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Abstract. Decades of research in both cryptography and distributed
systems has extensively studied the problem of state machine replication,
also known as Byzantine consensus. A consensus protocol must satisfy
two properties: consistency and liveness. These properties ensure that
honest participating nodes agree on the same log and dictate when fresh
transactions get added. They fail, however, to ensure against adversarial
manipulation of the actual ordering of transactions in the log. Indeed,
in leader-based protocols (almost all protocols used today), malicious
leaders can directly choose the final transaction ordering.

To rectify this problem, we propose a third consensus property: trans-
action order-fairness. We initiate the first formal investigation of order-
fairness and explain its fundamental importance. We provide several nat-
ural definitions for order-fairness and analyze the assumptions necessary
to realize them.

We also propose a new class of consensus protocols called Aequitas1.
Aequitas protocols are the first to achieve order-fairness in addition to
consistency and liveness. They can be realized in a black-box way us-
ing existing broadcast and agreement primitives (or indeed using any
consensus protocol), and work in both synchronous and asynchronous
network models.

1 Introduction

The abstraction of state machine replication has been investigated in cryptog-
raphy and distributed systems literature for the past three decades. At a high
level, the goal of a state machine replication protocol is for a set of nodes to
agree on an ever-growing, linearly ordered log of messages (transactions). Two
properties need to be satisfied by such a protocol: (1) Consistency - all honest
nodes must have the same view of the agreed upon log — that is, they must
output messages in the same order; and (2) Liveness - messages submitted by

The full version of this paper is available at https://eprint.iacr.org/2020/269 [27].
1 Aequitas (IPA pronunciation: /'ae

“
.kwi.ta:s/) is the Roman personification of fairness.
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clients are added to the log within a reasonable amount of time. In this paper,
we will use the terms state machine replication and consensus2 interchangeably.

Unfortunately, neither consistency nor liveness says anything about the ac-
tual ordering of transactions in the final log. A protocol that ensures that all
nodes agree on the same ordering is deemed consistent regardless of how the
ordering is generated. This leaves room for the definition to be satisfied even if
an adversary directly chooses the actual transaction ordering, which is discom-
forting considering that the ordering is often easy to manipulate [7]. Moreover,
in all existing protocols that rely on a designated “leader” node (e.g., [15, 34,
44]), which includes most used in practice, an adversarial leader may choose to
propose transactions in any order.

In this paper, we formulate a new property for byzantine consensus which we
call order-fairness. Intuitively, order-fairness denotes the notion that if a large
number of nodes receive a transaction tx1 before another one tx2, then this
should somehow be reflected in the final ordering.

Importance of fair transaction ordering. The need for a notion of fair trans-
action ordering is immediately clear when looking at financial systems. Here, the
execution order can determine the validity and/or profitability of a given trans-
action. Suppose Bob has $0, and two transactions are initiated: tx0, which sends
$5 from Alice to Bob, and tx1, which sends $5 from Bob to Carol. If tx0 is
sequenced before tx1, then both transactions are valid; the opposite ordering in-
validates tx1. Manipulation of transaction ordering is a well known phenomenon
on Wall Street [32], but recent work has shown it to also be commonplace in
consensus-based systems such as permissionless blockchains. A recent paper by
Daian et al. [20], for example, reports rampant adversarial manipulation of trans-
actions in the Ethereum network [23] by bots extracting upwards of USD 6M in
revenue from unsophisticated users.

Comparison to validity in Byzantine agreement. Beyond its critical prac-
tical importance, we believe that order-fairness is a key missing theoretical con-
cept in existing consensus literature. To underscore this point, consider Byzan-
tine agreement [30], or single-shot agreement, another well-studied problem in
consensus literature. For Byzantine agreement, each node starts with a single
value within a set V. The goal is for all nodes to agree on the same value. Valid-
ity requires that if all honest nodes start with the same value v, then the agreed
upon value should also be v.

The property of order-fairness is a natural analog of validity formulated
for the consensus problem, i.e., extension of Byzantine agreement to multiple
rounds. If all honest nodes start with the belief that a transaction tx1 precedes
another transaction tx2, by natural analogy with validity, the final output log
should sequence tx1 before tx2. Consequently, we maintain that order-fairness is
a natural property of independent theoretical interest in the consensus literature.

2 The term “consensus” has been used in systems literature for a number of related
primitives, including “single-shot” consensus. However, in this paper, we use “con-
sensus” to refer to the problem of “state machine replication.”
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1.1 Our Contributions

The main contributions of our paper are three-fold: (1) First, we investigate
a natural notion of fair transaction ordering and show why it is impossible to
realize. (2) Second, we investigate slightly weaker notions of fair ordering that
are intuitive yet achievable. Still, we find that no existing consensus protocol
achieves them. (3) Third, we introduce a new class of consensus protocols that
we refer to as Aequitas. Aequitas protocols achieve fair transaction ordering while
also providing the usual consistency and liveness. We discuss Aequitas protocols
in both synchronous and asynchronous settings.

Defining order-fairness and impossibility results. To model our consensus
protocols, we use an approach similar to prior work by Pass et al. [39, 40], wherein
protocol nodes receive transactions from clients and need to output or deliver
them in a way that satisfies consistency and liveness. We detail our model in
Section 2. Within this model, we provide the first formalization of the property
of order-fairness (Section 4). We start with a natural definition based on when
transactions are received by nodes.

Definition 1 (Receive-Order-Fairness, informal; formalized in Defini-
tion 9). If sufficiently many (at least γ-fraction) nodes receive a transaction tx
before another transaction tx′, then all honest nodes must output tx before tx′.

While Definition 1 is intuitive, it turns out that it is impossible to achieve unless
we assume very strong synchrony properties and/or a non-corrupting adversary.
This result draws from a surprising connection with voter preferences in social
choice theory. To highlight this using a simple example, consider three nodes, A,
B, and C, that each receive 3 transactions, x, y, and z. A receives them in the
order [x, y, z], B in the order [y, z, x] and C in the order [z, x, y]. Notice that a
majority of nodes have received (x before y), (y before z) and (z before x)! This
scenario, often called the Condorcet paradox [18], can cause a non-transitive
global ordering even when all local orderings are transitive. This is problematic
for the notion of receive-order-fairness. Theorem 1 gives an informal description
of our impossibility result.

Theorem 1 (Impossibility of receive-order-fairness, informal; formal-
ized in Theorem 2). Consider a system with n nodes where the external net-
work (between users and protocol nodes) is either asynchronous or the maximum
delay δ is at least n rounds. Then, no protocol can achieve all of consistency,
liveness, and receive-order-fairness.

Given this impossibility result, we consider a natural relaxation of receive-
order-fairness that we call block-receive-order-fairness, or simply block-order-
fairness. To see the primary difference between the two definitions, we look
at two transactions, tx and tx′, where sufficiently many nodes have received tx
before tx′. While receive-order-fairness requires that tx be output “before” tx′,
block-order-fairness relaxes this to “before or at the same time as.” We refer to
transactions delivered at the same time as being in the same “block.”
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Definition 2 (Block-Order-Fairness, informal; formalized in Definition
11). If sufficiently many nodes (at least γ-fraction) receive a transaction tx before
another transaction tx′, then no honest node can deliver tx in a block after tx′.

This small relaxation allows us to evade the Condorcet paradox by a sim-
ple trick: placing paradoxical orderings into the same “block.” We emphasize
that block order-fairness does not mean that transactions are partially ordered.
Consistency still requires that all nodes output transactions in the same order
(within the same block or not). The only difference is that unfair ordering of a
set of transactions in our definition without blocks is now, with the use of blocks,
considered fair, provided that these transactions appear in the same block.

Further, we note that while receive-order-fairness is impossible to achieve (as
pointed out informally in Theorem 1 and formalized later in the paper in Theo-
rem 2), block-order-fairness is not and we provide protocols that guarantee it. We
would also like to highlight that our proposed Aequitas protocols actually make
minimal use of this relaxation. In particular, they achieve the stronger notion of
receive-order-fairness except when non-transitive preferences are observed.

Aequitas: Achieving order-fairness. We present a new class of consensus
protocols, Aequitas, that achieve block-order-fairness, in addition to providing
consistency and liveness. Aequitas protocols make use of two basic primitives in a
black-box way: (1) FIFO Broadcast (FIFO-BC) [26], which is a basic extension of
standard reliable broadcast; and (2) Set Byzantine Agreement (Set-BA; defined
in Section 3), which can be achieved from Byzantine agreement.

We note that these are weak primitives and any standard consensus protocol
(that achieves consistency and liveness) can also be used to build the FIFO-BC
and Set-BA primitives. This results in an interesting observation: The Aequitas
technique provides a generic compiler that takes any standard consensus protocol
and converts it into one that also provides order-fairness. At a high level, Aequitas
protocols proceed in three major stages. Each transaction tx goes through these
stages before being delivered.

1. Gossip Stage. Nodes gossip transactions in the order that they are received.
That is, each node gossips its local transaction ordering.

For this purpose, we use the FIFO broadcast primitive (FIFO-BC), which
guarantees that broadcasts by an honest node are delivered by other honest
nodes in the same order that they were broadcast. Even if the sender is
dishonest, FIFO-BC guarantees that all honest nodes deliver messages in the
same order. As a result, nodes have a consistent view of the transaction
orderings of other nodes.

