent Set problem. To state the LP relaxation for Independent Set,
let first recall that we may reformulate Independent Set on an undirected graph
F = (V,EF ) as the following integer program (IP):

max
∑
v∈V

xv

subject to xv ∈ {0, 1} ∀v ∈ V
xu + xv 6 1 ∀{u, v} ∈ EF

Notice that a solution (xv)v∈V to the above IP corresponds to an independent
set {v ∈ V | xv = 1}. Since solving the above IP is equivalent to finding the
maximum indepent set of the graph F , the problem remains NP-hard. As a
result, we have to resort to the LP relaxation of the above IP where the condition
xv ∈ {0, 1} is relaxed to 0 6 xv 6 1.

6 We note that our graph allows multi-edges and self-loops.
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More specifically, the LP relaxation of Independent Set for an undirected
graph F = (V,EF ) can be stated as:

max
∑
v∈V

xv (2)

subject to 0 6 xv 6 1 ∀v ∈ V (3)
xu + xv 6 1 ∀{u, v} ∈ EF (4)

We refer to the above relaxation as LP-IS of F .
As the reader might have noticed, the Independent Set (IS) problem is defined

on undirected graphs, whereas our input graph G is a directed graph. To turn
this into an instance of Independent Set, we create what we will call the conflict
graph of G,L:

Definition 4 Given a directed graph G = (V,EG) and a labeling L : EG →
{good, bad}, their conflict graph is denoted7 by Gconf = (V,Econf). This is an
undirected graph on the same vertex set of G, and there is an edge between two
vertices u, v ∈ V iff there exists a common out-neighbor w of u, v such that
L(u,w) 6= L(v, w).

Recall that we always add a self-loop with “good” label to every vertex in
G, which means that {u, v} will always be an edge in the conflict graph if (u,
v) ∈ EG and L(u, v) = bad.

There are a couple (straightforward) observations that will be useful to keep
in mind. The first one is that H is an independent set in this conflict graph:

Observation 5 H is an independent set in the conflict graph of G,L.

The second is that, for any independent set I of the conflict graph, its vertices
never label a vertex inconsistently. This follows from the definition of the conflict
graph, as such an inconsistency would create an edge in the graph.

Observation 6 Let I be any independent set of a conflict graph of G,L. Then,
for any v ∈ V , it must fall into one of the following three categories:

– v has no in-neighbor (w.r.t. G) in I.
– v has at least one in-neighbor (w.r.t. G) in I and each of v’s neighbors in I

labels it with good.
– v has at least one in-neighbor (w.r.t. G) in I and each of v’s neighbors in I

labels it with bad.

Moreover, we have to recall the concept of extreme point solutions of linear
programs. A feasible solution is said to be an extreme point solution if it cannot
be written as a convex combination of other feasible solutions8. For any LP with
7 Of course, the conflict graph depends on the labeling. However, we choose not to
have L in the notation to avoid cumbersomeness.

8 Equivalently, the solution must be a vertex of the polytope defined by the constraints.
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a finite feasible region, it is known that an extreme point optimum solution exists
and can be found in polynomial time (see e.g. [Jai98]). Extreme point solutions
are widely used in approximation algorithms; interested readers may refer to the
survey [LRS11] for more details.

With these ready, we can now describe our algorithm, which we call Conflict-
LP:

Conflict-LP(G = (V,EG), L)

0. For each vertex v ∈ V , let bv denote the number of vertices labelled
bad by it. If the median of bv’s is at most 0.16d, then output V and
terminate.

1. Construct the conflict graph Gconf of G,L (as in Definition 4).
2. Solve for an extreme point optimum solution {x∗v}v∈V of LP-IS of Gconf.

Let I denote the set of all vertices u ∈ V such that x∗u = 1.
3. Let S be the set of all vertices v ∈ V that has at least one in-neighbor

(w.r.t. G) in I and is labelled good by the neighbor(s). Output S.

It is obvious to see that the algorithm runs in polynomial time.

Correctness Intuition. Before we proceed with the formal proof of correctness,
let us briefly give an informal intuition behind the proof. First, Step 0 simply
helps us deal with the “trivial” case where |A| is less than9 say 0.15(n−1). In this
case, we can simply output the whole vertex set V ; this is indeed what Step 0
does. Thus, from this point onward, we may assume that |A| > 0.15(n− 1).

Next, a priori, it is not even clear that I must be non-empty. To see this, let
us first recall a classic result of Nemhauser and Trotter that an extreme point
solution of LP-IS is always half-integral , meaning that xv ∈ {0, 1/2, 1} for every
vertex v.

Theorem 7 ( [NT74]). In any extreme point solution of LP-IS, xv ∈ {0, 1/2,
1} for all v ∈ V .

Now, if I were empty, then we would have xv ∈ {0, 1/2}, which would imply
that the optimum of LP-IS is at most n/2 < |H|. This would be a contradiction
to Observation 5.

