
Security Analysis and Improvements for the
IETF MLS Standard for Group Messaging

Joël Alwen3, Sandro Coretti2?, Yevgeniy Dodis1??, and Yiannis Tselekounis1? ? ?

1 New York University, {dodis,tselekounis}@cs.nyu.edu
2 IOHK, sandro.coretti@iohk.io
3 Wickr Inc., jalwen@wickr.com

Abstract. Secure messaging (SM) protocols allow users to communicate
securely over untrusted infrastructure. In contrast to most other secure
communication protocols (such as TLS, SSH, or Wireguard), SM sessions
may be long-lived (e.g., years) and highly asynchronous. In order to deal
with likely state compromises of users during the lifetime of a session,
SM protocols do not only protect authenticity and privacy, but they also
guarantee forward secrecy (FS) and post-compromise security (PCS). The
former ensures that messages sent and received before a state compromise
remain secure, while the latter ensures that users can recover from state
compromise as a consequence of normal protocol usage.

SM has received considerable attention in the two-party case, where
prior work has studied the well-known double-ratchet paradigm, in partic-
ular, and SM as a cryptographic primitive, in general. Unfortunately, this
paradigm does not scale well to the problem of secure group messaging
(SGM). In order to address the lack of satisfactory SGM protocols, the
IETF has launched the message-layer security (MLS) working group,
which aims to standardize an eponymous SGM protocol. In this work we
analyze the TreeKEM protocol, which is at the core of the SGM protocol
proposed by the MLS working group.

On a positive note, we show that TreeKEM achieves PCS in isolation
(and slightly more). However, we observe that the current version of
TreeKEM does not provide an adequate form of FS. More precisely, our
work proceeds by formally capturing the exact security of TreeKEM as a
so-called continuous group key agreement (CGKA) protocol, which we
believe to be a primitive of independent interest. To address the insecurity
of TreeKEM, we propose a simple modification to TreeKEM inspired
by recent work of Jost et al. (EUROCRYPT ’19) and an idea due to
Kohbrok (MLS Mailing List). We then show that the modified version
of TreeKEM comes with almost no efficiency degradation but achieves
optimal (according to MLS specification) CGKA security, including FS
and PCS. Our work also lays out how a CGKA protocol can be used to
design a full SGM protocol.

? Work partially done at NYU and supported by NSF grants 1314568 and 1319051.
?? Partially supported by gifts from VMware Labs, Facebook and Google, and NSF

grants 1314568, 1619158, 1815546.
? ? ? Work done at NYU and supported by NSF grants 1314568 and 1319051.

1 Introduction

Secure messaging. End-to-end Secure Messaging (SM) allows people to exchange
messages without compromising their authenticity nor privacy. To further their
applicability the protocols in this work are designed for the, so called, asyn-
chronous setting. In the context of (secure) messaging ”asynchronous” means
that no assumptions are made about the online/offline behavior of participants.
E.g. at times no participant at all may be online. Some participants may be
offline for long periods while others are online only irregularly. It may even be
that for the duration of a session no more than a single participant is online
simultaneously nor should they rely on any particular user being online to per-
form operations. 4 Thus, protocols for the asynchronous setting must eschew
interactive communication (which greatly increases the difficulty of achieving
strong security properties). In other words all protocol operations (e.g. creating
a new session, adding/removing participants to an existing session and sending a
messages in a session) must always be performed by sending out a single packet
to enact the desired operation. In fact, (due to desired constraints on bandwidth)
all protocols in this work actually send out the same packet to all participants as
a single broadcast.

In contrast to common secure communication protocols such as TLS, IPSEC
and SSH, SM protocols are designed for settings where sessions may exist for long
periods of time. SM protocols are therefore expected to satisfy so-called forward
secrecy (FS) and post-compromise security (PCS) (a.k.a. backward secrecy). The
former means that even when a participant’s key material is compromised, past
messages (delivered before the compromise) remain secure. Conversely, PCS
means that once the compromise ends, the participants will eventually recover
full security as a side effect of continued normal protocol usage.

The rigorous design and analysis of two-party asynchronous SM protocols has
received considerable attention in recent years. This is in no small part due to
advent of the double ratchet paradigm, introduced by Marlinspike and Perrin [27].
Forming the cryptographic core of a slew of popular messaging applications (e.g.,
Signal, who first introduced it, as well as WhatsApp, Facebook Messenger, Skype,
Google Allo, Wire, and more), double ratchet protocols are now regularly used
by over a billion people worldwide.

However, double ratchet protocols are inherently designed for the case where
only two users communicate with each other. In order to employ them for groups
with more than two users, there is thus little or no alternative to running double
ratchets between all pairs of users (at least to distribute and update key material).
Unfortunately, that means the double ratchet paradigm does not scale well in
settings with a large number of users. In particular, the communication complexity
to update key material (an operation crucial to providing PCS) grows linearly in
the group size. In fact, this poor performance holds for all, currently deployed,
SM protocols enjoying some form of FS and PCS (i.e., including non-double
ratchet based ones [20]).

4 Classic insecure examples of such messaging applications are SMS and eMail.

2

This begs the natural question of how to build secure asynchronous group
messaging protocols (SGM) that enjoy similar security properties to the two-party
ones but whose efficiency scales (say) logarithmically in the group size.

Message layer security and TreeKEM. In order to address the lack of satisfactory
SGM protocols, the IETF has launched the message-layer security (MLS) working
group, which aims to standardize an eponymous SGM protocol [5,29]. Following
in the footsteps of the double ratchet, the MLS protocol promises to be widely
deployed and heavily used. Indeed, the working group already includes various
messaging companies (Cisco, Facebook, Google, Wickr, Wire, Twitter, etc.) whose
combined messaging user base includes everything from government agencies,
political organizations, and NGOs, to companies both large and small—not to
mention a major part of the world’s consumer population.

The heart of the MLS standard is the so-called TreeKEM protocol. TreeKEM
continuously generates fresh, shared, and secret randomness used by the partici-
pating parties to evolve the group key material. Each new group key is used to
initiate a fresh symmetric hash ratchet that defines a stream of nonce/key pairs
used to symmetrically encrypt/decrypt higher-level application messages (such
as texts in a chat) using an AEAD (authenticated encryption with associated
data). A stream is used until the next evolution of the group key at which point
a new stream is initiated.

So not only is TreeKEM the most novel and intricate part of the MLS draft,
but understanding it is also central to understanding the security and efficiency
properties of full MLS protocol itself. In particular, TreeKEM is crucially involved
in achieving PCS and FS.

1.1 Contributions

Continuous group key agreement. This paper makes progress in the formal study
of secure group-messaging protocols (SGMs) by studying the security of the latest
version of the TreeKEM protocol. First, our work defines the notion of continuous
group key agreement (CGKA) and casts TreeKEM as a CGKA protocol. CGKA
protocols provide methods for adding as well as removing group members and,
most crucially, for performing updates. Each update operation is initiated by
an arbitrary user and results in a new so-called update secret. Update secrets
are high-entropy random values that the parties use to refresh their group key
material in the higher-level protocols (e.g., in the SGM). In an update operation,
the initiator also suitably encrypts information about the update secret for other
group members.

Our security definition for CGKA protocols requires that (i) users obtain the
same update secrets (correctness), (ii) update secrets look random to an attacker
observing the protocol messages, (iii) past update secrets remain random even if
the state of a party is compromised by the attacker (FS), and (iv) parties can
recover from state compromise (PCS). All of these properties are captured by a
single, fairly intuitive security game.

3

We argue that the formal security properties of CGKA are phrased in such
a way that it is a suitable building block for full SGM protocols. In particular,
CGKA is inspired by the modularization of Alwen et al. [2], who constructed a
secure two-party messaging protocol (based on the double-ratchet paradigm) by
combining three primitives: continuous key agreement (CKA), forward secure
authenticated encryption with associated data (FS-AEAD), and a so-called PRF-
PRNG, which is a two-input hash function that is a pseudorandom function (resp.
generator) with respect to its first (resp. second) input. CGKA is therefore to be
seen as the multi-user analogue of CKA and is tailored to be used in conjunction
with a PRF-PRNG and the multi-user version of FS-AEAD. Specifically, the
update secret is run through the PRF-PRNG in order to obtain new keys for
the multi-user FS-AEAD. Due to the already quite high complexity of CGKA
itself, this work focuses exclusively on CGKA and sketches how it can be used in
a higher-level protocol to obtain a full SGM protocol.

TreeKEM has poor forward secrecy. Having defined the notion of CGKA, we
analyze the latest version of TreeKEM w.r.t. the new definition. By doing so, we
observe that there are serious issues with TreeKEM’s forward secrecy, stemming
from the fact that its users do not erase old keys sufficiently fast. Specifically,
note that in order to efficiently perform updates (with packet sizes logarithmic
in the number of users), TreeKEM arranges all group members at the leaves
of a binary tree and uses public-key encryption (PKE) to encrypt information
about update secrets, denoted by I, to specific subsets of members (determined
by their position in the tree). After processing the update, however, parties do
not erase or modify the PKE secret keys used to decrypt the update information,
since they might need them to process future updates. Hence, corrupting any
party other than the update initiator will completely reveal I to an attacker,
thereby violating FS. In fact, we show that in a group with n members, in order
for I to remain secret upon state compromise of an arbitrary user, even in the
best case at least Ω(n/log(n)) many additional updates are required before the
compromise in the best case. This can rise to Ω(n) many updates in the worst
case (depending on the order of updates). Even worse, unless the sibling (in the
tree) of I’s initiator performs an update, I is never forward secret regardless of
who else updates.

Our work formally captures the exact type of FS achieved by TreeKEM by
providing an appropriate weakening of the CGKA security definition and proving
that TreeKEM satisfies it. On a positive note, even the weakened definition
provides PCS, i.e., TreeKEM’s update secrets are at least backward secure.

Fixing TreeKEM. In order to remedy TreeKEM’s issues with FS, we devise a
new type of public-key encryption (PKE) (based on work by Jost et al. [24] and
a suggestion by Konrad Kohbrok on the MLS mailing list [26]) and show that
using it in lieu of the (standard) PKE within TreeKEM results in a protocol
with optimal FS. Specifically, with the new flavor of PKE, public and secret keys
suitably change with every encryption and decryption, respectively. This kind of
key evolution ensures that after decryption, the (evolved) secret key leaks no

4

information about the original message, thereby thwarting the above attack. We
also provide a very efficient instantiation of the new PKE notion, thereby ending
up with a practical fix and going from very loose to optimal security at negligible
cost, albeit under the following assumption about the order in which messages
are delivered to all participants.