We use Logji to denote node i’s view of the order in which node j received
transactions, according to how j gossiped them. Note that if node j is ma-
licious, Logji may arbitrarily differ from the actual order in which j received
transactions, but FIFO-BC prevents j from equivocating, i.e., any two hon-
est nodes i and k will have consistent Logji and Logjk. When i records enough

logs Logki that contain tx, we say that the “gossip phase” for tx is complete.
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2. Agreement Stage. Nodes agree on the set of nodes whose local order-
ings should be considered for deciding on the global ordering of a particular
transaction.

To elaborate, at the end of the gossip stage for a transaction tx, a node i
ends up with a set U tx

i of other nodes whose local orderings i has obtained.
That is, k ∈ U tx

i if tx ∈ Logki . Note that different nodes may end up with a
slightly different set U , but agreement proceeds when enough honest nodes
are present in each set. Nodes perform Byzantine agreement to agree on a set
Ltx of nodes whose ordering will be used to finalize the ordering for tx. For
this, we define a new primitive Set-BA whose validity condition guarantees
that if k ∈ U tx

i for all i, then k ∈ Ltx. It is easy to see how Set-BA can be
realized by using standard Byzantine agreement to determine the inclusion
of each possible value k individually.

3. Finalization Stage. Nodes finalize the global ordering of a transaction tx
using the set of local orderings decided on in the agreement stage.

Suppose that the agreement stage for a transaction tx resulted in the set
Ltx. Now, if there is any other transaction tx′ such that tx′ is ordered before
tx in a large number of these local logs, it signifies that tx should be delivered
after tx′. In other words, the finalization of tx depends on waiting until tx′

has been delivered.
To characterize such ordering dependencies between transactions, a node i

maintains a directed graph Gi, where vertices represent transactions and an
edge from a to b denotes that b is waiting for a. Since nodes are building this
graph on the same “data” (the set of local logs agreed upon in the agreement
phase), nodes will have consistent graphs. That is, if an edge (a, b) exists in
Gi, then it will also (eventually) exist in Gj , if i and j are both honest.

We present two finalization techniques, a leader-based one and a leaderless
one. For the leader-based technique, resolving any partial ordering within the
graph is delegated to a leader node. We emphasize that order-fairness is not
lost. The leader is only able to choose the ordering for transactions that
are not required to be ordered a certain way. We present another, leaderless
technique that requires no further communication between nodes. We find
that both realize a slightly weaker notion of liveness than the standard one,
even in the synchronous setting. Specifically, future transactions are required
to be input to the system in order to “flush out” earlier transactions. We
formally define “weak-liveness” in Section 2.

It is worth pointing out that the first two stages (gossip and agreement)
are fairly straightforward to understand and easy to achieve. The third stage is
somewhat complex, as it needs to avoid the Condorcet paradox while continuing
to maintain both consistency and order-fairness.

Aequitas protocols. In summary, we present the first consensus protocols that
provide order-fairness. We provide a leader-based and a leaderless protocol each
for the synchronous and asynchronous settings, for a total of four protocols that
follow the same general outline. These protocols all provide consistency, block
order-fairness, and some form of liveness. Fig. 1 shows a comparison.
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Bound†
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X

X
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X
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2γ−1
X

X
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X
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Aequitas Leaderless Any n > 4f

2γ−1
X

X
(Eventual, Weak)

X

* Completely Synchronous Setting (See Section 2)
† 1

2
< γ ≤ 1 is the order-fairness parameter (See Section 4)

Fig. 1. The Aequitas protocols

Paper organization. The rest of the paper is organized as follows. We discuss
our results in the context of related work in Section 1.2. We describe our formal
framework, along with other preliminaries, in Section 2. In Section 3, we provide
the building blocks for our protocol constructions. Section 4 formally introduces
our notion of order-fairness. Section 5 provides a general overview of our con-
structions; we detail our leaderless construction for the synchronous setting in
Section 6. Due to space constraints, we defer other constructions and results, as
well as several proofs to the full version [27] of our paper.

1.2 Related Work

While there is an extensive literature on consensus protocols, to the best of our
knowledge, no previous work formally captures a notion of order-fairness like the
one we introduce. The term “fairness” has been used widely in blockchain and
cryptography literature, but for properties unrelated to ours.

Broadcast primitives. Byzantine broadcast, or the Byzantine Generals Prob-
lem [30], is the elementary broadcast primitive where a designated sender broad-
casts a single value to a set of receiving nodes. In a Byzantine broadcast protocol
with the key property of consistency, all honest receivers output the same value.
Reliable broadcast is a continuous version of Byzantine broadcast where the
sender broadcasts multiple values which must be eventually delivered by nodes
if the sender is honest. Three orthogonal properties can be added onto reli-
able broadcast to give stronger notions. FIFO-ordering provides first-in first-out
ordering on the messages broadcast by an honest sender. We refer to such a
protocol as FIFO Broadcast or OARcast [26]. Local-ordering (also called causal-
ordering) ensures that if a node broadcasts a message m′ after receiving some
other message m, then m will be ordered before m′. The total-ordering property
ensures that all honest nodes deliver messages broadcast potentially by different
senders in the same order. This notion is usually called atomic broadcast [19],
which is well-known to be equivalent to the consensus problem. Adding all three
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properties to reliable broadcast results in the notion of Causal FIFO Atomic
Broadcast which still does not provide the order-fairness property that we are
looking for. The main problem is none of the requirements consider a global
notion of FIFO ordering based on multiple senders.

Our order-fairness property does enforce such a notion according to the fol-
lowing idea: If enough nodes broadcast a message m before another message
m′, then honest nodes will respect this ordering. Adding this property to atomic
broadcast results in a new broadcast notion, which we call “Global FIFO Atomic
Broadcast.” Consequently, requiring order-fairness along with standard consen-
sus properties of consistency and liveness will be equivalent to this new notion
of Global FIFO Atomic Broadcast.

We note that our setup is also slightly different than earlier notions. We as-
sume that any message broadcast by an honest node is also eventually broadcast
by all honest nodes. This allows us to redefine liveness in terms of being broad-
cast by enough nodes. This also means that identical messages broadcast by
different nodes can now be delivered together as a single message. Global FIFO
ordering is defined on the ordering of these messages. Note that it no longer
makes sense to talk about (single source) FIFO order or causal order as identi-
cal messages, potentially broadcast at different positions by different nodes, are
now delivered as a single message.

Consensus protocols. Hundreds of Byzantine fault tolerant consensus pro-
tocols have been proposed over the years, with PBFT [15] being perhaps the
most well known. Multiple survey papers [7, 10] have aimed to systematize this
vast literature. Many papers provide efficiency improvements while maintaining
the basic leader-based structure of PBFT. That is, a leader or primary node is
responsible for proposing the transactions in the current round. In such leader-
based protocols ([2, 3, 5, 8, 17, 34, 42–44], just to name a few), the leader node
can propose transactions in the order of its choosing. The leader is also capable
of suppressing transactions, at least temporarily, until an honest node becomes
the new leader. We highlight that in previously explored leader-based protocols,
nodes do not know the ordering in which transactions were received by everyone.
This means that a leader’s proposal can only be rejected based on validity of
transactions rather than the fairness of their ordering. Order-fairness is thus not
achieved in existing leader-based protocols.

Some protocols provide transaction censorship resistance, such that mali-
cious nodes cannot censor specific transactions based on their content. For this,
in protocols like [4, 11, 36], transactions are encrypted, and the contents are
revealed only once their ordering is fixed. Separately, protocols like [4, 29, 31]
rely on a reputation based system to detect unfair censorship. Censorship re-
sistance is strictly weaker than the order-fairness we consider for three reasons.
First, in practice, even if transaction data is temporarily encrypted, metadata
such as a user identifier or a client IP address can be used to censor a partic-
ular transaction. Second, a malicious leader can still blindly reorder or censor
transactions based on just their ciphertext. But perhaps more importantly, a



8 Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels

malicious leader colluding with a user will know the ciphertext corresponding to
the user’s transaction and can thus unfairly order this transaction before others.

Other uses of the word fairness. The term fairness has been used before
in consensus literature for notions unrelated to ours. One popular use case re-
lates to fairness in block mining in Proof-of-Work (PoW) blockchains, which
intuitively requires that a node’s mining rewards be proportional to its relative
computational power. That is, no node should be able to mine selfishly [24] to
obtain more rewards than its fair share. This fairness notion is met by protocols
in [1, 31, 33, 35, 37], among others.

Another related definition considers fairness in terms of the opportunities
each node gets to append transactions to the ledger. This includes both fair
leader election (in leader based protocols) and fair committee election (in hybrid
consensus protocols). This definition is considered in [1, 25, 28, 31, 38]. We note
that even if the leader election process is fair, the current leader still has the
power to manipulate transaction ordering.

Fairness has also been used in the context of “fair exchange,” which provides
a way for mutually distrusting parties to exchange digital goods in a secure way.
This notion is unrelated to ours but we mention it for completeness.

