
Reverse Firewalls for Actively Secure MPCs

Suvradip Chakraborty?, Stefan Dziembowski??, and Jesper Buus Nielsen? ? ?

Abstract. Reverse firewalls were introduced at Eurocrypt 2015 by Miro-
nov and Stephens-Davidowitz, as a method for protecting cryptographic
protocols against attacks on the devices of the honest parties. In a nut-
shell: a reverse firewall is placed outside of a device and its goal is to
“sanitize” the messages sent by it, in such a way that a malicious de-
vice cannot leak its secrets to the outside world. It is typically assumed
that the cryptographic devices are attacked in a “functionality-preserving
way” (i.e. informally speaking, the functionality of the protocol remains
unchanged under this attacks). In their paper, Mironov and Stephens-
Davidowitz construct a protocol for passively-secure two-party compu-
tations with firewalls, leaving extension of this result to stronger models
as an open question.
In this paper, we address this problem by constructing a protocol for se-
cure computation with firewalls that has two main advantages over the
original protocol from Eurocrypt 2015. Firstly, it is a multiparty com-
putation protocol (i.e. it works for an arbitrary number n of the parties,
and not just for 2). Secondly, it is secure in much stronger corruption
settings, namely in the active corruption model. More precisely: we con-
sider an adversary that can fully corrupt up to n − 1 parties, while the
remaining parties are corrupt in a functionality-preserving way.
Our core techniques are: malleable commitments and malleable non-
interactive zero-knowledge, which in particular allow us to create a novel
protocol for multiparty augmented coin-tossing into the well with reverse
firewalls (that is based on a protocol of Lindell from Crypto 2001).

1 Introduction

The traditional approach to cryptography is to design schemes in a black-box
way, i.e, under the assumption that the devices that execute cryptographic algo-
rithms are fully trusted. Abstract, “black-box” cryptography is currently well-
understood, and there exist several algorithms that implement basic crypto-
graphic tasks in a way that is secure against a large class of attacks (under very
plausible assumptions). Therefore, one can say that cryptographic algorithms, if
implemented correctly, are the most secure part of digital systems.

Unfortunately, once we get closer to the real “physical world” the situation
becomes much less satisfactory. This is because several real-life attacks on cryp-
tographic devices are based on attacking the implementation, not the abstract

? Institute of Science and Technology Austria. suvradip.chakraborty@ist.ac.at
?? University of Warsaw. s.dziembowski@crypto.edu.pl

? ? ? Aarhus University. jbn@cs.au.dk

mathematical algorithm. In particular, the adversary can sometimes tamper with
the device and change the way in which it behaves (e.g. by installing so-called
“Trojan horses” on it). What can be viewed as the extreme case of the tampering
attacks are scenarios in which the device is produced by an adversarial manu-
facturer, who maliciously modifies its design. Such attacks are quite realistic,
since, for the economical reasons, private companies and government agencies
are often forced to use hardware that they did not produce themselves. Another
source of such attacks are the insiders that originate from within a given com-
pany or organization. Last but not least, some attacks of this type can originate
from the governments. The revelations of Edward Snowden disclosed a massive
scale of the US government cyberattacks directed against the individuals (both
within the US and abroad). It is generally believed that many other governments
take similar actions, one recent example being the “Chinese hack chip” attack
(revealed in October 2018) that reached almost 30 U.S. companies, including
Amazon and Apple.

Countermeasures. Starting from late 1990s there has been a significant effort in
the cryptographic community to address this kind of “implementation attacks”,
by extending the black-box model to cover also them (see, e.g., [25, 23]). More re-
cently, Mironov and Stephens-Davidowitz [26] put forward another method that
they called reverse firewalls. On a high level (for a formal definition see Sec. 2.1),
this technique addresses the problem of information leakage from cryptographic
implementations that are malicious, either because they were produced by an
adversarial manufacturer, or because they are were maliciously modified at a
later stage. More concretely, reverse firewalls are used to protect against attacks
in which a malicious implementation leaks some of its secrets via so-called “sub-
liminal channels” [28], i.e, by encoding this secrets in innocently-looking protocol
messages. In a nutshell, a reverse firewall is an external device that is put be-
tween a party P and the external world in order to “sanitize” the messages that
are sent and received by P . A reverse firewall is not a trusted third party, and,
in particular, it cannot be used to keep P ’s secrets and to perform operations
“in P ’s name”. Reverse firewalls come in different variants. The most popular
one, that we also consider in this paper, requires that the reverse firewalls pro-
vide protection only against the aforementioned “informational leakage” attack
(and not against attacks that may influence the output of the computation). In
particular, in this model, we are not concerned with the correctness of the com-
putation. More formally, we assume that all the adversarial tampering cannot
change the functionality of the entire protocol. This type of attacks are called
“functionality maintaining” corruptions [26]. The authors of [26] provide a con-
struction of a two-party passively secure computation protocol with a reverse
firewall, leaving the generalization of this construction to stronger security no-
tions as an open problem. Reverse firewalls has been recently used in a very
practical context by Dauterman et al. in [12] in a design of a True2F system
that is based on a firewalled key generation and ECDSA signature generation.
One of the potential applications of this system are the cryptocurrency wallets.

2

Our contribution. We address the open problem of [26] by providing a con-
struction of reverse firewalls for secure computation in a much stronger security
model, and in a more general setting. More concretely, we show a solution to the
problem by constructing multiparty computation protocols with active security.
Recall that in the active security settings the corrupt parties can misbehave in
an arbitrary way, i.e., the adversary takes a full control over them, and, besides
learning their inputs, can instruct them to take any actions of his choice. It is
well known [19, 18] that such protocols can be constructed even if a majority of
parties is corrupt (assuming that no fairness is guaranteed, i.e., the adversary
can prevent the honest parties from learning their outputs, after she learns the
outputs of corrupt parties). In this work, we show an MPC protocol (based on
[19, 18]), together with a reverse firewall for it, that provides security in a very
strong sense: it can tolerate up to n− 1 “standard” (active) corruptions (where
n is the number of parties) plus a corruption of the remaining parties, as long
as it is “functionality maintaining” and this party is protected by a reverse fire-
wall. The core technique that we use in this construction is a novel protocol for
multiparty augmented parallel coin-tossing into the well with reverse firewalls
(our starting point for this construction is a protocol of Lindell [24]).

Our result shows the general feasibility of MPCs with reverse firewalls. While
we do not focus on concrete applications, we believe that our approach can lead to
some practical concrete constructions, especially in the light of [12] (see above).
For example, to further increase the security of hardware wallets (e.g. in critical
applications such as cryptocurrency exchanges), one could develop reverse fire-
walls for threshold ECDSA (see, e.g., [17, 14]). Our results show that this is in
principle possible, but further work to bring these ideas to practice is needed.

Other related work. After the publication of [26] there has been some follow-up
work on the reverse firewalls. In particular [13] constructed a firewalled protocol
for CCA-secure message transmission, and [10] provide protocols for oblivious
signature-based envelopes with firewalls, and oblivious transfer (this is done us-
ing a new technique called “malleable smooth projective hash function” that
they develop in this paper). In [3] Ateniese et al. use reverse firewalls to con-
struct signature schemes secure against arbitrary tampering. Reverse firewalls
are also related to several earlier topics in cryptography such as the algorithm-
substitution attacks, subliminal channels and divertible protocols, combiners,
kleptography, collusion-free protocols and mediated collusion-free protocols and
more. Due to space constraints, we refer the reader to Sec. 1.1 of [26] for an
overview of these topics and their relation to reverse firewalls.

1.1 Overview of our construction

On a high level, our construction can be viewed as “adding reverse firewalls to
the MPC protocol of [19, 18]”. In particular, we follow the protocol structure
presented in Sec. 3.3.3 of [18], i.e.: the parties generate random strings to which
they are committed (this is called “augmented coin-tossing”), they commit to

3

their inputs (the “input commitment protocol”), and finally they perform the
“authenticated computation” in which they do computations on these values,
simultaneously proving (in zero knowledge) that the computation is done cor-
rectly (in our construction we use a non-interactive version of zero-knowledge
protocols, NIZKs, [6]). The main things that need to be addressed in adding re-
verse firewalls to this protocol is to construct protocols for commitment schemes
and NIZKs with firewalls (since the correctness of every step of the computa-
tion is proven in zero knowledge, we do not need to construct separate firewalls
for the computations itself). Essentially, these firewalls are constructed by “re-
randomizing” the messages that are sent by the parties. More precisely: for
messages that come from commitments, we exploit the standard homomorphic
properties of such schemes, and for NIZKs we use the “controlled-malleable NIZK
proof systems” of [9]1. On a high level, the firewalls can re-randomize a protocol
transcript exploiting homomorphic properties of the commitment scheme, and
controlled malleability property of the NIZK proofs (where the controlled mal-
leability is “tied” to the appropriate mauling of the commitments). One of the
key ingredients of our construction is a firewalled scheme for augmented coin
tossing. This is built by combining the firewalled protocols for commitment and
NIZKs with the coin-tossing protocol of Lindell [24].

Reverse firewalls for multi-party (augmented) coin-tossing. Let us explain the
design principle of our reverse firewall for the multi-party augmented coin-tossing
protocol in more details. The starting point of our protocol is the 2-party aug-
mented parallel coin-tossing of Lindell [24]. The protocol of [24] uses a “commit-
and-prove” technique, where one party (often called the initiating party) com-
mits to a random bit-string and proves in zero-knowledge about the consistency
of the committed value. The other party also sends a random bit-string to this
party. The final string is the exclusive OR of both these strings and the initiating
party commits to this final string. The protocol ends by outputting a random
bit-string (which the initiating party gets), and the commitment value to the
final bit-string (which the other party receives). First, we extend this protocol
to the multi-party setting, and then design a reverse firewall for this protocol.
We assume that the honest parties are corrupted in a functionality-maintaining
way. Note that, in the traditional model of corruption the adversary completely
controls the party and may also cause the party to deviate arbitrarily from the
protocol. In contrast, functionality-maintaining corruptions also allows the ad-
versary to completely control the party and also cause the party to deviate from
the protocol specification as long as it does not violate or break the functional-
ity (i.e, correctness) of the underlying protocol. The first observation is that the
corrupted parties may not necessarily commit to a random bit-string. Even if it
does so, the commitment may also leak information about the committed value
(say the randomness used to commit may leak additional information about the

1 Since we use a NIZK proof system, we need to assume a trusted setup algorithm
which generates a common reference string (CRS) to be used by all the parties. We
assume that the CRS is hardwired inside the code of each party.

