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Abstract. We study the communication complexity of unconditionally
secure MPC with guaranteed output delivery over point-to-point chan-
nels for corruption threshold t < n/2, assuming the existence of a pub-
lic broadcast channel. We ask the question: “is it possible to construct
MPC in this setting s.t. the communication complexity per multiplica-
tion gate is linear in the number of parties?” While a number of works
have focused on reducing the communication complexity in this setting,
the answer to the above question has remained elusive until now. We
also focus on the concrete communication complexity of evaluating each
multiplication gate.
We resolve the above question in the affirmative by providing an MPC
with communication complexity O(Cnφ) bits (ignoring fixed terms which
are independent of the circuit) where φ is the length of an element in
the field, C is the size of the (arithmetic) circuit, n is the number of
parties. This is the first construction where the asymptotic communi-
cation complexity matches the best-known semi-honest protocol. This
represents a strict improvement over the previously best-known com-
munication complexity of O(C(nφ + κ) + DMn

2κ) bits, where κ is the
security parameter and DM is the multiplicative depth of the circuit.
Furthermore, the concrete communication complexity per multiplication
gate is 5.5 field elements per party in the best case and 7.5 field elements
in the worst case when one or more corrupted parties have been iden-
tified. This also roughly matches the best-known semi-honest protocol,
which requires 5.5 field elements per gate.
The above also yields the first secure-with-abort MPC protocol with
the same cost per multiplication gate as the best-known semi-honest
protocol. Our main result is obtained by compiling the secure-with-abort
MPC protocol into a fully secure one.
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1 Introduction

In secure multiparty computation (MPC), a set of n parties together evaluate a
function f on their private inputs. This function f is public to all parties, and,
may be modeled as an arithmetic circuit over a finite field. Very informally, a
protocol of secure multiparty computation guarantees the privacy of the inputs
of every (honest) individual except the information which can be deduced from
the output. This notion was first introduced in the work [Yao82] of Yao. Since the
early feasibility solutions proposed in [Yao82,GMW87], various settings of MPC
have been studied. Examples include semi-honest security vs malicious security,
security against computational adversaries vs unbounded adversaries, honest
majority vs corruptions up to n − 1 parties, security with abort vs guaranteed
output delivery and so on.

In this work, we focus on the information-theoretical setting (i.e., security
against unbounded adversaries) with guaranteed output delivery. The adversary
is allowed to corrupt at most t < n/2 parties and is fully malicious. We assume
the existence of private point-to-point communication channels and a public
broadcast channel. We are interested in the communication complexity of the se-
cure MPC, which is measured by the number of bits X via private point-to-point
channels and the number of bits Y via the public broadcast channel, i.e., X+Y ·
BC. The first positive solutions in this setting were proposed in [RBO89,Bea89].
After those, several subsequent works [CDD+99,BTH06,BSFO12] have focused
on improving the communication complexity of the protocol. Note that, by repre-
senting the functionality as an arithmetic circuit, the communication complexity
of the protocol in the unconditional setting is typically dominated by the num-
ber of multiplication gates in the circuit. This is because the addition gates can
usually be done locally, requiring no communication at all.

In this paper, we ask the following natural question:
“Is it possible to construct unconditional MPC with guaranteed output de-

livery for t < n/2 s.t. the communication complexity per multiplication gate is
linear in the number of parties? Furthermore, what is the concrete communica-
tion complexity per multiplication gate?”

Having linear communication complexity per multiplication gate greatly ben-
efits the scalability of the protocol, as it means that the work done by each party
is independent of the number of parties but only related to the size of the cir-
cuit. While a number of works have made significant progress, this question has
remained opened until now.

The best-known result in this setting is the construction in the work [BSFO12]
of Ben-Sasson, Fehr and Ostrovsky. The construction in [BSFO12] has commu-
nication complexity O(C(nφ+κ)+DMn

2κ) bits (ignoring fixed terms which are
independent of the circuit), where C is the size of the circuit, φ is the length of
a field element, κ is the security parameter and DM is the multiplicative depth
of the circuit. Comparing with the best-known result against semi-honest adver-
saries in [DN07], which has communication complexity O(Cnφ) bits, there is an
additional term DMn

2κ related to the circuit. In the worst case where the cir-
cuit is “narrow and deep”, DMn

2κ may even become the dominating term of the
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communication complexity and result in O(n2) elements per gate. Ben-Sasson
et. al asked if this quadratic term related to the depth of the circuit is inherent.

In a beautiful work, Ishai et al. [IKP+16] provided a general transformation
from a protocol in the setting of security with abort to a protocol with guaranteed
output delivery. Instantiation this transformation with the best-known protocol
for security with abort, the resulting construction eliminates the quadratic term
w.r.t. the circuit depth. However, the communication complexity of the resulting
protocol now has a term O(W · poly(n)), where W is the width of the circuit,
and, poly(n) can be at least n4 for certain circuits. For the circuit with a large
width, this term may even become the dominating term.

In the setting of t < n/3 corruptions (where a public broadcast channel
can be securely simulated), question of getting a construction with linear com-
munication complexity was recently resolved in the recent work of Goyal et.
al [GLS19], which presented a construction with communication complexity
O(Cnφ) bits. Similar results were also known in the setting of security with
abort in [GIP+14,GIP15,LN17,CGH+18,NV18].

Our Results. In this work, we answer the above question in the affirmative
by presenting an MPC protocol with communication complexity O(Cnφ) bits
(ignoring fixed terms which are independent of the circuit). Furthermore, we also
focus on the concrete efficiency, i.e., the number of elements per multiplication
gate per party. Concretely, our result achieves 5.5 + ε elements in the best case
and 7.5 + ε elements in the worst case when one or more corrupted parties have
been identified, where ε can be an arbitrarily small constant. Comparing with the
best-known result [DN07] in the semi-honest setting, our result essentially shows
that achieving output delivery guarantee requires no additional cost compared
to the semi-honest security.

Our main contributions lie in two aspects, (1) we present the first construc-
tion in this setting where the asymptotic communication complexity matches
that in the semi-honest setting, and, (2) our protocol roughly achieves the same
concrete efficiency as the best-known semi-honest protocol.

The above also yields the first secure-with-abort MPC protocol with the same
cost per multiplication gate as the best-known semi-honest protocol [DN07].
Concretely, each party only needs to communicate 5.5 field elements per multipli-
cation gate. We obtain this construction by building on the technique in [BBCG+19].
An overview of the construction can be found in Section 3.

Regarding the construction with guaranteed output delivery, our results stem
from the idea of developing a suite of techniques to efficiently compile our secure-
with-abort protocol into a fully secure protocol. Additionally, we introduce a
technique which allows us to reuse authentication keys towards developing a
more efficient verifiable secret sharing scheme. An overview of our new ideas can
be found in Section 4.

Related Works. We compare our result with several related constructions in
both techniques and efficiency. In the following, let C denote the size of the
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circuit, φ denote the size of a field element, κ denote the security parameter,
DM denote the depth of the circuit, and W denote the width of the circuit. We
will ignore fixed terms which are independent of the circuit.

Security with abort. In [DN07], Damg̊ard and Nielsen introduce the best-known
semi-honest protocol, which we refer to as the DN protocol. The communication
complexity of the DN protocol is O(Cnφ) bits. The concrete efficiency is 6 field
elements per multiplication gate (per party). In [GIP+14], Genkin, et al. show
that the DN protocol is secure up to an additive attack when running in the fully
malicious setting. Based on this observation, a secure-with-abort MPC protocol
can be constructed by combining the DN protocol and a circuit which is resilient
to an additive attack (referred to as an AMD circuit). As a result, Genkin, et
al. [GIP+14] give the first construction against a fully malicious adversary with
communication complexityO(Cnφ) bits (for a large enough field), which matches
the asymptotic communication complexity of the DN protocol.

The construction in [CGH+18] also relies on the theorem showed in [GIP+14].
The idea is to check whether the adversary launches an additive attack. In the
beginning, all parties compute a random secret sharing of the value r. For each
wire w with the value x associated with it, all parties will compute two secret
sharings of the secret values x and r · x respectively. Here r · x can be seen as a
secure MAC of x when the only possible attack is an additive attack. In this way,
the protocol requires two operations per multiplication gate. The asymptotic
communication complexity is O(Cnφ) bits (for a large enough field) and the
concrete efficiency is reduced to 12 field elements per multiplication gate.

