
Functional Encryption for Attribute-Weighted Sums
from k-Lin

Michel Abdalla1,?, Junqing Gong2,??, and Hoeteck Wee1,3,? ? ?

1 CNRS, ENS and PSL
michel.abdalla@ens.fr, wee@di.ens.fr

2 East China Normal University
jqgong@sei.ecnu.edu.cn

3 NTT Research

Abstract. We present functional encryption schemes for attribute-weighted sums,
where encryption takes as inputN attribute-value pairs (xi, zi) where xi is public
and zi is private; secret keys are associated with arithmetic branching programs
f , and decryption returns the weighted sum

∑N
i=1 f(xi)zi while leaking no ad-

ditional information about the zi’s. Our main construction achieves
(1) compact public parameters and key sizes that are independent of N and the

secret key can decrypt a ciphertext for any a-priori unbounded N ;
(2) short ciphertexts that grow with N and the size of zi but not xi;
(3) simulation-based security against unbounded collusions;
(4) relies on the standard k-linear assumption in prime-order bilinear groups.

1 Introduction

In this work, we consider the problem of computing aggregate statistics on encrypted
databases. Consider a database of N attribute-value pairs (xi, zi)i=1,...,N , where xi is
a public attribute of user i (e.g. demographic data), and zi is private sensitive data asso-
ciated with user i (e.g. salary, medical condition, loans, college admissions outcome).
Given a function f , we want to privately compute weighted sums over the zi’s corre-
sponding to ∑N

i=1 f(xi)zi

We refer to this quantity as an attribute-weighted sum. An important special case is
when f is a boolean predicate, so that the attribute-weighted sum∑N

i=1 f(xi)zi =
∑
i:f(xi)=1 zi (1)

corresponds to the average zi over all users whose attribute xi satisfies the predicate
f . Concrete examples include average salaries of minority groups holding a particular
job title (zi = salary) and approval ratings of an election candidate amongst specific
demographic groups in a particular state (zi = rating). Similarly, if zi is boolean, then
the attribute-weighted sum becomes

∑
i:zi=1 f(xi). This could capture for instance the

number of and average age of smokers with lung cancer (zi = lung cancer).
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This work. We study functional encryption (FE) schemes for attribute-weighted sums
[36,26,13,24], for a more general setting where the attribute-value pairs and the output
of f are vectors. That is, we would like to encryptN attribute-value pairs (xi, zi)i=1,...,N

to produce a ciphertext ct, and generate secret keys skf so that decrypting ct with skf re-
turns the attribute-weighted sum

∑
i f(xi)

>zi while leaking no additional information
about the individual zi’s. We want to support rich and expressive functions f , such as
boolean formula and simple arithmetic computation. In addition, we want simulation-
based security against collusions, so that an adversary holding secret keys for different
functions learns nothing about the zi’s beyond the attribute-weighted sums for all of
these functions.

In many databases, it is often the case that the size of each attribute-value pair
(xi, zi) is small and a-priori bounded, whereas the number of slots N is large and
a-priori unbounded. This motivates the notion of an unbounded-slot FE scheme for
attribute-weighted sums, where a secret key skf can decrypt encrypted databases with
an arbitrary number of slots. Indeed, handling arbitrary-sized inputs is also the motiva-
tion behind studying ABE and FE schemes for DFA and NFA [38,7]. In an unbounded-
slot FE, key generation and the size of skf depends only on f and not N . This provides
stronger flexibility than standard ABE and FE (even in the so-called unbounded setting
[32,14,25,19]), where each skf only works for a fixedN . In practice, this means that we
can reuse the same set-up and secret keys across multiple databases without an a-priori
upper bound on the database size N .

1.1 Our Results

We present an unbounded-slot functional encryption scheme for attribute-weighted sums
for the class of functions f captured by arithmetic branching programs (ABP), a power-
ful model of computation that captures both boolean formula and branching programs
with only a linear blow-up in size. Our construction achieves:

(1) compact public parameters and key sizes that are independent of N ;
(2) short ciphertexts that grow with N and the size of zi but not xi;
(3) selective4, simulation-based security against unbounded collusions;
(4) relies on the standard k-linear assumption in prime-order bilinear groups.

As with all prior FE schemes that rely on DDH and bilinear groups [1,6,3,33,10,28,29,17],
efficient decryption requires that the output of the computation

∑N
i=1 f(xi)

>zi lies in a
polynomial-size domain. We also show how to extend our unbounded-slot scheme to a
setting where the database is distributed across multiple clients that do not completely
trust one another [21,18], assuming some simple non-interactive MPC set-up amongst
the clients that does not depend on the database and does not require interaction with
the key authority.

Prior works. While we regard the unbounded-slot setting as the key conceptual and
technical novelty of this work, we note that FE for attribute-weighted sums for N = 1
already captures many functionalities considered in the literature, e.g.

4 We actually achieve semi-adaptive security [16], a slight strengthening of selective security.
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(i) FE for inner product [1,6] where f outputs a fixed vector,
(ii) attribute-based encryption (ABE) by taking z to be the payload,

(iii) attribute-based inner-product FE [17,2], where ciphertexts are associated with a
public x and a private z, and keys with a boolean formula g and a vector y, and
decryption returns z>y iff g(x) = 1, by taking f(x) := y · g(x), which can be
computed using an ABP.

On the other hand, none of these three classes captures the special case of attribute-
weighted sums in (1). We show a comparison in Fig 1. The more recent works in [28,29]
do capture a larger class supporting quadratic instead of linear functions over z,5 but in
a weaker secret-key setting with indistinguishability-based security, which is nonethe-
less sufficient for the application to obfuscation. As articulated [13], simulation-based
security is the right notion for functional encryption applied to real-world data. Finally,
none of these works consider the unbounded-slot setting.

1.2 Our construction

We present a high-level overview of our unbounded-slot FE scheme for attribute-weighted
sums. We start with a one-slot scheme that only handles N = 1, and then “bootstrap”
to the unbounded-slot setting. The main technical novelty of this work lies in the boot-
strapping, which is what we would focus on in this section.

A one-slot scheme. In a one-slot FE scheme, we want to encrypt (x, z) and generate
secret keys skf for computing f(x)>z, while leaking no additional information about
z. We adopt the framework of Wee’s [40] (which in turn builds on [30,37,39,27]) that
builds a FE scheme for a closely related functionality f(x)>z

?
= 0; the construction also

achieves selective, simulation-based security under the k-Lin assumption in prime-order
bilinear groups. We achieve a smaller ciphertext, and an algebraically more concise and
precise description. Our simulator also embeds the output of the ideal functionality
f(x)>z into the simulated skf . This is in some sense inherent for two reasons: (i) the
ciphertext has a fixed size and cannot accommodate an a-priori unbounded number
of key queries [4], (ii) in the selective setting, we do not know f or f(x)>z while
simulating the ciphertext.

The unbounded-slot scheme. A very natural approach is to use the one-slot scheme
to compute

f(xi)
>zi, i = 1, 2, . . . , N (2)

by providing N independent encryptions ctxi,zi of (xi, zi). The secret key is exactly
that for the one-slot scheme and therefore independent of N , and decryption proceeds
by decrypting each of the N one-slot ciphertexts, and then computing their sum. The
only problem with this approach is that it is insecure since decryption leaks the inter-
mediate summands.

5 Note that we can also capture the same class with a quadratic blow-up in ciphertext size.
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First idea. To avoid this leakage, we would computationally mask the summands using
DDH tuples, by using the one-slot scheme to compute

[f(xi)
>zi + wir], i = 1, 2, . . . , N (3)

where

– the wi’s are sampled during encryption subject to the constraint
∑N
i=1 wi = 0;

– r is fresh per secret key; and
– [·] denotes “in the exponent” of a bilinear group.

Multiplying the partial decryptions yields [
∑
i f(xi)

>zi], and we need to perform a
brute-force discrete log to recover the answer. Indeed, we can modify the one-slot
scheme to support the functionality in (3), where the one-slot encryption takes as in-
put (xi, zi‖wi) (where wi is also private) to produce a ciphertext ctxi,zi‖wi

, and with
secret keys skf,r associated with (f, r). Henceforth, we describe the proof strategy for a
single secret key query for simplicity, but everything we describe extends quite readily
to an unbounded number of key queries.

The intuition is that the partial decryptions now yield

( Dec(skf,r, ctx1,z1‖w1
), Dec(skf,r, ctx2,z2‖w2

), . . . , Dec(skf,r, ctxN ,zN‖wN
) )

= ( [f(x1)>z1 + w1r], [f(x2)>z2 + w2r], . . . , [f(xN )>zN + wNr] ),
DDH
≈c ( [f(x1)>z1 + w′1], [f(x2)>z2 + w′2], . . . , [f(xN )>zN + w′N ] ),

∑
w′i = 0

≈s ( [
∑
i f(xi)

>zi + w′1], [w′2], . . . , [w′N ] ),

As with the one-slot scheme, we need to embed these N partial descriptions into skf,r
in the proof of security. Translating this intuition into a proof would then require em-
bedding ≈ N units of statistical entropy into the simulated skf,r in the final game; this
means that the size of skf,r would grow with N , which we want to avoid!

Second idea. Instead, we will do a hybrid argument over theN slots, collecting “partial
sums”

∑
i≤η f(xi)

>zi (with 1 ≤ η ≤ N ) as we go along, which we then embed into the
simulated skf,r. This proof strategy is in fact inspired by proof techniques introduced
in the recent ABE for DFA from k-Lin [22], notably the idea of propagating entropy
along the execution path of a DFA.

