
Private Set Intersection in the Internet Setting
From Lightweight Oblivious PRF

Melissa Chase1 and Peihan Miao2,?

1 Microsoft Research
melissac@microsoft.com

2 Visa Research
pemiao@visa.com

Abstract. We present a new protocol for two-party private set inter-
section (PSI) with semi-honest security in the plain model and one-sided
malicious security in the random oracle model. Our protocol achieves a
better balance between computation and communication than existing
PSI protocols. Specifically, our protocol is the fastest in networks with
moderate bandwidth (e.g., 30 − 100 Mbps). Considering the monetary
cost (proposed by Pinkas et al. in CRYPTO 2019) to run the protocol
on a cloud computing service, our protocol also compares favorably.
Underlying our PSI protocol is a new lightweight multi-point oblivious
pesudorandom function (OPRF) protocol based on oblivious transfer
(OT) extension. We believe this new protocol may be of independent
interest.

1 Introduction

Private set intersection (PSI) enables two parties, each holding a private set of el-
ements, to compute the intersection of the two sets while revealing nothing more
than the intersection itself. PSI has found many applications including privacy-
preserving location sharing [NTL+11], private contact discovery [CLR17,RA17,
DRRT18], DNA testing and pattern matching [TPKC07], testing of fully se-
quenced human genomes [BBDC+11], collaborative botnet detection [NMH+10],
and measuring the effectiveness of online advertising [IKN+17]. In the past
several years PSI has been extensively studied and has become truly practi-
cal with extremely fast implementations [HFH99, FNP04, DSMRY09, DCKT10,
ADCT11, DCGT12, HEK12, DCW13, PSZ14, PSSZ15, KKRT16, RR17a, RR17b,
CLR17,RA17,DRRT18,FNO18,PSWW18,GN19,PRTY19,PRTY20].

When measuring the efficiency of a PSI protocol, there are two major as-
pects usually considered. First, the computation cost, which is the amount of
computing time necessary to run the protocol. Optimizing the computation
cost is especially important in practice because of limited computational re-
sources. The state-of-the-art computationally efficient semi-honest PSI proto-
col [KKRT16] uses only oblivious transfer (OT) [Rab05], a cryptographic hash

? Part of the work done while visiting Microsoft Research.

function, symmetric-key cryptographic operations, and bitwise operations. It can
privately compute the intersection of two million-size sets in about 4 seconds.
This is because OT itself has been heavily optimized, and in particular because
of work on OT extension [IKNP03,ALSZ13], which allows many oblivious trans-
fers to be performed using only a small number of public key operations and a
combination of symmetric primitives (hash functions/AES) and bitwise opera-
tions.

The second aspect in the measurement is the communication cost, which
refers to the total amount of communication in the protocol. Minimizing the
communication cost is also crucial in practice due to limited network bandwidth,
which is often a shared resource for multiple applications. The communication-
optimal PSI protocol [ADCT11] requires communication that is only marginally
more than a näıve and insecure protocol (where one party simply sends hash of its
elements to the other party), but the protocol is computationally too expensive
to be adopted in practice.

On the more practical side, Pinkas et al. [PRTY19] achieve communication
that is half that of [KKRT16] and roughly 8 times the näıve approach at the
cost of more expensive operations based on finite field arithmetic.3 The result
is roughly a 6-7 times overhead compared to [KKRT16]. This leaves open the
question of whether reducing the communication cost of [KKRT16] requires more
expensive computational tools, or whether it could be achieved with significantly
lower computational overhead.

Can we achieve the best of both computation and communication?

When we look at tradeoffs between communication and computation, one
valuable metric is the total running time of the protocol, which includes both the
computation time and the time to transmit and receive the necessary messages.
Of course this time will vary depending on the network bandwidth, and different
protocols may perform better in different network settings. Viewed in this light,
[KKRT16] can be viewed as a protocol optimized for the LAN setting, where
bandwidth is not a bottleneck, while [PRTY19] is targeted at very low bandwidth
settings. However, we argue that it is valuable to design optimized protocols for
the full range of settings, and that the middle range (e.g. 30-100 Mbps) is in
fact very important. During Q2-Q3 2018, the average download speed over fixed
broadband in the U.S. was 95.25 Mbps and average upload speed was 32.88
Mbps [LLC18]. For example, the Comcast Standard business internet package
includes 75 Mbps; larger businesses might have higher bandwidth but would not
want to devote all of it to a single protocol. Thus, this seems like a very valuable
range to consider.

In the work of Pinkas et al. [PRTY19], they propose an alternative effi-
ciency metric — the monetary cost to run the protocol on a cloud comput-
ing service. This new metric takes both computation cost and communication

3 The work [PRTY19] describes two protocols, one optimized for speed (spot-fast) and
one optimized for communication cost (spot-low). Here the comparison is for their
fast protocol because the communication optimized one is significantly slower.

2

cost into consideration. The PSI protocols proposed in [PRTY19] have much
less communication compared to the computation-optimized protocol [KKRT16]
and much faster running time compared to the communication-optimized pro-
tocol [ADCT11]. As a result, they achieve a better balance between computa-
tion and communication and have the least monetary cost. We can ask though,
whether they achieve the best balance.

1.1 Our Contribution

In this work, we make positive progress on the aforementioned questions by pre-
senting a new PSI protocol that achieves a better balance between computation
and communication.

A New PSI. We present a new PSI construction which we believe achieves
better computation/communication tradeoffs. This protocol is based only on
oblivious transfer, hashing, symmetric-key and bitwise operations, and as such
it has favorable computation; at the same time its communication is almost as
small as [PRTY19]. In particular, our protocol is 2.53− 3.65× faster than spot-
fast and 19.4−28.7× faster than spot-low [PRTY19] in computation and requires
1.46− 1.69× lower communication than [KKRT16]. Overall, our protocol is the
fastest in a network with moderate bandwidth (e.g., 30−100 Mbps). In addition,
we theoretically and experimentally analyze the monetary cost according to the
metric from [PRTY19] and show that it compares very favorably.

Efficient Multi-Point OPRF. The PSI protocol of [PRTY19] is based on
a multi-point oblivious PRF (OPRF) protocol that requires polynomial inter-
polation over a large field, which is computationally significantly more expen-
sive than the symmetric-key and bitwise operations in the single-point OPRF
of [KKRT16]. We propose a new multi-point OPRF protocol that is based on
OT extension that again relies only on symmetric-key and bitwise operations and
hashing. It is conceptually very simple to understand and easy to implement.
Additionally, our protocol is more flexible in that it allows for tuning parameters
to achieve better computation or better communication. We believe this protocol
may be of independent interest.

Security Against Malicious Sender. In most of this work, we focus on the
semi-honest security model, where both parties follow the PSI protocol descrip-
tion honestly while trying to extract more information about the other party’s
input set, and aim to achieve the optimal practical efficiency. However, we can
show that our protocol also achieves security in the random oracle model when
one of the parties is malicious, in particular if we refer to the parties as sender
and receiver where the receiver is the party who receives the output, then we
protect against the malicious sender. In the previous work [KKRT16,PRTY19],
only the spot-low variant of [PRTY19] achieves one-sided malicious security. As
will be shown in Section 5, our protocol is much more efficient in running time
and cheaper in monetary cost than spot-low.

3

We note that this sort of asymmetric guarantee is very appropriate in settings
where the computation is between a large established company and a small
business or a consumer. A large company may have a reputation to maintain
and more policies and procedures in place to protect against misbehaviour, so
assuming semi-honest security may be more reasonable. On the other hand, if
the protocol is run with many different consumers or small businesses it may be
hard to ensure that all of them are sufficiently trustworthy to assume semi-honest
security.

In light of this, when we consider our efficiency metrics we also consider an
asymmetric setting where the sender runs on a cloud service like AWS while
the receiver has its own internet service; this should capture the example of a
small business who does not have its own dedicated servers but would instead
outsource its computations to the cloud. We see that in this setting our protocol
is even more advantageous, achieving 5.01 − 6.48× lower monetary cost than
spot-low [PRTY19] in all of the settings we consider.

1.2 Technical Overview

Conceptually speaking, our PSI protocol leverages a primitive called an oblivious
pseudorandom function (OPRF) [FIPR05], which allows a sender to learn a PRF
key k and a receiver to learn the PRF output OPRFk(y1), . . . ,OPRFk(yn) on
its inputs y1, . . . , yn ∈ Y . Nothing about the receiver’s inputs is revealed to the
sender and nothing more about the key k is revealed to the receiver. If the sender
additionally computes OPRFk(x1), . . . ,OPRFk(xn) on its inputs x1, . . . , xn ∈ X
and sends them to the receiver, then the receiver can identify the intersecting
PRF values and the corresponding set intersection. In this section we describe
how to construct an efficient OPRF protocol based on OT extension.

Our starting point is the computationally most efficient PSI protocol [KKRT16],
which can be conceptually viewed as evaluating n single-point OPRFs, where
the sender learns a PRF key k while the receiver can only obliviously evaluate
on a single input y. We first describe their protocol at a high level and then
elaborate how to extend the single-point OPRF to a multi-point OPRF while
still only using the efficient OT extension and symmetric-key operations.

Single-Point OPRF. The single-point OPRF realized in [KKRT16] is evalu-
ated as follows. Let the PRF key k consist of two bit-strings q, s ∈ {0, 1}λ. Let
F (·) be a pseudorandom code that produces a pseudorandom string and let H
be a hash function. The pseudorandom function is computed as

OPRFk(x) = H(q ⊕ [F (x) · s]),

where · denotes bitwise-AND and ⊕ denotes bitwise-XOR. For a randomly gen-
erated s, if F (x) has enough Hamming weight then the function OPRFk(x) is
pseudorandom assuming the hash function H is correlation robust.