An interesting observation is that the theorem showed in [GIP+14] implies
that the DN protocol provides perfect privacy of honest parties (before the out-
put phase) in the presence of a fully malicious adversary. To achieve security
with abort, the only task is to check the correctness of the computation before
the output phase. This observation has been used in [LN17,NV18]. In particular,
the construction in [NV18] achieves the same concrete efficiency as [CGH+18] by
using the Batch-wise Multiplication Verification technique in [BSFO12], i.e., 12
field elements per multiplication gate. Our construction also relies on this obser-
vation. Therefore, the main task is to efficiently verify a batch of multiplications
such that the communication complexity is sublinear in the number of parties.

In [BBCG+19], Boneh, et al. introduce a very powerful tool to achieve this
task when the number of parties is restricted to be a constant. Our result is
obtained by instantiating this technique with a different secret sharing scheme,
which allows us to overcome this restriction so that it works for any (polyno-
mial) number of parties. Furthermore, we simplify this technique by avoiding
the use of a robust secret sharing scheme and a verifiable secret sharing scheme,
which are required in [BBCG+19]. Our protocol additionally makes a simple op-
timization to the DN protocol, which brings down the cost from 6 field elements
per multiplication gate to 5.5 field elements. More details about the comparison
for techniques can be found in the last paragraph of Section 3.5. A subsequent
work [GLOS20] implements our construction and shows that the performance
beats the previously best-known implementation result [CGH+18] in this setting.
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In [BGIN19], Boyle, et al. use the technique in [BBCG+19] to construct a
3-party computation with guaranteed output delivery. In particular, they imple-
ment their verification for multiplication gates. As shown in their implementation
result, just the local computation of checking the correctness of 1 million multi-
plication gates in the 31-bit Mersenne Field requires around 1 second. Note that
this does not include any computation cost related to the circuit and any com-
munication cost. On the other hand, the implementation result from [GLOS20]
shows that our construction only needs 0.7 second for computing the whole cir-
cuit in an even large field (61-bit Mersenne Field) in the 3-party setting. This
shows that our construction is several times faster.

Guaranteed Output Delivery. The construction in [BSFO12] is most related to
our result. In fact, we reuse and modify many protocols in [BSFO12] in our
construction.

The communication complexity achieved by the construction in [BSFO12] is
O(C(nφ+κ)+DMn

2κ) bits. Our result removes both the quadratic term related
to DM and the term O(Cκ). Furthermore, the use of Beaver triples for multi-
plication gates in [BSFO12] is more expensive than the multiplication protocol
in the best-known semi-honest protocol [DN07]. As a result, the communication
cost per multiplication gate in [BSFO12] is a fixed 20 field elements (without
considering the effect of O(DMn

2κ)). Our result achieves 5.5 + ε field elements
per multiplication gate in the best case and 7.5 + ε field elements in the worst
case when one or more corrupted parties have been identified, where ε can be an
arbitrarily small constant. In the best case, our result matches the best-known
semi-honest protocol [DN07].

Technically, while the construction from [BSFO12] uses Beaver triples to
compute multiplications in the computation phase, we directly use a modified
version of the multiplication protocol of the best-known protocol [DN07] from the
semi-honest setting. We note that Beaver triples provide plenty of redundancy
which simplifies the checking process in the computation phase. However, the
use of Beaver triples unfortunately requires a verification for each layer of the
circuit, which leads to the quadratic term related to DM . On the other hand, we
start from the our secure-with-abort MPC protocol, which does not make use
of Beaver triples. While this idea can potentially remove the term O(DMn

2),
without the redundancy provided by Beaver triples, the verification becomes
difficult and even the computation cannot proceed when malicious parties refuse
to participate in the computation. We will show how to tackle these difficulties
in Section 4.

In [IKP+16], Ishai et al. provided a general transformation from a protocol in
the setting of security with abort to a protocol with guaranteed output delivery.
When instantiating their transformation with our secure-with-abort protocol,
the resulting protocol can achieve 5.5 field elements per multiplication gate when
the width of the circuit is small. However, a drawback of this transformation
is that the efficiency of the resulting protocol has a large dependency on the
width of the circuit. Specifically, the communication complexity of the resulting
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protocol contains a term O(W · poly(n, κ)) (where poly is relatively large). For
the circuit with a large width, this term may even become the dominating term.

Recently, Goyal et al. [GLS19] gave the first construction against 1/3 corrup-
tion such that the communication complexity per multiplication gate is linear
in the number of parties. The communication complexity is O(Cnφ) bits. Since
they mainly focused on the feasibility and the protocol is perfectly secure, the
concrete efficiency is 66 elements per multiplication gate.

Unfortunately the techniques developed in [GLS19] fail in the setting of hon-
est majority. Technically, we use a significantly different approach from that
in [GLS19] to remove the quadratic term related to the circuit depth. The reason
for O(DMn

2) is that all parties need to ensure the correctness of multiplications
in one layer before moving on to the next layer. To this end, each layer requires
at least O(n2) communication, which results in O(DMn

2) overhead. While Goyal
et al. [GLS19] used n-out-of-n secret sharings to overcome the layer restriction,
our approach is to directly compile the our secure-with-abort protocol, which
does not have the term O(DMn

2), to a fully secure one.

Other Related Works. The notion of MPC was first introduced in [Yao82,GMW87]
in 1980s. Feasibility results for MPC were obtained by [Yao82,GMW87,CDVdG87]
under cryptographic assumptions, and by [BOGW88,CCD88] in the information-
theoretic setting. Subsequently, a large number of works have focused on improv-
ing the efficiency of MPC protocols in various settings.

A series of works focus on improving the communication efficiency of MPC
with output delivery guarantee in the settings with different threshold on the
number of corrupted parties. In the setting where t < n/3, a public broadcast
channel can be securely simulated and therefore, only private point-to-point com-
munication channels are required. A rich line of works [HMP00,HM01,DN07,BTH08],
[GLS19] have focused on improving the asymptotic communication complexity
in this setting. In the setting where t < (1/3 − ε)n, packed secret sharing can
be used to hide a batch of values, resulting in more efficient protocols. E.g.,
Damgard et al. [DIK10] introduced a protocol with communication complexity
O(C logC log n · κ+D2

Mpoly(n, logC)κ) bits.
A rich line of works have also focused on the performance of MPC in practice.

Many concretely efficient MPC protocols were presented in [LP12,NNOB12,FLNW17]
[ABF+17,LN17,CGH+18]. All of these works emphasized the practical running
time and only provided security with abort. Some of them were specially con-
structed for two parties [LP12,NNOB12], or three parties [FLNW17,ABF+17].

2 Preliminaries

2.1 Model

We consider a set of parties P = {P1, P2, ..., Pn} where each party can provide
inputs, receive outputs, and participate in the computation. For every pair of
parties, there exists a secure (private and authentic) synchronous channel so
that they can directly send messages to each other. Beyond that, we also assume
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the existence of a secure broadcast channel, which is available to all parties.
The communication complexity is measured by the number of bits X via private
channels plus the number of bits Y via the broadcast channel, i.e., X + Y · BC.

We focus on functions which can be represented as arithmetic circuits over a
finite field F (with |F| ≥ n+1) with input, addition, multiplication, random, and
output gates. Let φ = log |F| be the size of an element in F. We use κ to denote
the security parameter and let K be an extension field of F (with |K| ≥ 2κ). For
simplicity, we use κ to denote the size of an element in K.

An adversary is able to corrupt at most t < n/2 parties, provide inputs to
corrupted parties, and receive all messages sent to corrupted parties. Corrupted
parties can deviate from the protocol arbitrarily. For simplicity, we assume n =
2t+ 1. Each party Pi is assigned a unique non-zero field element αi ∈ F\{0} as
the identity.

Let cI , cM , cR, cO be the numbers of input gates, multiplication gates, random
gates and output gates respectively. We set C = cI + cM + cR + cO to be the
size of the circuit.

2.2 Secret Sharing

In our protocol, we use the standard Shamir’s secret sharing scheme [Sha79].
A degree-d Shamir sharing of w ∈ F is a vector (w1, . . . , wn) which satisfies

that, there exists a polynomial f(·) ∈ F[X] of degree at most d such that f(0) =
w and f(αi) = wi for i ∈ {1, . . . , n}. Each party Pi holds a share wi and the
whole sharing is denoted by [w]d.

Properties of the Shamir’s Secret Sharing Scheme. In the following, we will
utilize two properties of the Shamir’s secret sharing scheme.

– Linear Homomorphism:

∀ [x]d, [y]d, [x+ y]d = [x]d + [y]d.

– Multiplying two degree-d sharings yields a degree-2d sharing. The secret
value of the new sharing is the product of the original two secrets.

∀ [x]d, [y]d, [x · y]2d = [x]d · [y]d.