In particular, for N = 3, partial decryption now yields

( Dec(skf,r, ctx1,z1‖w1
), Dec(skf,r, ctx2,z2‖w2

), Dec(skf,r, ctx3,z3‖w3
) )

= ( [f(x1)>z1 + w1r], [f(x2)>z2 + w2r], [f(x3)>z3 + w3r] )
DDH
≈c ( [f(x1)>z1 + f(x2)>z2 + w1r], [w2r], [f(x3)>z3 + w3r] )
DDH
≈c ( [f(x1)>z1 + f(x2)>z2 + f(x3)>z3 + w1r], [w2r], [w3r] )

(4)

where the first
DDH
≈c uses pseudorandomness of ([w2r], [r]) and the second uses that of

([w3r], [r]).
Next, we need to design the ciphertext and key distributions for the unbounded-slot

scheme so that partial decryption yields the quantities in (4). We begin by defining the
final simulated ciphertext-key pair as follows:

(ct∗x1
, ctx2,0‖w2

, . . . , ctxN ,0‖wN
), sk∗f,r (5)
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where

– (ct∗x1
, sk∗f,r) are obtained using the simulator for the one-slot scheme so that

Dec(sk∗f,r, ct
∗
x1

) = [w1r +
∑
i f(xi)

>zi]

That is, we embed [w1r +
∑
i f(xi)

>zi] into the simulated sk∗f,r;
– ctxi,0‖wi

, i > 1 are generated as normal encryptions of (xi,0‖wi) (instead of nor-
mal encryptions of (xi, zi‖wi)) so that

Dec(sk∗f,r, ctxi,0‖wi
) = Dec(skf,r, ctxi,0‖wi

) = [wir], i > 1

Here, we use fact that simulated secret keys behave like normal secret keys when
used to decrypt normal ciphertexts.

This distribution can be computed given just
∑
i f(xi)

>zi and matches exactly what
we need in the final game in (4).

Third idea. Now, consider the following attempt to interpolate between the normal
distributions and the simulated distributions for the case N = 2:

( ctx1,z1‖w1
, ctx2,z2‖w2

, skf,r )

≈c ( ct∗x1
, ctx2,z2‖w2

, sk∗f,r ), Dec(sk∗f,r, ct
∗
x1

) = [f(x1)>z1 + w1r]

≈c ( ct∗x1
, ???, sk∗f,r ),

≈c ( ct∗x1
, ctx2,0‖w2

, sk∗f,r ), Dec(sk∗f,r, ct
∗
x1

) = [f(x1)>z1 + f(x2)>z2 + w1r]

where the first row is the real distribution, the last row is the simulated distribution in
(5), and the first ≈c follows from simulation-based security of the one-slot scheme. A
natural idea is to replace “???” with a simulated ciphertext ct∗x2

but this is problematic
for two reasons: first, we cannot switch between a normal and simulated ciphertext in
the presence of a simulated key, and second, the simulator can only generate a single
simulated ciphertext.

Luckily, we can overcome both difficulties by modifying the unbounded-slot FE
scheme to use two independent copies of the one-slot scheme as follows:

– setup generates two one-slot master public-secret key pairs (mpk1,msk1), (mpk2,msk2);
– to encrypt (xi, zi)i=1,...,N , we generate ctx1,z1‖w1

w.r.t mpk1 and the remaining
ctxi,zi‖wi

, i = 2, . . . , N w.r.t. mpk2;
– the secret key contains two one-slot secret keys skf,r,1, skf,r,2 generated for (f, r)

but using msk1,msk2 respectively.

That would in fact be our final construction, where the asymmetry of encryption with
respect to the first slot reflects the asymmetry of the simulated ciphertext in (5). Note
that the first issue goes away because we can switch between a normal and simulated
ciphertext w.r.t. mpk2 in the presence of a simulated secret key w.r.t. mpk1; the second
goes away because the two simulated ciphertext correspond to mpk1 and mpk2 respec-
tively. We defer the remaining details to the technical overview in Section 2 and the
formal scheme in Section 7.
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Scheme Enc KeyGen Function Security |ct|
OT12, KSW08 [34,35,30] z y z>y

?
= 0 AD-IND O(|z|)

ALS16, ABDP15 [1,6] z y z>y AD-IND O(|z|)
W17 [40] x, z f ABP z>f(x)

?
= 0 SA-SIM O(|x|+ |z|)

DOT18 [19] x, z f ABP z>f(x)
?
= 0 AD-SIM O(|x|+ |z|)

ACGU20, CZY19 [2,17] x, z y, f NC1 f(x) · z>y AD-IND O(|x|+ |z|)
ACGU20 [2] z1, z2 y1,y2 z>1y1 if z>2y2 = 0 AD-IND O(|z1|+ |z2|)
This work (§5) x, z f ABP z>f(x) SA-SIM O(|z|)

Fig. 1. Comparison of prior public-key schemes with our construction for N = 1. Throughout, x
is public and z, z1, z2 are private, and |ct| omits the contribution from x.

The multi-client setting. Now, consider a setting where the database (xi, zi)i=1,...,N

are distributed across multiple clients that do not completely trust one another [21,18];
in practice, the clients could correspond to hospitals holding medical records for differ-
ent patients, or colleges holding admissions data. It suffices to just consider the setting
with N clients where client i holds (xi, zi). Note that to produce the ciphertext in our
unbounded-slot FE scheme, it suffices for the N clients to each hold a random private
wi (per database) subject to the constraint

∑
wi = 0, which is simple to generate via

a non-interactive MPC protocol where each client sends out additive shares of 0 [11].
Moreover, generating the wi’s can take place in an offline, pre-processing phase be-
fore knowing the database, and does not require interacting with the key generation
authority. Moreover, our unbounded-slot FE scheme also achieves a meaningful notion
of security, namely that if some subset S of clients collude and additionally learn some
skf , they will not learn anything about the the remaining zi’s apart from

∑
i/∈S f(xi)

>zi
(that is, the attribute-weighted sum as applied to the honest clients’ inputs); security is
simulation-based and also extends to the many-key setting. In order to achieve this, we
require a slight modification to the scheme to break the asymmetry with respect to the
first slot: to encrypt (xi, zi), client i samples random z′i, w

′
i and publishes a one-slot

encryption of (xi, z
′
i‖w′i) under mpk1 and another of (xi, z−z′i‖wi−w′i) under mpk2.

This readily gives us a multi-client unbounded-slot FE for attribute-weighted sums; we
refer the reader to full paper for more details of the definition, construction and proof.

1.3 Discussion

Additional related works. As noted earlier in the introduction, our unbounded-slot no-
tion is closely related to uniform models of computation with unbounded input lengths,
such as ABE and FE for DFA and NFA [38,22,7,8]. At a very high level, our construc-
tion may be viewed as following the paradigm in [7,8] for building ABE/FE for uniform
models of computation by “stitching” together ABE/FE for the smaller step functions;
in our setting, the linear relation between the step functions and the overall computation
makes “stitching” much simpler. The way we use two copies of the one-slot scheme is
also analogous to the “two-slot, interweaving dual system encryption” argument used
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in the previous ABE for DFA from k-Lin in [22], except our implementation is simpler
and more modular.

On selective vs adaptive security. We believe that selective, simulation-based security
already constitutes a meaningful notation of security for many of the applications we
have in mind. For instance, in medical studies, medical records and patient conditions
(the xi, zi’s) will not depend –not in the short run, at least– adaptively on the correla-
tions (the functions f ’s) that researchers would like to investigate. Nonetheless, we do
agree that extending our results to achieve adaptive security is an important research
direction. Concretely,

– Can we show that the one-slot scheme achieves simulation-based, adaptive security
in the generic group model, as has been shown for a large class of selectively secure
ABEs [9]?

– Can we construct an adaptively secure unbounded-slot FE for arithmetic branch-
ing programs with compact ciphertexts without the one-use restriction from k-Lin?
We conjecture that our transformation from one-slot to unbounded-slot preserves
adaptive security. Solving the one-slot problem would require first adapting the
techniques for adaptive simulation-based security in [19,5], and more recent ad-
vances in [31] to avoid the one-use restriction.

Open problems. We conclude with two other open problems. One is whether we can
construct (one-slot) FE for attribute-weighted sums from LWE, simultaneously general-
izing prior ABE and IPFE schemes from LWE [23,12,6]; an affirmative solution would
likely also avoid the polynomial-size domain limitation. Another is to achieve stronger
notions of security for the multi-client setting where the wi’s could be reused across
multiple databases.

Organization. We provide a more detailed technical overview in Section 2. We present
preliminaries, definitions and tools in Sections 3 and 4. We present our one-slot scheme
and an extension in Sections 5 and 6, and the unbounded-slot scheme in Section 7.

2 Technical Overview

We proceed with a more technical overview of our construction, building on the overview
given in Section 1.2, and giving more details on the one-slot scheme. We summarize
the parameters of the one-slot and unbounded-slot scheme in Fig 2.