To evaluate this single-point OPRF on the receiver’s input y, the receiver

first samples a random string r0
$← {0, 1}λ and computes r1 = r0 ⊕ F (y). The

4

sender also samples a random string s
$← {0, 1}λ. Then the two parties execute

λ oblivious transfers where the sender acts as a receiver in the OT and inputs
λ choice bits s[1], s[2], . . . , s[λ] while the receiver acts as a sender in the OT and
inputs λ pairs of messages {r0[i], r1[i]}i∈[λ] (each message is a single bit). At the

end of the OT, the sender receives λ bits {rs[i][i]}i∈λ. Now the sender simply
sets q = rs[1][1]‖ . . . ‖rs[λ][λ] and lets the PRF key be k = (q, s). The PRF value
on y learned by the receiver is H(r0). Correctness can easily be checked, namely
q ⊕ [F (x) · s] = r0 if x = y.

PSI From Single-Point OPRF. Given the above construction of single-point
OPRF, [KKRT16] built a PSI protocol as follows. They first use Cuckoo hash-
ing [PR04] to assign the receiver’s elements into b bins such that each bin contains
at most one element. Then the sender and receiver run the single-point OPRF
for each bin so that the sender obtains b PRF keys and the receiver learns b PRF
values. Now for each bin, the sender computes the PRF for that bin on all the
possible elements in that bin, and sends all the PRF values to the receiver.

In the above single-point OPRF, the only heavy cryptographic tool needed
is OT, which requires public-key operations. Since the same choice bits can be
used for all the n instances of OPRF, all the OTs can be done via λ instances
of string OTs, which can be efficiently instantiated by OT extension.

In this protocol, each element on the sender’s side is evaluated on multiple
PRFs (the number of hash functions plus the the stash size in Cuckoo hashing),
which incurs a constant overhead in communication from the sender to the re-
ceiver. We get rid of this overhead by constructing a multi-point ORPF so that
every element is only evaluated once.

Extending to Multi-Point OPRF. In the single-point OPRF construction,
there are 2λ possible choices of s and different resulting PRF keys k that the
sender will receive. However, no matter which s is chosen, OPRFk(y) = r0. We
extend this idea to multi-point OPRF.

Our new PRF key contains a matrix M of size m×w. To evaluate the PRF
on input x, we again need a hash function H, and we evaluate a pseudorandom
code F (x) which produces a vector in v ∈ [m]w. Let Mi denote the i-th column
of M . The pseudorandom function is computed as

OPRFM (x) = H (M1[v[1]]‖ . . . ‖Mw[v[w]]) .

The sender picks a random string s ∈ {0, 1}w. The receiver prepares two sets
of column vectors A1, . . . , Aw ∈ {0, 1}m and B1, . . . , Bw ∈ {0, 1}m. The two
parties run w number of OTs where the sender behaves as a receiver and the
receiver behaves as the sender. At the end of the protocol, the sender obtains
w column vectors, which will form the PRF key M . On the other hand, the
receiver forms an m×w matrix A = [A1 . . . Aw] and computes the OPRF on its
values by OPRFA(y). At a high level, the receiver prepares the two sets of column
vectors {A1, . . . , Aw} and {B1, . . . , Bw} such that no matter what s is chosen,
OPRFM (x) = OPRFA(x) for every x ∈ Y . The parameters m,w are carefully

5

chosen such that OPRFM (x) is pseudorandom to the receiver for every x /∈ Y .
Preparing the column vectors takes the receiver linear time in n and only involves
cheap symmetric-key and bitwise operations. The OTs can be instantiated by
the efficient OT extension.

Multi-Point OPRF From [PRTY19]. We note that [PRTY19] takes a dif-
ferent approach to achieving multi-point OPRF by high-degree polynomial in-
terpolation and evaluation over a large field. Their computation complexity is
asymptotically O(n log2 n) while ours is O(n). For concrete efficiency, our pro-
tocol only relies on efficient OT extension and AES operations. More details on
performance comparison can be found in Section 5.

One-Sided Malicious Security. We further prove our protocol is secure
against a malicious sender. We note that [PRTY19] also proves one-sided ma-
licious security for spot-low. In their security proof, a pseudorandom function
used in their protocol is modeled as a random oracle. Since the malicious party
knows the PRF key, the PRF cannot be instantiated by efficient block ciphers
like AES. Instantiating it using a hash function makes the protocol much less ef-
ficient than the semi-honest secure protocol. In our protocol, the pseudorandom
code F (·) is instantiated by a pseudorandom function Fk(·) and both parties
know the PRF key, hence the same problem arises. In order to achieve the best
efficiency, we only model hash functions as random oracles and assume F is a
PRF, which makes our security proof more involved.

1.3 Related Work

In this work we primarily compare with [KKRT16] and [PRTY19] since as dis-
cussed above they currently provide the best tradeoffs between computation
and communication. [PSZ14,PSSZ15] provide a good overview and performance
comparison of a variety of approaches to PSI. To briefly mention a few, generic
MPC based PSI [HEK12] incurs higher comunication and computation costs,
and Diffie-Hellman based PSI (e.g. [IKN+17]) has relatively small communi-
cation (comparable to [PRTY19]) but incurs significantly higher computation
costs. There are protocols based on garbled circuit-based OPRFs which can be
competitive when the set sizes are very unequal [KRS+19]. There have also been
other works based on OT extension [PSSZ15, PSZ18], which can achieves the
best performance for very short elements and small set sizes.

There have also been several other works which followed up on the [KKRT16]
approach, notably [FNO18]. They describe a scheme which replaces the Cuckoo
hash table with another algorithm for assigning elements to table rows which is
more complex to compute but allows for a slightly smaller table and removes
the stash. They do not provide an implementation, but they claim that for most
set sizes their scheme achieves a 10-15% improvement in communication costs
over [KKRT16] whereas we achieve a 30-40% improvement in communication
with what we would expect to be much lighter computational overhead.

6

2 Preliminaries

2.1 Notation

We use λ, σ to denote the computational and statistical security parameters,
respectively. We use [n] to denote the set {1, 2, . . . , n}. For a vector v of length `,
we use v[i] to denote the i-th element of the vector. For a matrix M of dimension
n × m, we use Mi to denote its i-th column vector (i ∈ [n]). We use ‖x‖H to
denote the hamming weight of a binary string x. By negl(λ) we denote a negligible
function, i.e., a function f such that f(λ) < 1/p(λ) holds for any polynomial
p(·) and sufficiently large λ.

2.2 Security Model

Private Set Intersection (PSI) is a special case of secure two-party computation.
We follow the standard security definitions for secure two-party computation in
this work. The ideal functionality of PSI is defined in Figure 1.

Parameters: P1’s input set size n1 and P2’s input set size n2.

Inputs: Party P1 inputs a set of elements X = {x1, . . . , xn1} where xi ∈ {0, 1}∗. Party
P2 inputs a set of elements Y = {y1, . . . , yn2} where yi ∈ {0, 1}∗.
Output: Party P2 receives the set intersection I = X ∩ Y .

Fig. 1: Ideal functionality for PSI FPSI.

Semi-honest security. Let viewΠ1 (X,Y) and viewΠ2 (X,Y) be the view of P1

and P2 in the protocol Π, respectively. Let outΠ(X,Y) be the output of P2 in
the protocol. Let f(X,Y) be the output of P2 in the ideal functionality. The
protocol Π is semi-honest secure if there exists PPT simulators S1 and S2 such
that for all inputs X,Y ,(

viewΠ1 (X,Y), outΠ(X,Y)
) c
≈ (S1(1n, X, n2), f(X,Y)) ;

viewΠ2 (X,Y)
c
≈ S2(1n, Y, n1, f(X,Y)).

Malicious security against P1. The protocol Π is secure against a malicious
P1 if for any PPT adversary A in the real world (acting as P1) that could
arbitrarily deviate from the protocol, there exists a PPT adversary S in the
ideal world (acting as P1) that could change its input to the ideal functionality
and abort the output, such that for all inputs X,Y ,

RealΠA(X,Y)
c
≈ IdealFS (X,Y),

where RealΠA(X,Y) is the output of A and P2 in the real world, IdealFS (X,Y) is
the output of S and P2 in the ideal world.

7

2.3 Oblivious Transfer

Oblivious Transfer (OT), introduced by Rabin [Rab05], is a central cryptographic
primitive in the area of secure computation. 1-out-of-2 OT refers to the setting
where a sender has two input strings (m0,m1) and a receiver has an input
choice bit b ∈ {0, 1}. As the result of the OT protocol, the receiver learns mb

without learning anything about m1−b while the sender learns nothing about
b. This primitive requires expensive public-key operations. Ishai et al. [IKNP03]
introduced a technique called OT extension that allows for a large number of OT
executions at the cost of computing a small number of public-key operations.
In Random OT (ROT), the sender’s OT inputs (m0,m1) are randomly chosen,
which allows the protocol itself to produce these random values. Hence a random
OT protocol requires much less communication especially from the sender to the
receiver. In this work we only need the weaker primitive of random OT, whose
functionality is defined in Figure 2.

Parameters: Message length L.

Inputs: The receiver inputs a choice bit b ∈ {0, 1} and the sender inputs nothing.

Output: Sample m0,m1
$← {0, 1}L. Output (m0,m1) to the sender and mb to the

receiver.

Fig. 2: Ideal functionality for Random Oblivious Transfer FROT.

2.4 Correlation Robustness

Our PSI construction is proven secure under a correlation robustness assumption
on the on the underlying hash function, which was introduced for OT exten-
sion [IKNP03] and later generalized in [KK13,KKRT16,PRTY19] to the version
we use in this work.

Definition 1 (Hamming Correlation Robustness). Let H be a hash func-
tion with input length n. Then H is d-Hamming correlation robust if, for any
a1, . . . , am, b1, . . . , bm ∈ {0, 1}n with ‖bi‖H ≥ d for each i ∈ [m], the follow-

ing distribution, induced by random sampling of s
$← {0, 1}n, is pseudorandom.

Namely,

(H(a1 ⊕ [b1 · s]), . . . ,H(am ⊕ [bm · s]))
c
≈ (F (a1 ⊕ [b1 · s]), . . . , F (am ⊕ [bm · s])) ,

where · denotes bitwise-AND and ⊕ denotes bitwise-XOR, F is a random func-
tion.