Next, let us consider the set T = {v | x∗v = 0}. It is well-known that |I| > |T |;
this can be easily seen because otherwise we can instead assign 1 to T and 0 to
I and obtain a valid LP solution with larger objective value. (In fact, we will use
a stronger property between the two sets below.)

For simplicity of exposition, let us assume for now that I only contains
honest players, i.e., I ⊆ H, and that T only contains active adversary, i.e.,
9 The constant 0.15 here can be replaced with any constant less than 1/6. We only
use 0.15 to avoid introducing an additional parameter.
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T ⊆ A. Observe that, due to condition (4) of the relaxation, we must have
NGconf(I) ⊆ T . Notice also that, since every honest player labels its out-neighbor
in A as “bad”, we must have NGconf(I) ⊇ (Nout

G (I)∩A). From this and from the
bound |I| > |T | in the previous paragraph, it must be that |I| > |Nout

G (I) ∩ A|.
However, recall that the edges from I to A are (“essentially”) random of de-
gree Ω(d) > 100 log n. Such a “non-expansion” condition can only hold when
Nout
G (I)∩A already contains all but o(1) fraction of A. In other words, we have
|I| > |Nout

G (I) ∩ A| > (1 − o(1))|A| > (0.15 − o(1))n, where the last inequality
comes from our assumption that |A| > 0.15(n− 1).

Now, note that we never output vertices from Nout
G (I) ∩A because they are

already labelled as bad by at least one vertex in I. This means that S∩A is small
(i.e. o(n)). On the other hand, we always output all vertices in Nout

G (I)∩(H∪P )
because they are labelled good by at least one vertex in I; since we concluded that
|I| > (0.15− o(1))n in the previous paragraph, it follows from vertex expansion
of random graphs that |Nout

G (I)∩(H∩P )| > |H∪P |−o(n) > n+1
2 +|P |−o(n). By

a more careful calculation of the terms o(n), it is then possible to show that (1)
holds.

To turn the above intuition into a formal proof, we not only have to make the
calculations more precise, but we also need to deal with the case where I * H
(or T * A). Nevertheless, we can still show, using a more general structural
result (see Lemma 3), that I ∩H still satisfies “non-expansion”. This allows the
proof to go through in a similar manner.

3.1 Proof of Correctness of the Algorithm

We now give a formal proof of correctness of our algorithm. We will need several
additional notations:

– Once again, let I = {v ∈ V | x∗v = 1} and T = {v ∈ V | x∗v = 0}. Moreover ,
let R = {v ∈ V | x∗v = 1/2}.

– Let IH , TH and RH denote I ∩H,T ∩H and R ∩H respectively. Similarly,
let IH , TH and RH denote I \H, T \H and R \H respectively.

We will prove our main theorem for the constants C = 1010 and β = 10−10.
It is henceforth assumed that d > C log n, and this will not be explicitly stated.
We remark that we make no attempt in optimizing these constants and it is
likely that they can be reduced substantially.

Step 0: Dealing with the trivial case. As stated earlier, Step 0 in our algorithm
helps us take care of the “trivial” case where A is already small. In particular,
we can show that, if |A| 6 0.15(n−1), then the algorithm w.h.p. simply outputs
V , which is a correct output in this case. Moreover, it is not hard to see that,
when A is larger than (n − 1)/6 and V is the wrong answer, then we do not
terminate in this step and proceed to the remaining part of the algorithm. This
is encapsulated in the following lemma.
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Lemma 1. When |A| 6 0.15(n−1), our algorithm outputs V and terminates at
Step 0 with probability 1 − O(e−βd). On the other hand, when |A| > (n − 1)/6,
our algorithm terminates at Step 0 with probability only O(e−βd).

It turns out that the above lemma follows easily from the concentration of
the number of bad labels given by each honest vertex. This concentration is
stated and proved below.

Observation 8 With probability 1 − O(e−βd), for all vertices u ∈ H, we have
(µ− 0.001)d 6 |Nout

G (u) ∩A| 6 (µ+ 0.001)d where µ = |A|
n−1 .

Proof. We will only prove that |Nout
G (u) ∩ A| > (µ − 0.001)d for every u ∈ H

with high probability. The upper bound can be shown analogously. Note that our
desired bound is obvious when µ 6 0.001. Hence, we may assume that µ > 0.001,
or equivalently |A| > 0.001(n− 1).

Let us fix u ∈ H and a vertex v ∈ A. The probability that v belongs to
Nout
G (u) is exactly d

n−1 . Moreover, from how the graph is generated, the events
v ∈ Nout

G (u) for different v’s are independent. Hence, Chernoff bounds implies
that

Pr

[
|Nout

G (u) ∩A| < 0.999 ·
(

d

n− 1
· |A|

)]
6 exp

(
−10−6

2
· d

n− 1
· |A|

)
6 exp

(
−10−6

2
· d

n− 1
· 0.001(n− 1)

)
6 n−2 · e−βd,

where the second and third inequalities follow from |A| > 0.001(n− 1) and d >

1010 log n respectively. Furthermore, observe that 0.999·
(

d
n−1 · |A|

)
= 0.999µd >

(µ − 0.001)d. Hence, we have Pr [|Nout
G (u) ∩A| < (µ− 0.001)d] 6 n−2 · e−βd.