2.1 One-slot scheme

Notation. We will make extensive use of tensor products. For instance, we will write
the linear function x1U1 + x2U2 as

(U1‖U2)

(
x1I

x2I

)
= (U1‖U2)

((
x1

x2

)
⊗ I

)
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scheme |ct| |sk| Assumption
Πone (§ 5) n′ + 2k + 1 (k + 1)nm+ (2k + 1)m+ (k + 1)n′ k-Lin

n′ + 3 2nm+ 3m+ 2n′ SXDH
Πubd (§ 7) n′N + (3k + 1)N (2k + 2)nm+ (4k + 2)m+ (2k + 2)n′ + k k-Lin

n′N + 4N 4nm+ 6m+ 4n′ + 1 SXDH

Fig. 2. Summary of ciphertext and key sizes of our one-slot scheme Πone and unbounded-slot
scheme Πubd. Recall that n = |x| = |xi|, n′ = |z| = |zi|, m is proportional to the size of f and
N is the number of slots. In the table, we count the number of group elements in G1 (resp. G2)
in the column |ct| (resp. column |sk|). Note that SXDH=1-Lin.

This allows us to concisely and precisely capture “compilers” where we substitute
scalars with matrices, as well as the underlying linear relations, which may refer to
left or right multiplication, and act on scalars or matrices.

Partial garbling. Recall the starting point for ABE for ABP as an “arithmetic secret-
sharing scheme” that on input an ABP f : Znp → Zp and a secret z ∈ Zp, outputs m
affine functions `1, . . . , `m : Znp → Zp such that for all x ∈ Znp :

– (correctness) given `1(x), . . . , `m(x) along with f,x, we can recover z if f(x) 6=
0.

– (privacy) given `1(x), . . . , `m(x) along with f,x, we learn nothing about z if
f(x) = 0.

In particular, the coefficients of the functions `1, . . . , `m depends linearly on the ran-
domness used in secret sharing.

Partial garbling generalizes the above as follows: on input an ABP f : Znp → Zn′p ,
outputs m+ 1 affine functions `0, `1, . . . , `m such that for all x ∈ Znp , z ∈ Zn′p :

– (correctness) given `0(z), `1(x), . . . , `m(x) along with f,x, we can recover f(x)>z.
– (privacy) given `0(z), `1(x), . . . , `m(x) along with f,x, we learn nothing about z

apart from f(x)>z.

Henceforth, we will use t>(L1(x⊗ Im) + L0) ∈ Zmp to denote the m linear functions
`1(x), . . . , `m(x),6 where t← Zm+n′−1

p corresponds to the randomness used in the se-

cret sharing; L1 ∈ Z(m+n′−1)×mn
p ,L0 ∈ Z(m+n′−1)×m

p depends only on the function
f , and m is linear in the size of the ABP f .

6 As an example with n = 2,m = 3, we have(
a11x1 + a12x2 + b1, a21x1 + a22x2 + b2, a31x1 + a32x2 + b3

)
= (a11, a21, a31, a12, a22, a32)

((x1
x2

)
⊗ I3

)
+ (b1, b2, b3)

8



Basic scheme. We rely on an asymmetric bilinear group (G1,G2,GT , e) of prime
order p where e : G1 ×G2 → GT . We use [·]1, [·]2, [·]T to denote component-wise ex-
ponentiations in respective groups G1,G2,GT [20]. Our starting point is the following
scheme7:

mpk =
(

[w]1, [u]1, [v]1
)

and msk =
(
w, u, v

)
(6)

ctx,z =
(

[s]1, [z + sw]1, [s(u>x + v)]1
)
∈ Gn

′+2
1

skf =
(

[t + w]2, [t>L1 + u>(In ⊗ r>)]2, [t>L0 + vr>]2, [r]2
)

where
w← Zn

′

p ,u← Znp , v ← Zp, t← Zm+n′−1
p , r← Zmp

Decryption uses the fact that

t>(L1(x⊗ Im) + L0) =

(t>L1 + u>(In ⊗ r>)) · (x⊗ Im) + (t>L0 + vr>)− (u>x + v) · r> (7)

which in turn uses (In ⊗ r>) · (x ⊗ Im) = x · r>. Using the pairing and the above
relation, we can recover

[z− st]T , [st>(L1(x⊗ Im) + L0)]T

We can then apply reconstruction “in the exponent” to recover [f(x)>z]T and thus
f(x)>z via brute-force DLOG.

Security in the secret-key setting. The scheme as written already achieves simulation-
based selective security in the secret-key, many-key setting (that is, against an adversary
that does not see mpk); this holds under the DDH assumption in G2. We sketch how we
can simulate (ctx,z, skf ) given x, f, f(x)>z; the proof extends readily to the many-key
setting. The idea is to program

w̃ = z + sw, ṽ = s(u>x + v)

In addition, using (7), we can rewrite (ctx,z, skf ) as

ctx,z =
(
[s]1, [w̃]1, [ṽ]1

)
∈ Gn

′+2
1

skf =
(
[t+ s−1(w̃ − z)]2, [û

>]2, [t
>(L1(x⊗ Im) + L0)− û> · (x⊗ Im) + s−1ṽr>]2, [r]2

)
where û> := t>L1 + u>(In ⊗ r>). Under the DDH assumption in G2, we know that8

[u>(In ⊗ r>)]2, [r
>]2,u← Znp , r← Zmp

is pseudorandom, which means that [û>]2, [r
>]2 is pseudorandom.

We can therefore simulate (ctx,z, skf ) as follows: on input µ = f(x)>z,

7 The scheme in [40] has a larger ciphertext of the form: ctx,z =
(

[s]1, [z + sw]1, [s(u +

vx)]1
)
∈ Gn+n

′+1
1 .

8 Recall that if we write u = (u1, . . . , un), then u>(In ⊗ r>) = (u1r
>, . . . , unr

>).
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1. run the simulator for partial garbling on input f,x, µ to obtain (p>1,p
>
2);

2. sample s← Zp, w̃← Zn′p , ṽ ← Zp, û← Zmnp ;
3. output

ctx,z =
(

[s]1, [w̃]1, [ṽ]1
)
∈ Gn

′+2
1

skf =
(

[−p1 + s−1w̃]2, [û>]2, [p>2 − û> · (x⊗ Im) + s−1ṽr>]2, [r]2
)

Looking ahead, we note that the above analysis extends to the k-Lin assumption,
at the cost of blowing up the width of u, v, r> by a factor of k. In the analysis, we
use the fact that under k-Lin over G2, ([u>(In ⊗ R)]2, [R]2) is pseudorandom where
u← Zknp ,R← Zk×mp .

The compiler. To obtain a public-key scheme secure under the k-Lin assumption, we
perform the following substitutions to (6), following [40,15]:

s 7→ s>A> ∈ Z1×(k+1)
p , r> 7→ R ∈ Zk×mp , t> 7→ T ∈ Z(k+1)×(m+n′−1)

p

w> 7→W ∈ Z(k+1)×n′
p , u> 7→ U ∈ Z(k+1)×kn

p , v 7→ V ∈ Z(k+1)×k
p

That is, we blow up the height of w>,u>, v, t> by a factor of k + 1, and the width of
u>, v, r by a factor of k. The proof of security follows the high-level strategy in [40]:

– We first switch [s>A>]1 in the ciphertext with a random [c>]1.
– We decompose skf into two parts, A>skf , c>skf , corresponding to component-

wise multiplication by A>, c> respectively, using the fact that (A|c) forms a full-
rank basis.

– We simulate A>skf using (mpk, f), and simulate the ciphertext and c>skf as in the
secret-key setting we just described.

We refer the reader to Section 6 to see how the construction can be extended to handle
the “extended” functionality in (3); an overview is given at the beginning of that section.

2.2 Unbounded-slot scheme

We refer the reader to Section 1.2 for a high-level overview of the unbounded-slot
scheme, and proceed directly to describe the construction and the security proof.

The construction. We run two copies of the one-slot scheme, which we denote by
(Encb,KeyGenb) = (Enc(mpkb, ·),KeyGen(mskb, ·)) for b = 1, 2. We denote the cor-
responding simulators by (Enc∗b ,KeyGen

∗
b). Informally, we have

(Encb(x, z‖w),KeyGenb(f, [r]2)) ≈c (Enc∗b(x),KeyGen∗b((f, [r]2), [f(x)>z + wr]2))

Then, Enc,KeyGen in the unbounded-slot scheme are given by

Enc((xi, zi)i) = Enc1(x1, z1‖ −
∑
i∈[2,N ] wi), Enc2(x2, z2‖w2), · · · ,Enc2(xN , zN‖wN )

KeyGen(f) = KeyGen1(f, [r]2),KeyGen2(f, [r]2), [r]2
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Enc1(x1, z1‖ − w2 − w3), Enc2(x2, z2‖w2), Enc2(x3, z3‖w3)

KeyGen1(f, [r]2), KeyGen2(f, [r]2)
SIM-1
≈c Enc∗1(x1) , Enc2(x2, z2‖w2), Enc2(x3, z3‖w3)

KeyGen∗1((f, [r]2), [f(x1)>z1 − w2r − w3r]2) , KeyGen2(f, [r]2)
SIM-2
≈c Enc∗1(x1), Enc∗2(x2) , Enc2(x3, z3‖w3)

KeyGen∗1((f, [r]2), [f(x1)>z1 − w2r − w3r]2), KeyGen∗2((f, [r]2), [f(x2)>z2 + w2r]2)
DDH
≈c Enc∗1(x1), Enc∗2(x2), Enc2(x3, z3‖w3)