4

bit-string). Secondly, the bit-strings sent by the other parties to the initiating
party may also act as a subliminal channel to leak secret information.

The main idea behind our firewall design is that it should somehow be possi-
ble to maul the commitment in such a way that the committed element is random
(even if the initial bit-string is not chosen randomly) and the commitment is it-
self re-randomizable (so that the commitment appears to be “fresh”). For this,
we assume the commitment scheme to be additively homomorphic (with respect
to an appropriate relation), which suffices for our purpose. At this point, the
original zero-knowledge proof (that conforms to the initial commitment) is no
longer valid with respect to the mauled commitment. Hence, the firewall needs
a way to appropriately maul the proof (so that the mauled proof is consistent
with the mauled commitment), and also to re-randomize the proof (so that the
randomness used to proof does not leak any information on the witness, which
is the committed string). To this end, we use the controlled-malleable NIZK
proof systems (cm-NIZK) introduced by Chase et al. [9]. We replace the (inter-
active) zero-knowledge proofs used in the protocol of [24] with cm-NIZK proofs
(with a trusted setup procedure). The firewall then re-randomizes the shares
(bit-strings) of the other parties in such a way that is consistent with the initial
mauling of the commitment and the proof.

However, at this point another technical difficulty arises: the views of all the
parties are not identical– in particular, the view of the initiating party and the
other parties are not same, due to the above mauling by the firewall. While
this appears to be problematic as far as the functionality of the protocols is
concerned, we show that the firewall can again re-maul the transcript in such a
way that the views of all the parties become consistent, without compromising
on the security of the protocol. Here by “consistent” we mean that the initiating
party (of the coin-tossing protocol) receives a random bit string, and the rest of
the parties receive the commitment to the same bit-string.

Indeed, we show that at the end the initiating party ends up with a ran-
dom bit-string (as required by the functionality), even if it is corrupted (in a
functionality-maintaining way) and the other parties obtains a secure commit-
ment to this bit-string. We show that the above firewall maintains functionality,
preserves security for the honest parties, and also provide weak exfiltration-
resistant2 against other parties. Finally, we stress that the above mauling oper-
ations, specially the mauling of the NIZK proofs, does not require the firewall
to know the original witness (chosen by the initiating party), which makes it
interesting and doable from the firewall perspective (since it shares no secret
with any of the parties). We refer the reader to Sec. 3.2 for the details.

Reverse firewalls for other protocols. We also design reverse firewalls for the
multi-party input commitment protocol and the multi-party authenticated com-

2 Informally, the exfiltration-resistant property stipulates that the corrupt imple-
mentation of party does not leak any information through the firewall. Weak
exfiltration-resistance guarantees the same property when the party is corrupted
in a functionality-maintaining way (and not arbitrarily).

5

putation protocol, which are also used as key ingredients for our final actively-
secure MPC protocol. The reverse firewalls for these protocols are relatively much
simpler and involve only re-randomizing the commitment and the NIZK proof
(in case of the input commitment protocol) and re-randomizing the proof (for
the authenticated computation protocol). We show that both the firewalls cor-
responding to these two protocols preserve security and is exfiltration-resistant
against other parties.

The final compiler. Finally, we show the construction of our actively-secure MPC
protocols in the presence of reverse firewalls. Our final compiler is similar to the
compiler presented in [18], however, adapted to the setting of reverse firewalls.
The compiler takes as input any semi-honest MPC protocol (without reverse
firewalls) and runs the multi-party input commitment protocol, the multi-party
(augmented) coin-tossing protocol and the multi-party authenticated computa-
tion protocol in the reverse firewall setting (in sequential order) to obtain the
final actively-secure MPC protocol. On a high level, after the input commitment
and the coin-tossing protocol (in the presence of reverse firewalls) the inputs
and the random pads of all the (honest) parties are fixed. Now, since the honest
parties are corrupted in a functionality-maintaining way, the computation per-
formed by the party in the authenticated computation protocol is determined,
and the final zero-knowledge proofs conform to these computations. Hence, at
this point, the security of the underlying semi-honest MPC protocol (without us-
ing reverse firewalls) can be invoked to argue security of our final actively-secure
MPC protocol (in the presence of reverse firewalls).

Compiler for reverse firewalls for broadcast model. As a contribution of inde-
pendent interest, we also present a compiler for reverse firewalls (RF) in the
broadcast model (due to space limits, this is presented in the extended version
of this paper [8]). In particular, existence of a broadcast channels in the RF
setting is a stronger assumption than the existence of a broadcast channel in
the classical setting. To this end, we present a version of the Dolev Strong pro-
tocol [15] secure in the RF setting. The key idea is to transform the original
Dolev Strong protocol to be a “unique message protocol”, so that, at any given
point there is only one possible message that a party can send. We implement
this by replacing the signatures in the Dolev-Strong protocol with unique signa-
tures. Intuitively this works because: on any input in the Dolev-Strong protocol,
the only allowed message consists of adding a signature on a well-defined mes-
sage. The signature is either sent or added to a valid set. Since the signatures
are unique and the parties are corrupted in a functionality-maintaining way, it
is forced to send the unique message at that particular round. In general, the
above idea also works if we replace the signatures in the Dolev-Strong protocol
with re-randomizable signatures [22, 29]. Note that unique signatures are effi-
ciently re-randomizable. We note that, our result also nicely complements the
result of Ateniese et al. [3], who gave a negative result for the construction of RF
for arbitrary signature schemes. On the positive side, they show constructions

6

of RF for the class of re-randomizable signature schemes (which includes unique
signatures as well).

Constructing actively secure MPC from semi-malicious MPC in the RF setting.
A recent line of work [27, 5, 16] constructs 2-round MPC protocols achieving
semi-malicious security, which means that the protocol is secure for all (possibly
adversarial) choices of the random coins of the parties. Furthermore, following
the compilation paradigm of [2, 1], one can immediately obtain maliciously secure
Universal Composable (UC) MPC protocols in the CRS model, using NIZK
proofs. At first thought, it seems that if we start with any of these 2-round
semi-malicious MPC protocols and use a controlled-malleable NIZK proof on
top (instead of just NIZK) we can hope to get a 2-round actively secure MPC
protocol in the RF setting. However, this approach does not work: semi-malicious
security protects the other parties against a semi-malicious corrupted party, but
does not protect the corrupted party itself. In fact, a maliciously chosen random
tape might be used to leak information covertly, so semi-malicious security does
not provide exfiltration resistance.

On the Trusted Setup assumption. Our construction of the actively secure MPC
protocol uses a controlled-malleable NIZK (cm-NIZK) proof, and hence is in the
CRS model. This is in contrast to the original GMW protocol [19] which does not
require any trusted setup assumption, since it uses interactive zero-knowledge
proofs. A natural idea is whether it is possible to replace the cm-NIZK proofs
with controlled-malleable interactive ZK (cm-IZK) proofs. Indeed, while it is easy
to see that one can construct cm-IZK proofs from one-way functions3, it seems
that the techniques of our paper are unlikely to extend to work with cm-IZK
proofs. The main challenge is in making the views of the parties consistent in the
final MPC protocol. We consider this as an interesting open problem to remove
the trusted setup assumption.

Organization of the paper. The basic definitions and notation are provided in
Sec. 2 (Sec. 2.1 contains the definitions related to the reverse firewalls). Our main
technical contribution is presented in Sec. 3, with Sections 3.1—3.5 describing
the ingredients of our construction, and Sec. 3.6 putting them together into a
single “protocol compiler” algorithm. The security of our construction in stated
and proven in Thm. 6.

2 Preliminaries

In this section we introduce some standard notation and terminology that will
be used throughout the paper. For an integer n ∈ N we denote by [n] the set
{1, 2, · · · , n} and we write Un to denote the uniform distribution over all n-bit

3 One can modify the zero-knowledge proofs for the Graph Hamiltonicity problem or
the 3-Coloring problem to obtain cm-IZK proofs by replacing the commitments with
homomorphic commitments, similar to our coin-tossing protocol

7

strings. Recall that to every NP language L we can associate a binary relation
R ⊆ {0, 1}∗ × {0, 1}∗ defining L such that: L = {x : ∃ω s.t. (x, ω) ∈ R} and
|ω| ≤ poly(|x|). We call x the statement/theorem, and ω the witness testifying
the membership of x in the language L, i.e., x ∈ L. Let T = (Tx, Tω) be a pair of
efficiently computable n-ary functions, Tx : {{0, 1}∗}n → {0, 1}∗. We call such a
tuple T as an n-ary transformation. Following [9], we define what it means for a
transformation T = (Tx, Tw) to be admissible with respect to a NP relation R.

Definition 1. (Admissible transformations [9]). An n-ary transformation
T = (Tx, Tw) is said to admissible for an efficient relation R, if R is closed
under T , i.e, for any n-tuple {(x1, ω1), · · · , (xn, ωn)} ∈ Rn, it holds that the pair(
Tx(x1, · · ·xn), Tω(ω1, · · · , ωn)

)
∈ R. We say that a class or set of transforma-

tions T is an allowable set of transformation if every transformation T ∈ T is
admissible for R.

Homomorphic commitments. A (non-interactive) commitment scheme consists
of three polynomial time algorithms (G,K, com). The probabilistic setup algo-
rithm G takes as input the security parameter λ and outputs the setup parame-
ters par. The key generation algorithm K is a probabilistic algorithm that takes
as input par and generates a commitment key ck. We assume that the commit-
ment key ck includes the description of the message space M, the randomness
space R and the commitment space C to be used in the scheme. We also assume
it is possible to efficiently sample elements from R. The algorithm com takes
as input the commitment key ck, a message m from the message space M and
“encodes” m to produce a commitment string c in the commitment space C. Ad-
ditionally, we also require the commitment scheme to be homomorphic [20, 21],
i.e, we assume thatM, R and C are groups with the homomorphic property, and
if we add any two commitments, the resulting commitment will encode the sum
of the underlying messages. We point the reader to [8] for the formal definition
of homomorphic commitments.