2.3 Generating Random Sharings and Double Sharings

We introduce two basic protocols Rand and DoubleRand in the DN proto-
col [DN07].

The protocol Rand is used to prepare t+1 = O(n) random degree-t sharings
in the semi-honest setting. Rand will utilize a predetermined and fixed Vander-
monde matrix of size n × (t + 1), which is denoted by MT (therefore M is a
(t+1)×n matrix). An important property of a Vandermonde matrix is that any
(t+1)× (t+1) submatrix of MT is invertible. The description of Rand appears
in Protocol 1. The communication complexity of Rand is O(n2) field elements.
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Protocol 1: Rand

1. Each party Pi ∈ Pactive randomly samples a sharing [s(i)]t such that the shares
held by parties in Dispi are set to be 0. Then Pi distributes the shares to other
parties. For each Pi ∈ Corr, all parties take an all-0 sharing as [s(i)]t.

2. All parties locally compute

([r(1)]t, [r
(2)]t, . . . , [r

(t+1)]t)
T = M([s(1)]t, [s

(2)]t, . . . , [s
(n)]t)

T

and output [r(1)]t, [r
(2)]t, . . . , [r

(t+1)]t.

A pair of double sharings ([r]t, [r]2t) is a pair of two sharings of the same
secret. One is a degree-t sharing and the other one is a degree-2t sharing. The
protocol DoubleRand is used to prepare t+ 1 = O(n) random double sharings
in the semi-honest setting. The description of DoubleRand appears in Proto-
col 2. The communication complexity of DoubleRand is O(n2) field elements.

Protocol 2: DoubleRand

1. Each party Pi ∈ Pactive randomly samples a pair of double sharings
([s(i)]t, [s

(i)]2t) such that the shares held by parties in Dispi are set to be
0. Then Pi distributes the shares to other parties. For each Pi ∈ Corr, all
parties take all-0 sharings as ([s(i)]t, [s

(i)]2t).
2. All parties locally compute

([r(1)]t, [r
(2)]t, . . . , [r

(t+1)]t)
T = M([s(1)]t, [s

(2)]t, . . . , [s
(n)]t)

T

([r(1)]2t, [r
(2)]2t, . . . , [r

(t+1)]2t)
T = M([s(1)]2t, [s

(2)]2t, . . . , [s
(n)]2t)

T

and output ([r(1)]t, [r
(1)]2t), ([r

(2)]t, [r
(2)]2t), . . . , ([r

(t+1)]t, [r
(t+1)]2t).

3 An Overview of the Secure-with-abort Protocol

3.1 General Strategy and Protocol Overview

In [GIP+14], Genkin, et al. showed that several semi-honest MPC protocols are
secure up to an additive attack in the presence of a fully malicious adversary.
As one corollary, these semi-honest protocols provide full privacy of honest par-
ties before reconstructing the output. Therefore, a straightforward strategy to
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achieve security-with-abort is to (1) run a semi-honest protocol till the output
phase, (2) check the correctness of the computation, and (3) reconstruct the
output only if the check passes.

Fortunately, the best-known semi-honest protocol in this setting [DN07] is
secure up to an additive attack. Our construction will follow the above strategy.
The main task is the second step, i.e., checking the correctness of the computa-
tion before reconstructing the final results.

3.2 Review: DN Semi-Honest Protocol

The best-known semi-honest protocol was proposed in the work of Damg̊ard
and Nielsen [DN07]. The protocol consists of 4 phases: Preparation Phase, Input
Phase, Computation Phase, and Output Phase. Here we give a brief description
of these four phases.

Preparation Phase. In the preparation phase, all parties need to prepare several
random sharings which will be used in the computation phase. Specifically, there
are two kinds of random sharings needed to be prepared. The first kind is a
random degree-t sharing [r]t. The second kind is a pair of random sharings
([r]t, [r]2t), which is referred to as double sharings. At a high-level, these two
kinds of random sharings are prepared in the following manner:

1. Each party generates and distributes a random degree-t sharing (or a pair
of random double sharings).

2. Each random sharing (or each pair of double sharings) is a linear combination
of the random sharings (or the random double sharings) distributed by each
party.

More details can be found in Section 2.3.

Input Phase. In the input phase, each input holder generates and distributes a
random degree-t sharing of its input.

Computation Phase. In the computation phase, all parties need to evaluate
addition gates and multiplication gates. For an addition gate with input sharings
[x]t, [y]t, all parties just locally add their shares to get [x+ y]t = [x]t + [y]t. For
a multiplication gate with input sharings [x]t, [y]t, one pair of double sharings
([r]t, [r]2t) is consumed. All parties execute the following steps.

1. All parties first locally compute [x · y + r]2t = [x]t · [y]t + [r]2t.
2. Pking collects all shares of [x · y + r]2t and reconstructs the value x · y + r.

Then Pking sends the value x · y + r back to all other parties.
3. All parties locally compute [x · y]t = x · y + r − [r]t.

Here Pking is the party all parties agree on in the beginning.

Output Phase. In the output phase, all parties send their shares of the out-
put sharing to the party who should receive this result. Then that party can
reconstruct the output.
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Improvement to 5.5 Field Elements. We note that in the second step of
the multiplication protocol, Pking can alternatively generate a degree-t sharing
[x · y+ r]t and distribute the sharing to all other parties. Then in the third step,
[x ·y]t can be computed by [x ·y+r]t− [r]t. In fact, Pking can set the shares of (a
predetermined set of) t parties to be 0 in the sharing [x ·y+r]t. This means that
Pking need not to communicate these shares at all, reducing the communication
by half. We rely on the following two observations:

– While normally setting some shares to be 0 could compromise the privacy of
the secret (by effectively reducing the reconstruction threshold), note that
here x · y + r need not to be private at all.

– Parties do not actually need to receive x · y+ r from Pking. Rather, receiving
shares of x · y + r is sufficient to allow them to proceed in the protocol.

This simple observation leads to an improvement of reducing the cost per gate
from 6 elements to 5.5 elements. Note that in this construction, all multiplication
gates at the same “layer” in the circuit can be evaluated in parallel. Hence, it is
even possible to perform a “load balancing” such that the overall cost of different
parties roughly remains the same.

3.3 Review: Batch-wise Multiplication Verification

This technique is introduced in the work of Ben-Sasson, et al. [BSFO12]. It is
used to check a batch of multiplication tuples efficiently. Specifically, given m
multiplication tuples

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t, [y
(m)]t, [z

(m)]t),

we want to check whether x(i) · y(i) = z(i) for all i ∈ [m].
The high-level idea is constructing three polynomials f(·), g(·), h(·) such that

∀i ∈ [m], f(i) = x(i), g(i) = y(i), h(i) = z(i).

Then check whether f · g = h. Here f(·), g(·) are degree-(m− 1) polynomials so
that they can be determined by {x(i)}i∈[m], {y(i)}i∈[m] respectively. In this case,
h(·) should be a degree-2(m−1) polynomial which is determined by 2m−1 values.
To this end, for i ∈ {m + 1, . . . , 2m − 1}, we need to compute z(i) = f(i) · g(i)
so that h(·) can be computed by {z(i)}i∈[2m−1].

All parties first locally compute [f(·)]t and [g(·)]t using {[x(i)]t}i∈[m] and

{[y(i)]t}i∈[m] respectively. Here a degree-t sharing of a polynomial means that
each coefficient is secret-shared. For i ∈ {m+ 1, . . . , 2m− 1}, all parties locally
compute [f(i)]t, [g(i)]t and then compute [z(i)]t using the multiplication protocol
in [DN07]. Finally, all parties locally compute [h(·)]t using {[z(i)]t}i∈[2m−1].

Note that if x(i) · y(i) = z(i) for all i ∈ [2m − 1], then we have f · g = h.
Otherwise, we must have f · g 6= h. Therefore, it is sufficient to check whether
f · g = h. Since h(·) is a degree-2(m− 1) polynomials, in the case that f · g 6= h,
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the number of x such that f(x) · g(x) = h(x) holds is at most 2(m − 1). Thus,
it is sufficient to test whether f(x) · g(x) = h(x) for a random x. As a result,
this technique compresses m checks of multiplication tuples to a single check
of the tuple ([f(x)]t, [g(x)]t, [h(x)]t). Secure techniques for checking the tuple
([f(x)]t, [g(x)]t, [h(x)]t) are given in [BSFO12,NV18].

The main drawback of this technique is that it requires one additional multi-
plication operation per tuple. Our idea is to improve this technique so that the
check will require fewer multiplication operations.