The IKNP protocol uses this assumption with n = d = λ. In that case,
the only valid choice for bi is 1λ and the distribution simplifies to H(a1 ⊕
s), . . . ,H(am ⊕ s). In our case, we use n > d = λ, so other choices for the
bi values are possible.

8

3 Our PSI Protocol

In this section we describe our protocol and prove its semi-honest security in the
plain model and malicious security against P1 in the random oracle model.

3.1 Construction

We describe our PSI protocol in Figure 3. During the protocol in Step 2 the two
parties need to run an OT protocol. Since the matrix A is randomly sampled
by P2, this step can be instantiated efficiently using random OT as shown in
Figure 4.

At a high level, P2 constructs two matrices A and B of special form from
its input elements. Note that for each y ∈ Y , let v = Fk(H1(y)), the matrices
A and B are constructed such that Di[v[i]] = 0 for all i ∈ [w], and hence
Ai[v[i]] = Bi[v[i]] = Ci[v[i]] for all i ∈ [w]. That means, if P1’s element x = y
for some y ∈ Y (i.e., x is in the intersection), then its input to the hash function
in Step 3 will be the same as y’s input to the hash function. On the other
hand, if x is not in the intersection, then its input to the hash function would
be significantly different from any y’s input to the hash function, and the PRF
output would be pseudorandom to P2. Note that the hash function H1(·) is not
necessary for semi-honest security, but is applied for extracting P1’s inputs in
the malicious case.

The parameters m,w in our protocol are chosen such that if F is a random
function and H1(x) is different for each x ∈ X ∪ Y , then for each x ∈ X \ I
and v = F (H1(x)), there are at least d 1’s in D1[v[1]], . . . , Dw[v[w]] with all but
negligible probability. We discuss how to choose these parameters in Section 3.3.

3.2 Security Proof

Theorem 1. If F is a PRF, H1 is a collision resistant hash function, and H2

is a d-Hamming correlation robust hash function, then the protocol in Figure 3
securely realizes FPSI in the semi-honest model when parameters m,w, `1, `2 are
chosen as described in Section 3.3 .

Security against corrupt P1. We construct S1 as follows. It is given P1’s input
set X. S1 runs the honest P1 protocol to generate its view with the following

exceptions: For the oblivious transfer, S1 generates P1’s random string s
$←

{0, 1}w honestly and chooses a random matrix C ∈ {0, 1}m×w, and runs the
OT simulator to simulate the view for an OT receiver with inputs s[1], . . . , s[w]
and outputs C1, . . . , Cw. In Step 3a S1 sends a uniformly random PRF key k

to P1. Finally S1 outputs P1’s view. We prove
(
viewΠ1 (X,Y), outΠ(X,Y)

) c
≈

(S1(1n, X, n2), f(X,Y)) via the following hybrid argument:

Hyb0 P1’s view and P2’s output in the real protocol.

9

0. P1 and P2 agree on security parameters λ, σ, protocol parameters m,w, `1, `2, two
hash functions H1 : {0, 1}∗ → {0, 1}`1 and H2 : {0, 1}w → {0, 1}`2 , pseudorandom
function F : {0, 1}λ × {0, 1}`1 → [m]w.

1. Precomputation

– P1 samples a random string s
$← {0, 1}w.

– P2 does the following:
(a) Initialize an m× w binary matrix D to all 1’s. Denote its column vectors

by D1, . . . , Dw. Then D1 = · · · = Dw = 1m.

(b) Sample a uniformly random PRF key k
$← {0, 1}λ.

(c) For each y ∈ Y , compute v = Fk(H1(y)). Set Di[v[i]] = 0 for all i ∈ [w].

2. Oblivious Transfer

(a) P2 randomly samples an m × w binary matrix A
$← {0, 1}m×w. Compute

matrix B = A⊕D.
(b) P1 and P2 run w oblivious transfers where P2 is the sender with inputs
{Ai, Bi}i∈[w] and P1 is the receiver with inputs s[1], . . . , s[w]. As a result P1

obtains w number of m-bit strings as the column vectors of matrix C (with
dimension m× w).

3. OPRF Evaluation

(a) P2 sends the PRF key k to P1.

(b) For each x ∈ X, P1 computes v = Fk(H1(x)) and its OPRF value ψ =
H2(C1[v[1]]‖ . . . ‖Cw[v[w]]) and sends ψ to P2.

(c) Let Ψ be the set of OPRF values received from P1. For each y ∈ Y , P2 computes
v = Fk(y) and its OPRF value ψ = H2(A1[v[1]]‖ . . . ‖Aw[v[w]]) and outputs y
iff ψ ∈ Ψ .

Fig. 3: Our private set intersection protocol.

Hyb1 Same as Hyb0 except that on P2’s side, for each i ∈ [w], if s[i] = 0,

then sample Ai
$← {0, 1}m and compute Bi = Ai ⊕ Di; otherwise sample

Bi
$← {0, 1}m and compute Ai = Bi ⊕Di. This hybrid is identical to Hyb0.

Hyb2 Same as Hyb1 except that S1 (instead of P2) chooses the random PRF key
k. This hybrid is statistically identical to Hyb1.

Hyb3 Same as Hyb2 but the protocol aborts if there exists x, y ∈ X ∪ Y, x 6= y
such that H1(x) = H1(y). The aborting probability is negligible because H1

is collision resistant.

Hyb4 Same as Hyb3 but the protocol also aborts if there exists x ∈ X \ I such
that, for v = Fk(H1(x)), there are fewer than d 1’s in D1[v[1]], . . . , Dw[v[w]].
The parameters m,w are chosen such that if F is a random function and
H1(x) is different for each x ∈ X ∪ Y , then the aborting probability is
negligible. If the aborting probability in Hyb4 is non-negligible, then we can
construct a PPT adversary A to break the security of PRF. In particular,
given the sets X and Y , A constructs the matrix D as in Hyb4 except that

10

1. P1 and P2 perform w random OTs with message length m, where P1 is the re-
ceiver with inputs choice bits s[1], . . . , s[w]. As a result, P2 gets w pairs of random

messages {r(0)i , r
(1)
i }i∈[w] and P1 gets w messages {ri}i∈[w] where ri = r

(s[i])
i .

2. P2 does the following:
(a) Let {r(0)i }i∈[w] form the column vectors of the matrix A and compute the

matrix B = A⊕D.

(b) Compute ∆i = Bi ⊕ r(1)i for all i ∈ [w] and send to P1.

3. P1 computes the matrix C as follows: if s[i] = 0 then set Ci = ri; otherwise set
Ci = ri ⊕∆i.

Fig. 4: Step 2 of our PSI protocol instantiated using random OT.

whenever it needs to compute Fk, A queries the PRF challenger for the
output. Finally, if there exists x ∈ X \ I such that, for v = Fk(H1(x)),
there are fewer than d 1’s in D1[v[1]], . . . , Dw[v[w]], namely the protocol
aborts, thenA guesses PRF, otherwiseA guesses random function.A guesses
correctly with probability 1

2 + non-negl. Therefore, the protocol aborts with
negligible probability in Hyb4.

Hyb5 Same as Hyb4 but party P2’s output is replaced by f(X,Y) (i.e., the
intersection I = X ∩ Y). This hybrid changes P2’s output if and only
if there exists x ∈ X, y ∈ Y, x 6= y such that, for v = Fk(H1(x)), u =
Fk(H1(y)), H2(C1[v[1]]‖ . . . ‖Cw[v[w]]) = H2(A1[u[1]]‖ . . . ‖Aw[u[w]]). This
happens with negligible probability as H2(C1[v[1]]‖ . . . ‖Cw[v[w]]) is pseudo-
random by the correlation robustness of H2, so for sufficiently large `2 this
probability will be negligible.
Specifically, for each xi ∈ X \ I, let vi = Fk(H1(x)), ai = A1[vi[1]]‖ . . .
‖Aw[vi[w]], and bi = D1[vi[1]]‖ . . . ‖Dw[vi[w]]. Then xi’s input to the hash
function H2 is C1[vi[1]]‖ . . . ‖Cw[vi[w]], which is ai ⊕ [bi · s]. Additionally we
have the guarantee that ‖bi‖H ≥ d. Since s is randomly sampled, by the
d-Hamming correlation robustness of H2, the outputs of H2(C1[vi[1]]‖ . . .
‖Cw[vi[w]]) are pseudorandom.
If the outputs of H2(C1[vi[1]]‖ . . . ‖Cw[vi[w]]) are truly random, then a col-
lision of H2(C1[v[1]]‖ . . . ‖Cw[v[w]]) = H2(A1[u[1]]‖ . . . ‖Aw[u[w]]) happens
with negligible probability. If the collision in this hybrid happens with non-
negligible probability, then we can construct a PPT adversary A to break the
correlation robustness of H2. In particular, given the sets X and Y , A con-
structs the matrix A as in this hybrid and H2(A1[ui[1]]‖ . . . ‖Aw[ui[w]]) for
each yi ∈ Y . A can also compute the matrix D as in this hybrid and (ai, bi)
for each xi ∈ X \ I. As we explained above, H2(C1[vi[1]]‖ . . . ‖Cw[vi[w]]) =
H2(ai ⊕ [bi · s]). A queries the oracle for the outputs of H2(ai ⊕ [bi · s]). If a
collision happens, then A guesses the hash function; otherwise A guesses ran-
dom function. A guesses correctly with probability 1

2 + non-negl. Therefore,
the probability of collision is negligible by our choice of `2 for semi-honest
security in Section 3.3.

11

Hyb6 Same as Hyb5 but the protocol does not abort. The indistinguishability of
Hyb6 and Hyb5 follows from the collision resistance of H1 and the pseudo-
randomness of Fk by the same arguments as above.

Hyb7 The simulated view of S1 and f(X,Y). The only difference from Hyb6 is
that S1 samples the matrix C and runs the OT simulator to simulate the view
of an OT receiver for P1. This hybrid is computationally indistinguishable
from Hyb6 by security of the OT protocol.