Controlled Malleable Non-Interactive Zero-Knowledge Proofs. We recall the def-
initions of controlled-malleable non-interactive proof systems from [9]. A non-
interactive proof system for a NP language L associated with relation R consists
of three (probabilistic) polynomial-time algorithm (CRSGen,P,V). The Common
Reference String (CRS) generation algorithm CRSGen takes as input the secu-
rity parameter 1λ, and outputs CRS σcrs. The prover algorithm P takes as input
σcrs, and a pair (x, ω) ∈ R, and outputs a proof π. The verifier algorithm V
takes as input σcrs, a statement x and a purported proof π, and outputs a de-
cision bit b ∈ {0, 1}, indicating whether the proof π with respect to statement
x is accepted or not (with 0 indicating reject, else accept). The two most basic
requirements from such a proof system are perfect completeness and adaptive
soundness with respect to (possibly unbounded) cheating provers. Besides, we
also want the NIZK proof systems for efficient relations R that are (1) malleable
with respect to an allowable set of transformations T , i.e., for any T ∈ T , given
proofs π1, · · · , πn for statements x1, · · · , xn ∈ L they can be transformed into

8

a proof π for the statement Tx(x1, · · · , xn), and (2) derivation private, i.e. the
resultant proof π cannot be distinguished from a fresh proof computed by the
prover on input

(
Tx(x1, · · · , xn), Tω(ω1, · · · , ωn)

)
. We also want zero-knowledge

property and simulation-sound extractability property to hold for the NIZK
proof system under controlled malleability, as defined below.

Definition 2. (Controlled-malleable NIZK proof system [9]). A con-
trolled malleable non-interactive (cm-NIZK) proof system for a language L as-
sociated with a NP relation R consists of four (probabilistic) polynomial-time
algorithms (CRSGen,P,V,ZKEval) such that the following conditions hold:

• (Completeness). For all σcrs ← CRSGen(1λ), and (x, ω) ∈ R, it holds that
V(σcrs, x, π) = 1 for all proofs π ← P(σcrs, x, ω).

• (Soundness). We say that (CRSGen,P,V) satisfies adaptive soundness if for
all PPT (malicious) provers P∗ we have:

Pr
[
σcrs ← CRSGen(1λ); (x, π)← P∗(σcrs) : V(σcrs, x, π) = 0 if x /∈ L

]
> 1− negl(κ).

for some negligible function negl(κ). Perfect soundness is achieved when this
probability is always 1.
• (Malleability). Let T be a set of allowable transformation for an efficient

relation R. Then the proof system (CRSGen,P,V) is said to be malleable
with respect to T , if there exists an efficient algorithm ZKEval that does the
following: ZKEval takes as input σcrs, the description of a n-ary admissible
transformation T ∈ T , statement-proof pairs (xi, πi), where 1 ≤ i ≤ n, such
that V(σcrs, xi, πi) = 1 for all i, and outputs a proof π for the statement
x = T ({xi}) such that V(σcrs, x, π) = 1.
• (Rerandomizability). We say that the NIZK proof system (CRSGen,P,V) for

relation R is re-randomizable if there exists an additional algorithm Rand-

Proof, such that the probability of the event that b′ = b (where b
$←− {0, 1}

is sampled uniformly at random) in the following game is negligible:

– σcrs ← CRSGen(1λ).

–
(
state, x, w, π)

$←− A(σcrs).

– If V(σcrs, x, π) = 0, or (x,w) /∈ R, output ⊥. Otherwise form

π′ ←

{
P
(
σcrs, x, w

)
if b = 0

RandProof(σcrs, x, π) if b = 1.

– b′ ← A(σcrs, π
′)

• (Derivation privacy). We say that the NIZK proof system (CRSGen,P,V,ZKEval)
for relation R with respect to T is derivation-private, if for all adversaries A
and bit b, the probability pAb (λ) that the event b′ = b (where b

$←− {0, 1} is
sampled uniformly at random) in the following game is negligible:

9

– σcrs ← CRSGen(1λ).

–
(
state, (x1, ω1, π1), · · · , (xq, ωq, πq), T

)
← A(σcrs).

– If V(σcrs, xi, πi) = 0 for some i, (xi, ωi) /∈ R for some i, or T /∈ T , abort
and output ⊥. Otherwise compute,

π ←

{
P
(
σcrs, Tx(x1, · · · , xq), Tω(ω1, · · · , ωq)

)
if b = 0

ZKEval(σcrs, T, {(xi, πi)}i∈[q]) if b = 1.

– b′ ← A(state, π).

• (Controlled-malleable simulation-sound extractability). Let (CRSGen,P,V)
be a NIZK proof of knowledge (NIZKPoK) system for the relation R, with
a simulator (S1,S2) and an extractor (E1, E2). Let T be an allowable set
of unary transformation for the relation R such that membership in T
is efficiently testable. Let SE1 be an algorithm, that on input 1λ outputs
(σcrs, τs, τe) such that (σcrs, τs) is distributed identically to the output of
S1. Consider the following game with the adversary A:

– (σcrs, τs, τe)← SE1(1λ).

– (x, π)← AS2(σcrs,τs,·)(σcrs, τe).

– (ω, x′, T)← E2(σcrs, τe, x, π).

We say that the NIZKPoK satisfies controlled-malleable simulation-sound
extractability (CM-SSE) if for all PPT algorithms A there exists a negligible
function ν(·) such that the probability that V(σcrs, x, π) = 1 and (x, π) /∈ Q
(where Q is the set of queried statements and their responses) but either
(1) ω 6=⊥ and (x, ω) /∈ R; (2) (x′, T) 6= (⊥,⊥) and either x′ /∈ Qx (the set
of queried instances), x 6= Tx(x′), or T /∈ T ; (3) (ω, x′, T) = (⊥,⊥,⊥) is at
most ν(λ).

Theorem 1. [9] If a proof system is both malleable and randomizable and uses
ZKEval′ = RandProof ◦ ZKEval, then it is also derivation private.

The work of [9] showed how to instantiate cm-NIZKs using Groth-Sahai proofs
and structure preserving signature schemes, both of which can be constructed
based on the standard Decision linear (DLIN) assumption over bilinear groups.

Remark 1. The definition of CM-SSE is a weakening of the definition of (stan-
dard) simulation-sound extractability (SSE). The notion of CM-SEE intuitively
says that the extractor will either extract a valid witness ω corresponding to
the new statement x (as in SSE), or a previously proved statement x′ and a
transformation T in the allowable set T that could be used to transform x′ into
the new statement x. Note that, when T = ∅, we obtain the standard notion of
SSE-NIZK as defined by Groth [21]. However, as shown in [9], this definitional
relaxation is necessary, since the standard notion of SSE is impossible to achieve
for malleable proof systems.

10

Secure computation. We present the definition of general multi-party com-
putation protocols (for an introduction to this topic see, e.g., [11]). We follow
the definitions as presented in [18, 24], which in turn follows the definitions of [7,
4].

Multi-party protocols. Let n denote the number of parties involved in the pro-
tocol. We assume that n is fixed. A multi-party protocol problem is given by
specifying a random process which maps sequences of inputs (one input per
each of the n parties) to sequences of outputs (one for each of the n parties).
We refer to such a process as a n-ary functionality, denoted by f : ({0, 1}∗)n →
({0, 1}∗)n, where f = (f1, · · · , fn). For a input vector ~x = {x1, · · · , xn} the out-
put is a tuple of random variables denoted by (f1(~x), · · · , fn(~x)). The ith party
Pi initially holds the input xi and obtains the ith element in f(x1, · · · , xn),
i.e. fi(x1, · · · , xn). We also assume that all the parties hold input of equal
length, i.e., |xi| = |xj | for all i, j ∈ [n]. We will denote such a functionality
as (x1, · · · , xn) 7→ (f1(x1, · · ·xn), · · · , fn(x1, · · ·xn)).

Adversarial behavior. For the analysis of our protocols we consider the malicious
adversarial model. A malicious adversary may corrupt a subset of parties and
can completely control these parties and deviate arbitrarily from the specified
protocol. We assume a static corruption model, where the set of corrupted or
dishonest parties are already specified before the execution of the protocol. A
weaker model of security is the semi-honest model, where the adversary has to
follow the protocol as per its specification, but it may record the entire tran-
script of the protocol to infer something beyond the output of the protocol.
We consider the definition of security in terms of a real-world and ideal-world
simulation paradigm, as in [18]. In the ideal model, we assume the existence of
an in-corruptible trusted third party (TTP). In the semi-honest model, all the
parties send their local inputs to the TTP, who computes the desired function-
ality and send back the prescribed outputs to them. The honest parties then
output their respective outputs, while the semi-honest parties output an arbi-
trary probabilistic polynomial-time function of their respective inputs and the
outputs obtained from the TTP. In contrast, in the malicious model the mali-
cious parties may substitute their local input and send it to the TTP in the first
place. We assume that the TTP always answers the malicious parties first. The
malicious parties may also abort the execution of the protocol by refraining from
sending their own messages. Finally, as in the semi-honest model, each honest
party outputs its output as received from the TTP, while the malicious parties
may output an arbitrary probabilistic polynomial-time function of their initial
inputs and the outputs obtained from the TTP.

Definition 3 (Malicious adversaries–the ideal model). Let f : ({0, 1}∗)n →
({0, 1}∗)n be a n-ary functionality as defined above. Let I = {i1, · · · , iq} ⊂
[n], and (x1, · · · , xn)I = (xi1 , · · · , xiq). A pair (I, C) where I ⊂ [n] and C
is a polynomial-size circuit family represents an adversary in the ideal model.
The joint execution under (I, C) in the ideal model (on input sequence ~x =
(x1, · · · , xn)), denoted by IDEALf,(I,C)(~x) is defined as follows:

11

(C(~xI ,⊥),⊥, · · · ,⊥) if C(~xI) =⊥ .
(C(~xI , fI(C(~xI), ~xĪ),⊥),⊥, · · · ,⊥) if C(xI) 6=⊥ , 1 ∈ I and ~yI =⊥, where

~yI
def
= (C(~xI , fI(C(~xI), ~xĪ))

(C(~xI , fI(C(~xI), ~xĪ)), fĪ(C(~xI), ~xĪ)) otherwise.

where Ī = [n] \ I.

The first equation represents the case where the adversary makes some dishonest
party to abort before invoking the trusted party. The second equation represents
the case where the trusted party is invoked with possibly substituted inputs
C(~xI) and is halted right after supplying the adversary with the I-part of the
output ~yI = fI(C(~xI), ~xĪ)). This case is allowed only when 1 ∈ I, i.e, the party
P1 can only be blamed for early abort. Finally, the third equation presents the
case where the trusted is invoked with possibly substituted inputs C(~xI), but is
also allowed to answer to all the parties.