3.4 Extensions

We would like to introduce two natural extensions of the DN multiplication
protocol and the Batch-wise Multiplication Verification technique respectively.

Extension of the DN Multiplication Protocol. In essence, the DN multiplication
protocol uses a pair of random double sharings to reduce a degree-2t sharing
[x · y]2t to a degree-t sharing [x · y]t. Therefore, an extension of the DN multipli-
cation protocol is used to compute the inner-product of two vectors of the same
dimension.

Specifically, let � denote the inner-product operation. Given two input vec-
tors of sharings [x]t, [y]t, we can compute [x � y]t using the same strategy as
the DN multiplication protocol and in particular, with the same communication
cost. This is because, just like in the multiplication protocol, here all the parties
can locally compute the shares of the result. These shares are then randomized
and sent to Pking for degree reduction. This extension is observed in [CGH+18].

Extension of the Batch-wise Multiplication Verification. We can use the same
strategy as the Batch-wise Multiplication Verification to check the correctness
of a batch of inner-product tuples.

Specifically, given a set ofm inner-product tuples {([x(i)]t, [y
(i)]t, [z

(i)]t)}i∈[m],

we want to check whether x(i) � y(i) = z(i) for all i ∈ [m]. Here {x(i),y(i)}i∈[m]

are vectors of the same dimension. The only difference is that all parties will
compute f(·), g(·) such that

∀i ∈ [m],f(i) = x(i), g(i) = y(i),

and all parties need to compute [z(i)]t = [f(i)�g(i)]t for all i ∈ {m+1, . . . , 2m−
1}, which can be done by the extension of the DN multiplication protocol. Let
h(·) be a degree-2(m− 1) polynomial such that

∀i ∈ [2m− 1], h(i) = z(i).

Then, it is sufficient to test whether f(x) � g(x) = h(x) for a random x. As a
result, this technique compresses m checks of inner-product tuples to a single
check of the tuple ([f(x)]t, [g(x)]t, [h(x)]t). It is worth noting that the com-
munication cost remains the same as the original technique. This extension is
observed in [NV18].
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Using these Extensions for Reducing the Field Size. We point out that these
extensions are not used in any way in the main results of [CGH+18,NV18].
In [CGH+18], the primary purpose of the extension is to check more efficiently in
a small field. In more detail, [CGH+18] has a “secure MAC” associated with each
wire value in the circuit. At a later point, the MACs are verified by computing
a linear combination of the value-MAC pairs with random coefficients. Unlike
the case in a large field, the random coefficients cannot be made public due
to security reasons. Then a computation of a linear combination becomes a
computation of an inner-product. [CGH+18] relies on the extension of the DN
multiplication protocol to efficiently compute the inner-product of two vector of
sharings. However we note that with the decrease in the field size, the number
of field elements required per gate grows up and hence the concrete efficiency
goes down. In [NV18], the extension of the Batch-wise Multiplication Verification
technique is only pointed out as a corollary of independent interest.

3.5 Fast Verification for a Batch of Multiplication Tuples

Now we are ready to present our technique. Suppose the multiplication tuples
we want to verify are

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t, [y
(m)]t, [z

(m)]t).

The starting idea is to transform these m multiplication tuples into one inner-
product tuple. A straightforward way is just setting

[x]t = ([x(1)]t, [x
(2)]t, . . . , [x

(m)]t)

[y]t = ([y(1)]t, [y
(2)]t, . . . , [y

(m)]t)

[z]t =

m∑
i=1

[z(i)]t.

However, it is insufficient to check this tuple. For example, if corrupted parties
only maliciously behave when computing the first two tuples and cause z(1) to
be x(1) · y(1) + 1 and z(2) to be x(2) · y(2) − 1, we cannot detect it by using
this approach. We need to add some randomness so that the resulting tuple will
be incorrect with overwhelming probability if any one of the original tuples is
incorrect.

Step One: De-Linearization. Our idea is to use two polynomials with coefficients
{x(i) · y(i)} and {z(i)} respectively. Concretely, let

F (X) = (x(1) · y(1)) + (x(2) · y(2))X + . . .+ (x(m) · y(m))Xm−1

G(X) = z(1) + z(2)X + . . .+ z(m)Xm−1.

Then if at least one multiplication tuple is incorrect, we will have F 6= G. In this
case, the number of x such that F (x) = G(x) is at most m− 1. Therefore, with
overwhelming probability, F (r) 6= G(r) where r is a random element.
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All parties will generate a random degree-t sharing [r]t in the same way as
that in the preparation phase of the DN protocol. Then they reconstruct the
value r. We can set

[x]t = ([x(1)]t, r[x
(2)]t, . . . , r

m−1[x(m)]t)

[y]t = ([y(1)]t, [y
(2)]t, . . . , [y

(m)]t)

[z]t =

m∑
i=1

ri−1[z(i)]t.

Then F (r) = x � y and G(r) = z. The inner-product tuple ([x]t, [y]t, [z]t) is
what we wish to verify.

Step Two: Dimension-Reduction. Although we only need to verify the correct-
ness of a single inner-product tuple, it is unclear how to do it efficiently. It seems
that verifying an inner-product tuple with dimension m would require commu-
nicating at least O(mn) field elements. Therefore, instead of directly doing the
check, we want to first reduce the dimension of this inner-product tuple.

Towards that end, even though we only have a single inner-product tuple,
we will try to take advantage of batch-wise verification of inner-product tuples.
Let k be a compression parameter. Our goal is to transform the original tuple
of dimension m to be a new tuple of dimension m/k.

To utilize the extension, let ` = m/k and

[x]t = ([a(1)]t, [a
(2)]t, . . . , [a

(k)]t)

[y]t = ([b(1)]t, [b
(2)]t, . . . , [b

(k)]t),

where {a(i), b(i)}i∈[k] are vectors of dimension `. For each i ∈ [k−1], we compute

[c(i)]t = [a(i)�b(i)]t using the extension of the DN multiplication protocol. Then

set [c(k)]t = [z]t−
∑k−1
i=1 [c(i)]t. In this way, if the original tuple is incorrect, then

at least one of the new inner-product tuples is incorrect.
Finally, we use the extension of the Batch-wise Multiplication Verification

technique to compress the check of these k inner-product tuples into one check
of a single inner-product tuple. In particular, the resulting tuple has dimension
` = m/k.

Note that the cost of this step is O(k) inner-product operations, which is
just O(k) multiplication operations, and a reconstruction of a sharing, which
requires O(n2) elements. After this step, our task is reduced from checking the
correctness of an inner-product tuple of dimension m to checking the correctness
of an inner-product tuple of dimension `.

Step Three: Recursion and Randomization. We can repeat the second step logkm
times so that we only need to check the correctness of a single multiplication
tuple in the end. To simplify the checking process for the last tuple, we make
use of additional randomness.

In the last call of the second step, we need to compress the check of k mul-
tiplication tuples into one check of a single multiplication tuple. We include an
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additional random multiplication tuple as a random mask of these k multipli-
cation tuples. That is, we will compress the check of k + 1 multiplication tuples
in the last call of the second step. In this way, to check the resulting multiplica-
tion tuple, all parties can simply reconstruct the sharings and check whether the
multiplication is correct. This reconstruction reveals no additional information
about the original inner-product tuple because of this added randomness.

The random multiplication tuple is prepared in the following manner.

1. All parties prepare two random sharings [a]t, [b]t in the same way as that in
the preparation phase of the DN protocol.

2. All parties compute [c]t = [a · b]t using the DN multiplication protocol.

Efficiency Analysis. Note that each step of compression requires O(k) inner-
product (or multiplication) operations, which requires O(kn) field elements.
Also, each step of compression requires to reconstruct a random sharing, which
requires O(n2) field elements. Therefore, the total amount of communication of
verifying m multiplication tuples is O((kn+n2) · logkm) field elements. Since the
number of multiplication tuples m is bounded by poly(κ) where κ is the security
parameter. If we choose k = κ, then the cost is just O(κn + n2) field elements,
which is independent of the number of multiplication tuples.

Therefore, the communication complexity per gate of our construction is the
same as the DN semi-honest protocol.

Theorem 1. Let n be the number of parties, κ be the security parameter and
k ∈ N? be the compression factor. Let F be a finite field where |F| ≥ n + 1,
and φ be the size of a field element. Then, for any arithmetic circuit Circuit

of size C over F, there exists an n-party MPC protocol which securely (with
abort) computes Circuit against a fully malicious adversary which controls up
to t ≤ n/2 parties. The communication complexity is O(Cnφ+(kn+n2)·logk C·κ)
bits. The concrete efficiency is 5.5 field elements per party per multiplication gate.