Global ordering of messages. Our main CGKA security definitions encode the
assumption that the delivery server (which caches protocol messages until users
come online again) delivers CGKA messages in the same order to all users in
a session. Having said that, the delivery server (which we modeled formally as
the adversary) may still drop or delay messages at will, as well as decide on the
delivery order between users arbitrarily (as long as each user eventually gets
the same order of protocol messages). We remark that this assumptions is made
explicitly in the MLS design spec. (cf. Section 11 of version 8 [5]) albeit only in
terms of conditions required to guarantee functionality, not security. Moreover,
the TreeKEM protocol was designed with that in mind. (It is worth noting that
the assumption could also be practically realized in the public bulletin board
model, e.g., using a block-chain protocol.)

Of course, an alternative approach would have been to remove the assumption
from our security definitions. The correctness and security implications of doing
this are somewhat subtle; for example, it is inevitable that the current group can
easily be split into disjoint sub-groups, who might not even be aware of each other,
simply thinking that people in other subgroups are offline rather than “split”.
We discuss these issues in Section 7, pointing out that the “right” security level
desired in this case is not yet settled and agreed upon in the MLS community
(for good reasons rather than lack of effort, as we explain in Section 7). We also
note that it is relatively trivial for a higher level protocol building on the CGKA
(such as MLS) to ensure users only accept CGKA messages in the same order as
intended by their sender. E.g. MLS ensures this by having sender and receivers
of CGKA packets necessarily agree on the hash of the preceding transcript in
order to authenticate and decrypt new CGKA packets.

Given this state of affairs, we feel that we are justified to follow the current
MLS guidelines, by building the global ordering of messages assumption into our
model, so that we can: (1) achieve the strongest possible security (including FS,
PCS and guaranteed agreement), as well as (2) analyze TreeKEM in the security
model it was designed for. However, in Section 7 we discuss what happens in
TreeKEM (and our improved version) when the order delivery assumption does
not hold, including the following two security guarantees: (1) Compromising user
ID, who was removed from the perspective of sub-group A, should not compromise
the security of A, even if ID “split” to a different subgroup B prior to removal
from A; (2) Compromising user ID, who updated its state after “splitting” from
A, should not compromise the security of A.

Adaptive security. The security of both TreeKEM and the improved version
mentioned above is proved w.r.t. a non-adaptive attacker, i.e., an attacker that
is required to announce all corruptions at the beginning (as opposed to being

5

able to corrupt on-the-fly depending on values and messages produced by the
protocol).

The difficulty in handling adaptive security is inherent for any cryptographic
protocol where keys can encrypt others keys, and the attacker might ask to
selectively corrupt some subset of keys. Prominent examples include multicast
and generalized selective decryption [30,16], constraint PRFs [17], and Yao’s
garbled circuits [23], among many others. In each of these setting, going from
non-adaptive to adaptive security naively would result in exponential security
loss in some natural parameter n for the corresponding setting.

A major breakthrough in improving the state of provable security security
against adaptive attackers in such settings came from a series of works, starting
with Panjwani [30], and culminating with a very clever and general reduction
technique of Jafargholi et al. [22]. These highly non-trivial works which showed
that in certain cases, one can get adaptive security at the multiplicative reduction
factor of “only” nlogn � 2n. While these provable, yet “super-polynomial”,
reductions are still far from being usable in the real world, they are substantially
better than the trivial exponential security loss mentioned above, and serve as
further evidence that the corresponding protocols are likely secure “in the real
world” — a view commonly shared by the majority of practitioners.

Fortunately, we managed to adapt the same non-trivial reduction technique
to the setting of TreeKEM, showing the slightly super-polynomial security even
in the adaptive setting. As mentioned above, this is the best we can do using
the current state-of-the-art in adaptive security in all the “selective decryption”
applications we know.

In the full version of the paper [3] we discuss several research directions related
to SM.

1.2 Related Work

The double ratchet paradigm was introduced by Marlinspike and Perrin [27], based
on the OTR (off-the-record) protocol [7], and an early analysis was performed
by Cohn-Gordon et al. [10]. An important line of work [6,31,21,24,13] formally
studied two-party secure messaging. In particular, Jost et al. [24] introduced the
notion of updatable PKE which is related to the one used in this paper. However,
in our setting a simpler definition suffices, although we use the same efficient
construction as [24]. Alwen et al. [2] provided a modular design for double-ratchet
algorithms and formal definition of secure messaging in the two-party setting. In
the group setting, Cremers et al. [11] note TreeKEM’s disadvantages w.r.t. PCS
for multiple groups, and Weider [36] suggests Causal TreeKEM, a variant that
requires less ordering of protocol messages. TreeKEM was suggested in [32,4].
The most influential precursor to TreeKEM, the asynchronous ratchet tree (ART)
protocol, was introduced by Cohn-Gordon et al. [9], focusing on adaptive security
(informally sketched) for static groups. ART uses an older technique called “Tree-
based DH groups” [33,35,39] which is also used by [25] to build key agreement.
However, TreeKEM and ART differ significantly from [25], as we discuss in the
full version [3]. Besides MLS, several other end-to-end secure group messaging

6

protocols have been proposed and even deployed [18,18,14,34,20,37,19]. Also,
TreeKEM is related to schemes for (symmetric-key) broadcast encryption [15,12]
and multicast encryption [28,38,8]. A more detailed comparison between protocols
and notions can be found in the full version [3]. Finally, the recent follow-up
work of [1] also analyzes TreeKEM’s security and introduces a new CGKA
construction improving on TreeKEM. However, beyond this high-level similarity
the results are relatively orthogonal, using different security models, and focusing
on complementary aspects of TreeKEM, such as efficiency and adaptive reduction
tightness.

2 Preliminaries

This section introduces some general notation and basic concepts around binary
trees. Definitions of PRGs and CPA-secure public-key encryption can be found
in the full version [3].

Notation. For a positive integer a, [a] denotes the set {1, 2, . . . , a}. For an integer
n, mp2(n) is the maximum power of 2 smaller than n, dividing n. Security games
in this work involve dictionaries. The value stored with key x in a dictionary
D is denoted by D[x]. The statement D[·] ← y (for any type of y) initializes
a dictionary D in which the default initial value for each key is y. This work
considers rooted binary trees, in which all nodes have between 0 and 2 unique
children. The height of τ is the length of the longest path from the root to any
leaf.5 A node with no children is called a leaf ; all other nodes are called internal.
A tree τ is full if it has height h and 2h leaves. For an integer h ≥ 0, denote by
FTh the full binary tree of height h. For two leaf nodes ` and `′ in some tree,
let LCA(`, `′) be the least common ancestor of ` and `′, i.e., the node where the
paths from these leaves to the root meet.

3 Continuous Group Key Agreement

The purpose of continuous group key-agreement (CGKA) is to continuously
provide members of a messaging group with fresh secret random values, which
they use to refresh their key material (in a higher-level protocol). This section
formally defines the syntax of CGKA schemes and presents a security notion that
simultaneously captures correctness, key indistinguishability, forward secrecy, as
well as post-compromise security.

3.1 CGKA Syntax

A CGKA scheme provides algorithms to create a group, add as well as remove
users, perform updates, and process protocol messages.

5 In particular, the tree of height 0 consists of a single node, the root.

7

Definition 1. A continuous group key-agreement (CGKA) scheme CGKA =
(init, create, add, rem, upd, proc) consists of the following algorithms:

– Initialization: init takes an ID ID and outputs an initial state γ.

– Group creation: create takes a state γ and a list of IDs G = (ID1, . . . , IDn),
and outputs a new state γ′ and a control message W .

– Add: add takes a state γ and an ID ID′, and outputs a new state γ as well
as control messages W and T .

– Remove: rem takes a state γ and an ID ID′ and outputs a new state γ′ and a
control message T .

– Update: upd takes a state γ and outputs a new state γ′ and a control mes-
sage T .

– Process: proc takes a state γ and a control message T and outputs a new
state γ′ and an update secret I.

The basic usage of a CGKA scheme is as follows: Generally, once a group is
established using create, any group member, referred to as the sender, may call
any of the algorithms to add or remove members or to perform updates. Each
time, such a call results in a new so-called epoch. It is implicitly the task of a
server connecting the parties to then relay the resulting control messages to all
current group members (including the sender). Observe that there are two types
of control messages: welcome messages W , which are sent to parties joining a
group, and normal control messages T , which are intended for parties already in
the group. Whenever the server delivers a control message to a group member,
they process it using proc. Algorithm proc also outputs an update secret I, where
the intention is that I 6= ⊥ if and only if the control message corresponds to an
update.

3.2 CGKA Security

Informally, the basic properties that any CGKA scheme must satisfy are the
following: Correctness: All group members output the same update secret I in
update epochs. Privacy: The update secrets look random given the transcript
of control messages. Forward secrecy (FS): If the state of any group member
is leaked at some point, all previous update secrets remain hidden from the
attacker. Post-compromise security (PCS): After every group member whose
state was leaked performs an update (that is processed by the group) update
secrets become secret again.

These properties are captured by the security game presented in this section
(cf. Figure 1). In the game the attacker is given access to various oracles to drive
the execution of a CGKA protocol. It is important to note that the capabilities
of the attacker and restrictions on the order in which the attacker may call
the oracles is motivated by how a CGKA protocol would be used in a higher-
level protocol. Most importantly, the attacker will not be allowed to modify or
inject any control messages. The corresponding design choices are justified in
Section 3.3.

8

Epochs. The main oracles to drive the execution are the oracles to create groups,
add users, remove users, and to deliver control messages, i.e., create-group,
add-user, remove-user, send-update, and deliver. The first four oracles
allow the adversary to instruct parties to initiate new epochs, whereas the deliver
oracle makes parties actually proceed to the next epoch. The server connecting
the parties is trusted to provide parties with a consistent view of which operation
takes place in each epoch. That is, while multiple parties may initiate a new
epoch, the attacker is forced to pick a single operation that defines the new epoch;
the corresponding sender is referred to as the leader of the epoch. Observe that
the parties may advance at various speeds and therefore be in epochs arbitrarily
far apart.