Works that mention fair transaction ordering. Helix [4] alludes to fair
transaction ordering, but only considers censorship resistance and fair committee
election. It uses threshold encryption to choose a random set of pending trans-
actions for inclusion in the current block. Hashgraph [6] considers our notion of
receive-order fairness, but provides no formal definitions. Moreover, it fails to
realize the impossibility of this notion of fairness resulting from the Condorcet
paradox [18]. As a result, we identify an elementary attack on the Hashgraph
protocol that allows an adversarial node to control transaction ordering. The
main problem in Hashgraph is the use of timestamp based ordering. In Sec-
tion 5, we provide a brief explanation for why this does not work and defer the
description of our attack to the full version [27].

2 Definitions, Framework, and Preliminaries

In this section, we describe the general execution framework that we will use for
expressing and analyzing consensus protocols. We adopt an approach like that
of Pass and Shi [39, 40] and Chan et al. [16]. We focus on the “permissioned”
setting, where the number of consensus nodes n, as well as their identities, are
known a priori to all participants. While arbitrary clients can send messages to
these nodes, only a fixed set of nodes will take part in the consensus protocol.
We are interested in protocols for several network settings (e.g. synchronous,
partially synchronous, and asynchronous) and define constrained environments
for these settings by imposing restrictions that an adversary must respect. Due
to space constraints, we only include the relevant formalism for the constructions
in this paper. For the complete details of the model, we refer the reader to the
full version [27].
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2.1 Protocol Execution Model

Interactive Turing Machines (ITMs). We adopt the widely used Interactive
Turing Machine (ITM) approach rooted in the Universal Composability frame-
work [12]. Informally, a protocol details how nodes interact with each other,
where each node is represented by an ITM. As standard practice in cryptog-
raphy literature [12–14], we use an environment Z(1κ) (where κ is the security
parameter) to direct the protocol execution. Z is responsible for activating nodes
as either honest or corrupt, providing messages as inputs to nodes, and deliver-
ing messages between nodes. Honest nodes follow the protocol description while
corrupt nodes are assumed to be controlled by an adversary, denoted by A. A
is able to read all inputs/messages sent to corrupt nodes and can set all out-
puts/messages to be sent. The adversary also decides when messages sent over
the network get delivered, subject to any network assumptions.

Rounds. We assume that Z maintains a global clock. The clock is a global func-
tionality [14] that contains a simple monotonic counter which can be updated
adversarially by the environment. In the synchronous setting, we can model pro-
tocol execution in discrete time steps or rounds. At the start of each round, each
node receives a set txs of transactions from the environment Z. Transactions
are assumed to be submitted by clients, but using the environment abstrac-
tion avoids having to model clients explicitly. At the end of each round, each
node outputs an ordered log LOG to Z which intuitively represents the list of
transactions ordered by the node so far. We assume that Z always signals the
start of a new round to each node. Rounds in the partially synchronous set-
ting work similarly to the synchronous setting. In the asynchronous setting, the
clock is not accessible to the protocol nodes. Z can provide user transactions
and communication messages to nodes at any time. Any protocol that works in
the asynchronous setting should not rely on the current time. Throughout the
paper, we may use the terms “time” and “round” interchangeably.

Notational Conventions. We use κ to denote the security parameter. N
denotes the set of protocol nodes. For a protocol Π, EXECΠ(A,Z, κ) represents
the random variable for all possible execution traces of Π w.r.t. adversary A and
environment Z. We use view←$ EXECΠ(A,Z, κ) to denote randomly sampling
an execution. |view| denotes the number of rounds in view.

Corruption Model. Since we are concerned only with the permissioned setting,
we consider environments Z that spawn a set of nodes, numbered from 1 to n
at the start, and never spawn additional nodes. At any point, A can ask Z to
corrupt a particular node for which Z sends a corrupt signal to that node. When
this happens, the internal state of the node gets exposed to A and A henceforth
fully controls the node. A node is said to be honest in a given view if it is never
under adversarial control. Otherwise, it is said to be corrupt or Byzantine. A can
corrupt nodes at any point during the protocol’s execution; but once a node is
corrupted, it cannot become honest at a later point. The corruption parameter
f denotes the maximum number of nodes that A can corrupt.
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Communication and Network Model. As mentioned before, Z provides
transactions sent by users as inputs to nodes and also handles communication
between nodes. We assume that a node can broadcast messages to others through
authenticated channels. Furthermore, we assume that the adversary A cannot
modify messages sent by honest nodes but can reorder or delay messages, possibly
constrained by the specific setting.

We differentiate between two networks in our model — an internal network
for communication between nodes and an external network for how external
users send transactions to nodes. We emphasize that A is only in charge of
scheduling message delivery for the internal network. The external network may
reside in other parts of the application (not relevant to the consensus protocol)
and is managed by Z (and possibly by some other network adversary). For
both networks, we consider the synchronous setting [21] (where the network
delay bound is known), the partially synchronous setting [22] (where the network
delay bound is finite but unknown), and the asynchronous setting [9] (where the
network delay is unbounded).

2.2 Execution Environments

Clients submit transactions by sending them to all nodes. As mentioned before,
we do not explicitly model clients, but rather have transactions input by Z.

External Network. The external network models the channel between the
system clients and the protocol nodes. By a synchronous external network, we
mean that any transaction that is received from Z by a node reaches all other
nodes within a known time. This is formally defined in Definition 3.

Definition 3 (External Synchronous Setting). We say that (A,Z) respects
∆ext = (full, δ) ext-synchrony w.r.t. protocol Π if for every κ ∈ N and view in
the support of EXECΠ(A,Z, κ), the following conditions hold: (1) Z provides δ
to all nodes upon spawning; (2) If Z provides an input message m to a node in
the txs set at time t, then at any time t′ ≥ t + δ, all other nodes will also have
received message m as input.

For the partially synchronous setting, we assume that δ exists but is unknown
to the nodes, and not provided by Z. For the asynchronous setting, we only
assume that transactions are not dropped by the network — they eventually get
delivered to all the nodes.

Internal Network. The internal network represents the network between nodes
and is usually the standard network considered for consensus problems. We for-
malize the internal synchrony assumption in Definition 4. The partially syn-
chronous and asynchronous settings are defined similarly to the corresponding
notions for the external network.

Definition 4 (Internal Synchronous Setting). We say that (A,Z) respects
∆int = (full, δ) int-synchrony w.r.t. protocol Π if for every κ ∈ N and view in the
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support of EXECΠ(A,Z, κ), the following conditions hold: (1) Z provides δ to
all nodes upon spawning; (2) If an honest node sends a message at time t, then
at any time t′ ≥ t+ δ, all recipient(s) will have received the message.

Network nomenclature. We say that the network is completely synchronous
(resp. completely asynchronous) if both the external and the internal network
are synchronous (resp. asynchronous). We use not-async to denote both the syn-
chronous setting and the partially synchronous setting.

Permissioned Setting. For the “permissioned” or “classical” environment, we
require that Z spawn all nodes up front and not spawn any new nodes during
the protocol execution. Furthermore, all nodes know the identity of all other
nodes in the protocol. We define the permissioned environment in Definition 5.

Definition 5 (Classical Permissioned Environment). We say that (A,Z)
respects (n, f,∆int, ∆ext)-classical execution w.r.t. a protocol Π if it respects ∆int

int-synchrony, ∆ext ext-synchrony and for every κ ∈ N and view in the support
of EXECΠ(A,Z, κ), the following conditions hold: (1) Z spawns a set of nodes
numbered from 1 to n at the start of the protocol and never spawns any nodes
later; (2) Z does not corrupt more than f nodes; (3) Z provides all nodes n, f
as well as any other public parameters upon spawning.

For all constraints on (A,Z), when the context is clear, we may choose to exclude
the protocol we are referring to.

2.3 The State Machine Replication Abstraction

In the state machine replication or consensus problem, a set of nodes try to
agree on a growing, linearly ordered log. At the start of each round, Z provides
a set txs (possibly empty) of transactions to protocol nodes. We assume that
the transactions input by Z are unique. At any time, nodes may also choose to
deliver transactions by outputting a LOG to Z. The LOG can be thought of as
a totally ordered sequence where each element is an ordered set of transactions.
We refer to the set of transactions at an index of the LOG as a “block.” The
LOG represents the set of transactions committed by a node so far.

Transaction nomenclature. When discussing the trajectory of a transaction,
we say that a transaction tx is received by a node when it is given as input to the
node by Z. A transaction tx is delivered or output by a node when it is included
in a LOG output by the node to Z.

Notation for the ordered log. T denotes the space of all possible transac-
tions. Let LOGi represent the most recent log output by node i to the envi-
ronment, i.e., the ordered list of transactions that node i has delivered so far.
For two logs LOG and LOG′, we define a relation � which intuitively signifies a
“prefix” notion. LOG � LOG′ stands for “LOG is a prefix of LOG′.” We assume
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that for any x, we have x � x and ∅ � x. LOG[p] denotes the pth element in
LOG. LOG(m) denotes the number p such that LOG[p] contains m.