Security against corrupt P2. We construct S2 as follows. It is given as input
P2’s set Y , the size of P1’s set n1, and the intersection I = f(X,Y). S2 runs the
honest P2 protocol with the following exceptions: For the oblivious transfer, S2
computes the matrices A and B honestly and run the OT simulator to produce
a simulated view for the OT sender. For each x ∈ I, it computes v = Fk(H1(x))
and the OPRF value ψ = H2(A1[v[1]]‖ . . . ‖Aw[v[w]]). Let this set of OPRF
values be ΨI . Choose n1−|I| random `2-bit strings and let this set be Ψrand. Send
Ψ = ΨI ∪Ψrand to P2 in Step 3b. Finally S2 outputs P2’s view in this invocation.

We argue viewΠ2 (X,Y)
c
≈ S2(1n, Y, n1, f(X,Y)) through the following hybrids:

Hyb0 P2’s view in the real protocol.

Hyb1 Same as Hyb0 but the protocol aborts if there exists x, y ∈ X ∪ Y, x 6= y
such that H1(x) = H1(y). The aborting probability is negligible because H1

is collision resistant for sufficiently large `1 chosen in Section 3.3.

Hyb2 Same as Hyb1 except that the protocol aborts if there exists x ∈ X \I such
that, for v = Fk(H1(x)), there are fewer than d 1’s in D1[v[1]], . . . , Dw[v[w]].
The parameters m,w are chosen such that if F is a random function and
H1(x) is different for each x ∈ X ∪ Y , then the aborting probability is
negligible. If the aborting probability in Hyb2 is non-negligible, then we can
construct a PPT adversary A to break the security of PRF. In particular,
given the sets X and Y , A constructs the matrix D as in Hyb2 except that
whenever it needs to compute Fk, A queries the PRF challenger for the
output. Finally, if there exists x ∈ X \ I such that, for v = Fk(H1(x)),
there are fewer than d 1’s in D1[v[1]], . . . , Dw[v[w]], namely the protocol
aborts, thenA guesses PRF, otherwiseA guesses random function.A guesses
correctly with probability 1

2 + non-negl. Therefore, the protocol aborts with
negligible probability in Hyb2.

Hyb3 Same as Hyb2 except that S2 runs the OT simulator to produce a simulated
view of an OT sender for P2. This hybrid is computationally indistinguish-
able to Hyb2 by security of the OT protocol.

Hyb4 Same as Hyb3 except that we replace the OPRF values for x ∈ X \ I
by random `2-bit strings. Hyb4 is computationally indistinguishable from
Hyb3 because of the d-Hamming correlation robustness of H2. Specifically,
for each xi ∈ X \ I, let vi = Fk(H1(x)), ai = A1[vi[1]]‖ . . . ‖Aw[vi[w]],
and bi = D1[vi[1]]‖ . . . ‖Dw[vi[w]]. Then xi’s input to the hash function
H2 is C1[vi[1]]‖ . . . ‖Cw[vi[w]], which is ai ⊕ [bi · s]. Additionally we have

12

the guarantee that ‖bi‖H ≥ d. Since s is randomly sampled and unknown
to the P2, by the d-Hamming correlation robustness of H2, the outputs of
H2(C1[vi[1]]‖ . . . ‖Cw[vi[w]]), i.e., the OPRF values for xi ∈ X \ I, are pseu-
dorandom by the choice of `2 for semi-honest security in Section 3.3.

Hyb5 Same as Hyb4 except that the protocol does not abort. The indistinguisha-
bility of Hyb4 and Hyb5 follows from the collision resistance of H1 and the
pseudorandomness of F by the same arguments as above. The hybrid is the
view output by S2.

Theorem 2. If F is a PRF, H1 and H2 are modeled as random oracles, and the
underlying OT protocol is secure against a malicious receiver, then the protocol in
Figure 3 is secure against malicious P1 when parameters m,w, `1, `2 are chosen
as described in Section 3.3.

We construct S that interacts with the malicious P1 as follows. S samples
a random matrix C ∈ {0, 1}m×w, and runs the malicious OT simulator on P1

with output C1, . . . , Cw. S honestly chooses the random PRF key k and sends
k to P1 in Step 3a. On P1’s query x to the random oracle H1, S records the
pair (x,H1(x)) in a table T1, which was initialized empty. On P1’s query z to
the random oracle H2, S records the pair (z,H2(z)) in a table T2, which was
initialized empty. In Step 3b when P1 sends OPRF values Ψ , S finds all the values
ψ ∈ Ψ such that ψ = H2(z) for some z in T2, and z = C1[v[1]]‖ . . . ‖Cw[v[w]]
where v = Fk(H1(x)) for some x in T1. Then S sends these x’s to the ideal
functionality. Finally S outputs whatever P1 outputs.

Let Q1,Q2 be the set of queries P1 makes to H1, H2 respectively, and let
Q1 = |Q1|, Q2 = |Q2|. We will abuse notation, and for m× w bit-matrix C and
vector u ∈ [m]w, we write C[v] to mean C1[v[1]]‖ . . . ‖Cw[v[w]]. Similarly, for a
set V of vectors in [m]w , we use C[V] to denote the set {C[v]|v ∈ V }.

We prove RealΠA(X,Y)
c
≈ IdealFS (X,Y) via the following hybrid argument:

Hyb0 The outputs of P1 and P2 in the real world.

Hyb1 Same as Hyb0 except that S runs the OT simulator on P1 to extract s,
lets Ci = Ai if s[i] = 0 and Ci = Bi otherwise, gives C1, . . . , Cw to the OT
simulator as output. This hybrid is computationally indistinguishable from
Hyb0 because of OT security against a malicious receiver.

Hyb2 Same as Hyb1 but the protocol aborts if there exists x, y ∈ Q1 ∪ Y, x 6= y
such that H1(x) = H1(y). The aborting probability is negligible because
H1 is a random oracle, hence also collision resistant for sufficiently large `1
chosen in Section 3.3.

Hyb3 Same as Hyb2 but in Step 3c, for each OPRF value ψ sent by P1, if ψ /∈
H2(Q2), then P2 ignores ψ when computing the set intersection. This hybrid
changes P2’s output with negligible probability because H2 is a random
oracle with output length at least `2 (see Section 3.3 for the choice of `2 in
the malicious case). Specifically, the probability that ψ equals the output of
H2 on one of P2’s elements is negligible.

13

Hyb4 Same as Hyb3 but the protocol aborts if in Step 3c, there exists z ∈ Q2, z
′ ∈

A[Fk(H1(Y))] with z 6= z′ and H2(z) = H2(z′). If this happens, then we find
a collision of H2, which happens with negligible probability because H2 is a
random oracle with sufficiently large output length `2 chosen in Section 3.3
for malicious security.

Hyb5 Same as Hyb4 but in Step 3c, for each OPRF value ψ sent by P1, P2 ignores
ψ when computing the set intersection if ψ = H2(z) for some z ∈ Q2 where
z /∈ C[Fk(H1(Q1))].
This hybrid changes P2’s output only if there exists y ∈ Y such that ψ =
H2(A[Fk(H1(y))]), which implies z = A[Fk(H1(y))] by the abort condition
added in Hyb4.
First, note that if y ∈ Q1, then we have z = A[Fk(H1(y))] = C[Fk(H1(y))] ∈
C[Fk(H1(Q1))] where the second equality follows from construction of the
matrix D. Thus, we need only consider y ∈ Y \ Q1. Also note that for all
y ∈ Y , A[Fk(H1(y))] = C[Fk(H1(y))], so we can say that the hybrid output
changes only if there exists y ∈ Y \ Q1, z ∈ Q2 such that z = C[Fk(H1(y))].
Suppose there is a PPT adversary A that with non-negligible probability
produces Q1,Q2, Y such that there exist z ∈ Q2, y ∈ Y \ Q1 such that
z = C[Fk(H1(y))]. Then we show we can break security of the PRF.
To see this, consider the following experiment:
1. Pick random outputs to be used for H1(Q1).

2. Pick random C, simulate the OTs with A, responding to its H1 queries
using the pre-chosen outputs, and responding to its H2 queries using
random function table T2 filled in on demand, and abort if any of the
abort conditions are triggered.

3. Send a random k to A in Step 3a and continue to respond to oracle
queries the same way.

4. A sends Ψ .

5. Pick random outputs to be used for H1(Y \ Q1), and output 1 if there
exist z ∈ Q2, y ∈ Y \ Q1 such that z = C[Fk(H1(y))].

Observe that if A succeeds in distinguishing the two hybrids, then this ex-
periment outputs 1 with non-negligible probability. The intuition is that A
fixes Q2 before we choose H1(Y \Q1), so if the game succeeds then the PRF
must be very biased, to the point where it is straightforwardly detectable.
To make this more formal, consider the following PRF adversary B. B will
choose random C, then sample 2 sets of |Y | random values each, L,L′. Call
the PRF challenger to obtain F (L), F (L′). Output PRF if C[F (L)]∩C[F (L′)]
is non-empty.
If F is a PRF: Define PC,k as the probability of the above experiment out-
putting 1 conditioned on (C, k). Note that we are assuming for the sake of
contradiction that the experiment outputs 1 with non-negligible probabil-
ity ε. Hence there must exist at least ε fraction of (C, k) pairs such that
PC,k > ε. Conditioned on (C, k), let WC,k be the set of H2 queries that
maximizes the probability that the experiment outputs 1. Then we know
that if PC,k > ε, then the probability that for random choice of L we get

14

WC,k ∩C[Fk(L)] 6= ∅ is at least ε. That means that there exists zC,k ∈ WC,k

such that the probability over random choice of L that z ∈ C[Fk(L)] is at
least ε/Q2. And for such zC,k, if we pick 2 random sets L,L′, the prob-
ability that we get zC,k ∈ C[Fk(L)] and zC,k ∈ C[Fk(L′)] and therefore
C[Fk(L)] ∩ C[Fk(L′)] 6= ∅ is at least ε2/Q2

2. Thus, the overall probability
that B outputs PRF is at least ε3/Q2

2, which is non-negligible.