The game forces the attacker to initially, i.e., in epoch 1, create a group.
Thereafter, any group member may add new parties, remove current group
members, or perform an update. The attacker may also corrupt any party at any
point (thereby learning that party’s secret state) and challenge the update secret
in any epoch where the leader performed an update operation. Furthermore,
the adversary can instruct parties to stop deleting old secrets. There will be
restrictions checked at the end of the execution of the game to ensure that the
attacker’s challenge/corruption/no-deletion behavior does not lead to trivial
attacks.

Initialization. The init oracle sets up the game and all the variables needed
to keep track of the execution. The random bit b is used for real-or-random
challenges, and the dictionary γ keeps track of all the users’ states. For every
epoch, the dictionaries lead, I, and G record the leader, the update secret, and the
group members, respectively, and ep records which epoch each user is currently
in. The array ctr counts all new operations initiated by a user in their current
epoch. Moreover, D keeps track of which parties delete their old values and which
do not. Dictionary chall is used to ensure that the adversary can issue at most
a single challenge per (update) epoch. Finally, M records all control messages
produced by parties; the adversary has read access to M (as indicated by the
keyword pub).

Initiating operations and choosing epoch leaders. As mentioned above, the attacker
must choose a leader in every epoch, i.e., a sender whose control message is
ultimately processed by all group members. More precisely, for each user ID
currently in some epoch t, ctr[ID] can be thought of as a (local) “version number”
that counts the various operations initiated by ID in epoch t. The counter is
incremented each time ID initiates a new operation. The resulting control messages
for users IDi are stored in M with key (t + 1, ID, IDi, ctr[ID]), representing the
number of the next epoch, the sender, the recipient, and the (local) version
number of the operation. Similarly, dictionary G stores the new group that would
result from the operation with key (t+ 1, ID, ctr[ID]).

For every epoch t, the first control message M [t, ID, ID′, c] delivered via
deliver, for some users ID and ID′ and version number c, determines that ID is the

9

Oracles of Security Game for CGKA

init
b←$ {0, 1}
∀ID : γ[ID]← init(ID)

lead[·], I[·],G[·]← ε
ep[·], ctr[·]← 0
D[·]← true
chall[·]← false

pub M [·]← ε

create-group (ID0, ID1, . . . , IDn)
t← ep[ID]
req t = 0

c← ++ ctr[ID0]

(γ[ID0],W)←
create(γ[ID0], ID1, . . . , IDn)

for i = 0, . . . , n
M [t+ 1, ID0, IDi, c]←W

G[t+ 1, ID, c]← {ID0, ID1, . . . , IDn}

reveal (t)
req I[t] /∈ {ε,⊥} ∧ ¬chall[t]
chall[t]← true
return I[t]

chall (t)
req I[t] /∈ {ε,⊥} ∧ ¬chall[t]
I0 ← I[t]
I1 ← K
chall[t]← true
return Ib

add-user (ID, ID′)
t← ep[ID]
req t > 0 ∧ ID′ /∈ G[t]

c← ++ ctr[ID]

(γ[ID],W, T)←
add(γ[ID], ID′)

M [t+ 1, ID, ID′, c]← (W,T)

for ˜ID ∈ G[t]

M [t+ 1, ID, ˜ID, c]← T

G[t+ 1, ID, c]← G[t]∪{ID′}

remove-user (ID, ID′)
t← ep[ID]
req t > 0 ∧ ID′ /∈ G[t] > 0

c← ++ ctr[ID]

(γ[ID], T)← rem(γ[ID], ID′)

for ˜ID ∈ G[t]

M [t+ 1, ID, ˜ID, c]← T

G[t+ 1, ID, c]← G[t] \ {ID′}

send-update (ID)
t← ep[ID]
req t > 0

c← ++ ctr[ID]

(γ[ID], T)← upd(γ[ID])

for ˜ID ∈ G[t]

M [t+ 1, ID, ˜ID, c]← T

G[t+ 1, ID, c]← G[t]

deliver (t, ID, ID′, c)
req lead[t] ∈ {ε, (ID, c)} ∧

(t = ep[ID′] + 1∨ added(t, ID, ID′, c))

T ←M [t, ID, ID′, c]
(γ[ID′], I)← proc(γ[ID′], T)

if lead[t] = ε
lead[t]← (ID, c)
I[t]← I
G[t]← G[t, ID, c]

else if I 6= I[t]
win

if removed(t, ID′)
ep[ID′]← −1

else
ep[ID′] ++

ctr[ID′]← 0

corr (ID)
return γ[ID]

no-del (ID)
D[ID]← false

Fig. 1. Oracles for the CGKA security game for a scheme CGKA =
(init, create, add, rem, upd, proc). The functions added and removed are defined in the
text.

leader and c the version that was chosen by the server. Correspondingly, the game
records lead[t]← (ID, c) and sets the group membership to G[t]← G[t, ID, c].

In general, whenever a party ID′ processes any control message, the counter
ctr[ID′] is reset to 0 as all operations initiated by ID′ in its current epoch are
now obsolete (either processed by ID or rejected by the server in favor of some
other operation). Note that the sender of an operation also sends a control
message addressed to themselves to the server. The server confirms an operation
by returning that message back to the sender.

Group creation. The oracle create-group causes ID0 to create a group with
members {ID0, . . . , IDn}. This is only allowed if ID0 is currently in epoch 0, which is
enforced by the req statement. Thereafter, ID0 calls the group creation algorithm
and sends the resulting welcome messages to all users involved (including itself).

Adding and removing users and performing updates. For all three oracles add-
user, remove-user and send-update, the req statement checks that the call
makes sense (e.g., checking that a party added to the group is not currently a group

10

Safety Predicate

safe (q1, . . . ,qq)
for (i, j) s.t. qi = corrupt(ID) for some ID and qj = chall(t∗) for some t∗

if q2e(qi) ≤ t∗and 6∃ k s.t. 0 < q2e(qi) < q2e(qk) ≤ t∗ and qk ∈ {send-update(ID), remove-user(∗, ID)}
return 0

if q2e(qi) > t∗ and ∃k s.t. q2e(qk) ≤ t∗ and qk = no-del(ID)
return 0

return 1

Fig. 2. The safety predicate determines whether a sequence of oracle calls (q1, . . . ,qq)
allows the attacker to trivially win the CGKA security game.

member). Subsequently, the oracles call the corresponding CGKA algorithms
(add, rem, and upd, respectively) and store the resulting control messages in M .

Delivering control messages. The oracle deliver is called with the same four
arguments (t, ID, ID′, c) that are used as keys for the M array. The req statement
at the beginning checks that (1) either there is no leader for epoch t yet or
version c of ID is the leader already and (2) the recipient ID′ is currently either
in epoch t− 1 or a newly added group member, which is checked by predicate
added defined by added(t, ID, ID′, c) := ID′ /∈ G[t− 1] ∧ ID′ ∈ G[t, ID, c]. If the
checks are passed, the appropriate control message is retrieved from M and
run through proc on the state of ID′. If there is no leader for epoch t yet, the
game sets the leader as explained above and also records the update secret I[t]
output by proc. In all future calls to deliver, the values I output by process
will be checked against I[t], and, in case of a mismatch, the instruction win
reveals the secret bit b to the attacker; this ensures correctness. Finally, the
epoch counter for ID′ is incremented—or set to −1 if the operation just processed
removes ID′ from the group. This involves a check via predicate removed defined
by removed(t, ID′) := ID′ ∈ G[t− 1] ∧ ID′ /∈ G[t].

Challenges, corruptions, and deletions. In order to capture that update secrets
must look random, the attacker is allowed to issue a challenge for any epoch
corresponding to an update operation. When calling chall(t) for some t, the
oracle first checks that t indeed corresponds to an update epoch and that a leader
already exists. Similarly, using reveal, the attacker can simply learn the update
secret of an epoch. It is also ensured that for each epoch, the attacker can make
at most one call to either chall or reveal.

To formally model forward secrecy and PCS, the attacker is also allowed to
learn the current state of any party by calling the oracle corrupt. Finally, the
attacker can instruct a party ID to stop deleting old values by calling no-del(ID).
Subsequently, the game will implicitly store all old states of ID (instead of
overriding them) and leak it to the attacker when he calls corrupt.6 The game
also sets the corresponding flag.

6 Modeling no-deletions explicitly would clutter Figure 1 quite a bit.

11

Avoiding trivial attacks. In order to ensure that the attacker may not win the
CGKA security game with trivial attacks (such as, e.g., challenging an epoch
t’s update secret and leaking some party’s state in epoch t), at the end of the
game, the predicate safe is run on the queries q1, . . . ,qq in order to determine
whether the execution was devoid of such attacks. The predicate tests whether
the attacker can trivially compute the update secret in a challenge epoch t∗ using
the state of a party ID in some epoch t and the control messages observed on the
network. This is the case if either (1) ID has not performed an update or been
removed before epoch t∗ or (2) ID stopped deleting values at some point up to
epoch t∗ and was corrupted thereafter. The predicate is depicted in Figure 2. The
figure uses the function q2e(q), which returns the epoch corresponding to query
q. Specifically, for q ∈ {corrupt(ID),no-del(ID)}, if ID is member of the group
when q is made, q2e(q) is the value of ep[ID] (when the query is made), otherwise,
q2e(q) returns ⊥. For q ∈ {send-update(ID), remove-user(ID, ID′)}, q2e(q),
is the epoch for which ID initiates the operation. If q is not processed by any
user we set q2e(q) = ⊥.7

Observe that the predicate safe can in general be replaced by any other
predicate P, potentially weakening the resulting security notion.

Advantage. In the following, a (t, c, n)-attacker is an attacker A that runs in time
at most t, makes at most c challenge queries, and never produces a group with more
than n members. For any adversary A for which the safety predicate evaluates to
true on the queries made by it, A wins the CGKA security game if he correctly
guesses the random bit b in the end. The advantage of A with safety predicate P
against a CGKA scheme CGKA is defined by AdvCGKA,Pcgka-na(A) :=

∣∣Pr[A wins]− 1
2

∣∣.
Definition 2 (Non-adaptive CGKA security). A continuous group key-
agreement protocol CGKA is non-adaptively (t, c, n,P, ε)-secure if for all (t, c, n)-

attackers, AdvCGKA,Pcgka-na(A) ≤ ε.