The security of a state machine replication protocol is now defined as follows:

Definition 6 (Security of state machine replication [40]). We say that a
protocol Π satisfies consistency (resp. (Twarmup, Tconfirm)-liveness) w.r.t. (A,Z)
if there exists a negligible function negl(·) such that for any κ ∈ N, consistency
(resp. (Twarmup, Tconfirm)-liveness) is satisfied except with negl(κ) probability over

the choice of view←$ EXECΠ(A,Z, κ) where negl is negligible in κ. For a partic-
ular view, we define the properties as below:

– (Consistency) A view satisfies consistency if the following holds:
• Common Prefix. If an honest node i outputs LOG to Z at time t and

an honest node j outputs LOG′ to Z at time t′, then it holds that either
LOG � LOG′ or LOG′ � LOG.

• Future Self Consistency. If a node that is honest between times t and t′,
outputs LOG at time t and LOG′ at time t′ ≥ t to the environment Z,
then it holds that LOG � LOG′.

– (Liveness) A view satisfies (Twarmup, Tconfirm)-liveness if the following holds:
At a time t such that Twarmup < t ≤ |view|, if an honest node either received
a transaction m from Z or output m in its log to Z, then for any honest
node i and any time t′ ≥ t+Tconfirm; t′ ≤ |view|, it holds that m is in the log
output by node i at time t′.

Here, Tconfirm and Twarmup are polynomial functions in κ, n, f , any maximum
network delay bounds as defined in ∆ext and ∆int, as well as the actual network
delay. Twarmup is the protocol’s warmup time, until which point liveness need
not be satisfied. Tconfirm is the maximum time it takes for a transaction (input
after the warmup time) to be delivered by all honest nodes.

Weak liveness. The standard definition of liveness of a transaction tx (from
Definition 6) is independent of what happens in the rest of the protocol’s exe-
cution. Sometimes however, it may be enough for a protocol to be live only if
transactions continue to be received by the system. For example, a transaction
tx will only be delivered if there is some transaction that is received by all nodes
sufficiently after tx. Intuitively, later transactions will cause earlier ones to be
“flushed out” of the system. We note that this subtle distinction between the
two liveness definitions is rarely considered in the literature. We found that some
leaderless protocols (i.e. those that are not based on a leader node) like [6, 41]
implicitly ignore this distinction. Along similar lines, we define a weaker version
of conventional liveness, which we call “weak-liveness.” Despite the technical
difference, we think that it should be acceptable in most real world systems. For
a particular view, we define weak-liveness below.

– (Weak Liveness) A view satisfies (Twarmup, Tconfirm)-weak-liveness if the
following holds: Suppose that at a time t such that t > Twarmup, an honest
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node either received a transaction m from Z or output m in its log to Z.
Let T be a set built recursively as follows: (1) Add m to T; (2) For m0 ∈ T,
add to T, all transactions m′0 that were received by at least one honest node
before m0. Now if another transaction m′ was received at time t′ and is such
that it was first received by a node after all nodes received all transactions
in T, then for any honest node i and any time t′′ ≥ t′ + Tconfirm; t′′ ≤ |view|,
it holds that m is in the log output by node i at time t′′.

3 Building Blocks

We start by describing some useful primitives that will form the foundation
for designing our fair ordering consensus protocols. More specifically, we will
utilize two primitives: (1) Set Byzantine Agreement (Set-BA); and (2) FIFO
Broadcast (FIFO-BC). We show how to build Set-BA from Byzantine agreement
and FIFO-BC from reliable broadcast in the full version [27].

Subroutines and composition. We follow standard conventions to enable se-
cure composition. Each instance of a protocol is spawned with a session identifier
sid. We use Π[sid] to denote the instance of protocol Π with session id sid. Each
protocol may take inputs from and return outputs to an environment. Note that
this “environment” may be different for any subroutines called.

3.1 Set Byzantine Agreement

Definitions. In a (poly) Set Byzantine Agreement protocol (Set-BA), partici-
pating nodes will try to agree on a set of values. At the start of the protocol,
each node receives any public parameters from Z. Each node i in the set P of
participating nodes also receives a set Ui ⊆ S as input from Z. The set S is
also known to all nodes and its description is polynomial in κ. At the end of the
protocol, each honest node j ∈ P outputs a set of the agreed upon values Oj .

Definition 7 (Security of Set-BA). A Set-BA protocol Πsba satisfies agree-
ment, inclusion validity, and exclusion validity w.r.t. (A,Z) if for all
κ ∈ N, the following properties hold except with negligible probability over
view←$ EXECΠsba(A,Z, κ).

– (Agreement) If honest nodes i and j output the sets Oi and Oj respectively,
then Oi = Oj.

– (Inclusion Validity) If an element is in the input sets of all nodes, then it
will also be in the output sets of all honest nodes.

– (Exclusion Validity) If an element is not in any input set, then it is not
in any honest output set.

For a given view, we also say that Πsba satisfies T sba
confirm-liveness, if all honest

nodes output in at most T sba
confirm rounds after all honest nodes have input their

starting value. Lemma 1 shows a helpful result that any outputs are “honestly
proposed.”
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Lemma 1. Consider any set Byzantine agreement protocol Πsba that satisfies
agreement, inclusion validity, and exclusion validity (w.r.t (A,Z)). Except for a
negligible number of views, Πsba also satisfies the following:

– (Honest Proposal) If an honest node outputs the set O, then for every
c ∈ O, there exists i ∈ P such that i is honest and c ∈ Ui.

3.2 FIFO Broadcast

Single source FIFO (first in, first out) broadcast (also called Ordered Authenti-
cated Reliable broadcast or OARcast in [26]) is a broadcast primitive in which all
honest nodes in the protocol need to deliver messages in the same order as they
were broadcast by the sender. In one instantiation of a FIFO broadcast protocol,
we consider a single designated sender who broadcasts a sequence of messages
to all other nodes. If the sender is honest, each honest node must deliver the
messages in the same order as they were broadcast. If the sender is dishonest, all
honest nodes must deliver messages in the same order as each other; except now,
this order may may be different than the one broadcast by the sender. When
composing several FIFO broadcast primitives together with different senders,
FIFO order is maintained for each individual sender but different honest nodes
may deliver messages from different senders in different orders.

Definitions. At the start of the FIFO Broadcast (FIFO-BC) protocol, each
node receives the appropriate public parameters from the environment. At any
time, the designated sender may also receive as input a message m from the
environment. At any time, nodes can choose to deliver messages.

Definition 8 (Security of (FIFO-BC)). A FIFO-BC protocol Πfifocast satisfies
liveness, agreement, and FIFO-order w.r.t. (A,Z) if for all κ ∈ N, the following
properties hold except with negligible probability over view←$ EXECΠfifocast(A,Z, κ).

– ((T fifocast
warmup, T

fifocast
confirm)-Liveness) If the sender is honest and receives a message

m as input in round r > T fifocast
warmup, or if an honest node delivers m in round

r > T fifocast
warmup, then all honest nodes will have delivered m by round r+T fifocast

confirm.
– (Agreement) If an honest node delivers a message m before m′, then no

honest node delivers m′ unless it has already delivered m.
– (FIFO-Order) If the sender is honest and is input a message m before m′,

then no honest node delivers m′ unless it has already delivered m.

T fifocast
confirm is a polynomial in κ, n, f and the internal network delay.

Notation. Let Πfifocast[(sid, j)] denote the instance of the protocol Πfifocast

where node j is the designated sender. In a consensus protocol that invokes
Πfifocast[(sid, j)], we assume that each node i keeps track of the messages deliv-

ered (i.e. messages broadcast by node j) in a local log Log
(sid,j)
i . This represents

node i’s view of broadcasts from node j in the session sid. When the session id is
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clear from context, we may simply write Logji . Two local logs Log and Log′ are
called “equal until tx”, denoted by ≈tx, if they are equivalent until the occur-
rence of tx. Log[p] denotes the pth element in Log. Log(m) denotes the number p
such that Log[p] contains m. Consequently, Log(m) < Log(m′) signifies that m
appears before m′ in Log.

4 Defining Fair Ordering

We formally define fair ordering in this section. As it turns out, providing a
definition that is achievable by protocols, yet intuitive, is not trivial. Some nat-
ural definitions are not achievable except under strong assumptions. We use this
section to also go through these definitions that led to our final definition.

(Attempt 1) – Send-order-fairness. A strawman approach is to require or-
dering to be in terms of when transactions were sent by clients. For instance,
if a transaction tx1 was sent by a client before another transaction tx2 (possi-
bly by another client), then tx1 should appear before tx2 in the agreed upon
log. Not surprisingly, this can lead to several problems: most importantly, there
needs to be a trusted way to timestamp a transaction at the client side. We
discuss the possibility of achieving it in practice using trusted hardware in the
full version [27].

(Attempt 2) – Receive-order-fairness. The challenges of send-order-fairness
suggest it would be more prudent to define fair ordering in terms of when the
consensus nodes actually receive transactions. Intuitively, “receive order” means
that the fair ordering is defined by looking at when enough nodes receive a par-
ticular transaction. For instance, if sufficiently many nodes receive a transaction
tx1 before another transaction tx2, then tx1 must appear before tx2 in the final
log. “Sufficiently many” is parameterized using γ.

Definition 9 (Receive-order-fairness, restatement of Definition 1). For
a view in the support of EXECΠ(A,Z, κ), define receive-order-fairness as follows:

– A view satisfies (γ, Twarmup) receive-order-fairness if the following holds: For
any two transactions m and m′, let η be the number of nodes that received
both transactions between times Twarmup and |view|. If at least γη of those
nodes received m before m′ from Z, then for all honest nodes i, i does not
deliver m′ unless it has previously delivered m.