Definition 4 (Malicious adversaries–the real model). Let f : ({0, 1}∗)n →
({0, 1}∗)n be a n-ary functionality as defined above. Let Π be a protocol for com-
puting f . The joint execution under (I, C) in the real model (on input sequence
~x = (x1, · · · , xn)), denoted by REALΠ,(I,C)(~x) is defined as the output sequence
resulting of the interaction between the n parties where the messages of parties in
I are computed according to C and the messages of parties not in I are computed
according to Π.

Now that the ideal and real models are defined, we put forward the notion of
security for a multi-party protocol. Informally, it says that a secure multi-party
protocol in the real model emulates the ideal model.

Definition 5 (Security in the Malicious model). Let f and Π be as in
Def. 4. Protocol Π is said to securely compute f if there exists a polynomial-
time computable transformation of polynomial-size circuit families A = {Aλ}
for the real model (of Def. 4) into polynomial-size circuit families B = {Bλ}
for the ideal model (of Def. 3) such that for every subset I ⊂ [n] we have that
{IDEALf,(I,B)(~x)}λ∈N,~x∈({0,1}λ)n ≡c {REALΠ,(I,A)(~x)}λ∈N,~x∈({0,1}λ)n .

2.1 Cryptographic Reverse Firewalls

Following [26, 13], we present the definition of cryptographic reverse firewalls
(CRF). As in [26], we assume that a cryptographic protocol comes with some
functionality (i.e., correctness) requirements F and some security requirements
S. For a party P and reverse firewallW we defineW◦P as the “composed” party
in which the incoming and outgoing messages of P are “sanitized” byW. In other
words,W is applied to (1) the outgoing messages of P before they leave the local
network of P and (2) the incoming messages of P before P sees them. We stress

12

that the reverse firewall W neither shares any private input with party P nor
does it get to know the output of party P . The firewall W is allowed to see only
the public parameters of the system. Besides this, it can internally toss its own
random coins and can also maintain state. We require the firewallW to preserve
the functionality of the protocol (in case the parties are not corrupted), i.e., the
composed partyW◦P should not break the correctness of the protocol. Following
[26, 13] we actually require the stronger property that the reverse firewalls be
“stackable”, i.e, many firewalls can be composed in seriesW◦· · ·◦W ◦P without
breaking the functionality of the protocol. In addition, we would want the firewall
W to preserve the security requirements S of the underlying protocol, even in the
case of compromise. The strongest notion of security requires the security of the
protocol to be preserved even when a party P is arbitrarily corrupted (denote
as P). A weaker notion of security requires the security of the protocol to hold,
even when the party P is tampered in a functionality-maintaining way (denoted

by P̂), i.e., when the tampered implementation still maintains the functionality
F of the protocol. For a protocol Π with party P , we write ΠP→P̂ to represent

the protocol in which the role of party P is replaced by party P̂ . Further, we
require exfiltration resistance from the reverse firewall, which informally says
that “no corrupt implementation of party P can leak any information through
the firewall”. We generalize the definition of exfiltration-resistance, as defined in
[26, 13], to the multi-party setting. Finally, following [13], we will also need the
notion of “detectable failure” from the reverse firewall. Informally, this notion
stipulates that a protocol fails detectably if we can distinguish transcripts of
valid runs of a protocol from invalid transcripts. This property will be used by
the firewall of a large protocol to test whether some sub-protocol failed or not.
We now formally define all these properties below.

Definition 6. (Functionality-maintaining CRF [26]). For any reverse fire-
wall W and a party P , let W1 ◦ P = W ◦ P , and Wk ◦ P = W ◦ · · · ◦ W︸ ︷︷ ︸

k times

◦P . A

reverse firewall W maintains functionality F for a party P in protocol Π if Π
satisfies F , the protocol ΠP→W◦P satisfies F , and the protocol ΠP→Wk◦P also
satisfies F .

Following [26], we also consider the case where the adversarial implementation
still counts as functionality-maintaining even if it breaks the correctness with
negligible probability. This can be easily accommodated in the above definition
by requiring that the protocol ΠP→Wk◦P (for k ≥ 1) satisfies F with all but
negligible probability. As noted in [26], this distinction can be quite important
in the context of security definitions that allow for the corruption of other players
in the protocol.

Definition 7. (Security-preserving CRF [26]). A reverse firewall strongly
preserves security requirements S for a party P in the protocol Π if Π satisfies
requirements S, and for any polynomial time algorithm P , the protocol ΠP→W◦P
satisfies S. (I.e., the firewall can guarantee security even when the adversary has
tampered with the implementation of P). A reverse firewall preserves security

13

requirements S for a protocol P in the protocol Π satisfying functionality F if
Π satisfies requirements S, and for any polynomial time algorithm P̂ such that
ΠP→P̂ satisfies F , the protocol ΠP→W◦P̂ satisfies S. (I.e., the firewall can guar-
antee security even when the adversary has tampered with the implementation of
P , provided that the tampered implementation preserves the functionality of the
protocol).

We also need the notion of exfiltration-resistance from the reverse firewall. In
formally, a reverse firewall is exfiltration-resistant if “no corrupt implementation
of a party can leak any information through the firewall”. Our definition of
exfiltration-resistance generalizes the definition of [26, 13] in the multi-party
setting.

Definition 8. (Exfiltration-resistant CRF [26]). Let Π be a multi-party
protocol run between the parties P1, · · · , Pn satisfying functionality F and having
a reverse firewall W. Then:

– We say that the firewall W is strongly exfiltration-resistant for party Pi
against the other parties (P1, · · · , Pi−1, Pi+1, · · · , Pn), if for any PPT ad-
versary A, the advantage AdvLEAKA,W (λ) of A in the game LEAK (see Fig. 1)
is negligible in the security parameter λ, and

– We say that the firewall W is weakly exfiltration-resistant for party Pi
against the other parties (P1, · · · , Pi−1, Pi+1, · · · , Pn), if for any PPT ad-
versary A, the advantage AdvLEAKA,W (λ) of A in the game LEAK (see Fig. 1) is
negligible in the security parameter λ, provided that Pi maintains function-
ality F for Pi.

Proc. LEAK(Π, i, {P1, · · · , Pn},Wi, λ)

(P1, · · · , Pn, I)← A(1λ).

b
$←− {0, 1}.

IF b = 1, P ∗i ←Wi ◦ Pi.
ELSE, P ∗i ←Wi ◦ Pi.
T ∗ ← ΠPi→P∗i ,{Pj→Pj}j∈[n\i]

(I).

b∗ ← A(T ∗, {stPj}j∈[n\i]).
OUTPUT 1 if b = b∗ and 0 otherwise.

Fig. 1. LEAK(Π, i, {P1, · · · , Pn},Wi, λ) is the exfiltration-resistance security game for
a reverse firewall W for a party Pi in protocol Π against the set of parties {Pj}j∈[n\i]
with input I. A is the adversary, λ is the security parameter, {stPj}j∈[n\i] denote the
states of the parties {Pj}j∈[n\i] after the run of the protocol, I is the valid input for
Π, and T ∗ is the transcript of running the protocol ΠPi→P∗i ,{Pj→Pj}j∈[n\i]

(I).

The advantage of any adversary A in the game LEAK is defined as: AdvLEAKA,W (λ) =∣∣∣Pr[LEAK(Π, i, {P1, · · · , Pn},Wi, λ) = 1]− 1
2

∣∣∣.
14

Finally, we define another technical condition related to detectable failures of
reverse firewalls, as presented in [13]. First, we recall the definition for what it
means for a transcript to be valid, and then define detectable failures.

Definition 9 (Valid Transcripts [13]). A sequence of bits r and private input
I generate transcript T in protocol Π if a run of the protocol Π with input I
in which the parties’ coin flips are taken from r results in the transcript T . A
transcript T is a valid transcript for protocol Π if there is a sequence r and
private input I generating T such that no party outputs ⊥ at the end of the run.
A protocol has unambiguous transcripts if for any valid transcript T , there is
no possible input I and coins r generating T that results in a party outputting ⊥.

Definition 10 (Detectable failure). A reverse firewall W detects failure for
party P in protocol Π if (a) ΠP→W◦P has unambiguous transcripts; (b) the
firewall outputs a special symbol ⊥ when run on any transcript that is not valid
for ΠP→W◦P , and (c) there is a polynomial-time deterministic algorithm that
decides whether a transcript T is valid for ΠP→W◦P .

3 Reverse Firewalls and Actively secure MPCs

In this section, we discuss the relationship between actively secure MPC proto-
cols and reverse firewalls. In this work, we consider computationally-secure MPC
protocols. For the protocol to be secure, we need to assume that at least one
of the parties participating in the MPC protocol is “honest”. However, in the
setting of reverse firewalls, this assumption may not hold true, and in general, we
cannot rely on trusted implementation of any of the parties to guarantee security
of the resulting MPC protocol. In particular, in this setting, one may consider a
scenario where all the parties may be arbitrarily corrupted. To provide any sort
of meaningful security guarantees in such a strong corruption model, we assume
that each of the honest parties participating in the MPC protocol are equipped
with a cryptographic reverse firewall. As mentioned earlier, none of the firewalls
share any secrets with any of the parties, nor can it access the outputs of the
corresponding parties. The firewall has access to only the public parameters used
in the protocol. All the incoming and outgoing messages sent and received by
the parties are modified by the firewall. Hence, even if the honest parties are
corrupted, the firewall can sanitize the outgoing and incoming messages in such
a way that the security of the original MPC protocol (where there is at least one
honest party) is preserved.

Ideally, we would like to build reverse firewalls for the MPC protocol, where
all the honest parties can be arbitrarily corrupted. However, in order to accom-
plish this goal, we will need to consider the following scenario: Suppose that one
of the parties which was assumed to be honest in the original MPC protocol re-
fuses to communicate (also called “attack by refusal” in [13]) in this new model
of corruption. To guarantee security against this attack, clearly the firewall needs
to produce a message which looks indistinguishable from the message the honest

15

party would have sent in the original MPC protocol. In order words, the fire-
wall needs to simulate the behavior of this (honest) party in our new corruption
model, where the same party can be arbitrarily corrupted. Now suppose that,
the party has a public-secret key pair and it uses the secret key to compute some
message at some point in the protocol (say, a signature on the transcript so far).
Clearly, this action cannot be simulated by the firewall, since it does not have
access to the secret key of the party. Hence, in this setting, where the parties
have access to key pairs (which will indeed be the case for us), achieving security
against strong or arbitrary corruption is impossible.