If F is random function: First, note that with all but negligible probability,
L,L′ are disjoint sets with no repeated elements, so computing F (L), F (L′)
is equivalent to choosing 2|Y \Q1| random values W,W ′. Now, for any pair
of j, j′ and any column i, the probability that Ci[Wj [i]] = Ci[Wj′ [i]], taken
over the choice of W,W ′, C is: Pr[Wj [i] =Wj′ [i]] + Pr[Wj [i] 6=Wj′ [i]] · 12 =
1
2 + 1

2m , and these probabilities are independent across columns. Thus, the

probability that C[Wj] = C[Wj′] is
(
1
2 + 1

2m

)w
, which is negligible by our

choice of parameters m,w in Section 3.3.

Hyb6 Same as Hyb5 but the protocol also aborts if there exists x ∈ Q1, y ∈ Y
such that, z = C[Fk(H1(x))] = A[Fk(H1(y))] but x 6= y. We argue that this
abort happens with negligible probability by security of the PRF.

Suppose that there exists a PPT adversary A who can cause this abort
to happen with non-negligible probability. Let Q be a polynomial upper
bound on the number of H1 queries made by the adversary. Then we build
the following algorithm B to break security of the PRF. B will first choose
Q + |Y | random outputs to H1. B will then choose random C and use the
OT simulator to extract s from the OTs. If A makes H1 queries during this
process it will use the pre-chosen outputs. Then B computes the matrix D
using the appropriate H1 outputs and using its oracle to compute F . From
C,D and s it will compute the matrix A. Finally, it will output PRF if there
exist a pair of outputs h, h′ in its pre-chosen random H1 output set for which
C[F (h)] = A[F (h′)].

Clearly this game outputs PRF with non-negligible probability in the PRF
case if the abort in Hyb6 happens with non-negligible probability. Now we will
argue that in the random function case it outputs PRF with only negligible
probability.

Consider the following game, which produces outputs identical to the above
experiment with B in random function case: We first pick the random func-
tion F and the H1 outputs. Then compute D. Then extract s from the OTs
and choose random C. Finally, compute the corresponding A, and output
PRF as above if there exist a pair of outputs h1, h2 in its pre-chosen random
H1 output set for which C[F (h1)] = A[F (h2)].

Now we evaluate the probability of producing PRF in this game. First con-
sider the probability that for a particular pair of H1 outputs h, h′ we obtain
C[F (h)] = A[F (h′)]. Consider the step where we choose random C and com-
pute A. Let u = F (h) and v = F (h′). Since C is chosen at random, if si ∧
Di[vi] = 0, then we have Pr[Ci[ui] = Ai[vi]] = Pr[Ci[ui] = Ci[vi]] = 1

2 + 1
2m

and if si∧Di[vi] = 1, then Pr[Ci[ui] = Ai[vi]] = Pr[Ci[ui] 6= Ci[vi]] = 1
2−

1
2m ,

and these probabilities are independent for different i’s. Thus even in the

15

worst case we have that the probability that C[F (h)] = A[F (h′)] is at most(
1
2 + 1

2m

)w
, which for our choice of parameters in Section 3.3 is negligible.

Hyb7 Same as Hyb6 except that party P2’s output is replaced by its output
in the ideal world. This hybrid changes P2’s output if and only if there
exists an OPRF value ψ sent by P1 and considered by P2 such that, ψ =
H2(C[Fk(H1(x))]) for some x ∈ Q1, and ψ = H2(A[Fk(H1(y))]) for some
y ∈ Y, y 6= x. We already know that C[Fk(H1(x))] 6= A[Fk(H1(y))] by the
abort condition introduced in Hyb6, hence we find a collision of H2, which
happens with negligible probability because H2 is a random oracle with
sufficiently large output length `2 chosen in Section 3.3 for malicious security.

Hyb8 Same as Hyb7 but the protocol does not abort. Hyb8 and Hyb7 are compu-
tationally indistinguishable because H1 and H2 are random oracles and Fk
is a PRF by the same arguments as above.

Hyb9 The outputs of S and P2 in the ideal world. The only difference of this
hybrid from Hyb8 is that S (instead of P2) samples the random matrix C,
which is identically distributed.

3.3 Parameter Analysis

Choice of m,w. The parameters m,w in our PSI protocol are chosen such that
if F is a random function and H1(x) is different for each x ∈ X∪Y , then for each
x ∈ X \ I and v = F (H1(x)), there are at least d 1’s in D1[v[1]], . . . , Dw[v[w]]
with all but negligible probability. We now discuss how to choose the parameters.
We first fix m and then decide on w as follows.

Consider each columnDi, initialized as 1m. Then for each y ∈ Y , P2 computes
v = F (H1(y)) and sets Di[v[i]] = 0. Since H1(y) is different for each y ∈ Y and
F is a random function, v is random and independent for each y ∈ Y . The
probability Pr[Di[j] = 1] is the same for all j ∈ [m]. In particular,

Pr[Di[j] = 1] =

(
1− 1

m

)n2

.

Let p =
(
1− 1

m

)n2
. For any x ∈ X \ I, let v = F (H1(x)), then Pr[Di[v[i]] =

1] = p and the probability is independent for all i ∈ [w]. Hence the probability
that there are k 1’s in D1[v[1]], . . . , Dw[v[w]] is(

w

k

)
pk(1− p)w−k.

We want there to be at least d 1’s for each x ∈ X \ I with all but negligible
probability. By the union bound, it is sufficient for the following probability to
be negligible:

n1 ·
d−1∑
k=0

(
w

k

)
pk(1− p)w−k ≤ negl(σ).

16

From this we can derive a proper w.
In our security proof against malicious P1, we further require that

(
1
2 + 1

2m

)w ≤
negl(λ). For all the concrete parameters we choose in Section 4.1, this require-
ment is also satisfied.

Choice of `1. The parameter `1 is the output length of the hash function H1.
For security parameter λ, we need to set `1 = 2λ to guarantee collision resistance
against the birthday attack.

Choice of `2. The parameter `2 is the output length of the hash function
H2, which controls the collision probability of the PSI protocol. For semi-honest
security, it can be computed as `2 = σ + log(n1n2), similarly as in [KKRT16,
PRTY19]. For security against malicious P2, it can be computed similarly as
`2 = σ+ log(Q2 ·n2) where Q2 is the maximum number of queries the adversary
can make to H2.

4 Implementation Details

We implement our PSI protocol in C++. In this section we discuss the con-
crete parameters used in our implementation and how we instantiate all the
cryptographic primitives. Our implementation is available on GitHub: https:
//github.com/peihanmiao/OPRF-PSI.

4.1 Parameters

Our computational security parameter is set to λ = 128 and statistical security
parameter is σ = 40. We also set d to be 128. We focus on the setting where
n1 = n2 = n, i.e., the two parties have sets of equal size. The other parameters
are

– m: the number of rows (or height) of the matrix D.
– w: the number of columns (or width) of the matrix D.
– `1: the output length in bits of the hash function H1, set as 256.
– `2: the output length in bits of the hash function H2.

Our protocol is flexible in that we can set these parameters differently to
trade-off between computation and communication. Specifically, once we fix n
and m, we can compute w as in Section 3.3. Intuitively, for a fixed set size n,
if we set a bigger m, then we will get a bigger fraction of 1’s in each column of
the matrix D, which leads to a smaller w and requires less computation of the
pseudorandom function F in the PSI protocol. To guarantee collision resistance
of H1, the parameter `1 is set to be 256. For security against malicious P1, we
assume the maximum number of queries the adversary can make to H2 is 264.
We list different choices of the other parameters in Table 1. In our experiment,
we will set m = n for all settings as it achieves nearly optimal communication
among all choices of m and allows for optimal computation.

17

https://github.com/peihanmiao/OPRF-PSI
https://github.com/peihanmiao/OPRF-PSI

n m w `2 (semi-honest) `2 (malicious)

216 n 609 72 120

218 n 615 76 122

220 n 621 80 124

222 n 627 84 126

224 n 633 88 128

224 0.9n 717 88 128

224 1.1n 571 88 128

224 2n 349 88 128

Table 1: Parameters for set size n, matrix height m, matrix width w, and output
length `2 in bits of the hash function H2 for semi-honest and malicious security.

4.2 Instantiation of Cryptographic Primitives

Our PSI protocol requires the following cryptographic primitives:

– F : a pseudorandom function.
– H1: a collision-resistant hash function.
– H2: a Hamming correlation robust hash function.
– Base OTs for OT extension.

In our implementation, H1 and H2 are instantiated using BLAKE2 [BLA].
Base OTs are instantiated using Naor-Pinkas OT [NP99]. We use the implemen-
tation of base OTs from the libOTe library [Rin].

Instantiation of F . We would like to instantiate F using AES, but note that
the input and output length of AES is 128 bits. Recall that in our protocol, we
require F : {0, 1}λ × {0, 1}`1 → [m]w, where the input length is `1 = 256 and
output length is w · logm.

One way to instantiate F is to apply a pseudorandom generator (PRG) on top
of cipher block chaining message authentication code (CBC-MAC). In particular,
let G : {0, 1}λ × {0, 1}λ → {0, 1}λ be a pseudorandom function (instantiated by
AES) and PRG : {0, 1}λ → {0, 1}t·λ be a PRG (instantiated by AES CTR mode),
where t = dw·logmλ e. Let x = x0‖x1 be the input where x0, x1 ∈ {0, 1}λ. Then
we instantiate F by

Fk(x) := PRG(Gk(Gk(x0)⊕ x1)).

By the security of CBC-MAC [BKR00] and PRG, F is still a PRF. In this
construction, Gk(·) is parallelizable for multiple inputs and can be efficiently

18

instantiated by AES ECB mode. However, PRG has to be computed on each
element and cannot be parallelized for multiple elements.