A protocol Π satisfies (γ, Twarmup) receive-order-fairness w.r.t (A,Z) if there is
a negligible function negl(·) such that for any κ ∈ N, the order-fairness property
is satisfied except with probability negl(κ) over view←$ EXECΠ(A,Z, κ).

4.1 Condorcet paradox and the impossibility of fair ordering.

The Condorcet paradox [18], or the “voting paradox”, is a result in social choice
theory that shows how some situations can lead to non-transitive collective vot-
ing preferences even if the preferences of individual voters are transitive. To
illustrate how this applies to fair ordering, let us look at a simple example:
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Example 1. Suppose that there are 3 nodes: A, B, and C. In the protocol exe-
cution, 3 transactions, tx1, tx2, and tx3 are sent by clients to all the nodes.

– Node A receives transactions in the order tx1, tx2, tx3.

– Node B receives transactions in the order tx2, tx3, tx1.

– Node C receives transactions in the order tx3, tx1, tx2.

Now, 2 nodes (A and C) received tx1 before tx2, 2 nodes (A and B) received
tx2 before tx3, and 2 nodes (B and C) received tx3 before tx1. It is easy to see
that no protocol can satisfy fair ordering for γ ≤ 2

3 , since such a protocol would
have to include tx1 before tx2; tx2 before tx3; and tx3 before tx1 in its final log.

Theorem 2 generalizes this observation to show an impossibility for γ ≤ n−1
n .

Furthermore, it also shows that when f ≥ 1, even γ = 1 receive-order-fairness is
impossible to achieve.

Theorem 2 (Restatement of Theorem 1). Consider any n, f ≥ 1, ∆int, ∆ext

where ∆ext is either asynchronous or (not-async, δext ≥ n). Let γ ≤ 1. If a con-
sensus protocol Π satisfies consistency and (Twarmup, Tconfirm) liveness w.r.t. all
(A,Z) that respect (n, f,∆int, ∆ext)-classical execution, then it cannot also satisfy
(γ, Twarmup) receive-order-fairness.

Proof (Sketch). Taking inspiration from the counterexample in Example 1, we
first show the result for γ ≤ n−1

n . Denote the nodes in the system by the numbers
1 to n. Suppose that clients submit n transactions tx1 to txn. Further, suppose
that node 1 receives the transactions in the order tx1, tx2, · · · , txn and any node
i 6= 1 receives the transactions in the order txi, · · · , txn, tx1, · · · , txi−1.

Now, it is straightforward to see that all nodes except node 2 received tx1

before tx2, all nodes except node 3 received tx2 before tx3 and so on. Finally,
all nodes except node 1 received txn before tx1. This means that any consensus
protocol that provides order-fairness for γ ≤ n−1

n must order tx1 before tx2, · · · ,
txn−1 before txn, and txn before tx1 which is a contradiction.

To see the result for γ = 1, since f ≥ 1, we observe that the adversary A can
simply crash a single node N . Suppose that all other nodes receive tx1 before tx2.
Now, since the node N sends no messages, other nodes do not know the order
in which it received tx1 and tx2. Therefore, any protocol that satisfies receive-
order-fairness for γ = 1 would order tx1 before tx2 even when N actually received
tx2 first. In other words it would also need to satisfy receive-order-fairness for
γ = n−1

n , which we showed to be impossible.

4.2 Environments that support receive-order-fairness

We find that the Condorcet paradox can be circumvented in a few ways by
assuming specific network properties.
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External synchrony assumption. The primary reason for the impossibility
of fair-ordering is that different nodes may receive the same client transaction
several rounds apart, resulting in non-transitive collective ordering. Suppose that
∆ext = (full, δ) where δ ≤ 1 (e.g., an instant synchronous external network).
Then, any client transaction that a node receives will reach all other nodes within
1 round. This implies that if some node receives transactions tx1, tx2 and tx3 in
that order, then no node can receive tx3 before tx1. It is now straightforward to
see how this circumvents the Condorcet paradox.

Non-corrupting adversary and γ = 1. If the adversary does not corrupt
any nodes, and its power is restricted to influencing network delays, we find that
it is possible to achieve receive-order-fairness for γ = 1. In this setting, a single
leader can receive the transaction orderings from individual nodes, and decide
on a final ordering that preserves receive order-fairness.

4.3 Towards weaker definitions for order-fairness

We give two natural relaxations of the original definition. The first is approximate
receive order-fairness (or simply approximate-order-fairness) while the second
is block receive order-fairness (or simply block-order-fairness). For approximate-
order-fairness, we only look at unfairness in the ordering of two transactions if
they were received sufficiently apart in time. We emphasize that approximate-
order-fairness only makes sense in synchronous and partially synchronous set-
tings. On the other hand, for block-order-fairness, we choose to ignore the or-
dering within a block while considering fair ordering. Notably, this allows us to
circumvent the Condorcet paradox by aggregating any transactions with non-
transitive orderings into the same block. This is reasonable to consider even in
asynchronous environments. First, we look at approximate-order-fairness. For a
given view in the support of EXECΠ(A,Z, κ), we define the property below.

Definition 10 (Approximate-Order-Fairness). A view satisfies (γ, Twarmup, ξ)
approximate-order-fairness if the following holds: For any two transactions m
and m′, let η be the number of nodes that received both transactions between
times Twarmup and |view|. If at least γη of those nodes received m more than
ξ rounds before m′ from Z, then for all honest nodes i, i does not deliver m′,
unless it has previously delivered m.

A protocol Π satisfies (γ, Twarmup, ξ) approximate-order-fairness w.r.t (A,Z)
if there is a negligible function negl(·) such that for any κ ∈ N, the above property
is satisfied except with probability negl(κ) over view←$ EXECΠ(A,Z, κ).

Quickly, we notice a protocol that satisfies (Twarmup, Tconfirm)-liveness, also
satisfies (1, Twarmup, ξ) approximate order-fairness for any ξ ≥ Tconfirm. Clearly,
if a transaction tx2 was received after tx1 was delivered by all nodes, then tx2

will be delivered after tx1. Moreover, we also find that if ξ < Tconfirm, then any
protocol that satisfies (γ, Twarmup, ξ) approximate-order-fairness must also sat-
isfy (γ, Twarmup) receive-order-fairness (for environments with a different network
synchrony bound).
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Theorem 3. Consider any n, f ≥ 1, ∆int, ∆ext. Let ∆int = (not-async, δint) and
∆ext = (not-async, δext ≥ 1). Also consider γ ≤ 1 and ξ < Tconfirm. If a
protocol Π achieves consistency, (Twarmup, Tconfirm)-liveness, and (γ, Twarmup, ξ)
approximate-order-fairness. w.r.t. all (A,Z) that respect (n, f,∆int, ∆ext)-
classical execution, then it also satisfies (γ, Twarmup) receive-order-fairness
w.r.t all (A′,Z ′) that respect (n, f,∆′int, ∆

′
ext)-classical execution where ∆′int =

(not-async, δ′int = δint

ξ+1 ) and ∆′ext = (not-async, δ′ext = δext

ξ+1 ).

Consequently, approximate-order-fairness doesn’t turn out to be very useful
since it suffers from the same problems as the previously defined receive-order-
fairness. Note that from Section 4.2, we can infer that approximate-order-fairness
can be achieved when δext ≤ ξ. Still, since it only applies to non-asynchronous
networks, we propose a second definition, block-order-fairness, that performs
much better since it provides a way to handle any cycles in transaction ordering
and also applies to asynchronous networks. We note that our synchronous pro-
tocol (Section 6) also satisfies approximate-order-fairness for ξ ≥ δext.

For a given view in the support of EXECΠ(A,Z, κ), we state the block-order-
fairness property below.

Definition 11 (Block Order-Fairness). A view satisfies (γ > 1
2 , Twarmup)-

block-order-fairness if the following holds: For any two transactions m and m′,
let η be the number of nodes that received both transactions between times Twarmup

and |view|. If at least γη of those nodes received m before m′ from Z, then for
all honest nodes i, i does not deliver m at a later index than it delivers m′.

A protocol Π satisfies (γ, Twarmup)-block-order-fairness w.r.t (A,Z) if there
is a negligible function negl(·) such that for any κ ∈ N, the above property is
satisfied except with probability negl(κ) over view←$ EXECΠ(A,Z, κ).

5 Overview of the Aequitas protocols

We provide a general overview of our Aequitas protocols in this section. Specifi-
cally, we give four constructions:

• Πsync,nolead
Aequitas is a leaderless protocol that provides consistency, (weak) liveness,

and block-order-fairness in the completely synchronous setting.
• Πsync,lead

Aequitas is a leader-based protocol that provides consistency, (weak) liveness,
and block-order-fairness in the completely synchronous setting.

• Πasync,nolead
Aequitas is a leaderless protocol that provides consistency, eventual (weak)

liveness, and block-order-fairness in any setting.
• Πasync,lead

Aequitas is a leader-based protocol that provides consistency, eventual (weak)
liveness, and block-order-fairness in any setting.