To circumvent the above impossibility result, we consider a hybrid model
of corruption, which is slightly weaker than the corruption model mentioned
above. In particular, in our model, up to n − 1 parties can be arbitrarily cor-
rupted, where n is the total number of parties participating in the protocol.
The remaining honest parties can also be corrupted, albeit, in a functionality-
maintaining way. In a functionality-maintaining tampered implementation of a
party, the adversary may deviate arbitrarily from the protocol, as long as it does
not break its functionality. Intuitively, this models “more conspicuous” adver-
saries whose tampered circuit(s) will be noticed by honest parties participating
in the protocol with non-negligible probability [26].

Remark 2. (On broadcast channels with reverse firewalls). As mentioned
earlier, we will assume the availability of a broadcast channel for our construc-
tion of the actively-secure MPC protocol in the reverse firewall (CRF) setting.
However, in the CRF setting, the assumption of broadcast channels may be
stronger than the classical setting. To this end, we present a compiler for reverse
firewalls for the broadcast model (this is done in the extended version of this
paper [8]). We instantiate the broadcast protocol using a version of the classi-
cal Dolev-Strong protocol [15], secure in the CRF setting. The protocol of [15]
shows that one can simulate a broadcast channel using public-key infrastructure,
in particular using signature schemes as the authentication mechanism. In our
construction, we replace the signature scheme from [15] with unique signatures.
Intuitively this works since: on any input in the Dolev-Strong protocol, the only
allowed message consists of adding a signature on a well-defined message. The
signature is either sent or added to a valid set. Since the signatures are unique,
this leaves only one possible message that a (even corrupted) party can send. The
latter holds since we assume that the parties are corrupted in a functionality-
maintaining way. Due to space constraints, we give the details of the protocol in
[8].

3.1 Actively secure MPC protocols using Reverse Firewalls

In this section, we present a construction of multi-party computation (MPC)
protocol secure against malicious adversaries in the setting of reverse firewalls.
As mentioned above, we only consider computationally-secure MPC protocols.
The starting point of our construction is the actively-secure MPC protocol of

16

Goldreich, Micali and Wigderson [19, 18] (henceforth referred to as the GMW
protocol). Their methodology works by first presenting a MPC protocol secure
against semi-honest adversaries, and then compiling it into a protocol secure
against malicious adversaries. The resulting actively secure GMW protocol can
tolerate a corruption of up to n − 1 parties, where n is the number of parties
participating in the protocol. We begin with an informal exposition of the GMW
compiler.

Informal description of the GMW compiler. As mentioned before, the
GMW protocol [19, 18] first constructs a semi-honest MPC protocol, and then
compiles it to one which is secure against malicious adversaries. Recall that, in
the semi-honest protocol all the parties follow the protocol specification exactly.
However, in the malicious model, the parties may deviate arbitrarily from the
protocol. The way that the GMW protocol achieves security against malicious
adversaries is by enforcing the parties to behave in a semi-honest manner. How-
ever, this only makes sense relative to a given input and a random tape. The
GMW protocol achieves this in the following way: First, all the parties commit to
their inputs by running a multi-party input commitment protocol. Note that, be-
fore the protocol starts each party may replace its given inputs with arbitrary bit
strings. However, the security of this protocol guarantees that, once they commit
to their inputs, it cannot be changed afterwards during the course of execution
of the protocol. The parties then run an actively-secure multi-party (augmented)
coin tossing protocol to fix their random tapes (to be used in the actual MPC
protocol). This protocol ensures that all the parties have a uniformly random
tape. After these first two steps, each party holds its own uniformly random tape,
and the commitments to other party’s inputs and random tapes. Hence, the par-
ties can now be forced to behave properly in the following way: the view of each
party in the MPC protocol is simply a deterministic function of its own input,
random tape and the (public/broadcast) messages received so far in the proto-
col. Hence, when a party sends a new message it also proves in zero-knowledge
that the computation was correctly done, as per the protocol specification. The
soundness of the proof system guarantees that even a malicious adversary can-
not deviate from the protocol, while the zero-knowledge property ensures that
nothing other than the validity of each computational step is revealed to the
adversary. This phase is also called the protocol emulation phase.

When we consider the actively-secure GMW protocol in the reverse firewall
settings, we must ensure that the above-mentioned protocols remain functional
and secure in the setting of reverse firewalls. Hence, we need to design reverse
firewalls for each of the three main protocols (as discussed above) used in the
GMW compiler. Finally, to enable the working of the compiler, we need to
show that the reverse firewalls for each of these protocols compose together. To
this end, we first propose a multi-party augmented coin-tossing protocol with
reduced round-complexity (see section 3.2) by appropriately extending the two-
party coin-tossing protocol of Lindell [24]. We then present a reverse firewall for
this multi-party coin-tossing protocol in section 3.3. In sections 3.4 and 3.5, we

17

present reverse firewalls for the multi-party input commitment and the multi-
party authenticated computation protocols.

3.2 Multi-party Augmented Coin-Tossing into the Well

The multi-party augmented coin tossing protocol is used to generate random
pads for all the parties participating in an actively secure multi-party compu-
tation protocol. Each party obtains the bits of the random-pad to be held by
it, whereas the other parties obtains commitments to these bits. These random
pads serve as the random coins of the corresponding parties to emulate the
semi-honest MPC protocol. Intuitively, this multi-party coin-tossing functional-
ity guarantees that, at the end of this protocol the malicious parties can either
abort or they end up with a uniformly distributed random pad. However, the
original coin-tossing protocol of GMW [19, 18] was rather inefficient in terms of
round complexity. This is because the protocol of [19, 18] required polynomially
many rounds to generate a polynomially long random pad, since single coins
were tossed sequentially in each round. Later, Lindell [24] showed a constant
round two-party protocol for augmented parallel coin-tossing into the well using
a “commit-and-proof” framework. In Fig. 2, we extend the protocol of [24] in
the multi-party setting with round-complexity only 34 and achieving a compa-
rable level of security as in [24]. In section 3.3, we present a reverse firewall for
our multiparty augmented coin-tossing protocol. This requires the commitment
scheme com to be statistically/perfectly hiding (and computationally binding)
and additively homomorphic, and also requires the NIZK argument system to
be controlled-malleable simulation-sound extractable with respect to the above
homomorphic operation.

Definition 11 (Multi-party Augmented Parallel Coin-Tossing into the
Well). An n-party augmented coin-tossing into the well is an n-party protocol for
securely computing the following functionality with respect to a fixed commitment
scheme {Gλ,Kλ, comλ}λ∈N,

(1λ, · · · , 1λ)→
(
(Ut, Ut·λ), comλ(Ut;Ut·λ), · · · , comλ(Ut;Ut·λ)

)
(1)

where Um denotes the uniform distribution over m-bit strings, and we assume
that com requires λ random bits to commit to each bit.

Similar to [24], we will actually give a protocol with respect to the functionality
(1λ, · · · , 1λ) →

(
Um, F (Um), · · · , F (Um)

)
, where we can set m = t + t · λ and

F (Um) = comλ(Ut;Ut·λ). Thus, all the parties other than the one who initiates
the protocol receive a commitment to a uniformly random t bit string, and the
committing/initiating party receives the random string and its decommitment.

4 Although the protocol of Lindell [24] is constant round, its round-complexity is
greater than 4 due to the use of (constant-round) zero-knowledge proofs. We use
NIZK arguments in a natural way to shrink the round-complexity of the protocol to
3, albeit introducing a trusted setup assumption, as required for NIZK protocols.

18

In the final compiler, the t bit strings will be used as random pads for the parties
and the decommitment value is used to provide consistency checks for each step
of the protocol (via (non-interactive) zero-knowledge proof).

W.l.o.g, we denote some party Pi (i ∈ [n]) to be the initializing party in the
protocol below (see Fig. 2), i.e, it receives the random pad and the decommitment
value (to be used later in the protocol) and all the other parties Pj (where
j ∈ [n] \ i) receive a commitment to the random string of Pi. In the final MPC
protocol, each party will need to run an independent instance of the multi-party
coin-tossing protocol shown below.

Let {Gλ,Kλ, comλ}λ∈N be a statistically/perfectly hiding and computationally binding com-
mitment scheme. Also, let (CRSGen,P,V) be a strong simulation-extractable non-interactive
zero-knowledge (SSE-NIZK) argument system for the following language: L = {c, (x, y) | c =
comλ(x; y)}.
Inputs: Each party gets as input the security parameter 1λ.

Convention: As mentioned above, we denote the initializing party in each round by party
Pi. Any deviation from the protocol, by a party other than Party Pi, will be interpreted as a
canonical legitimate message. In case Pi aborts or is detected cheating, all honest parties halt
outputting the special symbol ⊥.

(i) Party Pi chooses a random string si ∈R {0, 1}m. It then computes ci = comλ(si; r) for a
random r using a computationally binding commitment scheme. Pi then computes a proof
πi ← P(σcrs, ci, (si, r)) using the SSE-NIZK argument system. Pi then places the tuple
(ci, πi) on the broadcast channel. In case the proof πi does not verify with respect to ci, all
the parties abort with output ⊥.

(ii) For j ∈ [n] \ i, party Pj selects sj ∈R {0, 1}m and places sj on the broadcast channel.

(iii) Party Pi sets s = si ⊕j∈[n]\i sj , and computes y = F (s). Pi then proves in zero-knowledge
that there exists a pair (si, r) such that ci = comλ(si; r) and y = F (si ⊕j∈[n]\i sj). It then
places the tuple (y, π) on the broadcast channel. As before, if the proof π does not verify
with respect to (ci, y), all the parties abort with output ⊥.

Outputs: Party Pi sets its local output to s = si ⊕j∈[n]\i sj and all the other parties set their
local output to be y, provided they did not halt with output ⊥ before.

Fig. 2. Multi-party Augmented Parallel Coin-Tossing into the Well.

Theorem 2. Let {Gλ,Kλ, comλ}λ∈N be a perfectly hiding and computationally
binding commitment scheme. Also, let (CRSGen,P,V,ZKEval) be a strong simula-
tion-extractable non-interactive zero-knowledge argument system for the lan-
guage defined in Fig. 2. Then the protocol shown in Fig. 2 is a secure protocol
for multi-party augmented coin-tossing into the well.