Using union bound over all u ∈ H concludes our proof. ut

Now that we have proved the concentration, we can prove Lemma 1 simply
as follows.
Proof of Lemma 1: Suppose that |A| 6 0.15(n − 1). Then, from Observa-
tion 8, w.p. 1−O(e−βd) we have |Nout

G (u)∩A| 6
(
|A|
n−1 + 0.001

)
d < 0.16d for all

u ∈ H. Notice that Nout
G (u) ∩ A is exactly the set of vertices for which u labels

bad. As a result, for these |H| > t+ 1 vertices, they label bad to at most 0.16d
vertices. This means that the condition in Step 0 is satisfied and the algorithm
outputs V .

On the other hand, if |A| > (n − 1)/6, then Observation 8 gives the bound
|Nout

G (u) ∩ A| >
(
|A|
n−1 − 0.001

)
d > 0.16d with probability 1 − O(eβd). When

this event occurs, each u ∈ H labels more than 0.16d vertices as bad. Thus, the
condition in Step 0 is not satisfied in this case. ut
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Step I: Non-Expansion of IH to A. The first step of the remaining part of the
proof is to show that the set IH does not (vertex-)expand in A (w.r.t out-edges in
G), as stated below. We remark here that it also implicitly implies that IH 6= ∅.

Lemma 2. |IH | > |Nout
G (IH) ∩A|.

To prove non-expansion of IH , we will resort to a structural result regarding
an extreme point LP solution. It is easiest to state in terms of crown as defined
below [CFJ04,ACF+04]:

Definition 9 For any undirected graph F = (V,EF ) and disjoint subsets I,
T ⊆ F , (I, T ) is said to be a crown of F if (i) T = N(I) and (ii) there is a
matching between T and I such that all vertices in T are matched.

Lemma 3 ( [AFLS07]). For any undirected graph F = (V,EF ), let {x∗v}v∈V
be an extreme point solution, and let I = {v ∈ V | x∗v = 1} and T = {v ∈ V |
x∗v = 0}. Then, (I, T ) forms a crown (w.r.t F ).

Notice that if (I, T ) is a crown, then it must be that |I| > |T | due to (ii).
Hence, the above result is stronger than the one we used in the informal expo-
sition. We are now ready to prove Lemma 2.
Proof of Lemma 2: First, we claim that

|RH | 6 |RH |. (5)

This is because otherwise we can instead set x∗v = 1 for v ∈ RH and x∗v = 0 for
v ∈ RH , which would give an LP solution with higher value. (Note that this is
a valid LP solution because RH is an independent set from Observation 5, and
all neighbors of I lie in T .)

From Lemma 3, (I, T ) forms a crown. Consider a matching from T to I
such that all vertices in T are matched (which is guaranteed to exist from the
definition of a crown). Notice that there is no edge from TH to IH in the graph
Gconf; hence, all vertices in TH must be matched to vertices in IH . In other
words, we have

|TH | 6 |IH |. (6)

From (5) and (6), we have

|IH | = |H| − |TH | − |RH | > |A ∪ P | − |RH | − |IH | = |TH |.

Finally, observe that (Nout
G (IH)∩A) ⊆ (NGconf(IH)∩A) ⊆ TH , which yields the

desired bound. ut

Step II: Expansion of Subsets of H in G. Similar to the outline, the second step
of the proof is to observe that most subsets X ⊆ H expands very well into A (or
V ), with respect to out-edges in G. The reason is simply that the graph from H
to these sets are (essentially) random bipartite graphs of out-degree Ω(d). Due
to technical reasons, we will also state the vertex expansion properties in terms
of the in-degree graphs to V . The formal statement is as follows.
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Lemma 4. Suppose that |A| > 0.15(n− 1). Then, with probability 1−O(e−βd),
the following holds:

1. For any set X ⊆ H such that |X| 6 0.05(n− 1), we have

|A ∩Nout
G (X)| > |X|. (7)

2. For any set W ⊆ V , we have

|H ∩N in
G (W )| > min{|H| − 0.05(n− 1), 10|W |}. (8)

We remark here that the above lemma is the main place we use |A| > Ω(n)
as guaranteed from Step 0; otherwise the inequality (7) may not be true (some
vertex in H might not even have an outgoing edge to A at all if A is too small).

The proof is via a standard approach to prove vertex/edge expansion of
graph: we bound the probability that each neighbor is a subset of a too-small
set and then use union bound in the end.