We present a detailed account only for the synchronous leaderless protocol
Πsync,nolead

Aequitas in this paper (Section 6) and defer the other constructions to the full
version [27].
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Construction overview. Our Aequitas protocols utilize the FIFO-broadcast
(FIFO-BC) and the set Byzantine agreement (Set-BA) primitives described in
Section 3 in a black-box way to provide order-fairness. We elaborate on the
three major stages of our Aequitas protocols below:

• Stage I: Gossip / Broadcast. Each node FIFO-broadcasts transactions
as they are received as input from the environment. When a node i re-
ceives a set of transactions txs from Z, it sends txs as input to the protocol
Πfifocast[(sid, i)] with i as the designated sender. Note that all broadcasts can
be sent in the same session sid. Different session ids need to be used only
when considering composition of several protocols in the system.

In parallel to broadcasting transactions, a node also receives and processes
broadcasts from other nodes. For a node i, broadcasts sent by node j are
appended to a local log Logji when they get delivered to i by Πfifocast[(sid, j)].

Intuitively, Logji denotes node i’s view of how transactions were received by
node j.

• Stage II: Agreement on local logs. To determine the ordering for a par-
ticular transaction tx, a node i waits until it has received tx from sufficiently
many other nodes. In other words, node i waits until there are sufficiently
many k such that its local log Logki contains tx. When both the external
and internal networks are synchronous, this can alternatively be achieved by
waiting for enough time. The properties of FIFO-BC guarantee that if two
honest nodes i and j have local logs Logki and Logkj respectively that both

contain tx, then Logki ≈tx Logkj . We state this fact as Lemma 2. Recall that

Logki ≈tx Logkj holds when Logki and Logkj are identical until tx occurs.

Now, the next step is for all nodes to agree on which local logs to use
to determine the ordering for tx. For a node i, let U tx

i denote the set of
nodes k such that Logki contains tx. Node i starts an instance of the protocol
Πsba[(sid, tx)] and provides it the input U tx

i . Upon the completion of the
Set-BA protocol, all honest nodes receive the same set Ltx. Intuitively, Set-BA
is used to agree which nodes’ orderings should be used to determine the final
ordering for transaction tx. Recall that Lemma 1 guarantees that if k ∈ Ltx,
then there is some honest node j such that tx ∈ Logkj . This, along with the
liveness property for FIFO-BC ensures that all honest nodes will eventually
receive tx broadcast by node k ∈ Ltx (even if k is malicious).

Finally, we note that at the end of the agreement phase, every honest node
has agreed on a set of nodes Ltx whose transaction orderings should be used
to determine the final ordering for the transaction tx in consideration. We
say that a node i has received the agreed logs for tx if for all k ∈ Ltx, it
holds that tx ∈ Logki .

• Stage III: Finalization. To decide on the final ordering for a transaction
tx, we provide two options for the finalization step: a leader based one and a
leaderless one. For both the leader-based and leaderless finalizations, nodes
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first build a graph that represents any ordering dependencies between trans-
actions. Specifically, a node i maintains a directed graph Gi, where vertices
represent transactions and edges represent ordering dependencies. We refer
to Gi as the “dependency graph” or the “waiting graph” maintained by i.
After the agreement stage for tx is completed, the protocol now uses the
local logs to see if some other transaction might have come before. If there is
another transaction tx′ that appears before tx in sufficiently many local logs
(e.g., n− f times), then i adds an edge from tx′ to tx in Gi. Intuitively, an
edge (a, b) ∈ Gi denotes that the finalization stage for b is “waiting” for a to
be delivered. Since the same Ltx is used by all honest nodes, if an edge (a, b)
exists in Gi, then it will at some point exist in Gj , when nodes i and j are
both honest. However, we note that Gi is neither guaranteed to be complete
nor acyclic. Two vertices in Gi might never have an edge between them.
Moreover, the Condorcet paradox can still create cycles in Gi. To break ties
between transactions without an edge, we use the following two techniques.

• Finalization via leader-based proposal. Πsync,lead
Aequitas and Πasync,lead

Aequitas both
use a leader-based approach to finalize transactions in the graph. For this,
any leader-based consensus protocol can be run along with the gossip
and agreement stages above. When a designated leader proposes and
broadcasts a new block, instead of just checking the syntactical validity
of transactions, each node i checks that the proposal does not conflict
with any required order-fairness in the graph Gi. That is, node i checks
that for any transaction tx in the proposed block, if (tx′, tx) is in Gi,
then either tx′ has already been delivered or tx′ is also in the current
proposed block.

Abstractly, we allow the leader node to choose the transaction ordering
but only as long as order-fairness is still satisfied. For transactions among
which there is no clear winner, the leader may choose any ordering.

• Finalization via local computation. Πsync,nolead
Aequitas and Πasync,nolead

Aequitas both
use a leaderless approach to finalize transactions in the graph and require
no further communication. At a high level, to order transactions tx1 and
tx2 between whom there in no edge in Gi, the protocol will wait until
tx1 and tx2 have a common descendant, with the final ordering being
based on which transaction vertex has the most descendants. We prove
that any other graph vertex that is a descendant of only one of tx1 and
tx2 is present in Gi when node i makes the decision for ordering tx1 and
tx2. This will ensure that all honest nodes will order tx1 and tx2 the
same way.

We highlight that the above description of the finalization stage is a simpli-
fied one. As described, it is not sufficient to avoid the Condorcet paradox.
Furthermore, adversarial transactions could result in a node waiting for un-
bounded periods of time. The actual technique to get around these obstacles
is quite nuanced and we dedicate Section 5.1 to its details.
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Lemma 2. If two honest nodes i and j have local logs Logki and Logkj respectively
where k is any other node such that both logs contain a transaction tx, then
Logki ≈tx Logkj .

Proof. This result follows directly from the agreement property of FIFO-BC.

Before diving into the details of the finalization step, we take a step back to un-
derstand why it turns out to be quite non-trivial. We look at a simple strawman
protocol based on transaction timestamping that looks intuitive and analyze why
it does not work.

The problem with timestamp-based ordering. Consider a simple syn-
chronous protocol Πtimestamp that works as follows:

1. When an honest node i receives a transaction tx from Z in round t, it assigns
tx the timestamp t and broadcasts (tx, t) to all other nodes.

2. Upon waiting for δext +Tconfirm rounds where δext is the network delay bound
for the external network and Tconfirm is the liveness polynomial for the broad-
cast primitive, nodes reach agreement on the set of timestamps T to use to
calculate the final timestamp for tx.

3. Each node calculates the final timestamp for tx as the median of all the
timestamps in T. We represent this final timestamp by final(tx).

Notice how the first two steps almost perfectly resemble the gossip and agree-
ment stages. The finalization (third) step is also surprisingly simple, but unfor-
tunately can lead to easy manipulation of final timestamps by a single adversary.
To see why, consider 5 nodes, A,B,C,D and E, where E is malicious and two
transactions, tx1 and tx2. tx1 is received by nodes A, . . . , E at rounds 1, 1, 4, 4, 2
while tx2 is received by the nodes at rounds 2, 2, 5, 5, 3. Now, all nodes have re-
ceived tx1 before tx2 and consequently, final(tx1) < final(tx2) should hold. How-
ever, notice how E can invert the ordering of the final timestamps simply by
switching around its own timestamps for tx1 and tx2. E can make final(tx1) = 3
and final(tx2) = 2 which results in a timestamp of 3 for tx1 (median of (1, 1, 3,
4, 4)) and 2 for tx2 (median of (2, 2, 2, 5, 5)), and thus an unfair ordering.

5.1 The Finalization Stage

We describe the general theme of the finalization stage here.

Ordering two transactions. For a pair of transactions tx and tx′, how does
a node i choose which one to deliver first? Suppose that the agreement phases
for tx and tx′ result in the outputs Ltx and Ltx′

. Define l(tx,tx′) as below.

l(tx,tx′) =
∣∣∣{k ∈ Ltx ∪ Ltx′

| Logki (tx) ≤ Logki (tx′)
}∣∣∣

l(tx,tx′) denotes the number of logs Logki where tx was ordered at or before tx′.
Now, if l(tx,tx′) is “small,” it means that a large number of nodes have received tx′

before tx. This means that the finalization stage for tx should wait until tx′ has
been delivered. This provides a partial ordering between any two transactions.



22 Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels

Additional notation. Let tx Ci tx′ represent that i is waiting to deliver tx′

before proceeding with the finalization phase for tx. Lemma 3 shows that l(tx,tx′)

and l(tx′,tx) cannot both be “small”. Consequently, both tx and tx′ will not wait
for each other or equivalently, at most one of txCi tx′ and tx′Ci tx will be true.

Lemma 3. l(tx,tx′) + l(tx′,tx) ≥
∣∣∣Ltx ∪ Ltx′

∣∣∣
Proof. Let X = Ltx ∪ Ltx′

. For any k ∈ X, at least one of Logki (tx) ≤ Logki (tx′)
and Logki (tx′) ≤ Logki (tx) is true. k is therefore counted in either l(tx,tx′) or
l(tx′,tx) which proves the required result.