To achieve better concrete efficiency, we try to parallelize the computation
over multiple elements as much as possible so as to make best use of the hardware
optimized AES ECB mode implementation. In particular, let G : {0, 1}λ ×
{0, 1}λ → {0, 1}λ be a pseudorandom function and PRG : {0, 1}λ → {0, 1}(t+1)·λ

be a PRG where t = dw·logmλ e. On a key k and input x = x0‖x1, we construct
F as

Fk(x) = Gk1(Gk0(x0)⊕ x1)‖Gk2(Gk0(x0)⊕ x1)‖ . . . ‖Gkt(Gk0(x0)⊕ x1),

where k0‖k1‖ . . . ‖kt ← PRG(k). Now PRG (instantiated by AES CTR mode) is
only applied once on the key k, and Gki(·) are all parallelizable by AES ECB
mode. The security proof of F is deferred to Appendix A.

In our implementation, the PRF key k is sent right after the base OT instead
of after the entire OT extension. This allows both parties to run PRF evaluations
in parallel and does not hurt malicious security because P1 does not send any
message in the OT extension after the base OT.

5 Performance Evaluation

We implement our PSI protocol and report on its performance in comparison
with the state-of-the-art OT-extension-based protocols:

– KKRT: the computation-optimized protocol [KKRT16].
– SpOT-Light: the communication-optimized protocol [PRTY19]. They have

two variants of the protocol, a speed-optimized variant (spot-fast) and a
communication-optimized variant (spot-low). We compare our protocol with
both variants.

In this section, we only report the performance with semi-honest security for
comparison with KKRT and SpOT-Light. To achieve security against malicious
P1, our protocol requires the same amount of computation cost and 5−7% more
communication cost (because `2 is bigger as shown in Table 1).

5.1 Benchmark Comparison

Our benchmarks are implemented on two Microsoft Azure virtual machines with
Intel(R) Xeon(R) 2.40GHz CPU and 140 GB RAM. The two machines are con-
nected in a LAN network with 20 Gbps bandwidth and 0.1 ms RTT latency.
We simulate the WAN connection between the two machines using the Linux tc
command. In the WAN setting, the average RTT is set to be 80 ms and we test
on various network bandwidths. All of our experiments use a single thread for
each party. A detailed benchmark for set sizes 216 − 224 and controlled network
configurations is presented in Table 2.

19

n Protocol
Comm. (MB) Total running time (s)
P1 P2 Total LAN 150Mbps 100Mbps 80Mbps 50Mbps 30Mbps 10Mbps 1Mbps

216

KKRT 3.95 4.82 8.77 0.34 1.94 2.01 2.22 2.62 3.54 8.41 77.4
spot-fast 1.14 3.47 4.61 2.08 2.97 2.99 2.99 3.03 3.12 4.86 40.9
spot-low 0.53 3.38 3.91 12.2 13.5 13.6 13.6 13.6 13.7 14.5 41.2
Ours 0.58 4.76 5.34 0.63 1.71 1.78 1.87 2.14 2.66 5.53 47.4

218

KKRT 17.5 19.2 36.7 1.08 3.98 4.71 5.44 7.79 12.0 33.2 323
spot-fast 5.02 13.9 18.9 8.24 9.45 9.49 9.51 9.84 10.6 17.5 166
spot-low 2.06 13.5 15.6 57.1 58.8 59.2 59.4 59.7 60.3 64.9 167
Ours 2.52 19.2 21.7 2.26 3.01 3.34 3.77 5.08 7.53 20.0 192

220

KKRT 60.0 76.8 137 4.58 10.8 14.7 17.5 26.5 42.5 122 1,204
spot-fast 20.0 56.4 76.4 28.9 30.9 31.5 31.6 33.1 35.8 69.3 676
spot-low 8.18 55.0 63.2 271 276 275 277 279 282 301 731
Ours 10.0 77.6 87.6 9.44 10.4 10.8 11.5 16.9 27.1 78.2 772

222

KKRT 264 307 571 18.4 42.3 58.8 71.2 108 175 509 5,027
spot-fast 88.0 226 314 117 123 125 126 133 146 283 2,773
spot-low 32.7 220 253 1,291 1,303 1,305 1,311 1,315 1,331 1,406 3,311
Ours 44.1 314 358 46.3 49.2 50.6 51.1 65.5 107 317 3,152

224

KKRT 880 1,229 2,109 67.9 157 219 264 403 648 1,882 18,562
spot-fast 352 919 1,271 537 559 567 566 598 647 1,149 11,231
spot-low – – – – – – – – – – –
Ours 176 1,266 1,442 190 200 216 234 289 431 1,277 12,717

Table 2: Communication cost (in MB) and running time (in seconds) comparing
our protocol to [KKRT16], spot-fast and spot-low [PRTY19]. Each party holds n
elements. The LAN network has 20 Gbps bandwidth and 0.1 ms RTT latency. All
the other network settings have 80 ms RTT. Communication cost of Pb (b = 1, 2)
indicates the outgoing communication from Pb to the other party. Cells with “–”
denote settings where the programs run out of memory.

Communication Improvement. The total communication cost of our proto-
col is 1.46 − 1.69× smaller than that of KKRT. For example, to compute the
set intersection of size n = 220, our protocol requires 87.6 MB communication,
which is a 1.56× improvement of KKRT that requires 137 MB communication.

Computation Improvement. In the LAN network where the running time
is dominated by computation, our protocol achieves a 2.53 − 3.65× speedup
comparing to spot-fast and a 19.4− 28.7× speedup comparing to spot-low. For
example, to compute the set intersection of size n = 220, our protocol runs in
9.44 seconds, which is 3.06× faster than spot-fast that runs in 28.9 seconds and
28.7× faster than spot-low that runs in 271 seconds.

Overall Improvement. In the WAN setting, we plot in Figure 5 the running
time growth with decreasing network bandwidth for our protocol comparing to
KKRT, spot-fast, and spot-low for set sizes n = 220 and n = 224. Note that
spot-low runs out of memory for set size n = 224, so we do not include it in the
comparison for n = 224. As shown in the figure, with moderate bandwidth (in
particular, 30 − 100 Mbps), our protocol is faster than all the other protocols
because we have lower communication than KKRT and faster computation than
spot-fast and spot-low. For example, in the 50 Mpbs network, for set size n = 220,
our protocols takes 16.9 seconds to run, which is a 1.57× speedup to KKRT that

20

150 130 100 70 50 30 10 1

101

102

103

Network bandwidth (Mbps)

T
o
ta

l
ru

n
n
in

g
ti

m
e

(s
)

KKRT

spot-fast

spot-low

Ours

150 130 100 70 50 30 10 1
102

103

104

Network bandwidth (Mbps)

T
o
ta

l
ru

n
n
in

g
ti

m
e

(s
)

KKRT

spot-fast

Ours

Fig. 5: Growth of total running time (in seconds) on decreasing network
bandwidth for our protocol compared with [KKRT16], spot-fast and spot-
low [PRTY19]. The y-axis is in log scale. The network latency is 80 ms RTT
for all settings. The figure on the left is for set size n = 220 and the figure on
the right is for set size n = 224. Note that since spot-low runs out of memory for
n = 224, it is not included in the right figure.

takes 26.5 seconds, a 1.96× speedup to spot-fast that takes 33.1 seconds, and a
16.5× speedup to spot-low that takes 279 seconds.

5.2 Monetary Cost

We follow the same method as [PRTY19] to evaluate the real-world monetary
cost of running our protocol on the Amazon Web Services (AWS) Elastic Com-
pute Cloud (EC2). In this section we give both theoretical analysis and experi-
mental comparison in various settings.

5.2.1 Pricing Scheme

The price for a protocol consists of two parts — machine cost and communication
cost.4 We elaborate each cost in the following.

Machine Cost. The machine cost is charged proportional to the total time an
instance is launched. The unit machine cost varies for different types of instances
and also depends on the specific region. Generally speaking, an instance with
more computation power and more memory would have higher cost per hour.
The same type of instance costs in the Asia Pacific than in the US and Europe.

In our experiment we choose the general purpose virtual machine type m5.large
with Intel(R) Xeon(R) 2.50GHz CPU and 8 GB RAM, which is the same as
in [PRTY19]. The machine cost per hour (in USD) for m5.large is 0.096 (US),
0.112 (Paris), 0.12 (Sydney). For example, if we choose the machine type m5.4xlarge

4 The pricing scheme can be found here: https://aws.amazon.com/ec2/pricing/

on-demand/.

21

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

0 1 2 3 4
0

200

400

600

n = 220

Bandwidth 20 Gbps (LAN)

Unit communication/computation cost ratio

T
h
eo

re
ti

ca
l

m
o
n
et

a
ry

co
st

KKRT

spot-fast

spot-low

Ours

0 1 2 3 4
0

2,000

4,000

6,000

8,000

n = 224

Bandwidth 20 Gbps (LAN)

Unit communication/computation cost ratio

T
h
eo

re
ti

ca
l

m
o
n
et

a
ry

co
st

KKRT

spot-fast

Ours

0 1 2 3 4
0

200

400

600

n = 220

Bandwidth 150 Mbps

Unit communication/computation cost ratio

T
h
eo

re
ti

ca
l

m
o
n
et

a
ry

co
st

KKRT

spot-fast

spot-low

Ours

0 1 2 3 4
0

2,000

4,000

6,000

8,000

n = 224

Bandwidth 150 Mbps

Unit communication/computation cost ratio

T
h
eo

re
ti

ca
l

m
o
n
et

a
ry

co
st

KKRT

spot-fast

Ours

0 1 2 3 4
0

200

400

600

n = 220

Bandwidth 30 Mbps

Unit communication/computation cost ratio

T
h
eo

re
ti

ca
l

m
o
n
et

a
ry

co
st

KKRT

spot-fast

spot-low

Ours

0 1 2 3 4
0

2,000

4,000

6,000

8,000

n = 224

Bandwidth 30 Mbps

Unit communication/computation cost ratio

T
h
eo

re
ti

ca
l

m
o
n
et

a
ry

co
st

KKRT

spot-fast

Ours

Fig. 6: Growth of monetary cost on increasing unit communication/machine cost
ratio (namely y/x – communication cost per MB / computation cost per second)
for our protocol compared with [KKRT16], spot-fast and spot-low [PRTY19].
(For some real world y/x values, see Table 3.) The network latency is 80 ms
RTT for all settings. The figures on the left are for set size n = 220 and the ones
on the right are for set size n = 224. The network bandwidth is indicated in each
individual figure. Note that since spot-low runs out of memory for n = 224, it is
not included in the right figures.