For the proof of this theorem (which is a a straightforward generalization of the
proof of the two-party coin-tossing protocol of [24] to the multi-party setting)
see [8].

19

3.3 Multi-party Augmented Coin-Tossing using Reverse Firewalls.

In this section, we present a cryptographic reverse firewall (CRF) for the multi-
party augmented parallel coin-tossing protocol, as shown in Fig. 3. We present
a single reverse firewall W1 for this protocol that happens to work for all the
honest parties. However, each of the honest parties involved in the coin-tossing
protocol should be equipped with their own CRF. It so happens that the “code”
of the firewall is the same for all these parties.

Protocol: Multi-party Augmented Parallel Coin-Tossing into the Well using CRF W1.

Let (G,K, com) be a perfectly hiding and computationally binding commitment scheme, and
(CRSGen,P,V,RandProof,ZKEval)) be a re-randomizable cm-NIZK argument system (see Def
2). Assume that Pi is the initiating party.

Party Pi Firewall Parties {Pj}j∈[n]\i

Compute (ci, πi),

Broadcast the tuple (ci, πi)

(ci,πi)−−−−−→
Do the following:

1. Sample s′i ∈R {0, 1}m and r′i ∈ R
2. Compute c′i = comλ(s′i; r

′
i),

3. Compute ĉi = ci + c′i,

4. Define Tx(ci) = ĉi = ci + c′i,

5. Compute π̂i ← ZKEval′
(
σcrs, Tx, (ci, πi)

)
,

where ZKEval′ = RandProof ◦ ZKEval
(ĉi,π̂i)−−−−−→

{s1,··· ,si−1,si+1,··· ,sn}←−−−−−−−−−−−−−−−−
6. For any ` ∈ [n] \ i, if s` /∈ {0, 1}m,

sample s`
$←− {0, 1}m.

7. For a random `′ ∈ [n] \ i,
compute ŝ`′ = s`′ ⊕ s′i.

{s1,··· ,ŝ`′ ,...,sn}←−−−−−−−−−−
(y,π)−−−−−→

8. Define T ′x(ci, (s1, · · · , ŝ`′ , . . . , sn), y) = (ĉi, (s1, · · · , s`′ , . . . , sn), y)

9. Compute π̂ ← ZKEval′(σcrs, T
′
x, (ci, (s1, · · · , ŝ`′ , . . . , sn), y), π)

(y,π̂)−−−−−−−→

Fig. 3. Reverse firewall W1 for the parties involved in the protocol from Fig. 2.

Main Idea. The main idea underlying the multi-party coin-tossing protocol from
Fig. 2 involves a “commit-and-proof ” framework. Here, party Pi initially com-
mits to a random m-bit string si and proves in zero-knowledge about the con-
sistency of the committed value. Each of the other parties Pj (j ∈ [n] \ i) then

20

sends a random m-bit string sj to Pi, and the final m-bit string s is then set as
the exclusive OR of all these strings. Finally Pi commits to s and proves in zero-
knowledge about the consistency of both the initial and this final commitment.

However, in reality a tampered implementation of Pi might use a commitment
scheme that leaks some information about si to an eavesdropper. The commit-
ted value might also act as a subliminal channel to leak some of its secrets (or
inputs) to the other parties or to an eavesdropper. Similarly, a tampered imple-
mentation of a party Pj might also open up the possibility to leak m-bit of its
input (or other secrets) to Pi or to the eavesdropper. Thus, it is desirable that
the CRF resists exfiltration and also preserves security, even in the face of such
a compromise. Fig. 3 shows the design of the reverse firewall for the multi-party
augmented parallel coin-tossing protocol. For constructing the reverse firewall
for the above protocol, we require the underlying commitment scheme and the
NIZK proof system to be malleable (with respect to some predefined relation)
and re-randomizable. For our application, we require that the commitment to any
m-bit string s can be mauled to a commitment of a related but random m-bit
string ŝ = s⊕ s′, for any uniformly random string s′. We also require the com-
mitment scheme to be re-randomizable, so that the randomness used to commit
to a string cannot leak any information about the committed element. We show
how to achieve both these properties of malleability and re-randomizability by
assuming that the underlying commitment scheme com is homomorphic (with
respect to an appropriate relation).

Our main idea is that the CRF mauls and re-randomizes the initial commit-
ment it receives from Pi using the homomorphic properties of com. However, at
this point the proof πi given by Pi (that proves consistency of the initial com-
mitment value) will no longer be valid with respect to the mauled commitment.
Hence, the CRF also needs to maul the proof in such a way that the mauled proof
is consistent with the mauled statement (i.,e the commitment). At first thought,
it seems that the CRF cannot produce such a proof, since it does not know the
witness corresponding to the original statement (i.e., the committed string and
the randomness used for commitment) and hence, also has no knowledge of the
mauled witness (witness resulting from mauling the statement/commitment).
Fortunately, as we show, the CRF can still maul the proof πi without actually
knowing the mauled witness, thanks to the availability of the public evaluation
algorithm ZKEval of the underlying controlled-malleable simulation-extractable
NIZK argument system. The mauled proof is then further re-randomized using
the algorithm RandProof, so that the randomness used in the proof does not
reveal any information about the witness. Finally, the resulting proof looks like
a fresh proof corresponding to the mauled statement. The firewall then places
the mauled commitment-proof pair on the broadcast channel. When any other
party Pj sends a string sj , the CRF checks if the string is indeed a m-bit string.
If not, it chooses a random m-bit string on behalf of Pj . It then modifies one of
the strings sj it receives by adding the offset s′i chosen by the CRF at the begin-
ning with sj , so that it is consistent with the mauled commitment. At this point,
another technical difficulty arises: the views of party Pi and all other parties in

21

the protocol are inconsistent due to the above mauling by the CRF. However,
as we show, the CRF can again appropriately maul the transcript (which will be
treated as a statement in the final NIZK proof) so that at the end all the parties
arrive at a consistent view of the protocol. The design of the reverse firewall (see
Fig. 3) is now described in details:

1. The CRF W1 receives a commitment-proof pair (ci, πi) from party Pi. Let
us assume that ci is a commitment to some m-but string si (may not be
random). It then does the following:

• Sample another random m-bit string s′i ∈R {0, 1}m and a randomizer
r′i ∈R R for the commitment scheme com.

• Compute c′i = comλ(s′i, r
′
i) and then homomorphically compute the

mauled commitment ĉi = ci + c′i.

• Define the transformation Tx(ci) = ĉi = ci + c′i.

• Derive a proof for the transformed statement as: π̂i ← RandProof◦ZKEval(
σcrs, Tx, (ci, πi)

)
. Note that, the proof π̂i is consistent with the mauled

commitment ĉi.

• The firewall then places the tuple (ĉi, π̂i) on the broadcast channel.

2. On receiving the strings sj from party Pj (j ∈ [n] \ i), the CRF checks if
sj ∈ {0, 1}m. If not, then it chooses a random string sj ∈ {0, 1}m. It then
randomly selects an index `′ ∈ [n]\i and modifies the string s`′ to the related
string ŝ`′ = s`′⊕s′i, and forwards the tuple {s1, · · · , ŝ`′ , · · · , sn} to party Pi.

3. Receive the tuple (y, π) from Pi. Note that, the proof π will not be consistent
with the view of the other parties {Pj}j∈[n]\i, since the common input (or
statement) for Pj will be different from the input of party Pi. In particular,
the (public) input for Pi is the tuple (ci, s1, · · · , ŝ`′ , · · · , sn), while the (pub-
lic) input for the parties Pj is the tuple (ĉi, s1, · · · , s`′ , · · · , sn). The CRF
then does the following:

• Define the following transformation: T ′x(ci, (s1, · · · , ŝ`′ , · · · , sn), y) =
(ĉi, (s1, · · · , s`′ , · · · , sn), y). Note that, this is efficiently computable, given
the knowledge of s′i.

• Compute the proof π̂ as follows: π̂ ← RandProof◦ZKEval
(
σcrs, T

′
x, (ci, (s1,

· · · , ŝ`′ , · · · , sn), y), π
)
. Broadcast the tuple (y, π̂) to all the parties Pj .

Note that, the proof π̂ is now consistent with the statement (ĉi, s1, · · · , s`′ ,
· · · , sn).

Theorem 3. The reverse firewall W1 for augmented multi-party coin-tossing
shown in Fig. 3 is functionality-maintaining. If the commitment scheme com
is computationally binding and is homomorphic with respect to the (addition)
operation defined over the underlying groups (i.e, the message space, random-
ness space and the commitment space of com) and the NIZK argument system
is controlled-malleable simulation-sound extractable, then the firewall W1 pre-
serves security for party Pj and is weakly exfiltration-resistant against the other
parties {Pj}j∈[n]\i. If the commitment scheme is perfectly/statistically hiding

22

and homomorphic as above and the NIZK argument system also satisfies the
same property as above,W1 strongly preserves security for the parties {Pj}j∈[n]\i
and is strongly exfiltration-resistant against Pi. The firewall W1 also detects
failures for all the parties.

Proof. First, we will show that the reverse firewall shown in Fig. 3 is functional-
ity maintaining. If the parties are honest, the output view of all these parties are
consistent. In particular, the output of party Pi is: ŝ = si⊕(s1⊕· · ·⊕ŝ`′ · · ·⊕sn) =
(si ⊕ s′i)⊕j∈[n]\i sj . The output of Pi is a commitment y to the m-bit string ŝ.
Even if all the strings si and (s1, · · · , si−1, si+1, · · · , sn) are not random, the re-
sultant m-bit string ŝ is indeed random. Hence, at the end party Pi ends up with
a random pad, while the other parties receives a commitment to the string. This
shows that the CRF is functionality-maintaining. We now proceed to show that
the reverse firewall for Pi preserves security and exfiltration-resistance against
the other parties {Pj}j∈[n]\i. Note that, the homomorphically evaluated commit-
ment ĉi is independent of the original commitment ci. This is because the firewall
chooses an independent m-bit string s′i and randomness r′i to homomorphically
evaluate the original (potentially malicious) commitment string ci. The proof πi
is also appropriately mauled so that the mauled proof π̂i is consistent with the
mauled commitment ĉi. The mauled proof is further re-randomized using the
algorithm RandProof. Hence, by the derivation-privacy of the proof of the NIZK
argument system (see Thm. 1), the mauled proof π̂i looks indistinguishable from
a fresh proof of the commitment ĉi. Hence, the firewall sanitizes the messages
sent across by Pi, even though the implementation of Pi may be corrupt. Since,
Pi is functionality maintaining, his second message is fixed, unless he can find an
alternate opening for ci, which by definition of binding is computationally hard.
Hence, it follows that the reverse firewall for party Pi is weakly exfiltration-
resistant for Pi against all the other parties Pj and also preserves security for
Pi. To prove strong exfiltration-resistance for any party Pj against party Pi and
strong security preservation for Pj , one should note that the mauled commitment
is a uniformly random commitment to a uniformly random m-bit string. Since,
the commitment scheme com is perfectly (statistically) hiding, it is (statistically)
independent of the string sj chosen by the party Pj . The firewall mauls one of
the strings s`′ by adding the random offset s′i, and hence the final m-bit string
of party Pi is random, irrespective of how the strings sj were chosen.