Adversarial transactions. The calculation of l(tx,tx′) needs to wait for the
agreement phases of both tx and tx′ to finish. Now, if an adversarial node FIFO-
broadcasts a transaction txfake claiming it to be a real user transaction, then
the ordering between txfake and a real transaction tx cannot be calculated since
the agreement phase for txfake will never finish. So that this does not happen,
the protocol needs to ensure that at least one honest node has received txfake

before tx (from Z). For the synchronous protocol, this is done by checking that
a transaction tx′ is added to the graph only when there is another transaction tx
that has finished its agreement stage and tx′ is present in at least |Ltx|−(n−f)+1
among the local logs in Ltx. Note that the agreement stage will only finish for
honest transactions.

Non-transitive waiting. The Condorcet paradox can still cause non-transitive
waiting. It is still possible to have transactions tx1, tx2, and tx3 such that tx1 C
tx2; tx2 C tx3; and tx3 C tx1. The way we get around this is by delivering such
transactions at the same time—by placing them in the same block.

Graph based approach. Instead of a separate thread waiting for the resolu-
tion of each transaction, representing the “waiting” between transactions as a
graph provides a nice way to modularize the protocol. Suppose that each node
i maintains a directed graph Gi = (Gi.V,Gi.E) where Gi.V denotes the set of
vertices and Gi.E denotes the set of edges in Gi. Each vertex represents a trans-
action and an edge from y to x (equiv. (y, x) ∈ Gi.E) represents that x is waiting
on y i.e. xCi y. When the agreement phase for a transaction tx completes, i does
the following:

• Add tx to the graph Gi if it does not already exist.
• For all transactions tx′ such txCi tx′, first, if tx′ does not exist in the graph,

add a new vertex. Then, add the edge (tx′, tx) to Gi.

As mentioned before, Gi may not be acyclic. In order to deal with the Condorcet
paradox, we consider the strongly connected components of Gi. Recall that a
subgraph G′ of a directed graph G is called strongly connected if every vertex
in G′ can reach every other vertex in G′. A strongly connected component is a
maximal strongly connected subgraph.
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Intuitively, all transactions in a strongly connected component will be de-
livered in the same block. A cycle that exists in Gi (due to non-transitivity of
transactions) will be entirely contained in the same strongly connected compo-
nent. On the other hand, if a transaction does not need to wait on any other one,
then it will be in a strongly connected component by itself. We can collapse Gi
into a new graph G∗i where each strongly connected component is represented
as a single vertex. G∗i is also called the condensation of Gi. Each vertex in G∗i
will now denote a set of transactions. We note that G∗i will now be acyclic.

Graph Notation. Since a vertex in Gi contains a single transaction, we may
use a transaction and its corresponding vertex interchangeably when referring to
the vertex in Gi. Let TXSi(v) be the set of transactions for a vertex v ∈ G∗i .V .
Let SCCi(v) denote the strongly connected component of Gi that contains the
vertex v. SCCi(v) also denotes the corresponding vertex in the condensation
graph G∗i .

Ordering incomparable vertices in G∗
i and breaking ties. As mentioned

before, not all pairs of vertices in G∗i are connected by an edge. This only gives a
partial ordering for delivering transactions. We still need a way to totally order
vertices in G∗i . In the leader-based version of the finalization step, we delegate
this responsibility to the leader node. We elaborate on the technique used in the
synchronous leaderless protocol in Section 6.

Delivering a transaction. Recall that a transaction enters the finalization
stage when it has completed the agreement stage, while it is delivered when it
gets output to Z as part of the LOG. For the leaderless protocols, the set of
transactions TXSi(v) corresponding to the vertex v ∈ G∗i .V can be delivered in
the LOG output to Z when it is not waiting for any other transaction and is
preferred over any other transaction that it is incomparable with in the graph.
For this, care must be taken to ensure that the set of transactions that tx is
incomparable with is the same when all honest nodes are deciding to deliver tx,
which we defer to the actual protocol description in Section 6.

6 The Synchronous Aequitas protocol

We describe Πsync,nolead
Aequitas , the leaderless Aequitas protocol for the completely syn-

chronous setting. By “complete synchrony,” we mean that both the external
and internal networks are synchronous. For this section, we assume that (A,Z)
respects ∆ext = (full, δext) ext-synchrony and ∆int = (full, δint) int-synchrony.

To build the Πsync,nolead
Aequitas protocol, we assume a secure FIFO-BC protocol

Πfifocast (from Definition 8) and a secure Set-BA protocol Πsba (from Defini-
tion 7) that both work for any (A,Z) that respects (n, f,∆int, ∆ext)-classical
execution. Let (T fifocast

warmup, T
fifocast
confirm) and T Set-BA

confirm denote the liveness parameters
for Πfifocast and Πsba respectively. We note that any bound for the number of
corruptions f will be at least as restrictive as bounds required by Πfifocast and
Πsba.
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6.1 Protocol Description

The Πsync,nolead
Aequitas protocol follows much of the same general techniques from Sec-

tion 5. The gossip and agreement stage take place exactly as described there.
In the gossip stage, a node i forks an instance of Πfifocast[(sid, i)] and uses it to
broadcast transactions as they are received from Z. After broadcasting a trans-
action tx, it waits until the broadcasts from all honest nodes would have arrived.
Let U tx

i denote the set of nodes k such that tx ∈ Logki . Note that all honest nodes
are present in U tx

i . In the agreement stage, i forks an instance of Πsba[(sid, tx)]
to agree on a set Ltx indicating the nodes whose logs to use to order tx.

For the finalization stage, we now present the remaining details that were
deferred from Section 5.1. Please refer to Section 5 for any notation.

Building the “waiting” graph Gi. Recall that each node i builds a graph Gi
where vertices are transactions and edges denote ordering dependencies between
transactions. For two transactions tx and tx′, an edge (tx′, tx) is added to Gi

if l(tx,tx′) ≤
∣∣∣Ltx ∪ Ltx′

∣∣∣− γn+ f . Each node i also maintains the condensation

graph G∗i where each strongly connected component in Gi is condensed to a
single vertex.

Ordering incomparable vertices in G∗
i . Suppose that v and v′ are two

vertices in G∗i that are are currently not comparable i.e. they do not have an edge
between them. To determine which vertex to deliver first, we wait until they have
a common descendant, after which we order based on number of descendants.
We note that once a common descendant arrives, any other transaction that
arrives will also be a descendant of both v and v′. In other words, the vertex
with the higher number of descendants will become fixed allowing for a consistent
ordering across protocol nodes. Lemma 4 shows a helpful result on when vertices
can be “incomparable.”

A subtle point to note here is that the common descendant itself can cause v
and v′ to be combined into the same strongly connected component if it creates a
cycle containing them. This is precisely why our protocol achieves weak-liveness,
where we achieve liveness, if a transaction arrives late enough that it cannot
create a cycle with transactions in v and v′. Effectively, we need to wait for a
transaction to arrive sufficiently late in order to “flush out” earlier transactions.

Lemma 4. Let v1 and v2 be two vertices in G∗i that do not have an edge be-
tween them. Let rfirst denote the time when any transaction in TXSi(v1) was first
received by a node. Let rlast denote the time when any transaction in TXSi(v2)
was last received by a node. Then rlast − rfirst ≤ 2δext.

Breaking ties. We use an a priori known ordering relation to break any ties
that arise (e.g., two vertices with equal number of descendants). In particular,
suppose that Ord is a binary relation on 2T × 2T that is known a priori to
all nodes. 2T represents the power set of T . The relation is defined on sets
of transactions (rather than individual transactions only) since we may deliver
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several transactions at once. We assume that Ord is supplied to all nodes on
initialization by Z. We will use this function to deterministically break ties
between two sets of transactions when neither should clearly come before the
other. For two sets S1 and S2, (S1, S2) ∈ Ord implies that all nodes agree S1

should come before S2 if there is no clear winner. Ord can also be used to order
transactions in the same block. We note that Ord can be defined using a simple
alphabetical or ascending order. In general, Ord needs to satisfy two properties:

• ∀(a, b) ∈ 2T × 2T ; a 6= b, exactly one of (a, b) and (b, a) is in Ord.
• ∀a, b, c ∈ 2T , if (a, b) ∈ Ord and (b, c) ∈ Ord then (a, c) ∈ Ord.

Delivering transactions. The transactions TXSi(v) of a vertex v in G∗i can
be delivered when:

• v is a source vertex i.e., it has no incoming edge. This ensures that v is not
waiting on any other transaction to be delivered first.
• 2δext rounds have passed since v was added to the graph. This ensures that

any other vertex v′ that v is incomparable to, is also present in the graph.
• For any other source vertex v′, v has a common descendant with v′ and

either has more descendants or has an equal number of descendants and
(TXSi(v),TXSi(v

′)) ∈ Ord holds. This ensures that every node will order v
before v′.

Bound on f . Suppose that (γ, ·) order-fairness needs to be realized. This im-
plies that if γn nodes receive transactions in a particular order, it must be
reflected in the final ordering. Since f nodes can be adversarial, the output must
be the same even if γn − f of those orderings are seen. Now, as we don’t want
a bi-directed edge to be added to Gi, γn − f > n

2 must hold. Equivalently,

n > 2f
2γ−1 . For block-order-fairness with γ = 1, we require an honest majority.