Proof. 1. Let us consider any sets X ⊆ H and Y ⊆ A. For any vertex u ∈ X,

the probability that (Nout
G (u) ∩ A) ⊆ Y is exactly

(
|H|−1+|Y |

n−1

)d
. Since the

events Nout
G (u) ⊆ Y are independent for all u ∈ X, we have

Pr[(Nout
G (X) ∩A) ⊆ Y ] =

(
|H| − 1 + |Y |

n− 1

)d|X|
6

(
1− |A \ Y |

n− 1

)d|X|
.

Hence, the undesired event happens with probability at most∑
X⊆H,Y⊆A

|X|60.05(n−1),|Y |=|X|−1

Pr[(Nout
G (X) ∩A) ⊆ Y ]

6
∑

X⊆H,Y⊆A
|X|60.05(n−1),|Y |=|X|−1

(
1− |A \ Y |

n− 1

)d|X|
6

∑
X⊆H,Y⊆A

|X|60.05(n−1),|Y |=|X|−1

(0.9)
d|X|

=

b0.05(n−1)c∑
i=1

(
|H|
i

)
(0.9)

d|X|

6
b0.05(n−1)c∑

i=1

ni (0.9)
di

6
b0.05(n−1)c∑

i=1

n−2 · e−βd

= O(e−βd),

where the second inequality follows from |A| > 0.15(n−1) and |Y | 6 0.05(n−
1) and we use our choice of d > 1010 log n in the last inequality.
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2. Consider any set W ⊆ V and X ⊆ H. We will bound the probability
that (H ∩ N in

G (W )) is a subset of X. Recall from our definition that ev-
ery vertex has a self-loop. Hence, if (W ∩ H) * X, it is immediate that
Pr[(H ∩N in

G (W )) ⊆ X] = 0.
Now, for the case (W ∩ H) ⊆ X, we can bound Pr[(H ∩ N in

G (W )) ⊆ X]
as follows. First, notice that each vertex u ∈ (H \ X), u does not be-
longs to N in

G (W ) (or equivalently Nout
G (u) ∩ W = ∅) with probability ex-

actly
(
1− |W |n−1

)d
. Since the events u /∈ N in

G (W ) are independent for all
u ∈ (H \X), we have

Pr[(H ∩N in
G (W )) ⊆ X] =

(
1− |W |

n− 1

)d·|H\X|
6 e−

d|W |·(|H|−|X|)
n−1 .

For convenience, let µ(|W |) denote dmin{|H|−0.05(n−1), 10|W |}e−1. From
union bound and the previous inequality, the probability of the undesired
event is at most∑

W⊆V,X⊆H
|X|=µ(|W |)

Pr[(H ∩N in
G (W )) ⊆ X] 6

∑
W⊆V,X⊆H
|X|=µ(|W |)

e−
d·|W |·(|H|−|X|)

n−1

6
∑

W⊆V,X⊆H
|X|=µ(|W |)

e−0.05d|W |

=

n∑
i=1

(
n

i

)(
|H|
µ(i)

)
e−0.05di

6
n∑
i=1

n11ie−0.05di

6
n∑
i=1

n−2 · e−βd

= O(e−βd)

where the second inequality is due to µ(|W |) 6 |H| − 0.05(n − 1) and the
last inequality follows from d > 1010 log n. This completes our proof.

ut

We can deduce from the above lemma the following corollary, which will be
more convenient to use in the main proof.

Corollary 1. Suppose that |A| > 0.15(n−1). Then, with probability 1−O(e−βd),
for any set X ⊆ H, at least one of the following must hold: (i) |X| 6 |Nout

G (X)∩
A| or (ii) |Nout

G (X) ∩ (H ∪ P )| > n+1
2 + 2 · |A \Nout

G (X)|.

Proof. Suppose for the sake of contradiction that there exists X ⊆ H that
violates both inequalities. Since X violates (i) and from the first item (i.e. (7))
of Lemma 4, we must have |X| > 0.05(n− 1), which means

|H \X| < |H| − 0.05(n− 1). (9)
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Let Y = (A \Nout
G (X)) and k = |Y |. From the violation of (i), we have

|X| > |Nout
G (X) ∩A|+ 1 = |A| − k + 1 = (n− |H| − |P |)− k + 1

From the above, we have

|H \X| = |H| − |X| 6 |P |+ k + 2

(
|H| − n+ 1

2

)
.

For convenience, we let Γ = |H| − n+1
2 . We may write the above inequality as

|H \X| 6 |P |+ k + 2Γ (10)

Now, from (8) in Lemma 4 with W = Y , we have

|H \X| > |N in
G (Y ) ∩H| > min{|H| − 0.05(n− 1), 10k}.