3.3 Explanation of Assumptions in Definition

CGKA in higher-level protocol. Syntax and security of CGKA protocols are
defined in such a way that they can be used by a higher-level protocol—in
particular a full secure group-messaging (SGM) scheme (e.g., the entire MLS
protocol)—in a modular fashion. As explained below, this modularity allows to
assume that the parties are connected by authenticated channels and messages
are delivered in order in the CGKA security definition.

Authenticated channels. Any sensible SGM security definition allows the attacker
to inject, i.e., forge and/or replay, protocol messages at will. However, this
behavior is easy to defend against by having group members sign all messages
they send. In particular, CGKA control messages can be authenticated this way.
Therefore, the CGKA security game may assume that channels are authenticated

7 Any boolean expression containing ⊥ is false.

12

since any injections of control messages can be taken care of by the corresponding
security reduction.

The only time this is problematic is when the attacker learns some user’s
singing keys via state leakage. However, authenticity can be recovered in a
generic way by using ephemeral signature keys as part of the higher-level protocol.
That is, users periodically sample fresh signature keys and publish the public
key as well as a signature on it using their previous secret key. Of course this
requires that the attacker remain passive, i.e., that he not inject, during the
time window between compromise and key update. While this is arguably not
the strongest adversarial model one might consider, observe that not making
such an assumption8 would essentially require security against insider attacks
(attacks in which group members deviate from the protocol arbitrarily). This is
an interesting and important issue, but it is outside the scope of this paper (not
to mention much if not all of the academic literature on SGM). Nor is defending
against any such attack part of MLS’s goals.9 In fact, it is not clear whether
completely defending against insider attacks can result in a practical protocol at
all. We believe the study of SGM secure against insider attacks to be one of the
main open problems in the area.

Message ordering. Any SGM protocol using CGKA as a component (and authen-
ticating CGKA control messages as described above) may additionally ensure
that CGKA messages are delivered in order by, e.g., transcript hashing: Group
members keep a running hash value h, which is updated as hnew ← H(hold||T)
each time a CGKA control message T is sent. In addition, hold is sent along with
T , and T is only processed by a party if hold matches the local running hash.
Therefore, while the full SGM security definition allows the attacker to reorder
messages, CGKA security need not consider out-of-order messages (as this can
be handled by the security reduction).

In Section 7 we discuss security in the presence of group splitting attacks.

4 TreeKEM

4.1 Overview

The TreeKEM CGKA protocol is based on so-called (binary) ratchet trees (RTs).
In a TreeKEM RT, group members are arranged at the leaves, and all nodes
have an associated public-key encryption (PKE) key pair, except for the root.
The tree invariant is that each user knows all secret keys on their direct path, i.e.,
on the path from their leaf node to the root. In order to perform an update—the
most crucial operation of a CGKA—and produce a new update secret I, a party
first generates fresh key pairs on every node of their direct path. Then, for every

8 Note that this assumption is universal in the 2-party SM literature.
9 In particular, its well understood that an insider in an MLS session can, at the very

least, perform denial of service attacks on group members by sending out malformed
packets.

13

v0

v1

vi

vd−1

vd

(sk0, s1) ← prg(s0)

(sk1, s2) ← prg(s1)

(ski, si+1) ← prg(si)

(skd−1, sd) ← prg(sd−1)

I ← sd

pka pkb

pkc
resolution of v′i−1

v′i−1

E(pka, si)
E(pkb, si)
E(pkc, si)

ciphertexts at v′i−1:

Fig. 3. An update operation initiated by the party at leaf v0: First, a random “seed
value” s0 is chosen. Thereafter, a PRG is applied iteratively at every level i of v0’s
direct path in order to derive (i) a PKE secret key ski for that level (from which a
public key can be computed using the key generation algorithm) and (ii) a seed si+1

for the next level. Every seed si is encrypted using the public key of the corresponding
co-path node v′i−1. Sometimes, such a node can be blank, in which case si must be
encrypted using the public keys of each node in the resolution, which is the smallest set
of nodes covering all leaves in the subtree of v′i−1. This ensures that all these nodes are
able to compute the keys from vi upward. The update secret I produced by such an
update is the seed value sd at the root.

node v′ on its co-path—the sequence of siblings of nodes on the direct path—it
encrypts specific information under the public key of v′ that allows each party in
the subtree of v′ to learn all new secret keys from v’s parent up to the root (cf.
Figure 3 and Section 4.4).

Before presenting the formal description of TreeKEM in Section 4.4, basic
concepts around ratchet trees are explored in Section 4.3. Moreover, Section 4.2
quickly discusses the simple PKI model used in this work.

4.2 PKI

The TreeKEM protocol requires a public-key infrastructure (PKI) where parties
can register ephemeral keys. The MLS documents [29,5] lay out explicitly how
users are to generate, authenticate, distribute, and verify each others initialization
keys. For simplicity and in order not to detract from the essential components
of TreeKEM, this work models the PKI by providing protocol algorithms and
attackers with access to the following PKI functionality: (1) Any user ID may
request a fresh (encryption) public key pertaining to some other user ID′. That is,
when ID calls get-pk(ID′), the PKI functionality generates a fresh key pair (pk, sk)
and returns pk to ID. The PKI also records the triple (pk, sk, ID′) and passes the
information (pk, ID′) to the attacker. (2) Any user ID′ may request secret keys
corresponding to public keys associated with them. Specifically, when ID′ calls

14

TreeKEM

TK-init (ID)
ME← ID
τ ← ⊥
ctr← 0
τ ′[·], conf[·]← ⊥

TK-create (G)
ctr ++
ID0 ← ME
(pk0, sk0)← PKEG
for i = 1, . . . , |G|

pki ← get-pk(G.i)

G′ ← (ID0, G)
pk′ ← (pk0,pk)
τ ′[ctr]← Init(G′,pk′, 0, sk0)

W ← (create, G′,pk′)
conf[ctr]←W

return W

TK-add (ID′)
ctr ++
pk′ ← get-pk(ID′)
τ ′[ctr]← AddID(τ, ID′, pk′)
τ ′[ctr]← Blank(τ ′[ctr], ID′)

W ← (wel,Pub(τ ′[ctr]))
T ← (add,ME, ID′, pk′)
conf[ctr]← T
return (W,T)

TK-rem (ID′)
ctr ++
τ ′[ctr]← Blank(τ, ID′)
τ ′[ctr]← RemID(τ ′[ctr], ID′)

T ← (rem,ME, ID′)
conf[ctr]← T
return T

TK-upd
ctr ++
(τ ′[ctr], U)← UpGen(τ,ME)

T ← (up,ME, U)
conf[ctr]← T
return T

TK-proc (T, IK)
if ∃j : T = conf[j]

τ ← τ ′[j]
else

proc(T)

ctr← 0
τ ′[·], conf[·]← ⊥
return (τ.I)

proc (T = (create, G,pk))
let j s.t. G.IDj = ME
skj ← get-sk(pk.j)
τ ← Init(G,pk, j, skj)

proc (T = (add, ID, ID′, pk′))
τ ← AddID(τ, ID′, pk′)
τ ← Blank(τ, ID′)

proc (T = (wel, τ̃))
τ ← τ̃
τ.ME.sk← get-sk(τ.ME.pk)

proc (T = (rem, ID, ID′))
τ ← Blank(τ, ID′)
τ ← RemID(τ, ID′)

proc (T = (up, ID, U))
τ ← UpPro(τ, ID,ME, U)

Fig. 4. The TreeKEM protocol operations. The functions AddID, RemID, and Blank
are defined in Section 4.3, while UpGen and UpPro are defined in Section 4.4.

get-sk(pk), if a triple (pk, sk, ID′) is recorded, the PKI functionality returns sk
to ID′. Note in particular that the PKI ensures that every public key is only
used once. Of course, in practice such a PKI functionality would actually be
implemented by having users generate key pairs themselves and registering them
with the PKI. However, the above formalization simplifies the description of the
protocols.

4.3 Ratchet Trees

Basics. The following are some basic concepts around TreeKEMs ratchet trees.

LBBTs. An RT in TreeKEM is a so-called left-balanced binary tree (LBBT). In
a nutshell, an LBBT on n nodes (is defined recursively and) has a maximal full
binary tree as its left child and an LBBT on the remaining nodes as its right
child:

Definition 3 (Left-Balanced Binary Tree). For n ∈ N the left-balanced
binary tree (LBBT) on n nodes LBBTn is the binary tree constructed as follows:
The tree LBBT1 is a single node. Let x = mp2(n).10 Then, the root of LBBTn

has the full subtree FTx as the left subtree and LBBTn−x as the right subtree.

10 Recall that mp2(n) is the maximum power of two dividing n.

15

Observe that LBBTn has exactly n leaves and that every internal node has two
children. In an RT, nodes are labeled as follows: Root: The root is labeled by an
update secret I. Internal nodes: Internal nodes are labeled by a key pair (pk, sk)
for the PKE scheme Π. Leaf nodes: Leaf nodes are labeled like internal nodes,
except that they additionally have an owner ID.

Labels are referred to using dot-notation (e.g., v.pk is v’s public key). As a
shorthand, τ.ID is the leaf node with label ID. Any subset of a node’s labels may
be undefined, which is indicated by the special symbol ⊥. Furthermore, a node v
may be blank. A blank node has all of its labels set to ⊥. As explained below, all
internal nodes in a freshly initialized RT are blank, and, moreover, blanks can
result from adding and removing users to and from a group, respectively.

Paths and blanking. As hinted at the beginning of this section, it will be useful to
consider the following types of paths: the direct path dPath(τ, ID), which is the
path from the leaf node labeled by ID to the root; the co-path coPath(τ, ID), which
is the sequence of siblings of nodes on the direct path dPath(τ, ID). Furthermore,
given an ID ID and an RT τ , the function τ ′ ← Blank(τ, ID) blanks all nodes
on dPath(τ, ID).

Resolutions and representatives. A crucial notion in TreeKEM is that of a
resolution. Intuitively, the resolution of a node v is the smallest set of non-blank
nodes that covers all leaves in v’s subtree.

Definition 4 (Resolution). Let τ be a tree with node set V . The resolution
Res(v) ⊆ V of a node v ∈ V is defined recursively as follows: If v is not
blank, then Res(v) = {v}, else if v is a blank leaf, then Res(v) = ∅, otherwise,
Res(v) := ∪v′∈C(v)Res(v

′), where C(v) are the children of v.