We refer the readers to [GS20] for the detailed construction and the security
proof.

Remark 1. An attractive feature of our approach is that the communication cost
is not affected by the field size. To see this, note that the cost of our check only
has a sub-linear dependence on the circuit size. Therefore, we can run the check
over an extension field of the original field with large enough size, which does
not influence the concrete efficiency of our construction.

As a comparison, the concrete efficiency of both constructions [CGH+18,NV18]
suffer if one uses a small field. This is because in both constructions, the failure
probability of the verification depends on the size of the field. For a small field,
they need to do the verification several times to acquire the desired security. The
same trick does not work because the cost of their checks has a linear dependency
on the circuit size.

Remark 2. Compared with the constructions in [CGH+18,NV18], we also remove
unnecessary checks to make the protocol as succinct as possible. Specifically, this
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new technique of verifying a batch of multiplication tuples is the only check in the
protocol and the remaining parts are the same as the DN protocol. In particular,
we do not check the consistency/validity of the sharings.

Relation with the Technique in [BBCG+19]. We note that our idea is similar
to the technique in [BBCG+19] when it is used to construct MPC protocols.
When n = 3 and t = 1, our construction is very similar to the construction
in [BBCG+19]. For a general n-party setting, the construction in [BBCG+19]
relies on the replicated secret sharings and builds upon the sublinear distributed
zero knowledge proofs constructed in [BBCG+19]. However, the computation
cost of the replicated secret sharings goes exponentially in the number of par-
ties. This restricts the construction in [BBCG+19] to only work for a constant
number of parties. On the other hand, we explore the use of the Shamir secret
sharing scheme in the n-party setting. Our idea is inspired by the extensions
of the DN multiplication protocol [DN07,CGH+18] and the Batch-wise Multi-
plication Verification [BSFO12,NV18]. This allows us to get a positive result
without relying on replicated secret sharings. We also note that the construction
in [BBCG+19] requires the sharings (related to the distributed zero knowledge
proof) to be robust and verifiable. We simplify this technique by removing the
use of a robust secret sharing scheme and a verifiable secret sharing scheme.

Moreover, we explore the recursion trick to further improve the commu-
nication complexity of verifying multiplications. Compared with the construc-
tion in [BBCG+19] which requires to communicate O(

√
C) bits, we achieve

O((kn + n2) · logk C · κ) bits. Our protocol additionally makes a simple opti-
mization to the DN protocol, which brings down the cost from 6 field elements
per multiplication to 5.5 field elements.

4 An Overview of the Protocol with Guaranteed Output
Delivery

We observe that our secure-with-abort MPC protocol does not have the factor
O(DMn

2) in the communication complexity. Therefore, our starting idea is to
compile our secure-with-abort protocol into one with guaranteed output delivery.
Hopefully, it will help us remove the factor O(DMn

2) and achieve the same
concrete efficiency as the semi-honest setting.

However, we then realize two problems with this idea. The most direct prob-
lem of using our secure-with-abort protocol is that a single error leads to an
abort of the whole computation. However, our purpose is to build a protocol
with guaranteed output delivery, which should ensure the success of the com-
putation no matter how corrupted parties behave. It means that, when facing a
failure in the check of the ultimate multiplication tuple in the last step of the
multiplication verification, we need to find out where things went wrong and be
able to proceed the computation.

Another problem is that, when a corrupted party maliciously refuses to
participate in the computation or an identified corrupted party is kicked out
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from the computation, the DN protocol cannot even proceed. This is because in
the DN multiplication protocol, Pking needs to reconstruct a degree-2t sharing
[e]2t := [x]t · [y]t + [r]2t. Pking needs 2t+ 1 = n shares to do reconstruction. This
cannot be achieved if some party does not send its share to Pking.

In the following, we will tackle these two problems.

4.1 Efficient Verification Using Virtual Transcripts

Recall that in our secure-with-abort protocol, all parties together check the cor-
rectness of a single multiplication tuple in the last step of the multiplication
verification (i.e., Step Three: Recursion and Randomization). We refer to this
multiplication tuple as the ultimate multiplication tuple.

To be able to identify the corrupted parties that deviate from the protocol
when a failure occurs in the check of the ultimate multiplication tuple, our idea
is to compute a virtual transcript of the ultimate multiplication tuple. A virtual
transcript can be seen as the transcript where all parties directly compute the
ultimate multiplication tuple using the DN multiplication protocol. Although
the transcript does not correspond to a real execution, all parties should agree
on the messages they sent in a virtual transcript. In the case that a failure occurs
in the check of the ultimate multiplication tuple, all parties can open the whole
virtual transcripts to identify the parties which behaved maliciously.

We first recall the extension of the Batch-wise Multiplication Verification [NV18].

Extension of the Batch-wise Multiplication Verification [NV18]. Sup-
pose we have ` inner-product tuples {([x(i)]t, [y

(i)]t, [z
(i)]t)}`i=1 and would like

to verify whether z(i) = x(i) � y(i) for all i ∈ [`]. The extension of Batch-wise
Multiplication Verification [NV18] works as follows.

1. Let F (·),G(·) be two vectors of degree-(`− 1) polynomials such that

∀i ∈ [`], F (i) = x(i), G(i) = y(i).

All parties can locally compute the shares of [F (·)]t and [G(·)]t by using their
shares of [x(1)]t, . . . , [x

(`)]t and [y(1)]t, . . . , [y
(`)]t, i.e., by doing interpolation

on their own vectors of shares.
2. All parties compute [x(i)]t = [F (i)]t, [y

(i)]t = [G(i)]t for all i ∈ {` +
1, . . . , 2`− 1}.

3. For all i ∈ {`+1, . . . , 2`−1}, all parties compute [z(i)]t where z(i) = x(i)�y(i)

using the extension of the DN multiplication protocol.
4. Let H(·) be a degree-2(`− 1) polynomial such that

∀i ∈ [2`− 1], H(i) = z(i).

All parties can locally compute the shares of [H(·)]t by using their shares of
[z(1)]t, . . . , [z

(2`−1)]t, i.e., by doing interpolation on their own shares.
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Note that if all inner-product tuples {([x(i)]t, [y
(i)]t, [z

(i)]t)}2`−1i=1 are correct,
we should have F � G = H. Otherwise, F � G 6= H, and the number of λ
such that F (λ)�G(λ) = H(λ) is bounded by 2(`− 1). Therefore, to verify the
original ` inner-product tuples, it is sufficient to sample a random point λ and
only verify ([F (λ)]t, [G(λ)]t, [H(λ)]t). We refer to ([F (λ)]t, [G(λ)]t, [H(λ)]t) as
the final inner-product tuple.

Preparing Virtual Transcript for the Final Inner-product Tuple. We note that
the transcript of the extension of the DN multiplication protocol contains 7
sharings

([x]t, [y]t, [r]t, [r]2t, [e]2t, [e]t, [z]t).

Here ([r]t, [r]2t) is a pair of double sharings, [e]2t := [x]t � [y]t + [r]2t is the
degree-2t sharing sent to Pking, [e]t is the degree-t sharing distributed by Pking,
and [z]t = [e]t − [r]t is the output sharing of the DN multiplication protocol.

The idea of the virtual transcript is to recover the missing parts [r]t, [r]2t, [e]2t, [e]t.
Therefore, in the case that the check of the final inner-product tuple fails, by
examining the corresponding virtual transcripts, we can find out where things
went wrong and potentially identify a corrupted party.

Recall that the final inner-product tuple ([x]t, [y]t, [z]t) is derived by using
polynomial interpolation on 2`−1 inner-product tuples. In a similar way, we de-
rive [r]t, [r]2t, [e]2t, [e]t by polynomial interpolation on the corresponding values
in the transcripts of these 2`− 1 inner-product tuples.

In more detail, given the transcripts of the original m inner-product tuples

{([x(i)]t, [y
(i)]t, [r

(i)]t, [r
(i)]2t, [e

(i)]2t, [e
(i)]t, [z

(i)]t)}`i=1,

we want to compute the transcript of the resulting tuple.
Let {([x(i)]t, [y

(i)]t, [r
(i)]t, [r

(i)]2t, [e
(i)]2t, [e

(i)]t, [z
(i)]t)}2`−1i=`+1 denote the tran-

scripts generated in the extension of the Batch-wise Multiplication Verification.
Recall that [F (·)]t, [G(·)]t, [H(·)]t satisfy that

∀i ∈ [2`− 1] : [F (i)]t = [x(i)]t, [G(i)]t = [y(i)]t, [H(i)]t = [z(i)]t.