KeyGen∗1((f, [r]2), [f(x1)>z1 + f(x2)>z2 − w2r − w3r]2), KeyGen∗2((f, [r]2), [ w2r ]2)
SIM-2
≈c Enc∗1(x1), Enc2(x2, 0‖w2) , Enc2(x3, z3‖w3)

KeyGen∗1((f, [r]2), [f(x1)>z1 + f(x2)>z2 − w2r − w3r]2), KeyGen2(f, [r]2)
SIM-2
≈c Enc∗1(x1), Enc2(x2, 0‖w2), Enc∗2(x3)

KeyGen∗1((f, [r]2), [f(x1)>z1 + f(x2)>z2 − w2r − w3r]2), KeyGen∗2((f, [r]2), [f(x3)>z3 + w3r]2)
DDH
≈c Enc∗1(x1), Enc2(x2, 0‖w2), Enc∗2(x3)

KeyGen∗1((f, [r]2), [f(x1)>z1 + f(x2)>z2 + f(x3)>z3 − w2r − w3r]2), KeyGen∗2((f, [r]2), [ w3r ]2)
SIM-2
≈c Enc∗1(x1), Enc2(x2, 0‖w2), Enc2(x3, 0‖w3)

KeyGen∗1((f, [r]2), [f(x1)>z1 + f(x2)>z2 + f(x3)>z3 − w2r − w3r]2), KeyGen2(f, [r]2)

Fig. 3. Summary of game sequence forN = 3. In the figure,
SIM-b
≈c indicates that this step uses the

simulate-based semi-adaptive security of (Encb,KeyGenb).

The final simulator is given by:

Enc∗((xi)i) = Enc∗1(x1), Enc2(x2,0‖w2), · · · ,Enc2(xN ,0‖wN )

KeyGen∗(f, µ) = KeyGen∗1((f, [r]2), [µ−
∑
i∈[2,N ] wir]2),KeyGen2(f, [r]2)

As a sanity check, observe that decrypting Enc∗((xi)i) using KeyGen∗(f,
∑
i f(xi)

>zi)
returns

∑
i f(xi)

>zi.

Proof overview. For simplicity, we focus on the setting N = 3 with one secret

key query in Fig 3 where in
DDH
≈c , we use pseudorandomness of ([w1r]2, [r]2) and

([w2r]2, [r]2) respectively; in
SIM-1
≈c and

SIM-2
≈c , we use simulation-based semi-adaptive

security of (Enc1,KeyGen1) and (Enc2,KeyGen2), respectively.
In the setting for general N and Q secret key queries,

– we will invoke simulation-based security of (Enc1,KeyGen1) once, and that of
(Enc2,KeyGen2) for 2(N−1) times, while using the fact that both of these schemes
are also secure against Q secret key queries;

– in
DDH
≈c , we will rely on pseudorandomness of {[wirj ]2, [rj ]2)}j∈[Q] for i ∈ [2, N ].

3 Preliminaries

Notations. We denote by s ← S the fact that s is picked uniformly at random from
a finite set S. We use ≈s to denote two distributions being statistically indistinguish-
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able, and ≈c to denote two distributions being computationally indistinguishable. We
use lower case boldface to denote column vectors and upper case boldcase to denote
matrices. We use ei to denote the i’th elementary column vector (with 1 at the i’th
position and 0 elsewhere, and the total length of the vector specified by the context).
For any positive integer N , we use [N ] to denote {1, 2, . . . , N} and [2, N ] to denote
{2, . . . , N}.

The tensor product (Kronecker product) for matrices A = (ai,j) ∈ Z`×m, B ∈
Zn×p is defined as

A⊗B =

a1,1B, . . . , a1,mB

. . . , . . . , . . .

a`,1B, . . . , a`,mB

 ∈ Z`n×mp. (8)

Arithmetic Branching Programs. A branching program is defined by a directed
acyclic graph (V,E), two special vertices v0, v1 ∈ V and a labeling function φ. An
arithmetic branching program (ABP), where p is a prime, computes a function f :
Znp → Zp. Here, φ assigns to each edge in E an affine function in some input variable
or a constant, and f(x) is the sum over all v0-v1 paths of the product of all the val-
ues along the path. We refer to |V | + |E| as the size of f . The definition extends in a
coordinate-wise manner to functions f : Znp → Zn′p . Henceforth, we use FABP,n,n′ to
denote the class of ABP f : Znp → Zn′p .

We note that there is a linear-time algorithm that converts any boolean formula,
boolean branching program or arithmetic formula to an arithmetic branching program
with a constant blow-up in the representation size. Thus, ABPs can be viewed as a
stronger computational model than all of the above. Recall also that branching pro-
grams and boolean formulas correspond to the complexity classes LOGSPACE and
NC1 respectively.

3.1 Prime-order Bilinear Groups

A generator G takes as input a security parameter 1λ and outputs a description G :=
(p,G1,G2,GT , e), where p is a prime of Θ(λ) bits, G1, G2 and GT are cyclic groups
of order p, and e : G1×G2 → GT is a non-degenerate bilinear map. We require that the
group operations in G1, G2, GT and the bilinear map e are computable in deterministic
polynomial time in λ. Let g1 ∈ G1, g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective
generators. We employ the implicit representation of group elements: for a matrix M
over Zp, we define [M]1 := gM1 , [M]2 := gM2 , [M]T := gMT , where exponentiation
is carried out component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T .
We recall the matrix Diffie-Hellman (MDDH) assumption on G1 [20]:

Assumption 1 (MDDHd
k,` Assumption) Let k, `, d ∈ N. We say that the MDDHd

k,`

assumption holds if for all PPT adversaries A, the following advantage function is
negligible in λ.

Adv
MDDHd

k,`

A (λ) :=
∣∣Pr[A(G, [M]1, [MS]1 ) = 1]− Pr[A(G, [M]1, [U]1 ) = 1]

∣∣
where G := (p,G1,G2,GT , e)← G(1λ), M← Z`×kp , S← Zk×dp and U← Z`×dp .
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The MDDH assumption on G2 can be defined in an analogous way. Escala et al. [20]
showed that

k-Lin⇒ MDDH1
k,k+1 ⇒ MDDHd

k,` ∀ k, d ≥ 1, ` > k

with a tight security reduction. (In the setting where ` ≤ k, the MDDHd
k,` assumption

holds unconditionally.)
We state the following lemma implied by MDDH1

k,Q without proof.

Lemma 1. For all Q ∈ N and µ1, . . . , µQ ∈ Zp, we have{
[−w>rj ]2, [ µj + w>rj ]2, [rj ]2

}
j∈[Q]

≈c
{

[ µj −w>rj ]2, [w>rj ]2, [rj ]2
}
j∈[Q]

where w, rj ← Zkp for all j ∈ [Q]. Concretely, the distinguishing advantage is bounded

by 2 · AdvMDDH1
k,Q

B (λ).

4 Definitions and Tools

In this section, we formalize functional encryption for attribute-weighted sums, using
the framework of partially-hiding functional encryption [24,40,13].

4.1 FE for Attribute-Weighted Sums

Syntax. An unbounded-slot FE for attribute-weighted sums consists of four algo-
rithms:

Setup(1λ, 1n, 1n
′
) : The setup algorithm gets as input the security parameter 1λ and

function parameters 1n, 1n
′
. It outputs the master public key mpk and the master

secret key msk.

Enc(mpk, (xi, zi)i∈[N ]) : The encryption algorithm gets as input mpk and message
(xi, zi)i∈[N ] ∈ (Znp×Zn

′

p )?. It outputs a ciphertext ct(xi,zi) with (xi) being public.

KeyGen(msk, f) : The key generation algorithm gets as input msk and a function
f ∈ FABP,n,n′ . It outputs a secret key skf with f being public.

Dec((skf , f), (ct(xi,zi), (xi)i∈[N ])) : The decryption algorithm gets as input skf and
ct(xi,zi) along with f and (xi)i∈[N ]. It outputs a value in Zp.

Correctness. For all (xi, zi)i∈[N ] ∈ (Znp × Zn′p )? and f ∈ FABP,n,n′ , we require

Pr[Dec((ct(xi,zi), (xi)i∈[N ]), (skf , f)) =
∑
i∈[N ] f(xi)

>zi] = 1

where (mpk,msk) ← Setup(1λ, 1n, 1n
′
), skf ← KeyGen(msk, f) and ct(xi,zi) ←

Enc(mpk, (xi, zi)i∈[N ]).
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Remark 1 (Relaxation of correctness.). Our scheme only achieves a relaxation of cor-
rectness where the decryption algorithm takes an additional bound 1B (and runs in
time polynomial in B) and outputs

∑
i∈[N ] f(xi)

>zi if the value is bounded by B.
This limitation is also present in prior works on (IP)FE from DDH and bilinear groups
[1,6,3,33,10], due to the reliance on brute-force discrete log to recover the answer “from
the exponent”. We stress that the relaxation only refers to functionality and does not af-
fect security.