Each leaf `′ in the subtree τ ′ of some node v′ has a representative in τ ′:

Definition 5 (Representative). Consider a tree τ and two leaf nodes ` and `′.

1. Assume `′ is non-blank and in the subtree rooted at v′. The representative
Rep(v′, `′) of `′ in the subtree of v′ is the first filled node on the path from v′

(down) to `.

2. Consider the least common ancestor w = LCA(`, `′) of ` and `′. Let v be
the child of w on the direct path of `, and v′ that on the direct path of `′.
The representative Rep(`, `′) of `′ w.r.t. ` is defined to be the representative
Rep(v′, `′) of `′ in the subtree of v′.

It is easily seen that Rep(v′, `′) ∈ Res(v′).

Simple RT operations. The following paragraphs describe how RTs are ini-
tialized as well as how they grow and shrink. The proofs of Lemmas 1 and 2
below can be found in the full version [3].

16

RT Initialization. Given lists of users G = (ID0, ID1, . . . , IDn) and public keys
pk = (pk0, pk1, . . . , pkn) as well as an integer j and a secret key skj , a new RT is
initialized as the left-balanced binary tree LBBTn+1 where all the internal nodes
as well as the root are blanked, the label of every leaf i is set to (IDi, pki,⊥),
and the secret key at leaf j is additionally set to skj . In the following, the above
operation is denoted by Init(G,pk, j, skj).

Adding IDs to the RT. Given an RT τ , the procedure τ ′ ← AddID(τ, ID, pk),
sets the labels of the first blank leaf of τ to (ID, pk,⊥), and outputs the resulting
tree, τ ′. If there is no blank leaf in the tree τ = LBBTn, method AddLeaf(τ) is
called, which adds a leaf z to it, resulting in a new tree τ ′ = AddLeaf(τ): If n
is a power of 2, create a new node r′ for τ ′. Attach the root of τ as its left child
and z as its right child. Otherwise, let r be the root of τ , and let τL and τR be
r’s left and right subtrees, respectively. Recursively insert z into τR to obtain a
new tree τ ′R, and let τ ′ be the tree with r as a root, τL as its left subtree and τ ′R
as its right subtree.

Lemma 1. If τ = LBBTn, then τ ′ = LBBTn+1.

Removing an ID. The procedure τ ′ ← RemID(τ, ID) blanks the leaf labeled with
ID and truncates the tree such that the rightmost non-blank leaf is the last node
of the tree. Specifically, the following recursive procedure Trunc(v) is called on
the rightmost leaf v of τ , resulting in a new tree τ ′ ← Trunc(τ):11 If v is blank
and not the root, remove v as well as its parent and place its sibling v′ where the
parent was. Then, execute Trunc(v′). If v is non-blank and the root, execute
Trunc(v′′) on the rightmost leaf node in the tree. Otherwise, do nothing.

Lemma 2. If τ = LBBTn, then τ ′ = LBBTy for some 0 < y ≤ n. Furthermore,
unless y = 1, the rightmost leaf of τ ′ is non-blank.

Public copy of an RT. Given an RT τ , τ ′ ← Pub(τ) creates a public copy, τ ′, of
the RT by setting all secret-key labels to ⊥.

4.4 TreeKEM Protocol

This section now explains the TreeKEM protocol in detail by describing all the
algorithms involved in the scheme, which is depicted in Figure 4. For simplicity,
the state γ is not made explicit; it consists of the variables initialized by init.
TreeKEM makes (black-box) use of the following cryptographic primitives: a
pseudo random generator prg, and a CPA-secure public-key encryption scheme
Π = (PKEG,Enc,Dec). TreeKEM as described here is slightly different from
TreeKEM as described in the current MLS draft [5]. These differences are elabo-
rated on in the full version [3]. Essentially, they are small efficiency improvements
that do not affect security.

11 Overloading function Trunc for convenience here.

17

Initialization. The initialization procedure TK-init expects as input an ID ID
and initializes several state variables: Variable ME remembers the ID of the party
running the scheme and τ will keep track of the RT used. The other variables
are used to keep track of all the operations (creates, adds, removes, and updates)
initiated by ME but not confirmed yet by the server. Specifically, each time a
party performs a new operation, it increases ctr and stores the potential next state
in τ ′[ctr]. Moreover, conf[ctr] will store the control message the party expects
from the server as confirmation that the operation was accepted. These variables
are reset each time proc processes a control message (which can either be one of
the messages in conf or a message sent by another party).

Group creation. Given lists of users G = (ID1, . . . , IDn), TK-create initializes a
new ratchet tree by first creating a new PKE key pair (pk0, sk0), fetching public
keys pk = (pk1, . . . , pkn) corresponding to the IDs in G from the PKI, and then
calling Init with12 G′ = (ID0, G) and pk′ = (pk0,pk) as well as 0 and sk0. The
welcome message simply consists of G′ and pk′.

Adding a group member. To add new group member ID′, add first obtains a
corresponding public key pk′ from the PKI and then updates the RT by calling
AddID (described above) followed by Blank, which removes all keys from the
new party’s leaf up to the root. This ensures that the new user does not know
any secret keys used by the other group members before he joined. The welcome
message for the new user simply consists of a public copy of the current RT
(specifically, Pub sets the sender’s secret-key label to ⊥), and the control message
for the remaining group members of the IDs of the sender and the new user as
well as the latter’s public key.

Removing a group member. A group member ID′ is removed by first blanking
all the keys from the leaf node of ID′ to the root. This prevents parties from
using keys known to ID′ in the future. User ID′ is subsequently removed from the
tree by calling RemID. The control message for the remaining group members
consists of the IDs of the sender and the removed user.

Performing an update. A user ME performs an update by choosing new key
pairs on their direct path as follows:

– Compute path secrets : Let v0 = v, v1, . . . , vd, be the nodes on the direct path
of ME’s leaf node v. First, ME chooses a uniformly random s0. Then, it
computes ski‖si+1 ← prg(si), for i = 0, . . . , d− 1.

– Update RT labels: For i = 0, . . . , d− 1, ME computes pki ← PKEG(ski) and
updates the PKE label of vi to (pki, ski).

– Root node: For the root node, ME sets I := sd.

12 Here we slightly abuse vector notation.

18

The above operation is denoted by τ ′ ← PropUp(τ, v, s0). Having computed the
new keys on its direct path, ME proceeds as follows:

– Encrypt path secrets: Let v′0, . . . , v
′
d−1 be the nodes on the co-path of v (i.e.,

v′i is the sibling of vi). For every value si and every node vj ∈ Res(v′i−1), ME
computes cij ← Enc(vj .pk, si).

– Output : All ciphertexts cij are concatenated to an overall ciphertext c (in
some canonical order13). Let U ← (PK, c), where PK := (pk0, . . . , pkd−1) be
the update information for the remaining group members.

The entire update process described above is denoted by (τ ′, U)← UpGen(τ, ID).
The control message for this operation simply consists of ME’s ID and U .

Notation. It will also be convenient to refer to the set of secret keys RecKeys(si) :=
{ski, . . . , skd−1, sd} that can be recovered from path secret si. Moreover, let
PKeys(si) := {sk | si is encrypted under PK corresponding to sk} be the set of
secret keys such that si is encrypted under the corresponding public keys.

Processing control messages. When processing a control message T , a user
first checks whether T corresponds to an operation they initiated. If so, they
simply adopt the corresponding RT in τ ′[·].

Whenever T was sent from another user, depending on the type of the control
message, proc operates as follows:

– T = (create, G,pk): In this case, simply determine the position j of ME in
the G list, retrieve the appropriate secret key skj from the PKI, and initialize
the RT via τ ← Init(G,pk, j, skj).

– W = (wel, τ̃): Simply adopt τ̃ as the current RT τ and set the secret key at
ME’s node to the key get-sk(τ.ME.pk) retrieved from the PKI.

– T = (add, ID, ID′, pk′): Add the new user ID′ to the RT and blank all nodes
in the direct path of the new user.

– T = (rem, ID, ID′): Blank all nodes on the direct path of user ID′ and remove
ID′ from the RT.

– T = (up, ID, U): A user ID′ at some leaf `′ receiving U = (PK, c), issued by
the user with id ID at leaf v, recovers the update information as follows:
Let w := Rep(v, `′). The user with ID′, uses w.sk to decrypt cij (for the
appropriate j) and obtain si. Finally, update the ratchet tree by overriding
the public-key labels on the v-root-path by the keys in PK, and by then
producing a new tree τ ′ ← PropUp(τ, LCA(v, `′), si). The entire process just
described is denoted by τ ′ ← UpPro(τ, ID, ID′, U).

Irrespective of whether T was created by ME or another user, after processing
it, TK-proc resets the variables pertaining to keeping track of ME’s unconfirmed
operations.

13 For the sake of concreteness, consider the order obtained by first sorting the cij by i
and then by j, using the natural ordering for resolutions obtained by first considering
the left child and then the right child (cf. Definition 4).

19

5 Security of TreeKEM

11

10

10

10

6

0 5 4−∞

−∞ 11

11

11

ID1 ID3 ID5 ID6ID4 ID7

Fig. 5. A ratchet tree showing only the
epoch numbers of secret keys; empty nodes
are blank. This tree was created by (say)
the following sequence of 11 operations: ini-
tialization with eight parties ID1, . . . , ID8;
updates by ID5, ID2, ID5, ID3, and ID7; re-
moval of ID8; update by ID2; removal of
ID2; updates by ID4 and ID6. The boxed
nodes contain keys from which the attacker
can compute the update secret of epoch 11.

Ideally, a CGKA scheme satisfies
Definition 2 w.r.t. the safety predi-
cate safe. However, this is not the
case for TreeKEM. Specifically, while
TreeKEM achieves post-compromise se-
curity (PCS), it only provides a very
weak notion of forward secrecy. We
first illustrate this with a simple ex-
ample in Section 5.1 and then proceed
to characterize the exact security of
the TreeKEM protocol in Section 5.2,
using a predicate tkm. While precise
(cf. Section 4.4), predicate tkm is quite
unintuitive and cumbersome. To that
end, we show that a scheme secure w.r.t.
tkm is also secure w.r.t. to the slightly
weaker but more intuitive predicates
fsu and pcs; the former captures a no-
tion of forward security while the latter
captures PCS without guaranteeing forward secrecy.