Let [R(·)]t, [R(·)]2t, [E(·)]2t, [E(·)]t be sharings of polynomials of degree 2(`− 1)
such that

∀i ∈ [2`− 1] : [R(i)]t = [r(i)]t, [R(i)]2t = [r(i)]2t,

[E(i)]2t = [e(i)]2t, [E(i)]t = [e(i)]t.

Therefore, we have [E(·)]2t = [F (·)]t � [G(·)]t + [R(·)]2t and [H(·)]t = [E(·)]t −
[R(·)]t. It means that, for every λ, one can regard

([F (λ)]t, [G(λ)]t, [R(λ)]t, [R(λ)]2t, [E(λ)]2t, [E(λ)]t, [H(λ)]t)

as a transcript of the following steps:

1. All parties first locally compute [E(λ)]2t := [F (λ)]t � [G(λ)]t + [R(λ)]2t.
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2. Pking collects all shares of [E(λ)]2t and reconstructs the secret E(λ). Then
Pking generates a degree-t sharing [E(λ)]t and distributes the shares to all
other parties.

3. All parties locally compute [H(λ)]t = [E(λ)]t − [R(λ)]t.

To this end, all parties locally compute the shares of [R(·)]t, [R(·)]2t by
using their shares of [r(1)]t, . . . , [r

(2`−1)]t and [r(1)]2t, . . . , [r
(2`−1)]2t. Then set

[E(·)]2t = [F (·)]t� [G(·)]t + [R(·)]2t and [E(·)]t = [H(·)]t + [R(·)]t. Pking further
computes [E(·)]2t by using the sharings [e(1)]2t, . . . , [e

(2m−1)]2t it received, and
[E(·)]t by using the sharings [e(1)]t, . . . , [e

(2m−1)]t it distributed.
All parties generate a random element λ as challenge. The transcript

([F (λ)]t, [G(λ)]t, [R(λ)]t, [R(λ)]2t, [E(λ)]2t, [E(λ)]t, [H(λ)]t)

is what we want to verify.

Preparing Virtual Transcript for the Ultimate Multiplication Tuple.
We will follow the multiplication verification in our secure-with-abort protocol
and prepare a virtual transcript for the tuple generated in each step. Suppose
the transcripts of the original m multiplication tuples are

{([x(i)]t, [y(i)]t, [r(i)]t, [r(i)]2t, [e(i)]2t, [e(i)]t, [z(i)]t)}mi=1,

and we want to verify that z(i) = x(i) · y(i) for all i ∈ [m].

Step One: De-Linearization. Recall that in Step One, all parties first generate
a random element λ and set

[x]t = ([x(1)]t, λ[x(2)]t, . . . , λ
m−1[x(m)]t)

[y]t = ([y(1)]t, [y
(2)]t, . . . , [y

(m)]t)

[z]t =

m∑
i=1

λi−1[z(i)]t.

The virtual transcript for ([x]t, [y]t, [z]t) can be prepared by setting

([r]t, [r]2t, [e]2t, [e]t) =

m∑
i=1

λi−1([r(i)]t, [r
(i)]2t, [e

(i)]2t, [e
(i)]t).

The transcript ([x]t, [y]t, [r]t, [r]2t, [e]2t, [e]t, [z]t) is what we need to verify. Note
that this transcript corresponds to a single inner-product tuple of dimension m.

Step Two: Dimension-Reduction. Recall that in Step Two, we want to reduce
the dimension of the inner-product tuple from Step One. Let

([x]t, [y]t, [r]t, [r]2t, [e]2t, [e]t, [z]t)
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denote the transcript. Recall that [x]t, [y]t are first chopped into k equal parts:

[x]t = ([x(1)]t, [x
(2)]t, . . . , [x

(k)]t)

[y]t = ([y(1)]t, [y
(2)]t, . . . , [y

(k)]t),

where {x(i),y(i)}i∈[k] are vectors of dimension m/k. For each i ∈ [k − 1], all

parties compute [z(i)]t = [x(i) � y(i)]t by using the extension of the DN mul-
tiplication protocol. Let ([r(i)]t, [r

(i)]2t) be the corresponding double sharings
used by the parties, [ei]2t, [e

(i)]t be the sharings which Pking received and sent
respectively. Hence,

([x(i)]t, [y
(i)]t, [r

(i)]t, [r
(i)]2t, [e

(i)]2t, [e
(i)]t, [z

(i)]t)

denote the transcript for the inner-product tuple ([x(i)]t, [y
(i)]t, [z

(i)]t). So far,
we have only used [x]t, [y]t from the input inner-product tuple. To ensure that
if the input transcript of the inner-product tuple is incorrect, then one of the
new generated transcripts is also incorrect, the transcript of the last tuple is
computed from the input transcript. By setting

([r(k)]t, [r
(k)]2t, [e

(k)]2t, [e
(k)]t, [z

(k)]t)

= ([r]t, [r]2t, [e]2t, [e]t, [z]t)−
k−1∑
i=1

([r(i)]t, [r
(i)]2t, [e

(i)]2t, [e
(i)]t, [z

(i)]t),

the transcript for ([x(k)]t, [y
(k)]t) is

([x(k)]t, [y
(k)]t, [r

(k)]t, [r
(k)]2t, [e

(k)]2t, [e
(k)]t, [z

(k)]t).

Now we can use the extension of the Batch-wise Multiplication Verifica-
tion [NV18] to compress these k transcripts of inner-product tuples into one
transcript of a single inner-product tuple as we described above.

Step Three: Recursion and Randomization. In this step, all parties first recur-
sively invoke Step Two to reduce the dimension of the inner-product tuple from
m to k. In the meantime, all parties will also recursively prepare the virtual
transcripts.

All parties then prepare a random multiplication tuple, and include this tuple
when doing the last call of the compression. After all parties prepare this random
multiplication tuple and its transcript, all parties can do the same way as that
in Step Two to get a transcript of a single multiplication tuple. Let

([x?]t, [y
?]t, [r

?]t, [r
?]2t, [e

?]2t, [e
?]t, [z

?]t)

denote the transcript for the ultimate multiplication tuple. It can be regarded
as the transcript where all parties run the following steps:

1. All parties first locally compute [e?]2t := [x?]t · [y?]t + [r?]2t.
2. Pking collects all shares of [e?]2t and reconstructs the secret e?. Then Pking

generates a degree-t sharing [e?]t and distributes the shares to all other
parties.

3. All parties locally compute [z?]t = [e?]t − [r?]t.

19



Checking the Virtual Transcript. Recall that all parties have opened [x?]t,
[y?]t, [z

?]t to verify the ultimate multiplication tuple. In the case that ([x?]t, [y
?]t, [z

?]t)
is not a correct multiplication tuple, all parties will publish their shares of
[r?]t, [r

?]2t, [e?]2t, [e
?]t. In addition, Pking will publish the whole sharing [e?]2t it

received and the whole sharing [e?]t it distributed. Then all parties must observe
one of the following cases:

– The input sharings [x?]t, [y
?]t are inconsistent.

– The pair of double sharings ([r?]t, [r
?]2t) is incorrect or inconsistent.

– Some party Pi does not follow the protocol.
– Two parties (Pi, Pking) do not agree on the message sent from one party to

the other party.

For the first two cases, there will be another protocol to help find errors.
The main observation is that each sharing [x]t can be decomposed into [x]t =∑n
i=1[x(i)]t where [x(i)]t is a linear combination of the sharings dealt by Pi. In

other words, Pi should be responsible for the consistency of [x(i)]t. Therefore,
all parties will check each [x(i)]t to find errors.

For the last two cases, we can immediately identify a corrupted party or a
pair of parties which have conflict with each other. We refer to this pair of parties
as a pair of disputed parties.

In summary, all parties will finally identify either a corrupted party or a pair
of disputed parties.

4.2 Relying on a Small Surgery to Proceed

Now suppose a corrupted party causes the computation to fail and has been
identified using the described checks. What do we do? A straightforward idea
is to restart the whole computation with the corrupted party excluded and a
smaller corruption threshold. In the worst case, however, we may need to rerun
the whole protocol O(n) times, which is too expensive. To reduce the penalty
due to failures, we rely on Dispute Control [BTH06], which is a general strategy
to achieve unconditional security efficiently.

At a high-level, the whole circuit will be partitioned into several small seg-
ments. These segments will be evaluated in sequence. In the case that a failure
occurs, the computation of this segment is discarded and all parties restart to
evaluate the current segment. In other words, the end of each segment is served
as a checkpoint. However, one problem with this strategy is that we cannot eas-
ily restart the computation with a smaller corruption threshold. This is because
all the input sharings, which come from the end of last segment, are shared
using the threshold t. Changing threshold means that one need to re-share all
the input sharings. In fact, it is the main reason of the factor of O(W · poly(n))
in [IKP+16], where W is the width of the circuit.