From (9), it cannot be that |H \X| > |H| − 0.05(n− 1). As a result, we have

|H \X| > 10k. (11)

Similarly, let Z = (H ∪ P ) \Nout
G (X). From the violation of (ii), we have

|Z| = |H|+ |P | − |Nout
G (X) ∩ (H ∪ P )| > |H|+ |P | − n− 1

2
− 2k

= |P | − 2k + 1 + Γ. (12)

Moreover, from (8) in Lemma 4 with W = Z, we have

|H \X| > |N in
G (Z) ∩H| > min{|H| − 0.05(n− 1), 10|Z|}.

Once again, (9) implies that |H \X| cannot be at least |H|−0.05(n−1). Hence,
we have

|H \X| > 10|Z|
(12)
> 10(|P | − 2k + 1 + Γ ). (13)

By combining (10), (11) and (13), we arrive at

|P |+ k + 2Γ
(10)
> |H \X| = 0.8|H \X|+ 0.2|H \X|

(11),(13)
> 8k + 2(|P | − 2k + 1 + Γ )

= 2|P |+ 4k + 1 + 2Γ,

a contradiction. ut
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Step III: Putting things together. With the above lemmas ready, we now prove
our main theorem by simply plugging them together.
Proof of Theorem 3: From Lemma 1, if |A| < 0.15(n− 1), then we output
the entire vertex set V and terminates with probability 1 − O(e−βd); this is a
correct output. Moreover, Lemma 1 also ensures that we w.p. 1−O(eβd) do not
terminate here with an incorrect output.

We may now assume for the rest of the proof that |A| > 0.15(n − 1). From
Lemma 2, we have |IH | > |Nout

G (IH)∩A|. As a result, from Corollary 1, we with
probability 1−O(e−βd) must have

|Nout
G (IH) ∩ (H ∪ P )| > n+ 1

2
+ 2 · |A \Nout

G (IH)|. (14)

Now, observe that, every vertex in Nout
G (IH) ∩ (H ∪ P ) is labelled good by at

least one vertex in IH ⊆ I; hence, they will be included in S. In other words,
S ∩ (H ∪ P ) ⊇ Nout

G (IH) ∩ (H ∪ P ).
On the other hand, all vertices in Nout

G (IH) ∩A are labelled bad by at least
one vertex in IH ⊆ I; hence, they will not be included in S. In other words, we
have S ∩A ⊆ (A \Nout

G (IH)).
As a result, we arrive at

|S ∩ (H ∪ P )| > |Nout
G (IH) ∩ (H ∪ P )|

(14)
>

n+ 1

2
+ 2 · |A \Nout

G (IH)|

>
n+ 1

2
+ 2 · |S ∩A|,

which concludes our proof. ut

4 Construction of Robust Secret Sharing

Let λ be the robustness parameter. In this section, we give a construction of ro-
bust secret sharing for messages of lengthm with share sizem+O(λ log n(log n+
logm)). In Section 4.1, we first give a construction of a basic robust secret sharing
scheme with share size m+O(λ2+λ(log n+logm)+ log2 n+log n logm). In the
Section 4.2, we use parallel repetition (as was done by Bishop et al [BPRW16])
to improve the share size of our construction to m+O(λ log n(log n+ logm)).

4.1 Basic Scheme

The construction is described in Figure 1 and we show the following theorem.10

Theorem 10. For some t, d, λ, ρ ∈ N, ε2, ε3 ∈ [0, 1], n > 2t + 1, and message
spaceM, assume we have the following:

– A (t+1, n, 0, 0) secret sharing scheme (Share,Rec) forM that is (0, s, b(s−
(t+1))/2c)-robust for any s > t+1. Further, the shares are strings in {0, 1}ρ.

10 Recall the definition of multiplicity of a multiset and ‖ from Section 2.
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– A (2d, ε2)-secure private MAC scheme (KeyGen,Tag,Verify) for message space
{0, 1}ρ with randomness length ν, key length κ and tag length λ.

– The vertex identification algorithm VertexID from Theorem 3, when run on
graphs with out-degree d, has error probability at most ε3.

Then, the construction in Figure 1 is a (t+1, n, ne−d/3, 0) secret sharing scheme
forM that is (ndε2+ ε3+ne−d/3, n, t)-robust. The size of each share is (ρ+ ν+
ddlog ne+ d(κ+ λ)) bits.

BasRobShare(m) : To share a secret m ∈M:
1. For each i ∈ [n], select a multiset Si ⊆ [n] \ {i} of size d uniformly at

random with replacement.
2. If there is an i′ ∈ [n] such that the multiplicity of i′ in (S1‖S2‖ . . . ‖Sn)

is greater than 2d, select m∗ ←M. Else, set m∗ = m.
3. Run Share(m∗) to obtain the shares (Sh1, . . . , Shn).
4. For each i ∈ [n], choose ri ← {0, 1}ν .
5. For each i ∈ [n] and each j ∈ [d] do:

(a) Let vij be the j-th element in the ordered multiset Si.
(b) Choose a private MAC key kj

i→vij
← KeyGen(1λ).