3.4 Multi-party Input Commitment phase using Reverse Firewalls

In this step, each party commits to its input to be used in the protocol. In
particular, the parties execute a secure protocol for the following functionality:(

(x, r), 1λ, · · · , 1λ
)
→
(
λ, comλ(x; r), · · · , comλ(x; r)

)
. (2)

where x is the input string of the party and r is the randomness chosen by the
committing party to commit to x. In the input commitment phase, each party P
first chooses a random string x and commits to x using randomness r to generate

23

the commitment C. It also generates a proof π using a simulation-extractable
non-interactive zero-knowledge argument system that it knows a witness (i.,e,
the tuple (x, r)) corresponding to the commitment C. Finally, party Pi places
the pair (C, π) on the broadcast channel. Next, we present a reverse firewall W2

for the above protocol, as shown in Fig. 4. As before, we assume that Pi is the
initiating party.

Protocol: Multi-party Input-commitment using CRF W2.

Let (G,K, com) be a perfectly hiding and computationally binding commitment
scheme, and (CRSGen,P,V,RandProof,ZKEval)) be a re-randomizable SSE-NIZK
argument system (see Def 2 and remark 1) for the following language: L =
{C, (x, y) |C = comλ(x; y)}.

Party Pi Firewall Party {Pj}j∈[n]\i

Compute (Ci, Πi),
Broadcast the tuple (Ci, Πi)

(Ci,Πi)−−−−−−−→
Do the following:

1. Sample ri ∈ R and

2. Compute Ci = comλ(0m; ri),

3. Compute Ĉi = Ci + Ci,
4. Define Tx(Ci) = Ĉi = Ci + Ci,

5. Compute Π̂i ← ZKEval′(σcrs, Tx, Ci, Πi)
where ZKEval′ = RandProof ◦ ZKEval

(Ĉi,Π̂i)−−−−−−−→

Fig. 4. Reverse Firewall W2 for the Multi-party Input commitment protocol

The main idea of the working of the reverse firewall W2 is very simple (see
Fig. 3). The CRF simply re-randomizes the commitment Ci and the proof Πi

received from party Pi. The way the CRF re-randomizes the commitment Ci is
by homomorphically adding to it a fresh commitment of the all zero string. It
re-randomizes the proof Πi by using the RandProof algorithm of SSE-NIZK ar-
gument system. The CRF then broadcasts the re-randomized commitment-proof
pair. We now have the following theorem, whose proof (which is an adaptation
of the standard proof for the input commitment functionality [18]) appears in
[8]).

Theorem 4. Let {Gλ,Kλ, comλ}λ∈N be a perfectly hiding and computationally
binding commitment scheme. Also, let (CRSGen,P,V,ZKEval) be a simulation-
extractable non-interactive zero-knowledge argument system for the language
L = {C | C = comλ(x; y)}. Then the protocol in Fig. 4 securely computes the
functionality presented in Eq. 2. The reverse firewall W2 shown in Fig. 4 is

24

functionality-maintaining and detects failure for party Pi. If the commitment
scheme com is perfectly hiding, computationally binding and homomorphic with
respect to the (addition) operation defined over the underlying groups (i.e, the
message space, randomness space and the commitment space of com); the NIZK
argument system is re-randomizable and simulation-sound extractable, then the
reverse firewall W2 preserves security for party Pi and is exfiltration-resistant
against the other parties {Pj}j∈[n]\i.

3.5 Multi-party Authenticated Computation Protocol using
Reverse Firewalls

Let f, h : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be polynomial-time computable. The goal
of this protocol is to force the initializing party Pi to compute f(α, β), where
β is known to all the parties, α is known only to Pi, and h(α) (where h is
one-to-one function) is known to all the parties. Here f captures the desired
computation. In particular, the parties execute this protocol for computing the
following functionality:(

(α, r, β), (h(α, r), β), · · · , (h(α, r), β)
)
→
(
λ, f(α, β), · · · , f(α, β)

)
. (3)

Protocol: Multi-party Authenticated Computation Protocol using CRF W3.

Let f, h : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be two-argument functions, and let h be a 1-1 function.
Input to Pi: (α, r, β). Common input for all the parties: (u, β), where u = h(α, r). Let
(CRSGen,P,V,RandProof,ZKEval)) be a re-randomizable SSE-NIZK argument system (see Def
2 and remark 1) for the following language: L = {(u, v, f, h), (x, y) |u = h(x, y) ∧ v = f(x, β)}.

Party Pi Firewall Party {Pj}j∈[n]\i

Compute (v,Π),

Broadcast the tuple (v,Π)

(v,Π)−−−−−−−→
Do the following:

Compute Π̂ ← RandProof(σcrs, (u, v, f, h), Π)

(v,Π̂)−−−−−−−→

Fig. 5. Reverse Firewall W3 for the Multi-party authenticated computation protocol

The Construction. The multi-party authenticated computation protocol is
run by all the parties after executing the multi-party input commitment and the
multi-party (augmented) coin-tossing protocols. Hence, at this point, the inputs
and the random tapes of all the parties are fixed. Other than its own input
and the random tape (along with other decommitment values/randomnesses),
each party also holds the commitment to all the other parties input and random

25

tapes. We now just briefly recall the multi-party authenticated computation
protocol. We follow the protocol as stated in [18], except that we use strong
simulation extractable NIZK (SSE-NIZK) argument systems instead of strong
zero-knowledge proof of knowledge (as in [18]). The use of NIZK arguments
naturally makes the protocol constant-round, albeit with a setup assumption.
Assume that the party Pi is the initiating party in a particular run of this
protocol. The input to Pi is the tuple (α, r, β), while the common input to all
the parties is (u, β), where u = h(α, r). Party Pi then computes the desired
functionality f(α, β) and invokes a SSE-NIZK argument system to generate a
proof Π corresponding to the following language: L = {

(
(u, v, f, h), (x, y)

)
|(

(u = h(x, y))∧ (v = f(x, β))
)
}. It then broadcasts the tuple (v,Π). In case the

proof does not verify, all the parties abort and output ⊥.
We now discuss the design of the reverse firewall W3 for this protocol. We

assume that the party Pi is tampered in a functionality-maintaining way. The
idea for the design of the CRF is very simple: the CRF simply re-randomizes the
proof Π, since the randomness used to generate the proof may reveal some secret
information. Note that, the value v = f(α, β) given by Pi should be correctly
computed. This follows from the fact that party P ′is input and random coins
are fixed, and it is corrupted in a functionality-maintaining way. The design of
the CRF is shown in Fig. 5. We now have the following theorem whose proof
(appearing in [8]) is an adaptation of the proof of the protocol executing the
authenticated computation functionality [18].

Theorem 5. Let {Gλ,Kλ, comλ}λ∈N be a perfectly hiding and computationally
binding commitment scheme. Also, let (CRSGen,P,V,ZKEval) be a strong simula-
tion-extractable non-interactive zero-knowledge argument system for the lan-
guage L shown in Fig. 5. Then the protocol in Fig. 5 securely computes the
functionality presented in Eq. 3. The reverse firewall W3 shown in Fig. 5 is
functionality-maintaining and detects failure for party Pi. If the commitment
scheme com is perfectly hiding and computationally binding; the NIZK ar-
gument system is re-randomizable and simulation-sound extractable, then the
reverse firewall W3 preserves security for party Pi and is exfiltration-resistance
against the other parties {Pj}j∈[n]\i.

3.6 The Final Compiler

We now present the final compiler which transforms any semi-honest MPC pro-
tocol Π into a protocol Π ′ which is secure in the malicious model in the setting
of reverse firewalls. We assume the existence of a single broadcast channel. The
specification of our compiler is similar to that presented in [18]; however, ad-
justed to the reverse firewall setting. In particular, we present a reverse firewall
W∗ for the final MPC protocol Π ′. As we show, this firewall W∗ can be seen
as consisting of three sub-firewalls W1, W2 and W3 corresponding to the three
sub-protocols or building blocks used in the compiler, namely, input commit-
ment, (augmented) coin-tossing, and the authenticated computation protocols
respectively. We then present a generic composition theorem for reverse firewalls

26

and show that the compiled protocol Π ′ is secure in the presence of the reverse
firewall W∗.

The Construction. Let Π be a given n-party MPC protocol, secure in the semi-
honest model. We compile the protocol Π into another protocol Π ′ in the re-
verse firewall setting using the building blocks we have developed so far. The
specification of the protocol Π ′ follows:
Inputs. Party Pi gets input xi = xi1x

i
2 · · ·xi` ∈ {0, 1}`.