To avoid the expensive re-sharing process, we would like to keep the corruption
threshold unchanged. Furthermore, we also want to keep the influence on the
concrete efficiency as little as possible. To be able to let the protocol proceed
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without changing the corruption threshold, our idea is to prepare the shares
held by identified corrupted parties so that Pking will have enough shares to
reconstruct a degree-2t sharing.

Notation. Recall that n is the number of all parties and t is the number of
corrupted parties. We have n = 2t + 1. Let P be the set of all parties, Corr
be the set of parties which have been identified as corrupted parties so far, and
Pactive = P\Corr be the set of remaining parties. If a party is identified as a
corrupted party, it will not participate in the rest of the computations. Hereafter,
we use all parties to refer parties in Pactive.

Overview. Recall that for each multiplication gate with input sharings ([x]t, [y]t),
all parties first prepare a pair of random double sharings ([r]t, [r]2t). Then all
parties execute the following steps to compute [x · y]t.

1. All parties first locally compute [e]2t := [x]t · [y]t + [r]2t.

2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking gen-
erates a degree-t sharing [e]t and distributes the shares to all other parties.

3. All parties locally compute [x · y]t = [e]t − [r]t.

In our construction, when a party Pd needs to generate a random sharing,
we require that the shares held by parties in Corr should be 0. Note that, it does
not break the secrecy of the random sharing since parties in Corr are corrupted.
We observe the following two facts.

1. During the generation process of ([r]t, [r]2t), each dealer sets the shares held
by parties in Corr to be 0. Since ([r]t, [r]2t) is a linear combination of the
double sharings dealt by each party, the shares of ([r]t, [r]2t) held by parties
in Corr are all 0.

2. For each party Pi, if the i-th share of either [x]t or [y]t is 0, then the i-th
share of [x · y]2t := [x]t · [y]t is also 0.

Our idea is doing a small “surgery” to one input sharing [x]t. Roughly speak-
ing, this means changing the shares of [x]t held by parties in Corr to 0 while
keeping the secret value x. Let [x̃]t denote the sharing after the “surgery”. Then,
it satisfies that x̃ = x and the shares of [x̃]t held by parties in Corr are 0. Detailed
procedure for this “surgery” will be introduced at a later point.

Recall that the shares of [x̃]t, [r]2t held by parties in Corr are 0. Now, when
we invoke the DN multiplication protocol on ([x̃]t, [y]t), the shares of [e]2t :=
[x̃]t · [y]t + [r]2t held by parties in Corr are also 0. Therefore, Pking can recon-
struct [e]2t by setting the shares held by parties in Corr to be 0. Thus, each
multiplication can be evaluated in two steps, (1) doing a small “surgery” to [x]t,
and (2) invoking the DN multiplication protocol on ([x̃]t, [y]t). We refer to the
first step as Refresh and the second step as PartialMult.
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Refresh: Performing the “Surgery”. Since parties in Corr are all corrupted,
there is no need to protect the secrecy of their shares. The high-level idea is
letting Pking learn the shares of [x]t held by parties in Corr. Then Pking distributes
a random degree-t sharing [o]t such that o = 0 and the shares of [o]t, [x]t held
by parties in Corr are the same. Therefore [x̃]t := [x]t − [o]t is what we need.

In more detail, all parties first prepare a random degree-t sharing [r]t (as that
in the DN protocol). Recall that, in the generation process of [r]t, each dealer
sets the shares of parties in Corr to be 0. Therefore, the shares of [r]t held by
parties in Corr are 0. Then, all parties run the following steps.

1. All parties locally compute [e]t := [x]t+ [r]t. Note that the shares of [e]t, [x]t
held by parties in Corr are the same.

2. Pking collects all shares of [e]t and computes the shares held by parties in
Corr.

3. Pking generates and distributes a random degree-t sharing [o]t where o = 0
and the shares of [o]t, [e]t held by parties in Corr are the same.

4. All parties set [x̃]t := [x]t − [o]t.

PartialMult: Multiplying [x̃]t and [y]t. To compute [z]t, all parties invoke
the DN multiplication protocol on ([x̃]t, [y]t). All parties first prepare a pair of
double sharings ([r]t, [r]2t) (as that in the DN protocol). Recall that, the shares
of [r]t, [r]2t held by parties in Corr are 0. Then, all parties run the following
steps.

1. All parties locally compute [e]2t := [x̃]t · [y]t + [r]2t.
2. Pking collects shares of [e]2t from parties in Pactive. For each party Pi ∈ Corr,
Pking sets the i-th share of [e]2t to be 0. Then Pking generates a degree-t
sharing [e]t and distributes the shares to all other parties.

3. All parties locally compute [z]t = [e]t − [r]t.

Reducing the Communication of Refresh and PartialMult. We note
that, to reconstruct a degree-t sharing, Pking only needs t+ 1 shares. Therefore,
there is no need to let all parties receive the shares of [r]t. In the beginning of
each segment, all parties agree on a set of parties T ⊆ Pactive such that (1)
|T | = t+ 1, and (2) Pking ∈ T . In brief, T contains Pking and t other parties in
Pactive.

When generating [r]t, only parties in T will receive the shares of [r]t. This
can be achieved by requiring each dealer only sends shares to parties in T . In
the first step of Refresh, parties in T compute their shares of [x]t + [r]t and
send them to Pking. Together with the share held by Pking, there are t+1 shares,
which are enough to reconstruct the whole sharing [e]t := [x]t+ [r]t. In this way,
the cost of generating random sharings for Refresh is reduced by half.

Furthermore, when Pking generates [o]t, we can require that the shares of [o]t
held by parties in Pactive\T are set to be 0. Recall that Pking learns the shares
of [x]t held by parties in Corr and the shares of [o]t held by parties in Corr are
the same as those of [x]t. Since the shares held by parties in P\T are fixed and
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|P\T | = t, with these t shares and the secret value o = 0, Pking can compute
the shares of [o]t held by parties in T . Now, Pking only needs to distribute [o]t
to parties in T , and, parties in Pactive\T simply set their shares of [o]t to be 0.
In this way, the cost of distributing [o]t is reduced by half.

In the DN multiplication protocol, Pking can set the shares of [e]t held by
parties in P\T to be 0. With these |P\T | = t shares and the secret value
e, Pking can recover the whole sharing [e]t. In this way, Pking only needs to
distribute [e]t to parties in T , and, parties in Pactive\T simply set their shares
of [e]t to be 0. As a result, the cost of distributing [e]t is reduced by half. Note
that in the overall protocol, several multiplication gates will be evaluated in
parallel, and this optimization can potentially lead to a reduction in the overall
communication by a factor of 1/2.

In summary, when Corr = ∅, there is no need to run the “Surgery”. Our
approach achieves 5.5 field elements per multiplication gate, as that in our secure-
with-abort protocol. When at least one party is identified as a corrupted party,
our approach needs 7.5 field elements per multiplication gate.

Checking the Correctness of Refresh. We point out that the above ap-
proach does not guarantee the correctness. In particular, we need to verify Re-
fresh in the end of the evaluation of each segment. It is worth noting that the
verification of Refresh also utilizes the virtual transcript idea.

We note that the transcript of Refresh contains 5 degree-t sharings:

([x]t, [x̃]t, [r]t, [e]t, [o]t).

Here [x]t is the input sharing, [x̃]t is the output sharing, [r]t is a random sharing
which is only held by parties in T , [e]t is the sharing Pking collected from parties
in T , and [o]t is the sharing of 0 dealt by Pking.

Given m transcripts {([x(i)]t, [x̃(i)]t, [r(i)]t, [e(i)]t, [o(i)]t)}mi=1, we want to ver-
ify that, for each i ∈ [m], (1) x(i) = x̃(i) and (2) the shares of [x̃(i)] held by
parties in Corr are 0. To this end, our idea is to compress m checks of the tran-
scripts of Refresh into one check of a single transcript. As the verification of
multiplications, to protect the privacy of the original m transcripts, we add a
random transcript as a mask in the compression step.

The random transcript is prepared in the following manner.

1. All parties prepare two random sharings [x(0)]t, [r
(0)]t in the same way as

that in the preparation phase of the DN protocol.