(c) Compute σj
i→vij

← Tag(kj
i→vij

, (Shvij
, rvij

)).

6. Set sharei = (Shi, ri, S
i, {kj

i→vij
, σj
i→vij
}j∈[d]).

BasRobRec : The reconstruction algorithm proceeds in two rounds.
– Round-1:

1. For each i ∈ [n], party i broadcasts (Shi, ri) to every other party and
initializes an empty list Ni.

2. For every j ∈ [d], party i does:
(a) Let vij be the j-th element in the ordered multiset Si.
(b) Check if Verify(kj

i→vij
, (Shvij

, rvij
), σj

i→vij
) = 1.

(c) If the verification passes, party i adds ((i, vij), good) to Ni. Else,
it adds ((i, vij),bad) to Ni.

– Round-2:
1. For each i ∈ [n], party i broadcasts Ni to every other party and

initializes an empty graph G and an empty labeling L.
2. For every i ∈ [n] and every entry ((i, v), labi,v) ∈ Ni, the parties add

the edge (i, v) in G and set L(i, v) = labi,v.
3. The parties (locally) run the algorithm VertexID on G and L to obtain

the vertex set S.
4. The parties then (locally) run Rec({Shi}i∈S) to obtain the secret m.

Fig. 1. Basic Construction of Robust Secret Sharing (using terminology from Theo-
rem 10)
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Proof of Theorem 10: The share size may be verified by inspection. We
first show the correctness and privacy properties of our construction and finally
show its robustness.

Correctness. Note that in an honest execution of the sharing and the reconstruc-
tion algorithm, in the absence of any corruptions, every edge in the graph G will
be labeled as good. Thus, the algorithm VertexID will output V = [n]. It now
follows from the perfect correctness of Rec that the secret output by BasRobRec
will be equal to m∗ with probability 1. We will now bound the probability that
m∗ is not equal to m.

We estimate the probability that the chosen multisets {Si}i∈[n] has the prop-
erty such that for v ∈ [n], the multiplicity of v in S1‖ . . . ‖Sn is at most 2d. Let
us fix a party v ∈ [n], and call the event that its multiplicity is more than 2d
as Badv. For any i 6= v, v might get selected (possibly multiple times) in the
multiset Si. Thus, there are totally d(n − 1) random draws where v might get
selected. For any i ∈ [d(n − 1)], let Xi be the indicator random variable which
is 1 if and only if v is selected in the i-th draw. Now, for any i ∈ [d(n− 1)],

Pr[Xi = 1] =
1

n− 1
(15)

Then, Badv occurs if
∑
iXi > 2d. The variables {Xi}i are independent and

hence from Chernoff bounds,

Pr[Badv] = Pr[
∑
i

Xi > 2d] 6 e−d/3 (16)

Let Bad be the event that there exists at least one v ∈ [n] such that Badv
happens. By union bound,

Pr[Bad] 6
∑
v

Pr[Badv] = ne−d/3 (17)

Thus, with probability at least 1−ne−d/3, the chosen multisets {Si}i∈[n] satisfies
the property the multiplicity of every v ∈ [n] in S1‖ . . . ‖Sn is at most 2d. Notice
that when this happens, m∗ = m. Thus, the correctness error is at most ne−d/3.
We will call {Si}i∈[n] that satisfies the above property to be bounded.

Privacy. To show perfect privacy, we need to argue that for every set U of
size at most t, for every pair of secrets m0,m1 ∈ M , the distributions of
BasRobShare(m0)U and BasRobShare(m1)U are identical.11 It is sufficient to show
that this is in the case when {Si} is bounded, and when it is not bounded, by
design the output of BasRobShare is independent of the message being shared,
and so the shares of U are identical.

When {Si} is bounded, we show this by the following hybrid argument. Fix
any choice of the multisets {Si}i∈[n] such that it is bounded. For every i ∈ [n],

11 From Remark 1, we also satisfy the stronger notion of adaptive privacy.
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we define T i to be the sequence of (v, j) ∈ [n]× [d] such that the j-th entry of the
multiset Sv is equal to i. From the choice of the fixed {Si}i∈[n], each |T i| 6 2d.
We first fix all the MAC keys chosen during the share phase, and make the follow-
ing argument for any such set of keys. We now argue that BasRobShare(m0)U is
identical to BasRobShare(m1)U , going through the following hybrid distributions
over the shares of U :

– Hyb1 : This is the same as BasRobShare(m0)U .
– Hyb2 : In this hybrid, during the share phase, for every i 6∈ U , we generate
σjv→i (for any j ∈ [d] and v ∈ [n]) as Tag(kjv→i, (0

ρ, ri)). We finally output
the shares corresponding to U . Note that Hyb1 is identical to Hyb2 from the
perfect privacy property of the private MAC scheme, which is (2d, ε2)-secure,
since |T i| 6 2d for every i ∈ [n].