5.1 TreeKEM is Not Forward Secret

On an intuitive level, the reason the TreeKEM protocol fails to be forward secret
is that after processing the messages generated by an update operation, parties
must keep the secret keys used to decrypt the update information since they might
be needed for processing future updates. Therefore, corrupting any party other
than the update initiator completely reveals the update secret of the previous
epoch, and potentially keys of older epochs as well, violating forward secrecy.

In order to better understand this issue, imagine that for every secret key that
appears in the ratchet tree, the epoch number in which it was created is recorded;
for keys retrieved from the PKI, epoch 0 is assigned. At any point during the
game, the annotated ratchet tree will be of the following type: each node is either
blank or has a secret key whose epoch number equals the maximum of the epoch
numbers of its children (where, for simplicity, the epoch number is −∞ for blank
nodes). An example of a ratchet tree annotated with these epoch numbers is
given in Figure 5.

Consider the security of the update secret I produced in epoch 11 against
future corruptions. As per TreeKEMs definition, information about I is encrypted
under the public keys of all nodes on the co-path of ID6. The nodes on said
co-path are the epoch-4 key at ID5’s leaf, the epoch-6 key at ID7’s leaf, and
highest epoch-10 key in the tree. The latter key, however, can also be recovered
from the initial key of ID1 or the epoch-5 key at ID3’s leaf (since those keys are

20

Predicate tkm

tkm (q1, . . . ,qq)
(V, E)← KG(q1, . . . ,qq)
for (i, j) s.t. qi = corr(ID) for some ID and t = q2e(qi), qj = chall(t∗) for some t∗

if I[t∗] ∈ Kt
ID

return 0

return 1

Fig. 6. The predicate tkm for the TreeKEM protocol.

on the co-path of ID4, who performed the update in epoch 10). These “dangerous”
keys are highlighted by boxes in Figure 5.

Observe now that if the attacker corrupts any party ID after epoch 11 but
before a boxed key known to ID is overridden by an update, he can compute I.
In particular, each of the parties in {ID1, ID3, ID5, ID7} must execute an update
before they are corrupted in order for I to remain secure (as these parties are
the only ones that can override the corresponding boxed leaf keys).

5.2 Capturing TreeKEM’s Security

In order to capture the security level achieved by the TreeKEM protocol exactly,
this section defines a safety predicate tkm based on the notion of a key graph.
The key graph records the relationships among secret keys in an execution of
the protocol. That is, it keeps track of which keys can be computed given which
other keys (learned via state compromise). Specifically, given a sequence of
oracle queries Q = (create-group,q1, . . . ,qt) the key graph (Vt, Et)← KG(Q)
is defined as follows:
− create-group(ID1, . . . , IDn): The create-group operation defines (V0, E0) as
follows: (1) V0 ← {skID1 , . . . , skIDn}, i.e., V0 consists of the secret keys of all users
in the initial group. (2) E0 ← ∅.
− qi = send-update(ID): Let sk0, . . . , skd−1 and s0, . . . , sd be the secret keys
and path secrets generated by the update operation. Compute14 (i) Vi ← Vi−1 ∪
{sk0, . . . , skd−1, sd}, (ii) For j = 1, . . . , d, Kj ← {(sk, sk′) | sk ∈ PKeys(sj), sk

′ ∈
RecKeys(sj)}, (iii) Set Ei ← Ei−1 ∪

(⋃
j∈[d]Kj

)
.

− qi = add-user(ID, ID′): Set Vi ← Vi−1 ∪ {skID′}.
The queries remove-user, deliver, do not make any modifications to the

key graph, but they indirectly affect the way it evolves.
Let (V, E) be the key graph defined by executing a sequence of operations of

the TreeKEM protocol. For a user with ID ID and an epoch t, Kt
ID consists of the

following elements: (1) The private keys in the state of ID in epoch t. (2) The
private keys in V that are are reachable from the above keys in the key graph
(V, E).
Having defined TreeKEM’s key graph, admissible adversaries are now captured
via the predicate tkm in Figure 6. The predicate essentially makes sure that

14 See Section 4.4, page 19, for a definition of the sets PKeys and RecKeys.

21

PCS and FSU Predicates

pcs (q1, . . . ,qq)
if ∃(i, j), s.t. qi = corr(ID) for some ID, qj = chall(t∗) for some t∗, and q2e(qi) > t∗

return 0
return safe(q1, . . . ,qq)

fsu (q1, . . . ,qq)
for (i, j) s.t. qi = corr(ID) for some ID, qj = chall(t∗) for some t∗

if t∗ < q2e(qi) and 6∃ k s.t. qk = send-update(ID) s.t. t∗ < q2e(qk) ≤ q2e(qi)
return 0

return safe(q1, . . . ,qq)

Fig. 7. The PCS predicate pcs and the FS-with-updates predicate fsu.

the attacker does not learn any keys from which a challenged update secret is
reachable.

More intuitive predicates. Since predicate tkm is very specific to TreeKEM,
the security level achieved by TreeKEM is perhaps understood more easily by
considering the following two predicates: (1) The PCS predicate, denoted pcs,
captures PCS only, i.e., without any kind of forward secrecy. This is achieved by
excluding corruptions after any challenge (on top of the normal safety predicate).
(2) The notion of limited forward secrecy (FS) captured here is FS with updates
(FSU). Specifically, when the state of a party ID is leaked, then all keys before
the most recent update by ID remain secret.
In the following lemma, we establish relations between the these predicates and
tkm. The proof of the lemma can be found in the full version [3].

Lemma 3. For any sequence of queries Q, if pcs(Q) = 1 or fsu(Q) = 1, then
tkm(Q) = 1.

In the full version [3], we also show that the formalization introduced above is
necessary for evaluating and proving security for the TreeKEM protocol.

5.3 Proof of Security of TreeKEM

This section presents the following security result for the TreeKEM protocol and
provides high-level intuition for the security proof. The details of the proof can
be found in the full version [3].

Theorem 1 (Non-adaptive security of TreeKEM). Assume that prg is a
(tprg, εprg)-secure pseudo-random generator, Π is a (tcpa, εcpa)-CPA-secure public-
key encryption scheme. Then, TreeKEM is a (t, c, n,P, ε)-secure CGKA protocol,
for P ∈ {tkm,pcs, fsu}, ε = 2cn(εprg + εcpa), and t ≈ tprg ≈ tcpa.

Proof intuition. Consider an execution of the (single-challenge) CGKA game
with the TreeKEM scheme. Recall that an update operation by a node at depth d

produces, for a uniformly random s0, the values s0
prg−→ (sk0, s1)

prg−→ (sk1, s2)
prg−→

22

. . .
prg−→ (skd−1, sd) where I = sd is the update secret. In the example tree in

Figure 5, assume that the update secret I = s3 created in epoch 11 is challenged.
Observe that the last update (by ID6) encrypts information about I under the
keys at the nodes on ID6’s co-path. These keys stem from epochs 4, 6, and 10,
respectively. To use the CPA security of said keys to argue that no information
about I is obtained by the attacker, one has to recursively check under which
other keys information about them has been encrypted. For example, in epoch
10, information was encrypted using a key from epoch 5 and the initial key of
ID1 (who has never performed an update).

Therefore, the proof proceeds in a series of hybrids that fake ciphertexts and
replace PRG outputs by random values in a bottom-up fashion, i.e., beginning
with the nodes at the greatest depths. In the example of Figure 5, the hybrids
would be the following (highlighting the differences in each step):

• Hc
d: Is identical to the original CGKA experiment.

• Hp
d : When the updates in epochs 4, 5, 10, and 11 are computed, the output of

the first application of the PRG is replaced by a uniformly random value, i.e.,
instead of computing (sk0, s1)← prg(s0), sk0 and s1 are simply chosen randomly.
The rest of the update is computed normally. The security of this step follows
from that of the PRG.

• Hc
d−1: When the updates in epochs 10 and 11 are computed, instead of en-

crypting s1 under the corresponding key on the co-path, the all-zero string is
encrypted. This step is safe by the CPA security of the PKE in use and the fact
that the secret keys at depth d produced by the updates in epochs 4, 5, 10, and
11 are chosen randomly.

• Hp
d−1: When the updates in epochs 6, 10, and 11 are computed, all PRG

computations at depth d− 1 are replaced by choosing uniformly random values.
That is, instead of applying the PRG, the values (sk0, s1) (in the case of epoch 6)
and (sk1, s2) (in the case of epoch 10 and 11) are chosen randomly. The security
of this step follows from that of the PRG and by observing that encryptions of
s1 have been replaced by dummy encryptions in the previous hybrid.

• Hc
d−1: When the updates in epochs 10 and 11 are computed, instead of en-

crypting s2 under the corresponding keys on the resolution of the co-path nodes,
the all-zero string is encrypted. This step is safe by the CPA security of the PKE
in use and the fact that the secret key at depth d− 1 produced by the update in
epoch 6 and the initial key of ID1 are chosen randomly.

• Hp
d−2: Similarly to Hp

d−1, values (sk2, s3) are chosen randomly when computing
updates in epochs 10 and 11.

• Hc
d−3: In epoch 11, the encryption of s3 is replaced by a dummy encryption.

Observe that in Hc
d−3, the adversary is now not provided with any information

about s3 = I in update 11. Hence, its advantage in the final hybrid is 0.

Adaptive security for TreeKEM. Due to space limitations, adaptive security is
discussed in the full version [3], where we derive that TreeKEM is adaptively
secure with security loss factor of O(nlogn).

23

6 Optimal Forward Secrecy

11.0

10.1

10.0

10.0

6.1

0.4

5.1

4.1−∞

−∞ 11.0

11.0

11.0

ID1 ID3 ID5 ID6ID4 ID7

Fig. 8. A ratchet tree showing only the
epoch and version numbers of secret keys;
empty nodes are blank. This tree was cre-
ated by (say) the following sequence of 11
operations: initialization with eight parties
ID1, . . . , ID8; updates by ID5, ID2, ID5, ID3,
and ID7; removal of ID8; update by ID2; re-
moval of ID2; updates by ID4 and ID6. The
boxed nodes contain keys under whose ear-
lier versions information leading to update
secret of epoch 11 was encrypted.

The level of security satisfied by the
TreeKEM protocol is limited, as shown
in Section 5. In order to achieve better
security, this section presents a modi-
fied version of TreeKEM that is secure
even w.r.t. to predicate safe. The new
version of the protocol is based on a
suggestion by Kohbrok [26] on the MLS
mailing list and uses so-called updat-
able public-key encryption (UPKE) (cf.
Jost et al. [24]). In this work we use
a variant of UPKE, which we formally
present in Section 6.2; a construction of
a slightly stronger variant can be found
in the full version [3].