22

with 64 GB RAM, then the cost per hour (in USD) is 0.768 (US), 0.896 (Paris),
0.96 (Sydney).

Communication Cost. The communication cost is charged proportional to the
amount of data transfer. The unit data transfer cost varies depending on whether
both endpoints are within AWS or only one party is in AWS. It also depends on
the specific region of the endpoints. Generally speaking, data transfer from AWS
to the Internet is more expensive than data transfer within AWS; data transfer
from the Asia Pacific costs more than from the US or Europe. Specially:

– Data transfer in from the Internet to EC2 is free.
– Data transfer out from EC2 to the Internet is charged depending on the

region of the EC2 instance. Cost per GB (in USD) is 0.09 (US), 0.09 (Paris),
0.114 (Sydney).

– Data transfer from one EC2 instance to another EC2 instance is charged de-
pending on both endpoints’ regions. Cost per GB (in USD) is 0.01 (Virginia-
to-Ohio), 0.02 (US-to-Paris), 0.02 (US-to-Sydney), 0.02 (Paris-to-US), 0.02
(Paris-to-Sydney), 0.14 (Sydney-to-US), 0.14 (Sydney-to-Paris).

– Additionally, using a public IP address costs 0.01 USD/GB for all regions.

Network Settings. We consider the two network settings proposed in [PRTY19].
In a business-to-business (B2B) setting, two organizations want to regularly per-
form PSI on their dynamic data, where both endpoints may be within the AWS
network. In an Internet setting, one organization wants to regularly perform PSI
with a dynamically changing partner, where only one party may be within the
AWS network. As the communication cost from P1 to P2 is much less than the
cost from P2 to P1 for all the PSI protocols we consider, in our experiment we
let P1 be the party within the AWS network.

5.2.2 Theoretical Analysis

Internet Setting. In the Internet setting where only one party (P1) runs on an
AWS EC2 instance, our protocol costs the least compared to all the other three
protocols. At a high level, since our protocol takes less time to run on networks
with moderate bandwidth (see Table 2), the machine cost for our protocol is the
lowest among the three protocols. In addition, the communication from P1 to
P2 in our protocol is lower than KKRT and spot-fast and almost the same as
spot-low. Therefore, overall our protocol is the cheapest to run in all the settings,
as we will see in the experimental results.

B2B Setting. In the B2B setting where we run each party of the PSI pro-
tocol on an AWS EC2 instance, there is a trade-off between computation and
communication. At a high level, since spot-fast and spot-low have lower com-
munication than KKRT and our protocol, the communication cost for them is
lower. However, the total running time of our protocol is the shortest among all
the protocols on networks with moderate bandwidth (see Table 2), hence the

23

machine cost for our protocol is the lowest among all the protocols. The total
monetary cost is a combination of the machine and communication costs, and
which protocol costs the least depends on the ratio of unit communication cost
to unit machine cost.

More specifically, suppose the total running time is T seconds and the total
data transfer between them is C MB. Assume the machine cost of an AWS
EC2 instance is x per second and the communication cost is y per MB in both
directions. Then the total cost in this setting is 2 ·T ·x+C ·y. For a fixed set size
n and fixed network setting, the running time T and communication complexity
C for each protocol is fixed, hence which protocol costs the least only depends
on the ratio of y/x.

In Figure 6 we plot the theoretical monetary cost of our protocol compared
with KKRT, spot-fast, and spot-low in various network settings and for set sizes
n = 220 and n = 224. As we can see in all the figures, our protocol costs the
least when the ratio of unit communication cost to unit machine cost (namely,
y/x) is within a certain range. More concretely, for set size n = 220, our protocol
costs the least when 0.20 ≤ y/x ≤ 3.48 for LAN networks, when y/x ≤ 3.66 for
networks with bandwidth 150 Mbps, and when y/x ≤ 1.55 for networks with
bandwidth 30 Mbps. On the other hand, if y/x is sufficiently large, meaning
that the unit communication cost is much higher than unit machine cost, then
spot-fast achieves the lowest cost for all settings because of their lower commu-
nication.

5.2.3 Experimental Results

Ohio-Virginia Oregon-Virginia Paris-Oregon Sydney-Oregon Sydney-Paris
0

2

4

6

8

10

12

14

16

18

20

M
o
n
et

a
ry

co
st

in
th

e
B

2
B

se
tt

in
g

p
er

1
0
0
0

ru
n

(U
S
D

)

KKRT

spot-fast

spot-low

Ours

Ohio-Virginia Oregon-Virginia Paris-Oregon Sydney-Oregon Sydney-Paris
0

1

2

3

4

5

6

7

8

9

10

M
o
n
et

a
ry

co
st

in
th

e
In

te
rn

et
se

tt
in

g
p

er
1
0
0
0

ru
n

(U
S
D

) KKRT

spot-fast

spot-low

Ours

Fig. 7: Monetary cost per 1000 runs in the B2B setting (left) and Internet setting
(right) comparing our protocol to [KKRT16], spot-fast and spot-low [PRTY19].
Each party holds n = 220 elements and locates in different regions.

We plot the experimental monetary cost of our protocol compared with
KKRT, spot-fast, and spot-low in both B2B and Internet settings in Figure 7.

24

Regions Bandwidth Latency y/x Protocol Runtime B2B Cost Internet Cost

Ohio-Virginia 1.09 Gbps 12 ms 0.73

KKRT 5.15 2.95 6.00

spot-fast 27.9 2.98 2.70

spot-low 251 14.6 7.50

Ours 8.17 2.15 1.20

Oregon-Virginia 170 Mbps 74 ms 1.10

KKRT 10.1 4.55 6.13

spot-fast 29.9 3.83 2.75

spot-low 254 15.4 7.57

Ours 9.23 3.06 1.23

Paris-Oregon 75.6 Mbps 167 ms 1.01

KKRT 17.7 5.03 6.41

spot-fast 31.0 4.03 2.92

spot-low 256 16.6 8.75

Ours 12.0 3.26 1.35

Sydney-Oregon 85.0 Mbps 143 ms 2.69

KKRT 16.3 12.0 7.81

spot-fast 30.7 6.43 3.45

spot-low 257 18.2 9.55

Ours 10.8 4.39 1.57

Sydney-Paris 40.5 Mbps 286 ms 2.50

KKRT 29.9 13.0 8.26

spot-fast 34.2 6.79 3.57

spot-low 261 19.6 9.68

Ours 21.3 5.12 1.93

Table 3: Total monetary cost (in USD) per 1000 runs in the B2B and Internet
settings comparing our protocol to [KKRT16], spot-fast and spot-low [PRTY19].
Each party holds n = 220 elements and locates in different regions. The network
bandwidth, RTT latency, and y/x ratio (communication cost per MB / compu-
tation cost per second) for each setting are indicated in the table.

The concrete running time and network bandwidth and latency are presented in
Table 3. We also list the y/x ratio (communication cost per MB / computation
cost per second) for each setting in the table. We see that our protocol is the
cheapest in all the settings we consider. This result aligns with our theoretical
analysis in Section 5.2.2. We only show the results for set size n = 220 while our
protocol is the cheapest for other set sizes as well. In the B2B setting, our pro-
tocol is 1.37− 2.73× cheaper than KKRT, 1.24− 1.46× cheaper than spot-fast,
and 3.75 − 6.80× cheaper than spot-low. In the Internet setting, our protocol
is 4.28 − 5.00× cheaper than KKRT, 1.85 − 2.25× cheaper than spot-fast, and
5.01− 6.48× cheaper than spot-low.

References

ADCT11. Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (if) size
matters: Size-hiding private set intersection. In International Workshop
on Public Key Cryptography, pages 156–173. Springer, 2011.

25

ALSZ13. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner.
More efficient oblivious transfer and extensions for faster secure compu-
tation. In 2013 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages
535–548, 2013.

BBDC+11. Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and
Gene Tsudik. Countering gattaca: efficient and secure testing of fully-
sequenced human genomes. In Proceedings of the 18th ACM conference
on Computer and communications security, pages 691–702. ACM, 2011.

BKR00. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher
block chaining message authentication code. J. Comput. Syst. Sci., 2000.

BLA. BLAKE2 – fast secure hashing. https://blake2.net/. Accessed: 2020-
01-24.

CLR17. Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection
from homomorphic encryption. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 1243–1255.
ACM, 2017.

DCGT12. Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast and private
computation of cardinality of set intersection and union. In International
Conference on Cryptology and Network Security, pages 218–231. Springer,
2012.

DCKT10. Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity
private set intersection protocols secure in malicious model. In Interna-
tional Conference on the Theory and Application of Cryptology and Infor-
mation Security, pages 213–231. Springer, 2010.

DCW13. Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection
meets big data: an efficient and scalable protocol. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security,
pages 789–800. ACM, 2013.

DRRT18. Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. Pir-psi: Scal-
ing private contact discovery. Proceedings on Privacy Enhancing Tech-
nologies, 2018(4):159–178, 2018.

DSMRY09. Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Ef-
ficient robust private set intersection. In International Conference on Ap-
plied Cryptography and Network Security, pages 125–142. Springer, 2009.

FIPR05. Michael J Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Key-
word search and oblivious pseudorandom functions. In Theory of Cryp-
tography Conference, pages 303–324. Springer, 2005.

FNO18. Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. Private set
intersection with linear communication from general assumptions. IACR
Cryptology ePrint Archive, 2018:238, 2018.

FNP04. Michael J Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In International conference on the theory
and applications of cryptographic techniques, pages 1–19. Springer, 2004.

GN19. Satrajit Ghosh and Tobias Nilges. An algebraic approach to maliciously
secure private set intersection. In EUROCRYPT, 2019.

HEK12. Yan Huang, David Evans, and Jonathan Katz. Private set intersection:
Are garbled circuits better than custom protocols? In NDSS, 2012.