– Hyb3 : In this hybrid, during the share phase, instead of running Share(m∗)
to get the Shi’s, we run Share(0).12 We run the rest of the sharing normally
and output the shares corresponding to U . Hyb3 is identical to Hyb2 by the
perfect privacy of the secret sharing scheme (Share,Rec).

Note that via a similar argument we can show that BasRobShare(m1)U is also
identical to Hyb3, and thus to BasRobShare(m0)U , proving perfect privacy.

Robustness. We now argue the robustness of our construction. Consider an in-
teractive adversary A that adaptively corrupts a set T of parties. We assume
without loss of generality that this adversary corrupts b(n − 1)/2c number of
parties. In the case where the adversary corrupts less than this many parties, we
consider another adversary that corrupts all the parties corrupted by the original
adversary and corrupts some additional parties such that the total number of
corrupted parties is b(n−1)/2c. For the parties corrupted by the original adver-
sary, this new adversary behaves exactly as specified by the original adversary.
For the additional corrupted parties, this new adversary follows the reconstruc-
tion protocol as specified. The adversary is given {sharei}i∈T . Let H be the set
of honest parties. Consider the interactive reconstruction algorithm.

– In the first round of the reconstruction algorithm, the party i broadcasts
(Shi, ri) to every other party. Now, every party i ∈ T might broadcast the
correct (Shi, ri) or a modified (Sh′i, r

′
i). Based on this, we partition T into

two sets P and A. P consists of the parties that send the unmodified (Shi,
ri) whereas the parties in A modify the shares and send (Sh′i, r

′
i) 6= (Shi, ri).

Note that at the end of the first round, the adversarial parties learn no
information about the multisets Si of the honest parties and conditioned on
the information available to the adversary at the end of the first round, these
multisets Si are still random.

– At the end of the first round, the parties will verify the tags of the MAC.
Every i ∈ H will generate the set Ni as follows:
• Let Si = (vi1, . . . , v

i
d).

12 0 denoting some universally fixed element inM
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• For every j ∈ [d] such that vij ∈ H ∪P , party i adds ((i, vij), good) to Ni.
• For every j ∈ [d] such that vij ∈ A, party i adds ((i, vij), bad) to Ni except

with probability at most ε2. The ε2 error probability follows directly from
the ε2-unforgeability of the private MAC.

By standard union bound, the probability that there exists an i ∈ H such
that for some v ∈ A, party i adds ((i, v), good) to Ni is at most ndε2 since
each multiset Si has size d.

– Conditioned on the above event not happening, the graph G = (V,E) with
V = [n] and the edge labeling L is effectively generated as follows.

1. The adversary partitions V into H,P,A where |H| = n− b(n− 1)/2c >
(n+ 1)/2.

2. For every u ∈ H, choose a multiset Su uniformly at random from [n]\{u}
with replacement and let Su = (vu1 , . . . , v

u
d ). For every j ∈ [d], add an

edge (u, vuj ) and set L(u, vuj ) = good if and only if vuj ∈ H ∪ P . This is
identically distributed to the distribution where we choose Su uniformly
at random during the sharing phase since at the end of the first round,
the adversary learns no information about the multisets of the honest
parties.

3. The outgoing edges and their labels of A∪P can be generated adversarily
after looking at the outgoing edges and the labels of the vertices in H.

This is exactly same as the graph generation procedure given in Section 3.
– It now follows from the correctness of the VertexID algorithm (Theorem 3)

that its output S when run on this graph satisfies the property that |S∩(H∪
P )| > (n+1)/2+2 · |S ∩A| > (t+1)+2 · |S ∩A| except with probability ε3.
The fact that Rec({Shj}j∈S) = m∗ follows from robustness of secret sharing
(Fact 2).

– Finally, as in the correctness argument, m∗ is equal to the actual secret m
except with probability ne−d/3. Thus, by the union bound, the probability of
error of the whole reconstruction procedure is at most (ndε2 + ε3 +ne−d/3).

This completes the proof of the theorem.
ut

Remark 2. While they are not explicitly covered by the discussion so far, our
construction extends to the case of aborting adversaries in a straightforward
manner. If an adversary does not send a message in the reconstruction phase
then it must be a corrupted party. In this case, all the honest parties which have
this party in its watchlist will mark the corresponding edge as being bad. Further,
the parties will consider some default set of d parties, (say the first d parties) as
being part of this corrupted party’s watchlist and consider some default labeling
of the edges. Notice that our vertex identification algorithm allows the watchlist
and the labeling from the malicious parties to be arbitrary.
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Instantiation We now provide the following instantiation of the building blocks
of our robust secret sharing scheme. Let us fix the robustness parameter λ, and
the length m of the secret to be shared (if m < dlog ne, replace it with dlog ne
in the following).

– We set d = 10λ/β+3C log n/β, where C (> 1) and β (∈ (0, 1)) are constants
from Theorem 3.