2. All parties invoke Refresh on [x(0)]t with the random sharing [r(0)]t.

This random transcript is denoted by

([x(0)]t, [x̃
(0)]t, [r

(0)]t, [e
(0)]t, [o

(0)]t).
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Compressing the Transcripts into One. Consider the following 5 sharings of
polynomials:

[F (λ)]t =

m∑
i=0

[x(i)]tλ
i, [F̃ (λ)]t =

m∑
i=0

[x̃(i)]tλ
i, [R(λ)]t =

m∑
i=0

[r(i)]tλ
i,

[E(λ)]t =

m∑
i=0

[e(i)]tλ
i, [O(λ)]t =

m∑
i=0

[o(i)]tλ
i.

Note that, by the linear homomorphism property of the Shamir secret sharing
scheme, for every λ,

([F (λ)]t, [F̃ (λ)]t, [R(λ)]t, [E(λ)]t, [O(λ)]t)

can be seen as a virtual transcript of Refresh:

1. Parties in T locally compute [E(λ)]t := [F (λ)]t + [R(λ)]t. Note that the
shares of [E(λ)]t, [F (λ)]t held by parties in Corr are the same.

2. Pking collects the shares of [E(λ)]t from parties in T and computes the shares
held by parties in Corr.

3. Pking generates a random degree-t sharing [O(λ)]t such that (1) O(λ) = 0,
(2) the shares held by parties in Pactive\T are 0, and (3) the shares of
[O(λ)]t, [E(λ)]t held by parties in Corr are the same. Then Pking distributes
the shares of [O(λ)]t to parties in T .

4. All parties set [F̃ (λ)]t := [F (λ)]t − [O(λ)]t.

If at least one transcript of the original m transcripts is incorrect, then the
number of λ such that ([F (λ)]t, [F̃ (λ)]t, [R(λ)]t, [E(λ)]t, [O(λ)]t) is a correct tran-
script is bounded by m. Therefore, to verify the original m transcripts, it is suf-
ficient to examine the transcript ([F (λ)]t, [F̃ (λ)]t, [R(λ)]t, [E(λ)]t, [O(λ)]t) for a
random λ. Let

([x?]t, [x̃
?]t, [r

?]t, [e
?]t, [o

?]t)

denote the final virtual transcript of Refresh we want to check.

Checking the Virtual Transcript. To check the correctness of ([x?]t, [x̃
?]t, [r

?]t, [e
?]t, [o

?]t),
all parties publish their shares of [x?]t, [x̃

?]t, parties in T publish their shares of
[r?]t, [e

?]t, [o
?]t, and Pking publishes the sharing [e?]t it received and the sharing

[o?]t it distributed. If it is an incorrect transcript, then all parties must observe
one of the following cases:

– The input sharing [x?]t is inconsistent.
– After reconstructing the whole sharing [r?]t from the shares held by parties

in T , the shares of [r?]t held by parties in Corr are not 0.
– Some party Pi does not follow the protocol.
– Two parties (Pi, Pking) do not agree on the message sent from one party to

the other party.
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As the verification of multiplications, for the first two cases, there will be
another protocol to help find errors. For the last two cases, we can immediately
identify a corrupted party or a pair of disputed parties. Thus, the check of the
virtual transcript guarantees that either the original m transcripts of Refresh
are correct, or all parties can identify a corrupted party or a pair of disputed
parties in the end.

Further Problem. We note that we need to make sure adding the surgery proce-
dure in the protocol will not break the security of our secure-with-abort proto-
col. In fact, the security relies on the fact that the DN protocol provides perfect
privacy before the output phase even when the adversary is fully malicious. Re-
placing the DN protocol by another semi-honest protocol may break down the
security entirely. We refer the readers to [GSZ20] for more details.

Removing Higher Order Circuit Dependent Terms. We note that the
construction from [BSFO12] uses Beaver triples to compute multiplications in
the computation phase. One benefit of this method is that Beaver triples provide
plenty of redundancy which simplifies the checking process in the computation
phase. However, the use of Beaver triples unfortunately requires a verification
for each layer of the circuit, which leads to the quadratic term related to DM .

On the other hand, although when instantiating the transformation from [IKP+16]
with the best-known protocol for security with abort, the quadratic term w.r.t.
the circuit depth is eliminated, it introduces a new higher order term related to
the circuit width. This is because the transformation needs to change the cor-
ruption threshold whenever a new corrupted party is identified, which requires
an expensive re-sharing process for the input sharings of each segment.

As a summary, we start from our secure-with-abort protocol, which does not
make use of Beaver triples, to remove the quadratic term related to DM . To
avoid the expensive re-sharing process, we rely on a small surgery to proceed.
Combining these two ideas, we remove both the higher order terms related to
the circuit depth and the circuit width.

4.3 An Omitted Problem: Verifiable System for Checkpoints

To allow all parties to restart the computation from a checkpoint, i.e., the end of
the last segment, all the output sharings of the last segment should be verifiable.
This is also a problem we omit when checking the virtual transcript: If all parties
finally find out that one of the input sharings is inconsistent, then there is no
way to identify a new corrupted party or a new pair of disputed parties by only
examining the transcript in this segment. This is because the failure comes from
the sharings computed in the previous segment.

Therefore, we borrow the idea from [BSFO12] to add verifiability to the
output sharings of each segment. At a high-level, for every pair of parties (Pv, Pi)
where Pv acts as a verifier, Pv will generate an authentication key (µ, ν) and Pi
will receive an authentication tag τ = µ · sharei + ν of its share sharei. The
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authentication tag is computed using an MPC protocol. At a later point, Pv can
verify the shares of Pi by asking Pi to send the associated authentication tags.
Since a wrong share will be rejected by at least t+1 honest parties and a correct
share will be rejected by at most t corrupted parties, a majority vote can decide
whether a share is correct or not.

In [BSFO12], each authentication tag is used to authenticate a batch of
shares. As a result, the communication cost is independent of the number of
shares and therefore, does not affect the concrete efficiency per gate. We make a
further improvement to this idea to achieve a larger size of batching by reusing
the authentication keys. Some modifications in the verification of authentication
tags are also necessary to fit this improvement. We refer the readers to [GSZ20]
for more details.

4.4 Summary

In short, the whole computation proceeds as follows. All parties first partition the
circuit into several small segments. These segments will be evaluated in sequence.
For each segment, the computation process contains the following three steps.

Evaluation. For each segment, if no party is identified as a corrupted party, we
simply use the DN protocol to evaluate the addition gates and multiplication
gates in this segment. If one or more corrupted parties have been identified, for
each multiplication gate,

1. All parties first run Refresh on one of the input wires to change the shares
held by identified corrupted parties to be 0.

2. Then all parties evaluate this multiplication gate using the DN protocol (i.e.,
PartialMult).

Verification. After the evaluation, all parties first check the correctness of Re-
fresh. Then, we use the multiplication verification of our secure-with-abort
protocol to check the correctness of the multiplications. In the meanwhile, all
parties prepare the virtual transcript of the ultimate multiplication tuple.

– If both checks pass, all parties accept the evaluation of this segment.
– Otherwise, a new corrupted party or a new pair of disputed parties is iden-

tified. The evaluation of the current segment is discarded and all parties
re-evaluate this segment.

Checkpoint. Finally, in the case that the evaluation is accepted, all parties add
verifiability to the output sharings of this segment.

Efficiency Analysis. For any constant ε > 0, by properly choosing the parameters
in the second step and the third step, it turns out that the communication
complexity per multiplication gate of these two steps can be bounded by ε field
elements per gate. We refer the readers to [GSZ20] for more details. Therefore,
these two steps only have a very limited influence on the concrete efficiency.
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In the best case, we simply use the DN multiplication protocol to evaluate
each multiplication gate. Therefore, the concrete efficiency is 5.5 field elements
per multiplication gate. When one or more corrupted parties have been identi-
fied, we also need to run Refresh per multiplication gate. Thus, the concrete
efficiency is 7.5 field elements per multiplication gate. To summarize, we have
the following theorem.

Theorem 2. Let n be the number of parties, κ be the security parameter. Let
F be a finite field where |F| ≥ n+ 1, and φ be the size of a field element. Then,
for any constant ε > 0 and any arithmetic circuit Circuit of size C over F,
there exists an n-party MPC protocol which securely computes Circuit with
guaranteed output delivery against a fully malicious adversary which controls up
to t ≤ n/2 parties. The communication complexity is O(Cnφ) bits (ignoring fixed
terms which are independent of the circuit). The concrete efficiency is 5.5 + ε
field elements per party per multiplication gate in the best case, and 7.5 + ε field
elements when one or more corrupted parties have been identified.

We refer the readers to [GSZ20] for the detailed construction and the security
proof.
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