6.1 Fixing TreeKEM

In a nutshell, the new TreeKEM proto-
col uses UPKE instead of normal PKE.
On an intuitive level, the encryption algorithm of a UPKE scheme outputs a
new public key (to be used for future encryptions) along with the ciphertext.
Similarly, the decryption algorithm outputs a corresponding new secret key. This
is done in such a fashion that even given the new version of the secret key, no
information about the plaintexts encrypted under older versions is revealed.

In order to better understand how this solves the issue with TreeKEM’s
subpar forward secrecy (FS), consider the example execution of the TreeKEM
protocol depicted in Figure 8 (which was already used in Section 5). Once more,
imagine that for every secret key that appears in the ratchet tree, the epoch
number in which it was created is recorded, where keys retrieved from the PKI
and used when the group is created, are assigned epoch 0. Imagine further that,
in addition to the epoch number, the version number of each key is recorded.
More precisely, a UPKE key generated by an update operation has version 0, and
with every plaintext encrypted under it, the version number is incremented by 1.
For example, in Figure 8, the initial key of ID1 has been used by four different
update operations.

It is now easy to see how UPKE solves the FS issue: While in the plain
version, the boxed keys could be used to recover the update secret I of epoch
11, in the new TreeKEM, the information that would allow recovery of I was
encrypted under the second most recent version of the boxed keys. However,
UPKE now guarantees that the most recent version of any boxed key obtained
upon corruption of a corresponding user after epoch 11 reveals no information
about I. For example, information about epoch 11’s update secret was encrypted
under version 0 of the highest epoch-10 key. In turn, information about the latter

24

key was encrypted under version 3 of the key at ID1’s leaf. As a result of these
encryptions the two keys are now at versions 1 and 4, respectively. Thus, even if,
say, ID1 is compromised after epoch 11, the new key versions reveal no useful
information about epoch 11’s update secret.

6.2 Updatable Public-Key Encryption

Below we define a variant of UPKE in which the public (resp. private) key update
functionality is implemented by the encryption (resp. decryption) operation. This
is how our UPKE notion deviaties from that of [24], in which the key update
operations are implemented by independent functionalities.

Definition 6. An updatable public-key encryption (UPKE) scheme is a triple
of algorithms UPKE = (PKEG,Enc,Dec) with the following syntax:

– Key generation: PKEG receives a uniformly random key sk0 and outputs a
fresh initial public key pk0 ← PKEG(sk0).

– Encryption: Enc receives a public key pk and a message m and produces a
ciphertext c and a new public key pk′.

– Decryption: Dec receives a secret key sk and a ciphertext c and outputs a
message m and a new secret key sk′.

Correctness. A UPKE scheme must satisfy the following correctness property.
For any sequence of randomnesss and message pairs {ri,mi}qi=1,

P

[
sk0 ← SK; pk0 ← PKEG(sk0); For i ∈ [q], (ci, pki)← Enc(pki−1,mi; ri);

(m′i, ski)← Dec(ski−1, ci) : mi = m′i

]
= 1.

The notion of CPA security that we define below is along the lines of CPA-secure
PKE, with the only difference being that for honestly generated ciphertexts the
adversary receives access to the randomness that produced them. In this way we
capture protocol executions in which prior to the challenge epoch, the adversary
receives access to the ciphertexts generated by users (by observing the network),
as well as to the randomness used by corrupted users to encrypt path secrets
prior to the challenge epoch.

IND-CPA security for UPKE. For any adversary A with running time t we
consider the IND-CPA security game:

– Sample sk0 ← SK, pk0 ← PKEG(sk0), b← {0, 1}.
– A receives pk0 and for i = 1, . . . , q, A outputs mi and receives (ci, pki, ri)

such that (ci, pki)← Enc(pki−1,mi; ri), for uniformly random ri

– A outputs (m∗0,m
∗
1)

– For i = 1, . . . , q, compute (mi, ski)← Dec(ski−1, ci)

– Compute (c∗, pk∗)← Enc(pkq,m
∗
b), (·, sk∗)← Dec(skq, c

∗)

– b′ ← A(pk∗, sk∗, c∗)

25

A wins the game if b = b′. The advantage of A in winning the above game is
denoted by AdvUPKEcpa (A).

Definition 7. An updatable public-key encryption scheme UPKE is (t, ε)-CPA-
secure if for all t-attackers A, AdvUPKEcpa (A) ≤ ε.

6.3 An Optimally Secure Protocol

The new TreeKEM protocol presented in the this section uses UPKE CPA-secure
encryption in place of standard CPA-secure encryption. Using UPKE when a
user issues an update operation not only updates the PKE keys in its direct path
but also the PKE keys of all nodes in the resolution of the co-path nodes. The
new TreeKEM protocol is presented by highlighting the differences to TreeKEM.

The initialization, group creation, user addition/removal operations of the
protocol are identical to those of TreeKEM. The only difference is the use of
UPKE. The update and process operations work as shown next.

Performing an update. A user performs an update as follows:

− Compute path secrets: Let v0 = v, v1, . . . , vd, be the nodes along the direct
path of the node v who issues an update. For uniformly random s0 compute
ski‖si+1 ← prg(si), for i = 0, . . . , d− 1.

− Update the RT labels along the direct path: For i = 0, . . . , d − 1, compute
pki ← PKEG(ski) and the PKE label of vi is updated to (pki, ski).

− Root node: For the root, set I := sd.

Up to now, the computation is identical to the one in the TreeKEM protocol.
− Encrypt path secrets and update public keys: Let v′0, . . . , v

′
d−1, be the nodes

on the co-path of v (i.e., v′i is the sibling of vi). For every value si and every node
vj ∈ Res(v′i−1), compute (cij , pkij)← Enc(vj .pk, si) and set the public key of vj
to pkij .

− Output: All ciphertexts cij are concatenated to an overall ciphertext c
and all keys pkij are stored in P̄K. Return U ← (PK, P̄K, c), where PK :=
(pk0, . . . , pkd−1). This extended update process is denoted by

(τ ′, U)← ExtUpGen(τ, ID).

Processing control messages. Processing control messages is similar to the
TreeKEM protocol. The main difference is in the way the users process the output
of the public key encryption scheme. In particular, for any node of the ratchet
tree, v, when processing the output of the encryption operation under the public
key of v, (c, pk′v) ← Enc(pkv, s), users compute (s, sk′v) ← Dec(v.sk, c), process
the path secret s as in TreeKEM, but in addition they set the public and secret
key of v to pk′v and sk′v, respectively.

26

6.4 Security of the New TreeKEM

The modified version of the TreeKEM protocol satisfies optimal security, i.e.,
security w.r.t. the predicate safe. The proof of Theorem 2 can be found in the
full version [3].

Theorem 2 (Non-adaptive security of Modified TreeKEM). Assume
that prg is a (tprg, εprg)-secure pseudo-random generator, Π is a (tcpa, εcpa)-CPA-
secure updatable public-key encryption scheme. Then, the protocol of Section
6.3 is a (t, c, n, safe, ε)-secure CGKA protocol, for ε = 2cn(εprg + εcpa) and
t ≈ tprg ≈ tcpa.

Adaptive security for Modified TreeKEM. Due to space limitations, adaptive
security is discussed in the full version [3], where we argue that Modified TreeKEM
is adaptively secure with security loss factor of O(nlogn).

7 Group Splitting

Group splitting occurs when the attacker, who (in any reasonable SGM definition)
has full control over message delivery, does not properly resolve race conditions for
control messages. For example, if two group members A and B having processed
the same set of protocol messages, both produce an update, the attacker may
choose to deliver A’s update to a subset A of parties and B’s update to the set B of
remaining parties. The two sets of parties are now potentially in incompatible (yet
not independent) states and any state compromise of users in A can potentially
compromise the secrets generated by users in B. This can only be avoided if
each CGKA protocol operation updates all the key material in the users’ states,
so that, after processing the updates, the users in A (resp. B) do not share
common private keys with users in B (resp. A), and therefore, they cannot
process protocols messages generated by users in that group. Clearly, if we aim
for practical efficiency, this is not a tenable solution as it requires complexity linear
in the size of the group. Thus, we believe it is essential to make a compromise
between efficiency and security against splitting attacks.

The security properties that suggested below constitute a reasonable trade-off
between security and efficiency, since they only require “touching” a O(log n)
keys in the users’ states.

1. Group re-merging: Either by accident or by design, groups could potentially end
up in compatible states again if they process a suitable set of protocol messages.
This is not necessarily a problem, but it is in general undesirable as it contradicts
detection of group-splitting attacks that could potentially affect the higher level
protocol. Re-merging can easily be avoided by using the transcript-hashing
technique outlined above.
2. Security in split groups: Should compromising users in B help break security
of users in A? Such a requirement seems quite strong considering the fact that
all group members will still believe that the group has not split and consists of

27

all parties in A∪ B. However, the security of users in A should be maintained in
either one in the following two cases:
(a) Security for A is guaranteed once all compromised users from B have been
removed in A’s view of the group. (Not providing this guarantee would imply
that former group members might still be able to learn group keys after they
have left the group.)
(b) Security for A is guaranteed if all users compromised in B performed an
update sometime prior to compromise but after they split from A. (Not providing
this guarantee would mean that under the right circumstances even when all
compromised user have updated PCS might still not be achieved.)

It is not hard to see that TreeKEM and modified TreeKEM satisfy 2.(a) and
2.(b). For TreeKEM, after users in A remove a user that, according to their view,
belongs to A (but he is actually a member of B due to split), all future protocol
operations are independent of the secret keys that that the removed user knows.
Therefore, he cannot process those messages. A similar argument holds for 2.(b):
if users compromised in B have issued an update sometime prior to compromise,
then all their secret keys have been updated, and control messages generated by
users in A require the erased keys in order to be processed. Similar arguments
hold for the modified TreeKEM.

References

1. Joel Alwen, Margarita Capretto, Miguel Cueto, Chethan Kamath, Karen Klein,
Guillermo Pascual-Perez, Krzysztof Pietrzak, and Michael Walter. Keep the dirt:
Tainted treekem, an efficient and provably secure continuous group key agreement
protocol. Cryptology ePrint Archive, Report 2019/1489, 2019. https://eprint.

iacr.org/2019/1489.
2. Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security

notions, proofs, and modularization for the signal protocol. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages
129–158. Springer, Heidelberg, May 2019.