– We instantiate the secret sharing with Shamir secret sharing over GF[2m].
This gives ρ = m.

– We instantiate the private MAC with the (`, ε2)-secure MAC for message
space {0, 1}ρ from Theorem 1, with ` = 2d and ε2 = 2−λ/(2nd). The ran-
domness, tag and key lengths are, respectively, 2d(λ + log(2nd(ρ + 2d))),
λ+ log(2nd(ρ+ 2d)), and 2(λ+ log(2nd(ρ+ 2d))).

– The VertexID algorithm has error probability ε3 < 2−10λ.

The robustness error is ndε2 + ε3 + ne−d/3 < 2−λ/2+ 2−10λ + n2−3λ−logn 6
2−λ. The correctness error is ne−d/3 6 2−λ. The size of each share is ρ+2d(λ+
log(2nd(ρ+2d)))+d log n+3d(λ+log(2nd(ρ+2d))) = m+5dλ+O(d log(2nd(m+
2d))) = m + O(λ2) + O(λ log n) + O((λ + log n)(log n + log λ + logm)) = m +
O(λ2 + λ(log n+ logm) + log2 n+ log n logm).

Corollary 2. For any λ, t,m, n ∈ N with n > 2t + 1, there exists a (t + 1, n,
2−λ, 0)-secret sharing scheme that is (2−λ, n, t)-robust and, for secrets of length
m bits, has shares of size m+O(λ2+λ(log n+logm)+ log2 n+log n logm) bits.

4.2 Improved Parameters via Parallel Repetition

In this subsection, we improve the share size of our basic construction to m +
O(λ log n(log n+logm)) to achieve robustness error of 2−λ via parallel repetition.
This is similar to the ideas explained in [BPRW16]. Before we describe the
construction, we start with some notation.

Notation. We split BasRobRec into two steps. The first step BasRobRec1 is an
interactive protocol comprising of the first two rounds of BasRobRec and the
output of the protocol is the set S which is the output of VertexID algorithm on
the constructed graph G and the labeling L. The second step consists of running
Rec on {Shi}i∈S and outputting the message.

Construction. The construction of robust secret sharing (RobShare,RobRec) with
improved parameters is described in Figure 2.

Theorem 11. For any λ, t,m, n ∈ N, with n > 2t + 1, the construction in
Figure 2 is a (t+1, n, 0, 0) secret sharing scheme (with expected polynomial time
sharing algortithm) for secrets of length m that is (e−λ/24, n, t)-robust. The size
of each share is m+O(λ log n(log n+ logm)).

Due to page limits, we defer the proof of this theorem to the full version of
the paper.
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Set λ′ = 2, and d = 10λ′/β + 3C logn/β, where C and β are the constants
from Theorem 3. In the following, (Share,Rec) represents (t + 1, n, 0, 0) Shamir
secret sharing over GF[2m]. The private MAC (KeyGen,Tag,Verify) used for the
message space {0, 1}m is the (`, ε)-secure MAC from Theorem 1 with ` = 2d and
ε = 2−λ

′
/2nd. The protocol BasRobRec is from the construction in Figure 1.

RobShare(m) : To share a secret m ∈ {0, 1}m:
1. Run Share(m) to obtain the shares (Sh1, . . . , Shn).
2. For each q in 1 to λ do:

(a) For each i ∈ [n], select a multiset Sq,i ⊆ [n] \ {i} of size d uniformly
at random with replacement.

(b) If there is an i′ ∈ [n] such that the multiplicity of i′ in
Sq,1‖Sq,2‖ . . . ‖Sq,n is greater than 2d, then go back to step (2a).

3. For each q ∈ [λ], i ∈ [n] and each j ∈ [d] do:
(a) For each i ∈ [n], choose rqi ← {0, 1}

ν .
(b) Let vq,ij be the j-th element in the ordered multiset Sq,i.
(c) Choose a private MAC key kq,j

i→vq,ij
← KeyGen.

(d) Compute σq,j
i→vq,ij

← Tag(kq,j
i→vq,ij

, (Sh
v
q,i
j
, rq
v
q,i
j

)).

4. Set sharei =
(
Shi, {rqi }q∈[k], {S

q,i}q∈[k], {kq,j
i→vq,ij

, σq,j
i→vq,ij

}j∈[d],q∈[k]
)
.

RobRec :
1. For each q in 1 to λ do in parallel:

(a) Run BasRobRec1

({
Shi, r

q
i , S

q,i, {kq,j
i→vq,ij

, σq,j
i→vq,ij

}j∈[d]
}
i∈[n]

)
to ob-

tain the set Γq.
(b) Set mq := Rec({Shi}i∈Γq ).

2. If there is a majority value m in the sequence (m1, . . . ,mλ) then output
m. Else, output ⊥.

Fig. 2. Improved Construction of Robust Secret Sharing
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