Security definition. We consider semi-adaptive [16] (strengthening of selective), simulation-
based security, which stipulates that there exists a randomized simulator (Setup∗,Enc∗,
KeyGen∗) such that for every efficient stateful adversary A,

1N ← A(1λ);

(mpk,msk)← Setup(1λ, 1n, 1n
′
);

(x∗i , z
∗
i )i∈[N ] ← A(mpk);

ct∗ ← Enc(mpk, (x∗i , z
∗
i )i∈[N ]);

outputAKeyGen(msk,·)(mpk, ct∗)

 ≈c


1N ← A(1λ);

(mpk,msk∗)← Setup∗(1λ, 1n, 1n
′
, 1N );

(x∗i , z
∗
i )i∈[N ] ← A(mpk);

ct∗ ← Enc∗(msk∗, (x∗i )i∈[N ]);

outputAKeyGen∗(msk∗,(x∗i )i∈[N],·,·)(mpk, ct∗)


such that wheneverAmakes a query f to KeyGen, the simulator KeyGen∗ gets f along
with

∑
i∈[N ] f(x∗i )

>z∗i . We use AdvFE
A (λ) to denote the advantage in distinguishing the

real and ideal games.

One-slot scheme. A one-slot scheme is the same thing, except we always have N = 1
for both correctness and security.

4.2 Partial Garbling Scheme

The partial garbling scheme [27,40] for f(x)>z with f ∈ FABP,n,n′ is a randomized
algorithm that on input f outputs an affine function in x, z of the form:

p>f,x,z =
(
z> − t>, t>(L1(x⊗ Im) + L0)

)
where L0 ∈ Z(m+n′−1)×mn

p ,L1 ∈ Z(m+n′−1)×m
p depends only on f ; t← Zm+n′−1

p is
the random coin and t consists of the last n′ entries in t, such that given (p>f,x,z, f,x),
we can recover f(x)>z, while learning nothing else about z.

Lemma 2 (partial garbling [27,40]). There exists four efficient algorithms (lgen, pgb,
rec, pgb∗) with the following properties:

– syntax: on input f ∈ FABP,n,n′ , lgen(f) outputs L0 ∈ Z(m+n′−1)×mn
p ,L1 ∈

Z(m+n′−1)×m
p , and

pgb(f,x, z; t) =
(
z> − t>, t>(L1(x⊗ Im) + L0)

)
pgb∗(f,x, µ; t) =

(
−t>, t>(L1(x⊗ Im) + L0) + µ · e>1

)
where t ∈ Zm+n′−1

p and t consists of the last n′ entries in t and m are linear in
the size of f .
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– reconstruction: rec(f,x) outputs df,x ∈ Zn′+mp such that for all f,x, z, t, we have
p>f,x,zdf,x = f(x)>z where p>f,x,z = pgb(f,x, z; t).

– privacy: for all f,x, z, pgb(f,x, z; t) ≈s pgb∗(f,x, f(x)>z; t) where the random-
ness is over t← Zm+n′−1

p .

Extension. We will also rely on an extra property of the above construction to handle
shifts by δ ∈ Zp, namely that, given

p>
f,x,z, δ

=
(
z> − t>, t>(L1(x⊗ Im) + L0) + δ · e>1

)
together with (f,x), we can recover f(x)>z+ δ, while learning nothing else about z, δ.
That is, for all f,x, z and δ ∈ Zp:

– reconstruction: (pgb(f,x, z; t) + (0, δ · e>1))df,x = f(x)>z + δ ;
– privacy: pgb(f,x, z; t) + (0, δ · e>1) ≈s pgb∗(f,x, f(x)>z + δ ; t) where the

randomness is over t← Zm+n′−1
p .

See the full paper for more detail about Lemma 2 and the extension.

5 Πone: One-Slot Scheme

In this section, we present our one-slot FE scheme for attribute-weighted sums. This
scheme achieves simulation-based semi-adaptive security under k-Linear assumptions.

5.1 Construction

Our one-slot FE scheme Πone in prime-order bilinear group is described as follows.

– Setup(1λ, 1n, 1n
′
): Run G = (p,G1,G2,GT , e)← G(1λ). Sample

A← Z(k+1)×k
p and W← Z(k+1)×n′

p , U← Z(k+1)×kn
p , V← Z(k+1)×k

p

and output

mpk =
(
G, [A>]1, [A>W]1, [A>U]1, [A>V]1

)
and msk =

(
W, U, V

)
.

– Enc(mpk, (x, z)): Sample s← Zkp and output

ctx,z =
(

[s>A>]1, [z> + s>A>W]1, [s>A>U(x⊗ Ik) + s>A>V]1
)

and x.

– KeyGen(msk, f): Run (L1,L0) ← lgen(f) where L1 ∈ Z(m+n′−1)×mn
p ,L0 ∈

Z(m+n′−1)×m
p (cf. Section 4.2). Sample T ← Z(k+1)×(m+n′−1)

p and R ← Zk×mp

and output

skf =
(

[T + W]2, [TL1 + U(In ⊗R)]2, [TL0 + VR]2, [R]2
)

and f.

where T refers to the matrix composed of the right most n′ columns of T.
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– Dec((skf , f), (ctx,z,x)): On input key:

skf =
(

[K1]2, [K2]2, [K3]2, [R]2
)

and f

and ciphertext:
ctx,z =

(
[c>0]1, [c>1]1, [c>2]1

)
and x

the decryption works as follows:
1. compute

[p>1]T = e([c>1]1, [In′ ]2) · e([c>0]1, [−K1]2) (9)

2. compute

[p>2]T = e([c>0]1, [K2(x⊗ Im) + K3]2) · e([−c>2]1, [R]2) (10)

3. run df,x ← rec(f,x) (cf. Section 4.2), compute

[D]T = [(p>1,p
>
2)df,x]T (11)

and use brute-force discrete log to recover D as the output.

Correctness. For ctx,z and skf , we have

p>1 = z> − s>A>T (12)
p>2 = s>A>TL1(x⊗ Im) + s>A>TL0 (13)

(p>1,p
>
2)df,x = f(x)>z (14)

Here (14) follows from the fact that

(p>1,p
>
2) = pgb(f,x, z; (s>A>T)>) and df,x = rec(f,x)

and reconstruction of the partial garbling in (9); the remaining two equalities follow
from:

(12) z> − s>A>T = (z> + s>A>W) · In′ − s>A> · (T+W)

(13) s>A>TL1(x⊗ Im) + s>A>TL0 = s>A> ·
(
(TL1 +U(In ⊗R))(x⊗ Im) + (TL0 +VR)

)
−
(
s>A>U(x⊗ Ik) + s>A>V

)
·R

in which we use the equality (In ⊗R)(x⊗ Im) = (x⊗ Ik)R. This readily proves the
correctness.

Remark 2 (Comparison with W17 [40]). The ciphertext in [40] contains a term of the
form

[x>⊗s>A>V+s>A>U]1 ∈ Gkn1 in the place of [s>A>U(x⊗Ik)+s>A>V]1 ∈ Gk1

where U ← Z(k+1)×kn
p ,V ← Z(k+1)×k

p . The secret key sizes in both our schemes
and that in [40] are O(mn + n′). In our scheme, the multiplicative factor of n comes
at the cost of a smaller ciphertext. In [40], the multiplicative factor of n comes from a
locality requirement that each column of L1(x ⊗ Im) + L0 depends on a single entry
of x, which can be achieved generically at the cost of a blow-up of n. We remove the
locality requirement in our scheme.
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Security. We have the following theorem with the proof shown in the subsequent sub-
section.

Theorem 1. Our one-slot scheme Πone for attribute-weighted sums described in this
section achieves simulation-based semi-adaptive security under the MDDH assumption
in G1 and in G2.

5.2 Simulator

We start by describing the simulator.

– Setup∗(1λ, 1n, 1n
′
): Run G = (p,G1,G2,GT , e)← G(1λ). Sample

A← Z(k+1)×k
p and W← Z(k+1)×n′

p , U← Z(k+1)×kn
p , V← Z(k+1)×k

p

c← Zk+1
p w̃← Zn′p , ṽ← Zkp

and output

mpk =
(
G, [A>]1, [A>W]1, [A>U]1, [A>V]1

)
msk∗ =

(
W, U, V, w̃, ṽ, c,C⊥,A,a⊥

)
where (A|c)>(C⊥|a⊥) = Ik+1. Here we assume that (A|c) has full rank, which
happens with probability 1− 1/p.

– Enc∗(msk∗,x∗): Output

ct∗ =
(

[c>]1, [w̃>]1, [ṽ>]1
)

and x∗.

– KeyGen∗(msk∗,x∗, f, µ ∈ Zp): Run

(L1,L0)← lgen(f) and ((p∗1)>, (p∗2)>)← pgb∗(f,x∗, µ).

Sample û← Znmp , T← Z(k+1)×(m+n′−1)
p and R← Zk×mp and output

sk∗f =
(
C⊥ · sk∗f [1] + a⊥ · sk∗f [2], [R]2

)
and f (15)

where

sk∗f [1] =
(

[A>T + A>W]2, [A>TL1 + A>U(In ⊗R)]2, [A>TL0 + A>VR]2
)

sk∗f [2] =
(

[−(p∗1)> + w̃>]2, [û>]2, [(p∗2)> − û>(x∗ ⊗ Im) + ṽ>R]2
)

Here T refers to the matrix composed of the right most n′ columns of T. That is,

sk
∗
f =

 [C⊥(A>T+A>W) +a⊥(−(p∗1)> + w̃>)]2,

[C⊥(A>TL1 +A>U(In ⊗R)) +a⊥(û>)]2 , [R]2

[C⊥(A>TL0 +A>VR) +a⊥
(
(p ∗2)

> − û>(x∗ ⊗ Im) + ṽ>R
)
]2
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Remark 3 (decryption checks). As a sanity check, we check that an adversary cannot
use the decryption algorithm to distinguish between the real and simulated output.