Input Commitment phase using reverse firewalls. Each of the n parties
commits to their `-bit input string using a secure implementation of the multi-
party input commitment functionality (see Eq. 2) using reverse firewall W1, as
presented in Fig. 4. That is, for all j ∈ [n], β ∈ [`], party Pj selects rjβ ∈ {0, 1}`
and invokes a secure implementation of the multi-party input commitment pro-
tocol using reverse firewall W1, playing the role of the (initializing) party Pi
with input (xjβ , r

j
β). The other parties play the role of other parties {Pk}k∈[n]\i

of Fig. 4 with input 1λ, and obtain the output comλ(xjβ ; rjβ). Party i records rjβ ,

and the other parties record comλ(xjβ ; rjβ).
Coin-generation phase. Each of the n parties run a secure implementation of
the multi-party augmented parallel coin-tossing functionality (see Eq. 1) using
reverse firewall W2, as presented in Fig. 3. This protocol is run by each party
to generate a random pad of length t for emulation of the corresponding party
in the semi-honest MPC protocol Π. The other parties obtain a commitment of
the random tape of that party. That is, for all j ∈ [n], party Pj invokes a secure
implementation of the multi-party augmented parallel coin-tossing protocol us-
ing reverse firewall W2 (see Fig. 3), playing the role of party Pi with input 1λ.
The other parties play the role of parties {Pk}k∈[n]\j of Fig. 3. Party Pj obtains

a pair (sj , ωj), where sj ∈ {0, 1}t and ωj ∈ {0, 1}t·λ. The other parties obtain
the commitment comλ(sj ;ωj). Party Pj records sj , and the other parties record
comλ(sj ;ωj).
Protocol emulation phase. Each of the n parties run a secure implementation
of the multi-party authenticated computation functionality (see Eq. 3) using
reverse firewall W3 as presented in Fig. 5. The party which is supposed to send
a message plays the role of party Pi in Eq. 3 and all the other parties play the
role of other parties {Pk}k∈[n]\i. The variables α, β, r, and the functions h, f of
the protocol are set as follows. The string α is set to be the concatenations of
the party’s original input and it’s random tape. The string r is set to be the
concatenations of all the randomnesses used to generate the commitments and
h(α, r) is set to be the concatenations of the commitments themselves.

α = (xi, si), where xi = xi1x
i
2 · · ·xi`, and si ∈ {0, 1}t,

r =
(
ri1r

i
2 · · · ri`, ωi

)
, where ∀β ∈ [`], riβ ∈ {0, 1}`, ωi ∈ {0, 1}t·λ,

h(α, r) =
(
comλ(xi1; ri1), comλ(xi2; ri2), · · · , comλ(xi`; r

i
`), comλ(si;ωi)

)
The string β is set to be the concatenation of all previous messages sent by

other parties over the broadcast channel. Finally, the function f is set to be the

27

next message function, i.e, the computation that determines the next message to
be sent by Pi in Π. The message can be thought of as a deterministic polynomial-
time computable function of the party’s input, it’s random pad and the messages
received so far.
Aborting. We denote the composed firewall for the compiled protocol as W∗.
The reverse firewall W∗ is composed of three sub-firewalls W1, W2 and W3

corresponding to the three sub-protocols or building blocks as mentioned above.
In case, any of these sub-firewalls fails detectably, the firewall W∗ for the larger
protocol also aborts the execution and outputs⊥. Else, the outputs are as follows:
Output. At the end of the protocol emulation phase, each party holds locally
its output value. The parties simply output their respective values.

The composition theorem below shows that the final compiled protocol Π ′ is
an actively-secure MPC protocol. The protocol Π ′ has a reverse firewall for
all parties provided that each of the input commitment, the (augmented) coin-
tossing and the authenticated computation protocols have their own firewalls
satisfying some properties.

Theorem 6. (Composition Theorem for security of Π ′). Given a MPC
protocol Π secure in the semi-honest model, and provided that the multi-party
input commitment protocol Π ′1, the multi-party (augmented) coin-tossing proto-
col Π ′2, and the multi-party authenticated computation protocol Π ′3 are secure in
the malicious model, the compiled MPC protocol Π ′ is an actively-secure MPC
protocol. Let W∗1 , W∗2 and W∗3 denote the reverse firewalls for the protocols Π ′1,
Π ′2 and Π ′3 respectively. Also, let party Pi be the initiating party for all these pro-
tocols at some point in time (in general it can be any one of the parties corrupted
in a functionality-maintaining way). Now consider the following properties:

• Let Π be a MPC protocol secure in the semi-honest model (without reverse
firewalls).

• Let the firewall W∗1 (for the multi-party input commitment protocol Π ′1) pre-
serves security for party Pi, is exfiltration-resistant against the other parties
{Pj}j∈[n]\i, and detects failure for Pi.

• Let the firewall W∗2 (for the multi-party augmented coin-tossing protocol Π ′2)
preserves security for party Pi and is weakly exfiltration-resistant against the
other parties {Pj}j∈[n]\i. Also, let W2 strongly preserve the security for the
parties {Pj}j∈[n]\i and is strongly exfiltration-resistant against Pi. Finally,
let W2 detect failures for all the parties.

• Let the firewall W∗3 (for multi-party authenticated computation protocol Π ′3)
preserves security for party Pi, is weakly exfiltration-resistant against the
other parties {Pj}j∈[n]\i, and detects failure for Pi.

Then the composed reverse firewall W∗ = W∗1 ◦ W∗2 ◦ W∗3 preserves security for
party Pi and is weakly exfiltration-resistant against the parties {Pj}j∈[n]\i in
the protocol Π ′.

For the proof of this theorem see [8].

28

Conclusion and future work. In this work, we present the first feasibility
result for general MPC protocols in the setting of reverse firewalls. We leave
open the construction of more efficient and round-optimal RF-compatible MPC
protocols for future work. As mentioned in the introduction, another research
direction is to develop concrete instantiations of firewalls for threshold cryptog-
raphy schemes.

Acknowledgments We would like to thank the anonymous reviewers for their
helpful comments and suggestions. The work was initiated while the first au-
thor was in IIT Madras, India. Part of this work was done while the author was
visiting the University of Warsaw. This project has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (682815 - TOCNeT) and from the Foundation
for Polish Science under grant TEAM/2016-1/4 founded within the UE 2014-
2020 Smart Growth Operational Program. The last author was supported by
the Independent Research Fund Denmark project BETHE and the Concordium
Blockchain Research Center, Aarhus University, Denmark.

References

[1] P. Ananth, A. R. Choudhuri, and A. Jain. “A New Approach to Round-
Optimal Secure Multiparty Computation”. In: CRYPTO 2017, Part I.
2017.

[2] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D.
Wichs. “Multiparty Computation with Low Communication, Computation
and Interaction via Threshold FHE”. In: EUROCRYPT 2012. 2012.

[3] G. Ateniese, B. Magri, and D. Venturi. “Subversion-Resilient Signature
Schemes”. In: ACM CCS 2015. 2015.

[4] D. Beaver. “Foundations of Secure Interactive Computing”. In: CRYPTO’91.
1992.

[5] F. Benhamouda and H. Lin. “k-Round Multiparty Computation from k-
Round Oblivious Transfer via Garbled Interactive Circuits”. In: EURO-
CRYPT 2018, Part II. 2018.

[6] M. Blum, P. Feldman, and S. Micali. “Non-Interactive Zero-Knowledge
and Its Applications (Extended Abstract)”. In: 20th ACM STOC. 1988.

[7] R. Canetti. “Security and Composition of Multiparty Cryptographic Pro-
tocols”. In: Journal of Cryptology 1 (2000).

[8] S. Chakraborty, S. Dziembowski, and J. B. Nielsen. Reverse Firewalls for
Actively Secure MPCs. Cryptology ePrint Archive, Report 2019/1317. Ex-
tended version of this paper. 2019.

[9] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. “Malleable
Proof Systems and Applications”. In: EUROCRYPT 2012. 2012.

[10] R. Chen, Y. Mu, G. Yang, W. Susilo, F. Guo, and M. Zhang. “Cryp-
tographic Reverse Firewall via Malleable Smooth Projective Hash Func-
tions”. In: ASIACRYPT 2016. 2016.

29

[11] R. Cramer, I. B. Damg̊ard, and J. B. Nielsen. Secure Multiparty Compu-
tation and Secret Sharing. 2015.

[12] E. Dauterman, H. Corrigan-Gibbs, D. Mazières, D. Boneh, and D. Rizzo.
“True2F: Backdoor-Resistant Authentication Tokens”. In: 2019 IEEE Sym-
posium on Security and Privacy. 2019.

[13] Y. Dodis, I. Mironov, and N. Stephens-Davidowitz. “Message Transmission
with Reverse Firewalls—Secure Communication on Corrupted Machines”.
In: CRYPTO 2016, Part I. 2016.

[14] J. Doerner, Y. Kondi, E. Lee, and a. shelat. “Threshold ECDSA from
ECDSA Assumptions: The Multiparty Case”. In: 2019 IEEE Symposium
on Security and Privacy. 2019.

[15] D. Dolev and H. Strong. “Authenticated Algorithms for Byzantine Agree-
ment”. In: SIAM Journal on Computing 4 (1983).

[16] S. Garg and A. Srinivasan. “Two-Round Multiparty Secure Computation
from Minimal Assumptions”. In: EUROCRYPT 2018, Part II. 2018.

[17] R. Gennaro and S. Goldfeder. “Fast Multiparty Threshold ECDSA with
Fast Trustless Setup”. In: ACM CCS 2018. 2018.

[18] O. Goldreich. Secure Multi-Party Computation.
[19] O. Goldreich, S. Micali, and A. Wigderson. “How to Play any Mental

Game or A Completeness Theorem for Protocols with Honest Majority”.
In: 19th ACM STOC. 1987.

[20] J. Groth. Homomorphic Trapdoor Commitments to Group Elements. Cryp-
tology ePrint Archive, Report 2009/007. 2009.

[21] J. Groth. “Simulation-Sound NIZK Proofs for a Practical Language and
Constant Size Group Signatures”. In: ASIACRYPT 2006. 2006.

[22] D. Hofheinz, T. Jager, and E. Knapp. “Waters Signatures with Optimal
Security Reduction”. In: PKC 2012. 2012.

[23] Y. Ishai, A. Sahai, and D. Wagner. “Private Circuits: Securing Hardware
against Probing Attacks”. In: CRYPTO 2003. 2003.

[24] Y. Lindell. “Parallel Coin-Tossing and Constant-Round Secure Two-Party
Computation”. In: CRYPTO 2001. 2001.

[25] S. Micali and L. Reyzin. “Physically Observable Cryptography (Extended
Abstract)”. In: TCC 2004. 2004.

[26] I. Mironov and N. Stephens-Davidowitz. “Cryptographic Reverse Fire-
walls”. In: EUROCRYPT 2015, Part II. 2015.

[27] P. Mukherjee and D. Wichs. “Two Round Multiparty Computation via
Multi-key FHE”. In: EUROCRYPT 2016, Part II. 2016.

[28] G. J. Simmons. “The Prisoners’ Problem and the Subliminal Channel”.
In: CRYPTO’83. 1983.

[29] B. R. Waters. “Efficient Identity-Based Encryption Without Random Or-
acles”. In: EUROCRYPT 2005. 2005.

30

	Reverse Firewalls for Actively Secure MPCs