3. Jol Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Security
analysis and improvements for the ietf mls standard for group messaging. Cryptology
ePrint Archive, Report 2019/1189, 2019. https://eprint.iacr.org/2019/1189.

4. Richard Barnes. Subject: [MLS] Remove without double-join (in TreeKEM). MLS
Mailing List. Mon, 06 August 2018 13:01 UTC, 2018. https://mailarchive.ietf.
org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik.

5. Richard Barnes, Benjamin Beurdouche, Jon Millican, Emad Omara, Katriel Cohn-
Gordon, and Raphael Robert. The Messaging Layer Security (MLS) Protocol.
Internet-Draft draft-ietf-mls-protocol-08, Internet Engineering Task Force, Novem-
ber 2019. Work in Progress.

6. Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors
Stepanovs. Ratcheted encryption and key exchange: The security of messaging.
In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part III, volume
10403 of LNCS, pages 619–650. Springer, Heidelberg, August 2017.

7. Nikita Borisov, Ian Goldberg, and Eric A. Brewer. Off-the-record communication,
or, why not to use PGP. In Proceedings of the 2004 ACM Workshop on Privacy in
the Electronic Society, WPES 2004, October 28, 2004, pages 77–84, 2004.

28

https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1189
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik

8. Ran Canetti, Juan A. Garay, Gene Itkis, Daniele Micciancio, Moni Naor, and Benny
Pinkas. Multicast security: A taxonomy and some efficient constructions. In IEEE
INFOCOM’99, pages 708–716, New York, NY, USA, March 21–25, 1999.

9. Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner.
On ends-to-ends encryption: Asynchronous group messaging with strong security
guarantees. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, ACM CCS 2018, pages 1802–1819. ACM Press, October 2018.

10. Katriel Cohn-Gordon, Cas J. F. Cremers, Benjamin Dowling, Luke Garratt, and
Douglas Stebila. A formal security analysis of the signal messaging protocol. In
2017 IEEE European Symposium on Security and Privacy, EuroS&P 2017, pages
451–466, 2017.

11. Cas Cremers, Britta Hale, and Konrad Kohbrok. Revisiting post-compromise secu-
rity guarantees in group messaging. Cryptology ePrint Archive, Report 2019/477,
2019. https://eprint.iacr.org/2019/477.

12. Yevgeniy Dodis and Nelly Fazio. Public key broadcast encryption for stateless
receivers. In Joan Feigenbaum, editor, Digital Rights Management, pages 61–80,
Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

13. F. Betül Durak and Serge Vaudenay. Bidirectional asynchronous ratcheted key
agreement with linear complexity. In Nuttapong Attrapadung and Takeshi Yagi,
editors, IWSEC 19, volume 11689 of LNCS, pages 343–362. Springer, Heidelberg,
August 2019.

14. eQualit.ie. (n + 1)sec, 2016. https://learn.equalit.ie/wiki/Np1sec.
15. Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson, editor,

CRYPTO’93, volume 773 of LNCS, pages 480–491. Springer, Heidelberg, August
1994.

16. Georg Fuchsbauer, Zahra Jafargholi, and Krzysztof Pietrzak. A quasipolynomial
reduction for generalized selective decryption on trees. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS,
pages 601–620. Springer, Heidelberg, August 2015.

17. Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Vanishree
Rao. Adaptive security of constrained PRFs. In Palash Sarkar and Tetsu Iwata,
editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 82–101. Springer,
Heidelberg, December 2014.

18. Ian Goldberg, Berkant Ustaoglu, Matthew Van Gundy, and Hao Chen. Multi-
party off-the-record messaging. In Ehab Al-Shaer, Somesh Jha, and Angelos D.
Keromytis, editors, Proceedings of the 2009 ACM Conference on Computer and
Communications Security, CCS 2009, Chicago, Illinois, USA, November 9-13, 2009,
pages 358–368. ACM, 2009.

19. NCC Group. Olm cryptographic review - november 1, 2016 version 2, 2016. https:
//www.nccgroup.trust/globalassets/our-research/us/public-reports/

2016/november/ncc_group_olm_cryptogrpahic_review_2016_11_01.pdf.
20. Chris Howell, Tom Leavy, and Jol Alwen. Wickr messaging protocol: Technical

paper, 2018. https://wickr.com/wickrs-messaging-protocol/.
21. Joseph Jaeger and Igors Stepanovs. Optimal channel security against fine-grained

state compromise: The safety of messaging. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 33–62.
Springer, Heidelberg, August 2018.

22. Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski, Krzysztof
Pietrzak, and Daniel Wichs. Be adaptive, avoid overcommitting. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages
133–163. Springer, Heidelberg, August 2017.

29

https://eprint.iacr.org/2019/477
https://learn.equalit.ie/wiki/Np1sec
https://www.nccgroup.trust/globalassets/our-research/us/public-reports/2016/november/ncc_group_olm_cryptogrpahic_review_2016_11_01.pdf
https://www.nccgroup.trust/globalassets/our-research/us/public-reports/2016/november/ncc_group_olm_cryptogrpahic_review_2016_11_01.pdf
https://www.nccgroup.trust/globalassets/our-research/us/public-reports/2016/november/ncc_group_olm_cryptogrpahic_review_2016_11_01.pdf
https://wickr.com/wickrs-messaging-protocol/

23. Zahra Jafargholi and Daniel Wichs. Adaptive security of Yao’s garbled circuits. In
Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985 of
LNCS, pages 433–458. Springer, Heidelberg, October / November 2016.

24. Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient ratcheting: Almost-
optimal guarantees for secure messaging. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 159–188. Springer,
Heidelberg, May 2019.

25. Yongdae Kim, Adrian Perrig, and Gene Tsudik. Group key agreement efficient in
communication. IEEE Trans. Computers, 53(7):905–921, 2004.

26. Konrad Kohbrok. Subject: [MLS] Improve FS granularity at a cost. MLS Mailing
List. Thu, 24 January 2019 09:51 UTC, 2019. https://mailarchive.ietf.org/

arch/msg/mls/WRdXVr8iUwibaQu0tH6sDnqU1no.
27. M. Marlinspike and T. Perrin. The double ratchet algorithm, 11

2016. https://whispersystems.org/docs/specifications/doubleratchet/

doubleratchet.pdf.
28. Suvo Mittra. Iolus: A framework for scalable secure multicasting. In Proceedings of

ACM SIGCOMM, pages 277–288, Cannes, France, September 14–18, 1997.
29. Emad Omara, Benjamin Beurdouche, Eric Rescorla, Srinivas Inguva, Albert Kwon,

and Alan Duric. The Messaging Layer Security (MLS) Architecture. Internet-Draft
draft-ietf-mls-architecture-03, Internet Engineering Task Force, September 2019.
Work in Progress.

30. Saurabh Panjwani. Tackling adaptive corruptions in multicast encryption protocols.
In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 21–40. Springer,
Heidelberg, February 2007.

31. Bertram Poettering and Paul Rösler. Towards bidirectional ratcheted key exchange.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I,
volume 10991 of LNCS, pages 3–32. Springer, Heidelberg, August 2018.

32. Eric Rescorla. Subject: [MLS] TreeKEM: An alternative to ART. MLS Mailing
List. Thu, 03 May 2018 14:27 UTC, 2018. https://mailarchive.ietf.org/arch/

msg/mls/WRdXVr8iUwibaQu0tH6sDnqU1no.
33. David G. Steer, Leo Strawczynski, Whitfield Diffie, and Michael J. Wiener. A secure

audio teleconference system. In Shafi Goldwasser, editor, Advances in Cryptology
- CRYPTO ’88, 8th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 21-25, 1988, Proceedings, volume 403 of Lecture Notes in
Computer Science, pages 520–528. Springer, 1988.

34. Open Whisper Systems. The signal application, 2020. https://github.com/

signalapp.
35. D. Wallner, E. Hardner, and R. Agee. Key management for multicast: Issues and

architectures. IETF RFC2676, 1999. https://tools.ietf.org/html/rfc2627.
36. Matthew Weidner. Group messaging for secure asynchronous collaboration. MPhil

Dissertation, 2019. Advisors: A. Beresford and M. Kleppmann, 2019. https:

//mattweidner.com/acs-dissertation.pdf.
37. Whatsapp. Encryption overview. https://www.whatsapp.com/security/

WhatsApp-Security-Whitepaper.pdf, 2017. Revision: December 19, 2017.
38. Chung Kei Wong, Mohamed Gouda, and Simon S. Lam. Secure group communi-

cations using key graphs. IEEE/ACM Transactions on Networking, 8(1):16–30,
February 2000.

39. Chung Kei Wong, Mohamed G. Gouda, and Simon S. Lam. Secure group commu-
nications using key graphs. IEEE/ACM Trans. Netw., 8(1):16–30, 2000.

30

https://mailarchive.ietf.org/arch/msg/mls/WRdXVr8iUwibaQu0tH6sDnqU1no
https://mailarchive.ietf.org/arch/msg/mls/WRdXVr8iUwibaQu0tH6sDnqU1no
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://mailarchive.ietf.org/arch/msg/mls/WRdXVr8iUwibaQu0tH6sDnqU1no
https://mailarchive.ietf.org/arch/msg/mls/WRdXVr8iUwibaQu0tH6sDnqU1no
https://github.com/signalapp
https://github.com/signalapp
https://tools.ietf.org/html/rfc2627
https://mattweidner.com/acs-dissertation.pdf
https://mattweidner.com/acs-dissertation.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

	Security Analysis and Improvements for the IETF MLS Standard for Group Messaging
	Introduction
	Contributions
	Related Work

	Preliminaries
	Continuous Group Key Agreement
	CGKA Syntax
	CGKA Security
	Explanation of Assumptions in Definition

	TreeKEM
	Overview
	PKI
	Ratchet Trees
	TreeKEM Protocol

	Security of TreeKEM
	TreeKEM is Not Forward Secret
	Capturing TreeKEM's Security
	Proof of Security of TreeKEM

	Optimal Forward Secrecy
	Fixing TreeKEM
	Updatable Public-Key Encryption
	An Optimally Secure Protocol
	Security of the New TreeKEM

	Group Splitting