Observe that when we decrypt the simulated ciphertext ct∗x∗ ← Enc∗(msk∗,x∗)
with the simulated secret key sk∗f ← KeyGen∗(msk∗,x∗, f, f(x∗)>z∗), the sk∗f [1] part
cancels out and leaves just the sk∗f [2] part since c>C⊥ = 0, c>a⊥ = 1 and we end up
with ((p∗1)>, (p∗2)>)df,x∗ = f(x∗)>z∗ where ((p∗1)>, (p∗2)>)← pgb∗(f,x∗, f(x∗)>z∗).

Similarly, when we decrypt a normal ciphertext ctx,z ← Enc(mpk, (x, z)) corre-
sponding to any (x, z) with a simulated secret key, the sk∗f [2] part cancels out and leaves
just the sk∗f [1] part since A>C⊥ = I,A>a⊥ = 0. We end up with (p>1,p

>
2)df,x =

f(x)>z where (p>1,p
>
2) = pgb(f,x, z; (s>A>T)>) as in the real Dec algorithm.

5.3 Proof

With our simulator, we prove the following theorem which implies Theorem 1.

Theorem 2. For all A, there exist B1 and B2 with Time(B1),Time(B2) ≈ Time(A)
such that

AdvΠone

A (λ) ≤ Adv
MDDH1

k,k+1

B1
(λ) + Adv

MDDHn
k,mQ

B2
(λ) + 1/p

where n is length of public input x∗ in the challenge, m is the parameter depending on
size of function f and Q is the number of key queries.

Note that this yields a tight security reduction to the k-Lin assumption. Before we pro-
ceed to describe the game sequence and proof, we state the following lemma we will
use.

Lemma 3 (statistical lemma). For any full-rank (A|c) ∈ Z(k+1)×k
p × Zk+1

p , we have{
A>W, c>W : W← Z(k+1)×k

p

}
≡
{
A>W, w̃> : W← Z(k+1)×k

p , w̃← Zkp
}
.

Game sequence. We use (x∗, z∗) to denote the semi-adaptive challenge and for nota-
tional simplicity, assume that all key queries fj share the same parameter m. We prove
Theorem 2 via a series of games.

Game0: Real game.

Game1: Identical to Game0 except that ct∗ for (x∗, z∗) is given by

ct∗ =
(

[ c> ]1, [(z∗)> + c>W]1, [ c> U(x∗ ⊗ Ik) + c> V]1
)

where c← Zk+1
p . We claim that Game0 ≈c Game1. This follows from MDDH1

k,k+1

assumption:
[A>]1, [s>A>]1 ≈c [A>]1, [c>]1 .

In the reduction, we sample W,U,V honestly and use them to simulate mpk and
KeyGen(msk, ·) along with [A>]1; the challenge ciphertext ct∗ is generated using
the challenge term given above.

18



Game2: Identical to Game1 except that the j-th query fj to KeyGen(msk, ·) is an-
swered by

skfj =
(
C⊥ · skfj [1] + a⊥ · skfj [2], [Rj ]2

)
with

skfj [1] =
(
[A>Tj +A>W]2, [A

>TjL1,j +A>U(In ⊗Rj)]2, [A
>TjL0,j +A>VRj ]2

)
skfj [2] =

(
[c>Tj + c>W]2, [c

>TjL1,j + c>U(In ⊗Rj)]2, [c
>TjL0,j + c>VRj ]2

)
where (L1,j ,L0,j) ← lgen(fj), Tj ← Z(k+1)×(m+n′−1)

p , Rj ← Zk×mp , c is the
randomness in ct∗ and C⊥,a⊥ are defined such that (A|c)>(C⊥|a⊥) = Ik+1 (cf.
Setup∗ in Section 5.2). By basic linear algebra, we have Game1 = Game2.

Game3: Identical to Game2 except that we replace Setup,Enc with Setup∗,Enc∗

where ct∗ is given by

ct∗ =
(

[c>]1, [w̃>]1, [ṽ>]1
)

and replace KeyGen(msk, ·) with KeyGen∗3(msk∗, ·), which works as KeyGen(msk, ·)
in Game2 except that, for the j-th query fj , we compute

skfj [2] =

 [t̃
>

j − (z∗)> + w̃>]2 , [ t̃>j L1,j + ũ> (In ⊗Rj)]2,

[ t̃>j L0,j −ũ>(In ⊗Rj)(x
∗ ⊗ Im) + ṽ>Rj ]2


where w̃, ṽ are given in msk∗ (output by Setup∗) and ũ ← Zknp , tj ← Zm+n′−1

p ,
Rj ← Zk×mp . We claim that Game2 ≈s Game3. This follows from the following
statement: for any full-rank (A|c), we have

(A>U, c>U, A>W, c>W, A>V, c>V, A>Tj , c
>Tj)

≡ (A>U, ũ> , A>W, w̃> − (z∗)> , A>V, ṽ> − ũ>(x∗ ⊗ Ik) , A>Tj , t̃
>
j )

which is implied by Lemma 3.

Game4: Identical to Game3 except that we replace KeyGen∗3 with KeyGen∗4 which
works as KeyGen∗3 except that, for the j-th query fj , we compute

skfj [2] =
(

[t̃
>

j−(z∗)>+w̃>]2, [t̃>jL1,j+ û>j ]2, [t̃>jL0,j− û>j (x∗⊗Im)+ṽ>Rj ]2
)

where ûj ← Znmp and Rj ← Zk×mp . We claim that Game3 ≈c Game4. This
follows from MDDHn

k,mQ assumption which tells us that{
[ũ>(In ⊗Rj)]2, [Rj ]2

}
j∈[Q]

≈c
{

[û>j ]2 , [Rj ]2
}
j∈[Q]

where Q is the number of key queries.

Game5: Identical to Game4 except that we replace KeyGen∗4 with KeyGen∗; this is the
ideal game. We claim that Game4 ≈s Game5. This follows from the privacy of
partial garbling scheme in Section 4.2.

We prove the indistinguishability of adjacent games listed above in the full paper.
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6 Πext: Extending Πone

In this section, we extend our one-slot FE scheme Πone in Section 5 to handle the ran-
domization offsets w>r. The scheme achieves simulation-based semi-adaptive security
under k-Linear assumption.

Extension. The extended scheme is the same as a one-slot FE for attribute-weighted
sums, except we replace functionality ((x, z), f) 7→ f(x)>z with

((x, z‖w), (f, [r]2)) 7→ [f(x)>z + w>r]T

where w, r ∈ Zkp . That is, we make the following modifications:

– Enc takes z‖w instead of z as the second input;
– KeyGen,KeyGen∗ takes (f, [r]2) instead of f as input;
– in correctness, decryption computes [f(x)>z + w>r]T instead of f(x)>z;
– in the security definition,A produces (x∗, z∗‖w∗) instead of (x∗, z∗), and KeyGen∗

gets [f(x∗)>z∗ + (w∗)>r]2 instead of f(x∗)>z∗.

In particular, correctness states that:

Dec(Enc(mpk, (x, z‖w)),KeyGen(msk, (f, [r]2))) = [f(x)>z + w>r]T

Construction overview. To obtain a scheme with the extension, the idea —following
the IPFE in [6]— is to augment the previous construction Πone with [A>W0]1 in mpk,
[w> + s>A>W0]1 in the ciphertext, and [W0r]2 in the secret key. During decryption,
we will additionally compute

e([w> + s>A>W0]1, [r]2) · e([s>A>]1, [W0r]2)−1 = [w>r]T

This works for correctness, but violates security since the decryptor learns both [f(x)>z]T
and [w>r]T instead of just the sum. To avoid this leakage while preserving correctness,
we will carefully embed W0r into the secret key for Πone, while relying on the exten-
sion of the garbling scheme for handling shifts to argue both correctness and security,
cf. Section 4.2. We will describe the scheme and simulator but defer the details for the
proof to full paper.

6.1 Our scheme

Scheme. Our extended one-slot FE scheme Πext in prime-order bilinear group is de-
scribed as follows. The boxes indicate the changes from the scheme in Section 5.1.

– Setup(1λ, 1n, 1n
′
): Run G = (p,G1,G2,GT , e)← G(1λ). Sample A← Z(k+1)×k

p

and

W← Z(k+1)×n′
p , W0 ← Z(k+1)×k

p , U← Z(k+1)×kn
p , V← Z(k+1)×k

p

and output

mpk =
(
G, [A>]1, [A>W]1, [A>U]1, [A>V]1, [A>W0]1

)
msk =

(
W, U, V, W0

)
.
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– Enc(mpk, (x, z‖w)): Sample s← Zkp and output

ctx,z‖w =

(
[s>A>]1, [z> + s>A>W]1, [s>A>U(x⊗ Ik) + s>A>V]1,

[w> + s>A>W0]1

)
, x.