6.2 Protocol Pseudocode

Initialization. At the start of the protocol, we assume that i receives the iden-
tities of other protocol nodes, n, f , the maximum network delays δint, δext, and
the binary relation Ord. A FIFO-BC protocol Πfifocast and a Set-BA protocol Πsba

have also been agreed upon a priori. Let T fifocast
confirm and T sba

confirm represent the live-
ness bounds for Πfifocast and Πsba respectively. Now, for each j ∈ N , i initializes
Logji ← []. It also initializes an empty graph Gi and a final output log LOGi.

• At the start of round r, when a node i receives a set of transactions txs from
Z, it does the following:

1. (Gossip)
(a) Fork an instance of Πfifocast[(sid, i)], if it does not already exist.
(b) Send txs as input to Πfifocast[(sid, i)].
(c) Record (sid, gossip-end, txs, r + δext + T fifocast

confirm)
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2. (Agreement)
(a) Check if there is any recorded tuple (sid, gossip-end, txs′, r′) such that

r = r′.
(b) For such a tuple for txs′, for each tx ∈ txs′, fork an instance of Πsba[(sid, tx)]

and provide it the input U tx
i .

(c) Record (sid, agreement-end, tx, r + T sba
confirm) for each tx ∈ txs′.

3. (Build Graph)
(a) Check if there is any recorded tuple (sid, agreement-end, tx, r′) such that

r = r′.
(b) For such a tuple for tx, first add a vertex denoted by tx to Gi if it does

not already exist. Now, for any other transaction tx′ seen so far that has
not yet been delivered,

i. Let u =
∣∣∣{k ∈ Ltx | tx′ ∈ Logki

}∣∣∣.
ii. If u ≥ |Ltx| − (n− f) + 1, compute l(tx,tx′) as per Section 5.1.

iii. If l(tx,tx′) ≤
∣∣∣Ltx ∪ Ltx′

∣∣∣− γn+ f , then record txC tx′. Add an edge

(tx′, tx) to Gi if it does not already exist.
(c) Record (sid, graph-end, tx, r + 2δext) for tx.

4. (Finalization)
(a) Compute the condensation graph G∗i of Gi by collapsing each strongly

connected component into a single vertex.
(b) Let Vsource be the set of vertices in G∗i where v ∈ Vsource if it satisfies:

• All transactions in TXS(v) have been received.
• v is a source vertex in G∗i . That is, v has no incoming edges.

(c) Let Vfinalize ⊆ Vsource be the set of vertices v that also satisfy:
• For all tx∗ ∈ TXS(v), there is any previously recorded tuple

(sid, graph-end, tx∗, r′) with r ≥ r′
(d) For v ∈ Vsource, let Desc(v) denote the descendants of v in G∗i . Let

nDesc(v) = |Desc(v)| i.e. the number of descendants.
(e) For v ∈ Vfinalize and v′ ∈ Vsource, let common-desc(v,v′) be a boolean that

denotes whether v and v′ have a common descendant. That is, we define
common-desc(v,v′) := (Desc(v) ∩ Desc(v′) 6= ∅)

(f) If there is a v ∈ Vfinalize such that for all other v′ ∈ Vsource,
• common-desc(v,v′) = true
• Either nDesc(v) > nDesc(v′) holds or (nDesc(v) = nDesc(v′)) ∧

(TXS(v),TXS(v′)) ∈ Ord.
then, deliver transactions in v by appending TXS(v) to LOGi. Remove v
from G∗i and the corresponding vertices form Gi.

(g) Repeat steps 4b to 4f until there is no such v in step 4f.
(h) Output the current LOGi to Z.

• When i receives txs from Πfifocast[(sid, j)], it appends txs to Logji and adds j
to the set U tx

i .
• When i receives the output from Πsba[(sid, tx)], it stores it as Ltx.
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Transaction Lifecycle. Suppose that a transaction tx is input to node i in
round r0. Since the external network is synchronous, by round r0 +δext, all nodes
will have been input tx by Z. Consequently, by round r1 = r0 + δext + T fifocast

confirm,
node i will have received the gossip broadcasts from all other honest nodes. By
round r2 = r1 + T sba

confirm, node i will receive the output of the agreement stage
for tx, and tx can be added to the graph Gi. Now by round r3 = r2 + 2δext, any
other transaction that tx could be incomparable with will also get added to Gi.
Waiting for this time ensures that tx does not get delivered before ensuring that
all relevant transactions have been placed in the graph.

6.3 Consistency, Liveness, and Order-Fairness Results

We present the consistency, liveness, and order-fairness results for Πsync,nolead
Aequitas

in Theorem 4. We provide brief proof sketches, and defer the formal proofs to
the full version [27]. As a corollary, we also note that Πsync,nolead

Aequitas also satisfies
receive-order-fairness, and (conventional) liveness when the external network has
δext = 1, since non-transitive Condorcet cycles can no longer arise.

Theorem 4 (Consistency, Liveness, and Order-Fairness of Πsync,nolead
Aequitas ).

Consider any n, f, γ > 1
2 , ∆ext = (full, δext), ∆int = (full, δint) with n > 2f

2γ−1 .
Let Πfifocast be a secure FIFO-BC protocol and Πsba be a secure Set-BA protocol.
Further, suppose that Πfifocast satisfies (T fifocast

warmup, T
fifocast
confirm) liveness, and Πsba sat-

isfies T sba
confirm liveness. Then Πsync,nolead

Aequitas satisfies consistency, (T fifocast
warmup, T

∗
confirm)

weak-liveness where T ∗confirm = 2δext +T fifocast
confirm +T sba

confirm, and (γ, T fifocast
warmup) block-

order-fairness w.r.t. any (A,Z) that respects (n, f,∆int, ∆ext)-classical execution.

Consistency proof sketch. To show consistency, we need to prove that two
honest nodes i and j remove transactions from their graphs G∗i and G∗j in the
same order. For this, we first present a helpful lemma (Lemma 5).

Lemma 5. Suppose that when an honest node i delivers tx, v = SCCi(tx) is
the vertex that contains tx in G∗i . Now, if another honest node j delivers tx
and v′ = SCCj(tx) at that point, then TXSi(v) = TXSj(v

′), or equivalently
SCCi(tx) = SCCj(tx) when tx is output by each of the nodes. This means that
we can drop the node subscripts.

Now, suppose that node i delivers a transaction tx1 before another one tx2. Let
v1 = SCCi(tx1) and v2 = SCCi(tx2) be vertices in G∗i when tx1 and tx2 were
delivered. Note that by Lemma 5, we can also use v1 and v2 to denote the vertices
when j delivers tx1 and tx2. Now, either tx1 was delivered even before tx2 was
added to Gi, or there is an edge from v1 to v2 in G∗i (which caused tx1 to be
output before) or v1 and v2 are incomparable.

• If tx1 was delivered before tx2 was added to Gi, then at least γn− f nodes
received tx1 before tx2. Therefore, even if tx2 gets added to Gj before tx1,
there will be an edge from tx1 to tx2 in Gj . By Lemma 5, tx1 cannot be in
the same SCC as tx2 either, which implies that j cannot deliver tx2 first.
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• If (v1, v2) is an edge in G∗i , then it will also be in G∗j when j delivers TXS(v2).
This means that j cannot deliver TXS(v2) before it delivers TXS(v1).

• If there is no edge between v1 and v2 in G∗i , then node i delivers TXS(v1)
before because v1 had more descendants (or because of the deterministic tie-
breaker). Since j waits for 2δext time, both v1 and v2 are present in its graph
G∗j when j outputs TXS(v2), causing j to wait for a common descendant
of v1 and v2 to be added. By this time, any other vertex that is not a
common descendant will also be in G∗j , and the difference in the number of
descendants of v1 and v2 will remain constant henceforth. This means that
j will take the same decision as i to deliver TXS(v1) before TXS(v2).

Weak-Liveness proof sketch. To show weak-liveness for a transaction tx,
first, in Lemma 6, we prove that if a transaction is input sufficiently after tx, it
cannot be coalesced into the same strongly connected component as tx.

Lemma 6. Consider a transaction tx and build the set T as per the weak-
liveness definition. Now, let tx′ be a transaction that is input to all nodes after
all transactions in T. Then SCCi(tx) 6= SCCi(tx

′) for any honest i.

Now, suppose that tx was first input by Z in round r > T fifocast
warmup. Consider

the set T built form tx as in the weak-liveness definition. Suppose now that a
transaction txflush is input to all nodes after all transactions in T. Let rflush be
the round that txflush is first input to some node. Then, txflush is received by all
nodes by round rflush +δext and therefore added to all honest graphs Gi by round
rflush + 2δext + T fifocast

confirm + T sba
confirm. From Lemma 6, v = SCCi(tx) 6= SCCi(txflush)

for any honest i. Now, any transaction tx′ that tx is incomparable was input to
at least one honest node no later than tx, i.e. txflush was received after tx′ by all
honest nodes. Consequently, txflush will be a descendant of both tx and tx′. This
means that node i can deliver TXSi(tx) when txflush gets added to its graph,
which happens by round rflush + T ∗confirm.

Order-Fairness proof sketch. First, we note that if γn nodes receive tx1

before tx2, then at least γn − f honest ones do. This means that there will
be an edge from tx1 to tx2 in all honest Gi. Consequently, either tx1 will be
delivered before tx2 by all nodes, or it will end up in the same strongly connected
component as tx2 and be delivered at the same time.
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