HFH99. Bernardo A Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy
and trust in electronic communities. EC, 99:78–86, 1999.

26

https://blake2.net/

IKN+17. Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena,
Karn Seth, David Shanahan, and Moti Yung. Private intersection-sum
protocol with applications to attributing aggregate ad conversions. IACR
Cryptology ePrint Archive, 2017:738, 2017.

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending obliv-
ious transfers efficiently. In Annual International Cryptology Conference,
pages 145–161. Springer, 2003.

KK13. Vladimir Kolesnikov and Ranjit Kumaresan. Improved ot extension for
transferring short secrets. In Annual Cryptology Conference, pages 54–70.
Springer, 2013.

KKRT16. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Ef-
ficient batched oblivious prf with applications to private set intersection.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 818–829. ACM, 2016.

KRS+19. Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker,
and Christian Weinert. Mobile private contact discovery at scale. In 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA,
USA, August 14-16, 2019., pages 1447–1464, 2019.

LLC18. Ookla LLC. 2018 united states speedtest market report. https://www.

speedtest.net/reports/united-states/2018/#fixed, 2018.
NMH+10. Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and

Nikita Borisov. Botgrep: Finding p2p bots with structured graph analysis.
In USENIX Security Symposium, volume 10, pages 95–110, 2010.

NP99. Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evalua-
tion. In Proceedings of the thirty-first annual ACM symposium on Theory
of computing, pages 245–254. ACM, 1999.

NTL+11. Arvind Narayanan, Narendran Thiagarajan, Mugdha Lakhani, Michael
Hamburg, Dan Boneh, et al. Location privacy via private proximity test-
ing. In NDSS, volume 11, 2011.

PR04. Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of
Algorithms, 51(2):122–144, 2004.

PRTY19. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light:
Lightweight private set intersection from sparse ot extension. 2019.

PRTY20. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from
paxos: Fast, malicious private set intersection. In EUROCRYPT. Springer,
2020.

PSSZ15. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phas-
ing: Private set intersection using permutation-based hashing. In 24th
USENIX Security Symposium, pages 515–530, 2015.

PSWW18. Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder.
Efficient circuit-based psi via cuckoo hashing. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 125–157. Springer, 2018.

PSZ14. Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private
set intersection based on OT extension. In Kevin Fu and Jaeyeon Jung,
editors, Proceedings of the 23rd USENIX Security Symposium, pages 797–
812, 2014.

PSZ18. Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable pri-
vate set intersection based on OT extension. ACM Trans. Priv. Secur.,
21(2):7:1–7:35, 2018.

27

https://www.speedtest.net/reports/united-states/2018/#fixed
https://www.speedtest.net/reports/united-states/2018/#fixed

RA17. Amanda C Davi Resende and Diego F Aranha. Unbalanced approximate
private set intersection. IACR Cryptology ePrint Archive, 2017:677, 2017.

Rab05. Michael O Rabin. How to exchange secrets with oblivious transfer. IACR
Cryptology ePrint Archive, 2005:187, 2005.

Rin. Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious
Transfer Library. https://github.com/osu-crypto/libOTe.

RR17a. Peter Rindal and Mike Rosulek. Improved private set intersection against
malicious adversaries. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 235–259. Springer,
2017.

RR17b. Peter Rindal and Mike Rosulek. Malicious-secure private set intersection
via dual execution. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 1229–1242. ACM, 2017.

TPKC07. Juan Ramón Troncoso-Pastoriza, Stefan Katzenbeisser, and Mehmet Ce-
lik. Privacy preserving error resilient dna searching through oblivious
automata. In Proceedings of the 14th ACM conference on Computer and
communications security, pages 519–528. ACM, 2007.

28

https://github.com/osu-crypto/libOTe

A Security Proof of PRF F

Theorem 3. Let G : {0, 1}λ × {0, 1}λ → {0, 1}λ be a pseudorandom function.
Let PRG : {0, 1}λ → {0, 1}(t+1)·λ be a pseudorandom generator. Define F :
{0, 1}λ ×{0, 1}2λ → {0, 1}t·λ as follows. On a key k and input x = x0‖x1 where
k, x0, x1 ∈ {0, 1}λ,

Fk(x) = Gk1(Gk0(x0)⊕ x1)‖Gk2(Gk0(x0)⊕ x1)‖ . . . ‖Gkt(Gk0(x0)⊕ x1),

where k0‖k1‖ . . . ‖kt ← PRG(k). Then F is also a pseudorandom function.

Proof. We show that any PPT adversary A cannot distinguish F from a random
function via a sequence of hybrids:

Hyb0 The adversary A has access to F .

Hyb1 The adversary A has access to the following function

Gk1(Gk0(x0)⊕ x1)‖Gk2(Gk0(x0)⊕ x1)‖ . . . ‖Gkt(Gk0(x0)⊕ x1),

where k0, k1, . . . , kt
$← {0, 1}λ are sampled uniformly at random.

If A can distinguish between Hyb0 and Hyb1, then we can construct another
PPT adversary B that breaks the security of PRG. In particular, B first gets
k0‖k1‖ . . . ‖kt from the PRG challenger. On query x = x0‖x1 from A, B
responds with Gk1(Gk0(x0)⊕x1)‖ . . . ‖Gkt(Gk0(x0)⊕x1). Finally B outputs
whatever A outputs.
If the PRG challenger generates k0‖k1‖ . . . ‖kt from PRG, then A is accessing
Hyb0; otherwise, the challenger generates k0‖k1‖ . . . ‖kt uniformly at random,
thenA is accessing Hyb1. Hence, ifA can distinguish between Hyb0 and Hyb1,
then B can break the PRG security.

Hyb2 The adversary A has access to the following function

G1(Gk0(x0)⊕ x1)‖ . . . ‖Gt(Gk0(x0)⊕ x1),

where k0
$← {0, 1}λ is sampled uniformly at random, and G1, . . . , Gt are

all independent random functions. We argue that Hyb2 is computationally
indistinguishable from Hyb1 via a sequence of hybrids, where Hyb2,0 = Hyb1
and Hyb2,t = Hyb2:

Hyb2,i The adversary A has access to the following function

G1(Gk0(x0)⊕x1)‖ . . . ‖Gi(Gk0(x0)⊕x1)‖Gki+1
(Gk0(x0)⊕x1)‖ . . . ‖Gkt(Gk0(x0)⊕x1),

where k0, ki+1, . . . , kt
$← {0, 1}λ are sampled uniformly at random, and

G1, . . . , Gi are independent random functions. Note that Hyb2,0 = Hyb1.
If A can distinguish between Hyb2,i−1 and Hyb2,i for any 1 ≤ i ≤ t, then
we can construct another PPT adversary B that breaks the PRF security

of Gi. In particular, B first randomly samples k0, ki+1, . . . , kt
$← {0, 1}λ,

29

and then starts the experiment with A. On query x0‖x1 from A, B
computes z = Gk0(x0)⊕ x1 and Gki+1

(z)‖ . . . ‖Gkt(z). B also randomly
samples the outputs of G1(z), . . . , Gi−1(z). Note that if z already appears
as an input to G1, . . . , Gi−1 before, B uses the previous outputs. Then
B queries the PRF challenger on input z for an output t, and sends the
following back to A:

G1(z)‖ . . . ‖Gi−1(z)‖t‖Gki+1
(z)‖ . . . ‖Gkt(z).

Finally B outputs whatever A outputs.
If the PRF challenger chooses a PRF, thenA is accessing Hyb2,i−1; other-
wise A is accessing Hyb2,i. Hence, if A can distinguish between Hyb2,i−1
and Hyb2,i, then B can distinguish PRF from a random function.

Hyb3 The adversary A has access to the following function

G1(G0(x0)⊕ x1)‖ . . . ‖Gt(G0(x0)⊕ x1),

where G0, . . . , Gt are all independent random functions.
If A can distinguish between Hyb2 and Hyb3, then we can construct another
PPT adversary B that breaks the PRF security of Gk0 . B first starts the
experiment with A. On query x0‖x1 from A, B queries the PRF challenger
on x0 for an output y. Then B computes z = y ⊕ x1 and randomly sam-
ples the outputs of G1(z), . . . , Gt(z). Note that if z already appears as an
input to G1, . . . , Gt before, B uses the previous outputs. Afterwards B sends
G1(z)‖ . . . ‖Gkt(z) back to A. Finally B outputs whatever A outputs.
If the PRF challenger chooses a PRF, then A is accessing Hyb2; otherwise A
is accessing Hyb3. Hence, if A can distinguish between Hyb2 and Hyb3, then
B can distinguish PRF from a random function.

Hyb4 The adversaryA has access to a random function F (x0‖x1). Let the queries
from A be x10‖x11, . . . , xn0‖xn1 , and assume WLOG that they are all distinct
queries. We argue that Hyb3 is computationally indistinguishable from Hyb4
via a sequence of hybrids, where Hyb4,0 = Hyb3 and Hyb4,n = Hyb4:

Hyb4,i For the first i queries x10‖x11, . . . , xi0‖xi1 from A, choose the outputs

r1, . . . , ri independently at random. For each j ∈ [i], internally also
choose a random G0(xj0). Let zj = G0(xj0) ⊕ xj1, then also store the
implied table for G1, . . . , Gt, namely store G1(zj)‖ . . . ‖Gt(zj) = rj . If
there is any collision in this table (i.e. G0(xj10) ⊕ xj11 = G0(xj20) ⊕ xj21
within the first i queries), record G1(zj)‖ . . . ‖Gt(zj) = rj for the first
queried xj0‖x

j
1. After the first i queries, compute the output according

to this G0, . . . , Gt.
The hybrid Hyb4,i is identical to Hyb4,i−1 unless the i-th query from A
collides with G0(xj0)⊕xj1 for a previous query xj0‖x

j
1. However, note that

when A makes the i-th query, it has seen no information on G0. So the
probability that A can find such a collision is negligible (in particular,
i/2λ).

30

	Private Set Intersection in the Internet Setting From Lightweight Oblivious PRF