– KeyGen(msk, (f, [r]2)): Run (L1,L0)← lgen(f) where L1 ∈ Z(m+n′−1)×mn
p ,L0 ∈

Z(m+n′−1)×m
p (cf. Section 4.2). Sample T ← Z(k+1)×(m+n′−1)

p and R ← Zk×mp

and output9

skf,r =
(

[T+W]2, [TL1+U(In⊗R)]2, [TL0−W0r · e>1 +VR]2, [R]2
)
, (f, [r]2 )

where T refers to the matrix composed of the right most n′ columns of T.
– Dec((skf,r, (f, [r]2 )), (ctx,z‖w,x)): On input key:

skf,r =
(

[K1]2, [K2]2, [K3]2, [R]2
)

and (f, [r]2)

and ciphertext:

ctx,z‖w =
(

[c>0]1, [c>1]1, [c>2]1, [c>3]1
)

and x

the decryption works as follows:
1. compute

[p>1]T = e([c>1]1, [In′ ]2) · e([c>0]1, [−K1]2) (16)
2. compute

[p>2]T = e([c>0]1, [K2(x⊗ Im) + K3]2) · e([−c>2]1, [R]2) · e([c>3]1, [r · e>1]2)
(17)

3. run df,x ← rec(f,x) (see Section 4.2), output

[D]T = [(p>1,p
>
2)df,x]T (18)

Simulator. The simulator for Πext is as follows. The boxes indicate the changes from
the simulator for Πone in Section 5.2.

– Setup∗(1λ, 1n, 1n
′
): Run G = (p,G1,G2,GT , e)← G(1λ). Sample

A← Z(k+1)×k
p and c← Zk+1

p and

W← Z(k+1)×n′
p , W0 ← Z(k+1)×k

p , U← Z(k+1)×kn
p , V← Z(k+1)×k

p

w̃← Zn′p , w̃0 ← Zkp , ṽ← Zkp
and output

mpk =
(
G, [A>]1, [A>W]1, [A>W0]1 , [A>U]1, [A>V]1

)
msk∗ =

(
W, W0 , U, V, w̃, w̃0 , ṽ, c,C

⊥,A,a⊥
)

where (A|c)>(C⊥|a⊥) = Ik+1. Here we assume that (A|c) has full rank, which
happens with probability 1− 1/p.

9 We use r instead of [r]2 in the subscript here and note that the function is described by (f, [r]2)
rather than (f, r).
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– Enc∗(msk∗,x∗): Output

ct∗ =
(

[c>]1, [w̃>]1, [ṽ>]1, [w̃>0]1
)

and x∗.

– KeyGen∗(msk∗,x∗, (f, [r]2), [µ]2): Run

(L1,L0)← lgen(f) and ([(p∗1)>]2, [(p
∗
2)>]2)← pgb∗(f,x∗, [µ]2 ).

Here, we use the fact that pgb∗(f,x∗, ·) is an affine function. Sample û ← Znmp ,

T← Z(k+1)×(m+n′−1)
p and R← Zk×mp and output

sk∗f,r =
(
C⊥ · sk∗f,r[1] + a⊥ · sk∗f,r[2], [R]2

)
and (f, [r]2) (19)

where

sk∗f,r[1] =
(

[A>T + A>W]2, [A>TL1 + A>U(In ⊗R)]2,

[A>TL0 − A>W0r · e>1 + A>VR]2
)

sk∗f,r[2] =
(

[−(p∗1)> + w̃>]2, [û>]2, [(p∗2)> − û>(x∗ ⊗ Im)− w̃>0r · e>1 + ṽ>R]2
)

Here T refers to the matrix composed of the right most n′ columns of T. That is,

sk∗f,r =
[C⊥(A>T + A>W) +a⊥(−(p∗1)

> + w̃>)]2,

[C⊥(A>TL1 + A>U(In ⊗R)) +a⊥(û>)]2 , [R]2

[C⊥(A>TL0 − A
>
W0r · e

>
1 + A>VR) +a⊥

(
(p ∗2)

> − û>(x∗ ⊗ Im)− w̃
>
0 r · e>1 + ṽ>R

)
]2



7 Πubd: Unbounded-Slot Scheme

In this section, we describe our unbounded-slot FE scheme. We give a generic transfor-
mation from scheme Πext in Section 6 and present a self-contained description of the
scheme in the full paper.

7.1 Scheme

Let Πext = (Setupext,Encext,KeyGenext,Decext) be the extended one-slot FE scheme
in Section 6. Our unbounded-slot FE scheme Πubd is as follows:

– Setup(1λ, 1n, 1n
′
): Run

(mpk1,msk1)← Setupext(1
λ, 1n, 1n

′
); (mpk2,msk2)← Setupext(1

λ, 1n, 1n
′
)

and output

mpk = (mpk1,mpk2) and msk = (msk1,msk2).
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– Enc(mpk, (xi, zi)i∈[N ]): Sample w2, . . . ,wN ← Zkp, compute

ct1 ← Encext(mpk1, (x1, z1‖ −
∑
i∈[2,N ] wi))

cti ← Encext(mpk2, (xi, zi‖wi)), ∀i ∈ [2, N ]

and output
ct(xi,zi) = (ct1, . . . , ctN ) and (xi)i∈[N ].

– KeyGen(msk, f): Pick r← Zkp , compute

skf,1 ← KeyGenext(msk1, (f, [r]2)); skf,2 ← KeyGenext(msk2, (f, [r]2))

and output
skf = (skf,1, skf,2, [r]2) and f.

– Dec((skf , f), (ct(xi,zi), (xi)i∈[N ])): Parse ciphertext and key as

skf = (skf,1, skf,2, [r]2) and ct(xi,zi) = (ct1, . . . , ctN ).

We proceed as follows:
1. Compute

[D1]T ← Decext
(
(skf,1, (f, [r]2)), (ct1,x1)

)
; (20)

2. For all i ∈ [2, N ], compute

[Di]T ← Decext
(
(skf,2, (f, [r]2)), (cti,xi)

)
; (21)

3. Compute
[D]T = [D1]T · · · [DN ]T (22)

and output D via brute-force discrete log.

Correctness. For ct(xi,zi) with randomness w2, . . . ,wN and skf with randomness r,
we have

D1 = f(x1)>z1 −
∑
i∈[2,N ] w

>
i r (23)

Di = f(xi)
>zi + w>i r, ∀i ∈ [2, N ] (24)

D =
∑
i∈[N ] f(xi)

>zi (25)

Here (23) and (24) follow from the correctness of Πext and the last (25) is implied
by (23) and (24). This readily proves the correctness.

Security. We have the following theorem with the proof shown in the subsequent sub-
section.

Theorem 3. Assume that extended one-slot scheme Πext achieves simulation-based
semi-adaptive security, our unbounded-slot FE scheme Πubd described in this section
achieves simulation-based semi-adaptive security under the k-Linear assumption in G2.
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7.2 Simulator

Let (Setup∗ext,Enc
∗
ext,KeyGen

∗
ext) be the simulator for Πext, we start by describing the

simulator for Πubd. As written, the adversary needs to commit to the length N in ad-
vance; this is merely an artifact of our formalization of simulation-based security, and
can be avoided by having Enc∗ pass auxiliary information to KeyGen∗.

– Setup∗(1λ, 1n, 1n
′
, 1N ): Sample w2, . . . ,wN ← Zkp, run

(mpk1,msk∗1)← Setup∗ext(1
λ, 1n, 1n

′
); (mpk2,msk2)← Setupext(1

λ, 1n, 1n
′
)

and output

mpk = (mpk1,mpk2) and msk∗ = (msk∗1,msk2,w2, . . . ,wN ).

– Enc∗(msk∗, (x∗i )i∈[N ]): Compute

ct∗1 ← Enc∗ext(msk∗1,x
∗
1) and cti ← Encext(mpk2, (x

∗
i ,0‖wi)), ∀i ∈ [2, N ]

and output
ct∗ = (ct∗1, ct2, . . . , ctN ) and (x∗i )i∈[N ].

– KeyGen∗(msk∗, (x∗i )i∈[N ], f, µ ∈ Zp): Pick r← Zkp , compute

sk∗f,1 ← KeyGen∗ext(msk∗1,x
∗
1, (f, [r]2), [µ−

∑
i∈[2,N ] w

>
i r]2)

skf,2 ← KeyGenext(msk2, (f, [r]2))

and output
sk∗f = (sk∗f,1, skf,2, [r]2) and f.

7.3 Proof

With our simulator, we prove the following theorem which implies Theorem 3.

Theorem 4. For all A, there exist B1 and B2 with Time(B1),Time(B2) ≈ Time(A)
such that

AdvΠubd

A (λ) ≤ (2N − 1) · AdvΠext

B1
(λ) + (N − 1) · AdvMDDH1

k,Q

B2
(λ)

where Q is the number of key queries and N is number of slots.

Game sequence. We use (x∗1, z
∗
1, . . . ,x

∗
N , z

∗
N ) to denote the semi-adaptive challenge

and prove Theorem 4 via the following game sequence summarized in Fig 4, where

Game0 ≈c Game1 = Game2.0 ≈c Game2.1 ≈c Game2.2 ≈c Game2.3

. . .

= GameN.0 ≈c GameN.1 ≈c GameN.2 ≈c GameN.3
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Game0: Real game.

Game1: Identical to Game0 except for the boxed terms below:
– we generate mpk = (mpk1,mpk2) and msk = ( msk∗1 ,msk2) where

(mpk1,msk∗1)← Setup∗ext(1
λ, 1n, 1n

′
) ; (mpk2,msk2)← Setupext(1

λ, 1n, 1n
′
)

– the challenge ciphertext for (x∗1, z
∗
1, . . . ,x

∗
N , z

∗
N ) is ct∗ = ( ct∗1 , ct2, . . . , ctN )

where

ct∗1 ← Enc∗ext(msk∗1,x
∗
1) ; cti ← Encext(mpk2, (x

∗
i , z
∗
i ‖wi)), ∀i ∈ [2, N ]

– the key for the j-th query fj is skfj = ( sk∗fj ,1 , skfj ,2, [rj ]2) where

sk∗fj ,1 ← KeyGen∗ext
(
msk∗1,x

∗
1, (fj , [rj ]2), [fj(x

∗
1)>z∗1 −

∑
i∈[2,N ] w

>
i rj ]2

)
skfj ,2 ← KeyGenext(msk2, (fj , [rj ]2));

where w2, . . . ,wN ← Zkp and rj ← Zkp for all j ∈ [Q]. We claim that Game0 ≈c
Game1. This follows from the simulation-based semi-adaptive security of Πext.

Gameη.0 for η ∈ [2, N ]: Identical to Game1 except for the boxed terms below:
– the challenge ciphertext for (x∗1, z

∗
1, . . . ,x

∗
N , z

∗
N ) is ct∗ = (ct∗1, ct2, . . . , ctN )

where

ct∗1 ← Enc∗ext(msk∗1,x
∗
1); cti ←

{
Encext(mpk2, (x

∗
i , 0 ‖wi)) i ∈ [2, η − 1]

Encext(mpk2, (x
∗
i , z
∗
i ‖wi)) i ∈ [η,N ]

– the key for the j-th query fj is skfj = (sk∗fj ,1, skfj ,2, [rj ]2) where

sk∗fj ,1 ← KeyGen∗ext
(
msk∗1,x

∗
1, (fj , [rj ]2), [

∑
i∈[η−1] fj(x

∗
i )
>z∗i −

∑
i∈[2,N ] w

>
i rj ]2

)
skfj ,2 ← KeyGenext(msk2, (fj , [rj ]2));

where w2, . . . ,wN ← Zkp and rj ← Zkp for all j ∈ [Q].

Gameη.1 for η ∈ [2, N ]: Identical to Gameη.0 except for the boxed terms below:

– we generate mpk = (mpk1,mpk2) and msk = (msk∗1, msk∗2 ) where

(mpk1,msk∗1)← Setup∗ext(1
λ, 1n, 1n

′
); (mpk2,msk∗2)← Setup∗ext(1

λ, 1n, 1n
′
)

– the challenge ciphertext for (x∗1, z
∗
1, . . . ,x

∗
N , z

∗
N ) is ct∗ = (ct∗1, ct2, . . . , ctη−1,

ct∗η , ctη+1, . . . , ctN ) where

ct∗1 ← Enc∗ext(msk∗1,x
∗
1),


cti ← Encext(mpk2, (x

∗
i ,0‖wi)) i ∈ [2, η − 1]

ct∗η ← Enc∗ext(msk∗2,x
∗
η) i = η

cti ← Encext(mpk2, (x
∗
i , z
∗
i ‖wi)) i ∈ [η + 1, N ]
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– the key for the j-th query fj is skfj = (sk∗fj ,1, sk
∗
fj ,2 , [rj ]2) where

sk∗fj ,1 ← KeyGen∗ext
(
msk∗1,x

∗
1, (fj , [rj ]2), [

∑
i∈[η−1] fj(x

∗
i )
>z∗i−

∑
i∈[2,N ] w

>
i rj ]2

)
sk∗fj ,2 ← KeyGen∗ext(msk∗2,x

∗
η, (fj , [rj ]2), [fj(x

∗
η)>z∗η + w>ηrj ]2)

where w2, . . . ,wN ← Zkp and rj ← Zkp for all j ∈ [Q]. We claim that Gameη.0 ≈c
Gameη.1. This follows from the simulation-based semi-adaptive security of Πext.

Gameη.2 for η ∈ [2, N ]: Identical to Gameη.1 except for the boxed terms below:
– the key for the j-th query fj is skfj = (sk∗fj ,1, sk

∗
fj ,2, [rj ]2) where

sk∗fj ,1 ← KeyGen∗ext
(
msk∗1,x

∗
1, (fj , [rj ]2), [

∑
i∈[η] fj(x

∗
i )
>z∗i −

∑
i∈[2,N ] w

>
i rj ]2

)
sk∗fj ,2 ← KeyGen∗ext(msk∗2,x

∗
η, (fj , [rj ]2), [ w>ηrj ]2)

where w2, . . . ,wN ← Zkp and rj ← Zkp for all j ∈ [Q]. We claim that Gameη.1 ≈c
Gameη.2. This follows from Lemma 1 w.r.t. wη and fj(x∗η)>z∗η which is implied by
MDDH1

k,Q assumption: for all fj ,x∗η, z
∗
η ,

{ sk∗fj,1︷ ︸︸ ︷
[−w>ηrj ]2,

sk∗fj,2︷ ︸︸ ︷
[ fj(x

∗
η)>z∗η + w>ηrj ]2, [rj ]2

}
j∈[Q]

≈c
{

[ fj(x
∗
η)>z∗η −w>ηrj ]2, [w>ηrj ]2, [rj ]2

}
j∈[Q]

(26)

where wη, rj ← Zkp for all j ∈ [Q].

Gameη.3 for η ∈ [2, N ]: Identical to Gameη.2 except for the boxed terms below:

– we generate mpk = (mpk1,mpk2) and msk = (msk∗1, msk2 ) where

(mpk1,msk∗1)← Setup∗ext(1
λ, 1n, 1n

′
), (mpk2,msk2)← Setupext(1

λ, 1n, 1n
′
)

– the challenge ciphertext for (x∗1, z
∗
1, . . . ,x

∗
N , z

∗
N ) is ct∗ = (ct∗1, ct2, . . . , ctη−1,

ctη , ctη+1, . . . , ctN ) where

ct∗1 ← Enc∗ext(msk∗1,x
∗
1),


cti ← Encext(mpk2, (x

∗
i ,0‖wi)) i ∈ [2, η − 1]

cti ← Encext(mpk2, (x
∗
η,0‖wη)) i = η

cti ← Encext(mpk2, (x
∗
i , z
∗
i ‖wi)) i ∈ [η + 1, N ]

– the key for the j-th query fj is skfj = (sk∗fj ,1, skfj ,2 , [rj ]2) where

sk∗fj ,1 ← KeyGen∗ext
(
msk∗1,x

∗
1, (fj , [rj ]2), [

∑
i∈[η] fj(x

∗
i )
>z∗i−

∑
i∈[2,N ] w

>
i rj ]2

)
skfj ,2 ← KeyGenext(msk2, (fj , [rj ]2))
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Game ct∗ skf Remark
ct1 cti, 1 < i < η ctη cti, η < i ≤ N skf,1 skf,2

0 real: x∗1, z∗1‖ −
∑

wi real: x∗i , z
∗
i ‖wi real: real: Real game

1 sim : x∗1 real: x∗i , z
∗
i ‖wi sim : [f(x∗1)>z∗1 −

∑
w>i r]2 real: Πext

η.0 sim: x∗1 real:x∗i , 0‖wi real: x∗η, z
∗
η‖wη real:x∗i , z

∗
i ‖wi sim: [

∑
i<η f(x∗i )

>z∗i −
∑

w>i r]2 real:

η.1 sim: x∗1 real:x∗i ,0‖wi sim :x∗η real:x∗i , z
∗
i ‖wi sim: [

∑
i<η f(x∗i )

>z∗i −
∑

w>i r]2 sim : [f(x∗η)>z∗η + w>ηr]2 Πext

η.2 sim: x∗1 real:x∗i ,0‖wi sim: x∗η real:x∗i , z
∗
i ‖wi sim: [

∑
i≤η f(x∗i )

>z∗i −
∑

w>i r]2 sim: [w>ηr]2 MDDH

η.3 sim: x∗1 real:x∗i ,0‖wi real :x∗η, 0‖wη real:x∗i , z
∗
i ‖wi sim: [

∑
i≤η f(x∗i )

>z∗i −
∑

w>i r]2 real : Πext

N.3 sim: x∗1 real: x∗i ,0‖wi sim: [
∑
i∈[N ] f(x∗i )

>z∗i −
∑

w>i r]2 real : Simulator

Fig. 4. Game sequence for Πubd with η ∈ [2, N ], where Game2.0 = Game1,Game3.0 = Game2,3, . . . ,GameN,0 = GameN−1,3. Each cell is in the
format “xxx:yyy” where xxx ∈ {real, sim} indicates whether the ciphertext/key component is generated using real algorithm or simulator and yyy gives
out the information fed to algorithm/simulator. Throughout, the first input to KeyGenext/ KeyGen

∗
ext for generating skf,1 is (f, [r]2); the same applies to

skf,2. The sum of w>i r is always over i ∈ [2, N ].
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where w2, . . . ,wN ← Zkp and rj ← Zkp for all j ∈ [Q]. We claim that Gameη.2 ≈c
Gameη.3. This follows from the simulation-based semi-adaptive security of Πext

with the fact fj(x∗η)>0 + w>ηr = w>ηr.

Here we have Game2.0 = Game1 and Gameη.0 = Gameη−1.3 for all η ∈ [3, N ].
Note that GameN.3 corresponds to the output of the simulator in the ideal game. We
summarize the game sequence in Fig 4. We prove the indistinguishability of adjacent
games listed above in the full paper.
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